Multi-variation visible and thermal face database for cross-spectrum face recognition

Mallat, Khawla; Dugelay, Jean-Luc

Best Poster Award

Although visible face recognition systems have grown as a major area of research, they are still facing serious challenges when operating in uncontrolled environments. In attempt to overcome these limitations, thermal imagery has been investigated as a promising direction to extend face recognition technology. However, the reduced number of databases acquired in thermal spectrum limits its exploration. In this paper, we introduce a database of face images acquired simultaneously in visible and thermal spectra under various variations: illumination, expression, pose and occlusion.
Then, we present a comparative study of face recognition performances on both modalities against each variation and the impact of bimodal fusion. We prove that thermal spectrum rivals with the visible spectrum not only in the presence of illumination changes, but also in case of expression and poses changes.

Sécurité numérique
Eurecom Ref:
© 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.