DiNoDB: an interactive-speed query engine for ad-hoc queries on temporary data

Tian, Yongchao; Alagiannis, Ioannis; Liarou, Erietta; Ailamaki, Anastasia; Michiardi, Pietro; Vukolic, Marko
IEEE transactions on Big Data, December 2016, Vol.PP, N°99 / Also on ArXiV

As data sets grow in size, analytics applications struggle to get instant insight into large datasets. Modern applications involve heavy batch processing jobs over large volumes of data and at the same time require efficient ad-hoc interactive analytics on temporary data. Existing solutions, however, typically focus on one of these two aspects, largely ignoring the need for synergy between the two. Consequently, interactive queries need to re-iterate costly passes through the entire dataset (e.g., data loading) that may provide meaningful return on investment only when data is queried over a long period of time. In this paper, we propose DiNoDB, an interactive-speed query engine for ad-hoc queries on temporary data. DiNoDB avoids the expensive loading and transformation phase that characterizes both traditional RDBMSs and current interactive analytics solutions. It is tailored to modern workflows found in machine learning and data exploration use cases, which often involve iterations of cycles of batch and interactive analytics on data that is typically useful for a narrow processing window. The key innovation of DiNoDB is to piggyback on the batch processing phase the creation of metadata that DiNoDB exploits to expedite the interactive queries. Our experimental analysis demonstrates that DiNoDB achieves very good performance for a wide range of ad-hoc queries compared to alternatives %such as Hive, Stado, SparkSQL and Impala.


DOI
Type:
Journal
Date:
2016-09-16
Department:
Data Science
Eurecom Ref:
5003
Copyright:
© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/5003