We propose a group information geometry approach (GIGA) for ultra-massive multiple-input multiple-output (MIMO) signal detection. The signal detection task is framed as computing the approximate marginals of the a posteriori distribution of the transmitted data symbols of all users. With the approximate marginals, we perform the maximization of the a posteriori marginals (MPM) detection to recover the symbol of each user. Based on the information geometry theory and the grouping of the components of the received signal, three types of manifolds are constructed and the approximate a posteriori marginals are obtained through m-projections. The Berry-Esseen theorem is introduced to offer an approximate calculation of the m-projection, while its direct calculation is exponentially complex. In most cases, increasing the number of groups tends to reduce the computational complexity of GIGA. However, when the number of groups exceeds a certain threshold, the complexity of GIGA starts to increase. Simulation results confirm that the proposed GIGA achieves better bit error rate (BER) performance within a small number of iterations, which demonstrates that it can serve as an efficient detection method in ultra-massive MIMO systems.
Group information geometry approach for ultra-massive MIMO signal detection
IEEE Transactions on Signal Processing, 30 April 2025
Type:
Journal
Date:
2025-04-30
Department:
Systèmes de Communication
Eurecom Ref:
7843
Copyright:
© 2025 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:
PERMALINK : https://www.eurecom.fr/publication/7843