KryptoKnight family of light-weight protocols for authentication and key distribution

Bird, Ray;Gopal, Inder;Herzberg, Amir;Janson, Phil;Kutten, Shay;Molva, Refik;Yung, Moti
IEEE/ACM Transactions on Networking, Vol. 3, N°1, February 1995

An essential function for achieving security in computer networks is reliable authentication of communicating parties and network components. Such authentication typically relies on exchanges of cryptographic messages between the involved parties, which in turn implies that these parties be able to acquire shared secret keys or certified public keys. Provision of authentication and key distribution functions in the primitive and resource-constrained environments of low-function networking mechanisms, portable, or wireless devices presents challenges in terms of resource usage, system management, ease of use, efficiency, and flexibility that are beyond the capabilities of previous designs such as Kerberos or X.509. This paper presents a family of light-weight authentication and key distribution protocols suitable for use in the low layers of network architectures. All the protocols are built around a common two-way authentication protocol. The paper argues that key distribution may require substantially different approaches in different network environments and shows that the proposed family of protocols offers a flexible palette of compatible solutions addressing many different networking scenarios. The mechanisms are minimal in cryptographic processing and message size, yet they are strong enough to meet the needs of secure key distribution for network entity authentication. The protocols presented have been implemented as part of comprehensive security subsystem prototype called KryptoKnight.


DOI
Type:
Journal
Date:
1995-02-01
Department:
Digital Security
Eurecom Ref:
386
Copyright:
© 1995 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:

PERMALINK : https://www.eurecom.fr/publication/386