Integrated sensing and communications with affine frequency division multiplexing

Bemani, Ali; Ksairi, Nassar; Kountouris, Marios
IEEE Wireless Communications Letters, 19 February 2024

Integrated sensing and communications (ISAC) is regarded as a key technology in next-generation (6G) mobile communication systems. Affine frequency division multiplexing (AFDM) is a recently proposed waveform that achieves optimal diversity gain in high mobility scenarios and has appealing properties in high-frequency communication. In this letter, we present an AFDM-based ISAC system. We first show that in order to identify all delay and Doppler components associated with the propagation medium, either the full AFDM signal or only its pilot part consisting of one discrete affine Fourier transform (DAFT) domain symbol and its guard interval can be used. Our results show that using one pilot symbol achieves almost the same sensing performance as using the entire AFDM frame. Furthermore, due to the chirp nature of AFDM, sensing with one pilot provides a unique feature allowing for simple self-interference cancellation, thus avoiding the need for expensive full duplex methods.


DOI
Type:
Journal
Date:
2024-02-19
Department:
Communication systems
Eurecom Ref:
7606
Copyright:
© 2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/7606