3D urban UAV relay placement: Linear complexity algorithm and analysis

Chen, Junting; Mitra, Urbashi; Gesbert, David
IEEE Transactions on Wireless Communications, 23 March 2021

Optimal unmanned aerial vehicle (UAV) placement in a 3-dimensional (3D) space to build a connection between a base station (BS) and a ground user is studied herein. A key challenge is to avoid signal propagation blockage due to obstacles. Much prior work uses probabilistic terrain models with model parameters learned from the statistics over a large area, and therefore, the optimization for a specific user in a small local area is poor. In contrast, this paper seeks the optimal UAV position over actual and fine-grained terrain, and develops efficient UAV positioning strategy adaptive to the degree of location-dependent line-of-sight (LOS) condition measured on the fly. It is proven that the globally optimal UAV position in 3D can be determined from the proposed search trajectory which has merely linear length in the diameter of the target area. Therefore, the proposed strategy can be practically implemented. Numerical experiments are performed over a real-world urban topology and demonstrate superior performance gain over existing strategies based on probabilistic models.


DOI
HAL
Type:
Journal
Date:
2021-03-23
Department:
Communication systems
Eurecom Ref:
6503
Copyright:
© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/6503