Dual-regularized feedback and precoding for D2D-assisted MIMO systems

Chen, Junting; Yin, Haifan; Cottatellucci, Laura; Gesbert, David
IEEE Transactions on Wireless Communications, Vol.16, N° 10, October 2017

This paper considers the problem of efficient feedback design for massive multiple-input multiple-output (MIMO) downlink transmissions in frequency division duplexing (FDD) bands, where some partial channel state information (CSI) can be directly exchanged between users via device-to-device (D2D) communications. Drawing inspiration from classical point-to-point MIMO, where efficient mechanisms are obtained by feeding back directly the precoder, this paper proposes a new approach to bridge the channel feedback and the precoder feedback by the joint design of the feedback and precoding strategy following a team decision framework. Specifically, the users and the base station (BS) minimize a common mean squared error (MSE) metric based on their individual observations on the imperfect global CSI. The solutions are found to take similar forms as the regularized zero-forcing (RZF) precoder, with additional regularizations that capture any level of uncertainty in the exchanged CSI, in case the D2D links are absent or unreliable. Numerical results demonstrate superior performance of the proposed scheme for an arbitrary D2D link quality setup.


DOI
Type:
Journal
Date:
2017-08-01
Department:
Systèmes de Communication
Eurecom Ref:
5341
Copyright:
© 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/5341