Federated Learning (FL) is a recent distributed technique to extract knowledge, i.e. an abstract understanding obtained from a set of information through experience and analysis. Vehicular networks are highly mobile networks in which a large spectrum of data types is distributed. So far, no mechanisms have been defined that distribute FL model updates in vehicular networks based on which nodes are likely to hold the right data for training, and when. In turn, this potentially limits FL model training speed and accuracy. In this paper, we describe protocols to exchange model-based training requirements based on the Vehicular Knowledge Networking framework. Based on this understanding, we define vehicular mobility and data distribution-aware FL orchestration mechanisms. An evaluation of the approach using a federated variant of the MNIST dataset shows training speed and model accuracy improvements compared to traditional FL training approaches.
On the orchestration of federated learning through vehicular knowledge networking
VNC 2020, IEEE Vehicular Networking Conference, 16-18 December 2020, Virtual Conference
Type:
Conférence
City:
New-York
Date:
2020-12-16
Department:
Systèmes de Communication
Eurecom Ref:
6426
Copyright:
© 2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
See also:
PERMALINK : https://www.eurecom.fr/publication/6426