Sparse feature tracking for crowd change detection and event recognition

Fradi, Hajer; Dugelay, Jean-Luc
ICPR 2014, 22nd International Conference on Pattern Recognition, 24-28 August 2014, Stockholm, Sweden

The study of crowd behavior in public areas or during some public events is receiving a lot of attention in security community to detect potential risk and to prevent overcrowd. In this paper, we propose a novel approach for change detection and event recognition in human crowds. It consists of modeling time-varying dynamics of the crowd using local features. It also involves a feature tracking step which allows excluding feature points on the background and extracting long-term trajectories. This process is favourable for the later crowd event detection and recognition since the influence of features irrelevant to the underlying crowd is removed and the tracked features undergo an implicit temporal filtering. These feature tracks are further employed to extract regular motion patterns such as speed and flow direction. In addition, they are also used as an observation of a probabilistic crowd function to generate fully automatic crowd density maps. Finally, the variation of these attributes (local density, speed, and flow direction) in time is employed to determine the ongoing crowd behavior. The experimental results on two different crowd datasets demonstrate the effectiveness of our proposed approach for early detection of crowd change and accurate results for event recognition.

Sécurité numérique
Eurecom Ref:
© 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.