Using networks as a means of computing can reduce the communication flow over networks. We propose to distribute the computation load in stationary networks and formulate a flow-based delay minimization problem that jointly captures the costs of communications and computation. We exploit the distributed compression scheme of Slepian-Wolf that is applicable under any protocol information. We introduce the notion of entropic surjectivity as a measure of function’s sparsity and to understand the limits of functional compression for computation. We leverage Littles law for stationary systems to provide a connection between surjectivity and the computation processing factor that reflects the proportion of flow that requires communications. This connection gives us an understanding of how much a node (in isolation) should compute to communicate the desired function within the network. Our results suggest that to effectively compute different function classes with different surjectivities, the networks can be restructured with the transition probabilities being tailored for functions, i.e., task-based link reservations, which can enable mixing versus separately processing of a diverse function class. We numerically evaluate our technique for search, MapReduce, and classification functions, and infer how sensitive the processing factor to the surjectivity of each computation task is.
Function load balancing over networks
IEEE Journal on Selected Areas in Information Theory, 2 August 2021
Type:
Journal
Date:
2021-08-02
Department:
Systèmes de Communication
Eurecom Ref:
6620
Copyright:
© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:
PERMALINK : https://www.eurecom.fr/publication/6620