On user availability prediction and network applications

Dell'Amico, Matteo; Filippone, Maurizio; Michiardi, Pietro; Roudier, Yves
IEEE/ACM Transactions on Networking, Volume 23, N°4, August 2015

User connectivity patterns in network applications are known to be heterogeneous, and to follow periodic (daily and weekly) patterns. In many cases, the regularity and the correlation of those patterns is problematic: for network applications, many connected users create peaks of demand; in contrast, in peer-to-peer scenarios, having few users online results in a scarcity of available resources. On the other hand, since connectivity patterns exhibit a periodic behavior, they are to some extent predictable. This work shows how this can be exploited to anticipate future user connectivity and to have applications proactively responding to it. We evaluate the probability that any given user will be online at any given time, and assess the prediction on six-month availability traces from three different Internet applications. Building upon this, we show how our probabilistic approach makes it easy to evaluate and optimize the performance in a number of diverse network application models, and to use them to optimize systems. In particular, we show how this approach can be used in distributed hash tables, friend-to-friend storage, and cache pre-loading for social networks, resulting in substantial gains in data availability and system efficiency at negligible costs.

Data Science
Eurecom Ref:
© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/4283