On extending ETSI MEC to support LoRa for efficient IoT application deployment at the edge

Ksentini, Adlen; Frangoudis, Pantelis A
IEEE Communications Standards Magazine, Vol.4, N°2, June 2020

The Internet of Things (IoT) undergoes a rapid transformation this last decade, thanks to the appearance of Low Power Wide Area Network (LPWAN) technologies, such as LoRa/LoRaWAN, SigFox and Narrow band IoT (NB-IoT), which allow reducing the deployment cost of sensors and other IoT devices. Many emerging services such as smart city, industry 4.0, and autonomous driving, are based on IoT devices and applications to collect and analyse data and control end-devices (i.e., actuators). Among these services, several IoT applications, such as data analytics ones, need to be deployed at the edge to either reduce the latency to access data or treat the high amount of generated data locally. However, in the context of LoRa/LoRaWAN, most of the current IoT service deployments run the applications at a central cloud to ease the integration with existing Software as a Service (SaaS) platforms, without exploiting the benefits of edge computing. In this article, we propose a new framework that leverages the ETSI Multi-access Edge Computing (MEC) model to deploy LoRa-based IoT applications at the edge. Particularly, the proposed model takes advantage of the ETSI MEC features, such as dynamic deployment of an IoT application at the edge and application Life Cycle Management (LCM). In addition, the proposed framework allows to run the IoT application as a 5G network slice at the edge.

DOI
Type:
Journal
Date:
2020-07-13
Department:
Systèmes de Communication
Eurecom Ref:
6235
Copyright:
© 2020 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PERMALINK : https://www.eurecom.fr/publication/6235