Bayesian semi-blind FIR channel estimation algorithms in SIMO systems

Omar, Samir Mohamad; Slock, Dirk T M; Bazzi, Oussama
SPAWC 2011, 12th IEEE International Workshop on Signal Processing Advances in Wireless Communications, June 26-29, 2011, San Fransisco, USA

When the transmission scenario includes a training sequence or pilots, semi-blind channel estimation techniques have shown a tendency to fully exploit the information available from the received signal if they are correctly implemented. This feature leads semi-blind channel estimation performance to exceed that of the schemes based on the blind part or the training sequence only. Moreover, in some situations they can estimate the channel when the other techniques fail. Semi-blind channel estimation techniques were developed and usually evaluated for a given channel realization, i.e. with a deterministic channel model. On the other hand, in wireless communications the channel is typically modeled as Rayleigh fading, i.e. with a Gaussian (prior) distribution expressing variances of and correlations between channel coefficients. In recent years, such prior information on the channel has started to get exploited in pilot-based channel estimation, since often the pure pilot-based (deterministic) channel estimate is of limited quality due to limited pilots. In this paper we explore a Bayesian approach to semi-blind channel estimation, exploiting a priori information on fading channels. We mainly focus on semi-blind joint ML/MAP estimation of channels and symbols on one hand, and on semi-blind ML/MAP estimation of channels with elimination of symbols on the other hand. As a consequence, a unified framework along with three novel semiblind Bayesian estimators are introduced whose performance is compared by simulations to three, one extended and another two already existing semi-blind non-Bayesian estimators.

San Fransisco
Systèmes de Communication
Eurecom Ref:
© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.