Egoistic vs. altruistic beamforming in multicell systems with feedback and back-haul delays

Godana, Bruhtesfa E ; Gesbert, David
EURASIP Journal on Wireless Communications and Networking, October 2013:253

Base station cooperation is an attractive technique to increase the spectral efficiency of multi-cell systems. One of the challenges in multi-cell systems is obtaining accurate channel state information (CSI) at the base station. One source of CSI inaccuracy is the delay incurred in obtaining CSI and exchanging it among base stations. The presence of delay is inevitable when CSI is exchanged over the back-haul. In addition, CSI is commonly obtained using limited feedback techniques which further contribute to its inaccuracy. In this paper, we re-visit the comparison between competitive (egoistic) and cooperative (altruistic) beamforming strategies in the presence of imperfect CSI. The impact of CSI inaccuracy due to delay and finite codebook size on the achieved sum rate is analyzed. Closed-form expressions for a lower bound and a first-order approximation of the average sum rates achieved by these beamforming strategies are derived. Using the closed-form expressions, a mode switching criterion is proposed to switch between competitive and cooperative beamforming based on the signal-to-noise ratio (SNR), delay, Doppler frequency and codebook size. It is shown that competitive beamforming is preferred in the limit of low SNR irrespective of the quality of CSI, while cooperative beamforming is preferred only at high SNR and low Doppler frequencies, confirming that base station cooperation is not always advantageous.

Systèmes de Communication
Eurecom Ref:
© EURASIP. Personal use of this material is permitted. The definitive version of this paper was published in EURASIP Journal on Wireless Communications and Networking, October 2013:253 and is available at :
See also: