Learning to communicate in UAV-aided wireless networks: Map-based approaches

Esrafilian, Omid; Gangula, Rajeev; Gesbert, David
IEEE Internet of Things Journal, Vol.6, N°2, April 2019

We consider the scenario of a UAV-mounted flying base station providing data communication services to a number of radio nodes spread over the ground. We focus on the problem of resource-constrained UAV trajectory design with (i) optimal parameter learning and (ii) optimal data throughput as key objectives, respectively. While the problem of throughputoptimized trajectories has been addressed in prior works, the formulation of an optimized path to efficiently discover propagation parameters has not yet been addressed. When it comes to the data communication phase, the advantage of this work comes from the exploitation of a 3D city map. While the optimization of a flying path directly based on the raw map data leads to an intractable non-differentiable cost minimization problem, we introduce a novel map compression method allowing us to tackle the problem with standard tools. The path optimization is then combined with a node scheduling algorithm. The advantages of both the learning path optimization and the map compression method for data communication trajectory design are illustrated in an urban IoT setting.

Systèmes de Communication
Eurecom Ref:
© 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/5593