Coordinated shared spectrum precoding with distributed CSIT

Filippou, Miltiades C; de Kerret, Paul; Gesbert, David; Ratnarajah, Tharmalingam; Pastore, Adriano; Ropokis, George A
IEEE Transactions on Wireless Communications, Vol.15, N°8, August 2016, ISSN: 1536-1276

In this paper, the operation of a Licensed Shared Access (LSA) system is investigated, considering downlink communication. The system comprises of a Multiple-Input-Single-Output (MISO) incumbent transmitter (TX) - receiver (RX) pair, which offers a spectrum sharing opportunity to a MISO licensee TX-RX pair. Our main contribution is the design of a coordinated transmission scheme, inspired by the underlay Cognitive Radio (CR) approach, with the aim of maximizing the average rate of the licensee, subject to an average rate constraint for the incumbent. In contrast to most prior works on underlay CR, the coordination of the two TXs takes place under a realistic Channel State Information (CSI) scenario, where each TX has sole access to the instantaneous direct channel of its served terminal. Such a CSI knowledge setting brings about a formulation based on the theory of Team Decisions, whereby the TXs aim at optimizing a common objective given the same constraint set, on the basis of individual channel information. Consequently, a novel set of applicable precoding schemes is proposed. Relying on statistical coordination criteria, the two TXs cooperate in the lack of any instantaneous CSI exchange. We verify by simulations that our novel coordinated precoding scheme outperforms the standard underlay CR approach.


DOI
Type:
Journal
Date:
2016-04-14
Department:
Communication systems
Eurecom Ref:
4751
Copyright:
© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/4751