HEAP: Reliable assessment of BGP hijacking attacks

Schlamp, Johann; Holz, Ralph; Jacquemart, Quentin; Carle, Georg; Biersack, Ernst W
IEEE Journal on Selected Areas in Communications, Vol. 34, N°6, June 2016,

The detection of BGP prefix hijacking attacks has been the focus of research for more than a decade. However, the state-of-the-art techniques fall short of detecting more elaborate types of attack. To study such attacks, we devise a novel formalization of Internet routing, and apply this model to routing anomalies in order to establish a comprehensive attacker model. We use this model to precisely classify attacks and to evaluate their impact and detectability. We analyze the eligibility of attack tactics that suit an attacker's goals and demonstrate that related work mostly focuses on less impactful kinds of attacks. We further propose, implement, and test the Hijacking Event Analysis Program (HEAP), a new approach to investigate hijacking alarms. Our approach is designed to seamlessly integrate with the previous work in order to reduce the high rates of false alarms inherent to these techniques. We leverage several unique data sources that can reliably disprove malicious intent. First, we make use of an Internet routing registry to derive business or organizational relationships between the parties involved in an event. Second, we use a topology-based reasoning algorithm to rule out events caused by legitimate operational practice. Finally, we use Internet-wide network scans to identify SSL/TLS-enabled hosts, which helps to identify non-malicious events by comparing public keys prior to and during an event. In our evaluation, we prove the effectiveness of our approach, and show that day-to-day routing anomalies are harmless for the most part. More importantly, we use HEAP to assess the validity of publicly reported alarms. We invite researchers to interface with HEAP in order to crosscheck and narrow down their hijacking alerts. © 2016 IEEE.

 

DOI
Type:
Journal
Date:
2016-06-01
Department:
Digital Security
Eurecom Ref:
6151
Copyright:
© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/6151