An identifiable double VAE for disentangled representations

Mita, Graziano; Filippone, Maurizio; Michiardi, Pietro
ICML 2021, 38th International Conference on Machine Learning, 18-24 July, 2021 (Virtual Conference)

A large part of the literature on learning disentangled representations focuses on variational autoencoders (VAEs). Recent developments demonstrate that disentanglement cannot be obtained in a fully unsupervised setting without inductive biases on models and data. However, Khemakhem et al., AISTATS, 2020 suggest that employing a particular form of factorized prior, conditionally dependent on auxiliary variables complementing
input observations, can be one such bias, resulting in an identifiable model with guarantees on disentanglement. Working along this line, we propose a novel VAE-based generative model with theoretical guarantees on identifiability. We obtain our
conditional prior over the latents by learning an optimal representation, which imposes an additional strength on their regularization. We also extend our method to semi-supervised settings. Experimental results indicate superior performance with respect to state-of-the-art approaches, according to several established metrics proposed in the literature on disentanglement.

HAL
Type:
Conférence
Date:
2021-07-17
Department:
Data Science
Eurecom Ref:
6602
Copyright:
© 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/6602