This study presents a new approach for estimating confidence in machine learning model predictions, specifically in regression tasks utilizing Earth Observation (EO) data, with a particular focus on mosquito abundance (MA) estimation. We take advantage of a Variational AutoEncoder architecture, to derive a confidence metric by the latent space representations of EO datasets. This methodology is pivotal in establishing a correlation between the Euclidean distance in latent representations and the Absolute Error (AE) in individual MA predictions. Our research focuses on EO datasets from the Veneto region in Italy and the Upper Rhine Valley in Germany, targeting areas significantly affected by mosquito populations. A key finding is a notable correlation of 0.46 between the AE of MA predictions and the proposed confidence metric. This correlation signifies a robust, new metric for quantifying the reliability and enhancing the trustworthiness of the AI model's predictions in the context of both EO data analysis and mosquito abundance studies.
A latent space metric for enhancing prediction confidence in earth observation data
IGARSS 2024, IEEE International Geoscience and Remote Sensing Symposium, 7-12 July 2024, Athens, Greece
Type:
Conférence
City:
Athens
Date:
2024-07-07
Department:
Systèmes de Communication
Eurecom Ref:
7593
Copyright:
© 2024 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PERMALINK : https://www.eurecom.fr/publication/7593