Service migration versus service replication in multi-access edge computing

Frangoudis, Pantelis A; Ksentini, Adlen
IWCMC 2018, 14th International Wireless Communications and Mobile Computing Conference, 25-29 June 2018, Limassol, Cyprus

Envisioned low-latency services in 5G, like automated driving, will rely mainly on Multi-access Edge Computing (MEC) to reduce the distance, and hence latency, between users and the remote applications. MEC hosts will be deployed close to
mobile base stations, constituting a highly distributed computing platform. However, user mobility may raise the need to migrate a MEC application among MEC hosts to ensure always connecting users to the optimal server, in terms of geographical proximity, Quality of Service (QoS), etc. However, service migration may introduce: (i) latency for users due to the downtime duration; (ii) cost for the network operator as it consumes bandwidth to migrate services. One solution could be the use of service replication, which pro-actively replicates the service to avoid service migration and ensure low latency access. Service replication induces cost in terms of storage, though, requiring a careful study on the number of service to replicate and distribute in MEC. In this paper, we propose to compare service migration and service replication via an analytical model. The proposed model captures the relation between user mobility and service duration on service replication as well as service migration costs. The obtained results allow to propose recommendations between using service migration or service replication according to user mobility and the number of replicates to use for two types of
service.

DOI
Type:
Conférence
City:
Limassol
Date:
2018-06-25
Department:
Systèmes de Communication
Eurecom Ref:
5557
Copyright:
© 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/5557