Efficient model monitoring for quality control in cardiac image segmentation

Galati, Francesco; Zuluaga, Maria A.
FIMH 2021, 11th Biennial meeting on Functional Imaging and Modeling of the Heart, June 21-24, 2021, Standford, USA / To be published also in LNCS, Springer


Deep learning methods have reached state-of-the-art performance in cardiac image segmentation. Currently, the main bottleneck towards their effective translation into clinics requires assuring continuous high model performance and segmentation results. In this work, we present a novel learning framework to monitor the performance of
heart segmentation models in the absence of ground truth. Formulated as an anomaly detection problem, the monitoring framework allows deriving surrogate quality measures for a segmentation and allows agging suspicious results. We propose two different types of quality measures, a global score and a pixel-wise map. We demonstrate their use by reproducing the final rankings of a cardiac segmentation challenge in the absence of ground truth. Results show that our framework is accurate, fast, and scalable, confirming it is a viable option for quality control monitoring in clinical practice and large population studies.

Type:
Conférence
City:
Standford
Date:
2021-06-20
Department:
Data Science
Eurecom Ref:
6495
Copyright:
© Springer. Personal use of this material is permitted. The definitive version of this paper was published in FIMH 2021, 11th Biennial meeting on Functional Imaging and Modeling of the Heart, June 21-24, 2021, Standford, USA / To be published also in LNCS, Springer
 and is available at :
See also:

PERMALINK : https://www.eurecom.fr/publication/6495