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Abstract - In this paper iterative blind estimation of the
complex amplitudes of the users is considered. A Gaussian
mixture model formulation of the problem is introduced and
Expectation Maximization (EM) algorithm for estimation of
parameters for Gaussian mixture observation model is used.
Simulation results compare the performance of the proposed
algorithm with the Cramer-Rao bound.
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I. INTRODUCTION

Code Division Multiple Access (CDMA) is one of the most
common multiple access techniques for wireless communi-
cation systems. In CDMA all users use entire frequency
band and are separated at the receiver by each user’s quasi-
orthogonal spreading codes to reduce inter-user interference.
In recent years, various kinds of receivers have been proposed
for the CDMA system. In this paper we consider the problem
of estimating the received amplitudes of the users knowing
only their spreading codes. Talwar, et al [5] proposed itera-
tive least square with enumeration (ILSE) which solves the
problem by estimating the channel by short training sequence
or from previous estimates and find the data sequence over
all possible data in the Finite Alphabet (FA). They also pro-
posed iterative least square with projection (ILSP) which also
initially estimates the channel with the same method as for
ILSE and treats the problem as continuous optimization prob-
lem and projects the results onto closest discrete alphabet. In
[4,9], the authors consider projection of the received signal
on the signal subspace of the received signal autocorrelation
matrix and after apply the method of parameter estimation
for Gaussian mixture. Their proposed algorithm is faced with
two problems

1) eigenvalue decomposition of the received signal auto-

correlation matrix (a computationally complex opera-
tion), an other algorithm must be used for signal sub-
space tracking and also signal subspace mismatch can
deteriorate estimation of the parameters
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2) The most important one is that by projecting the data
vector onto signal subspace or any other matrix of lower
dimension, it can be imagined (and this is borne out
by experience with EM like techniques), that the re-
sult would not converge to true means of the Gaussians.
This can be explained by the following reason: Let M
be the number of Gaussians and P be the dimensional-
ity of the data. If the dimension is decreased from P
to g, the average distance between any two means de-
creases as /¢/P, and the probability that the means
are separated by less than 20 increases. The criterion
for the separation of two Gaussian distributions in one
dimension is that the distance between two means is
greater than twice the standard deviation ( 2¢). Further-
more, Gaussians that are poorly separated in the origi-
nal dimension will tend to become even more poorly
separated as the dimensionality is decreased. Thus, it
is very important that the Gaussians remain well sepa-
rated after projection onto lower dimensional space. If
they are not, it will be difficult for the EM algorithm
to recognize overlapping components as distinct Gaus-
sian distributions resulting in a total failure of the EM
algorithm.

In our approach we consider directly the output of the chan-
nel (the received signal) as the mixture of a known number of
Gaussian and estimate its parameters thus avoiding the above
mentioned problems and by keeping spreading factor not too
high, the computational complextiy is kept moderate (compa-
rable to the case in which projection is done) . Direct Max-
imum Likelihood (ML)estimation of parameters is complex
and therefore we use expectation maximization (EM) algo-
rithm to find the parameters of our model. Mixture models,
in particular mixtures of Gaussian, have been a popular tool
for density estimation, clustering and unsupervised learning
with wide range of applications. Mixture models are one of
the most useful tools for handling incomplete data, in par-
ticular hidden variables. For Gaussian mixtures the hidden
variable indicate for each data point the index of the Gaus-
sian that generated it. The EM technique is used to iteratively
update the maximum likelihood estimate of the parameters of
the mixture which are used to obtain amplitudes of the users.



The rest of the paper is organized as follows: The signal
model for the problem is described in section 2. Section 3
is devoted to the development of the EM based algorithm
for solving the problem. In section 4,5 and 6 convergence
rate, simulations, performance is analyzed, and conclusion is
drawn, respectively.

Il. SIGNAL MODEL

We consider DS CDMA with K -users with processing gain
P. The output of the channel is chip matched filtered and
sampled at the chip rate. The system is assumed to be syn-
chronous. In a single data interval we have P-dimensional
vector x, given by

x=SAb+n 1)

where S is P x K matrix whose columns are K users nor-
malized spreading sequences:

S = [s1]sa]...- . Sk| 2

A = diag(A1, Ag, .....Ax), k users’ received amplitudes,
b = [b1,bs, ..., bk] contains the symbols transmitted by the
users and n is P dimensional Gaussian random vector for
noise with covariance matrix given by o2 I, where I is identity
matrix.

We assume that symbols of different users are independent
i.e. E[bgb;] = 1 for k = [ and 0 otherwise.

We can write equation (1) as

x = Hb +n, (3)

where H = SA is (P x K) dimensional matrix.

Given model of equation (3) our goal is to estimate A (i.e.
users signal amplitudes) from multiple independent observa-
tions of x.

I1l. EM FRAMEWORK FOR MAXIMUM LIKELIHOOD
ESTIMATION

First of all, we briefly describe EM algorithm. EM algo-
rithm is an iterative approach to Maximum Likelihood Esti-
mation (MLE), originally formalized in ( Demster, Laird and
Rubin ). Each iteration is composed of two steps: an expec-
tation (E) step and a maximization (M) step. The aim is to
maximize the loglikelihood {(0; D) = logL(8; D), where ¢
are parameters of the model and D are the data. Suppose that
this optimization problem would be simplified by the knowl-
edge of the additional variable x, known as missing or hidden
data. The set D, = D U y is refered to as the complete data
set (in the same context D is refered to as incomplete data
set). Correspondingly, the loglikelihood function (. (¢; D.) is
refered to as complete data likelihood. x is chosen such that
the function {.(6; D.) would be easily maximized if x were
known. However, since x is not obsevable, I. is a random
variable and cannot be maximized directly. Thus, the EM al-
gorithm relies on integrating over the distribution of y, with

the auxiliary function Q(6,8) = E, [l.(; D.|D, 6], which is
the expected value of the complete data likelihood, given the
observed data D and the parameter 8 computed at the previous
iteration. Intuitively, computing @ corresponds to filling the
missing data using the knowledge of the observed data and
previous parameters. The auxiliary function is deterministic
and can be maximized. An EM algorithm iterates the follow-
ing two steps, for k=1,2,...., until local or global maximum of
the likelihood is found.
Expectation: Compute

Q(0;6%) = E\[le(6; De| D, 0] (4)

Maximization: Update the parameters as

05+ = argman, Q(0;0%)), (5)

In some cases, it is difficult to analytically maximize
Q(0;6")), as required by the M-step of the above algorithm,
and we are only able to compute a new value #(*+1) that pro-
duces an increase of Q at each iteration. In this case we have
so called generalized EM (GEM) algorithm.

We consider the BPSK case in which the transmitted data
takes on two possible values {—1,+1} with all symbol vec-
tors being equally likely.

In ML estimation problem we have density function
P(x]|0) that is governed by the set of parameters ¢ (e.g. P
might be set of Gaussians and ¢ could be the means and co-
variances). The data is of size IV, supposedly drawn from
this distribution, i.e X = [xi,...... xn]. That is, we assume
that these data vectors are independent identically distributed
(i.i.d) with distribution P. Therefore the resulting density for
the samples is

p(x16) = T] P(x:l0) = L(6]X).

t=1

This function L(#|X) is called the likelihood of the param-
eters given the data, or just the likelihood function. In the ML
problem, our goal is to find ¢ that maximizes L. That is, we
wish to find 6* where

6 = argmeaxL(ﬂX). (6)

Assuming that the channel output i.e. x can be approximated
by Gaussian distributions i.e. P(x/6) can be modeled as P-
dimensional mixture of Gaussians. We can write

M
P(x]0) =Y aj P(xm;, %), U]
j=1

where M = 2K and

P(x[my, %;) = (8)

1 1 Ty—1
)T P (—§<x—mj> ; (x—mj)),
©



a; > 0,and Z _, «; = 1. The parameter vector ¢ consists
of mixing proportlons a;, the means vectors m;, and the co-
variance matrices ;. Given M and given N independent, i.i.d
samples {z;}2, we obtain the following likelihood

N M

1(0) = log ) ajP(x|my, %) (10)

t=1 j=1

which is difficult to optimize because it contains logarithm of
a sum. If we consider X as incomplete, since we do not know
which index j, within the mixture probability density function
output has originated. The complete “data set” in this case
is [x1,...,XN,101,...,in], Where i, denotes the component
of the pdf from which x,, is drawn. Using complete data set
we can optimize our problem using EM algorithm (see, e.g
[1].[2])

The update for means is given by the following equation.

N 4 (k
miF+) — P h; )(t)xt

= 11
! YDA -

where the posteriori probabilities h;k)(t) is defined as fol-
lows:

agk)P (xtlm;»k), E;.k))

SY kP (Xt|m;k)’ Ey«))

h (t) = (12)

The mixing proportions («;) and Covariance matrices in our
case are constant and is given by 2% and o2 I respectively.
The algorithm works as follows, first posteriori probabili-
ties are calculated using initial estimates of means. The pos-
teriori probabilities tells us the likelihood that a point belongs
to each of the separate component densities with respect to
the current parameters. These posteriori estimates are used
to find the update means of the mixture. These two steps are
repeated until convergence. The convergence of the EM al-
gorithm to a solution and the number of iterations depends on
the tolerance, the initial parameters, the data set, etc. After
convergence of the algorithm the estimate of H is given by

-1

H=> mbl > bbl| . (13)

From an H, estimate of the matrix H, it is straightforward to
obtain estimates of the users’ signal amplitudes by following
equation

= (STs)"'sTH (14)

Data sequence can be estimated by employing method of least
square.

IV. CONVERGENCE RATE OF EM ALGORITHM FOR
GAUSSIAN MIXTURES
Theorem: For Gaussian mixtures the convergence rate r of
EM algorithm for means and hence for the channel is bounded
by

T B
r= Hm;k) : SHIJ“ijhmJ’H: (19)
a2 S — 1] (16)

[1A]] [ — 117

where m;, 4 are means and channel coefficients respectively
and + denotes the converged point. / and h;,; denotes the
Identity matrix and Hessian of the likelihood function at

and P, = W Higher the values of || A||, slower

will be the convergence.

Proof: Xu and Jordan (1996) showed that each iteration
the following relationship holds between the gradient of the
loglikelihood and the EM update step:

(1) _ (k) _ pir) O
m; —m; = P} () @an
I I 7 Omy M=
From the above equation, using Taylor expansion around
the convergent point m; for large k and noting that

piF) oL me = 0, we have

mj 6m mi=

m ) = prohn (m —my)(18)

m;''mj
which can be written as

B D) _ o L (K)

* * (k)
; y ; —mj + Py, h (

m;'tmj

—m3) (19)

m* —mt = (L4 Py hn ) (m —m3)(20)

which after using Schwarz inequality follows the result. It has
been proved by Ma et al. that asymtotic convergence rate of
EM for Gaussian mixtures locally around the true solution m
is O(e”>~“(m})) where € > 0 is an arbitrary small number,
O(x) means that it is higher order infinitismal as z — 0, and
e(mj) is a measure of overlap of Gaussians in the mixture. In
other words, large sample local convergence rate for the EM
algorithm tends to be asymtotically superlinear when e(m;)
tends to zero.

V. SIMULATIONS

The performance of the proposed method was evaluated as
a function of SNR (signal to noise ratio) based on Monte carlo
simulations. The method was tested for 500 Monte Carlo tri-
als per SNR point across range of SNR’s. In each trial, the
amplitude estimation error was recorded. The data block of
32 symbols were used in all simulations. The spreading gain
was 32. The proposed method worked quite well for the two
and three users case (due to the fact that there were only four



and eight mixture of Gaussians respectively). In figure 1, the
performance is compared with the approximate Cramer Rao
bound which is not as tight as Cramer-Rao bound (CRB) and
the difference between the simulation and CRB can be ex-
plained by the fact that the initial parameter values for the
EM algorithm were given as random numbers i.e initial val-
ues were not confined to be in the vacinity the true value of
the parameter. This was done in order to show results for EM
in more realistic way (because in reality it is very difficult to
know a priori good starting points for an algorithm). Figure
2 shows comparison of the estimation error for three and four
users. Beyond three users the estimation error increased quite
substantially (as is clear from figure 2). This effect can be
explained from the fact that as the number of users increases
it is more probable for the EM algorithm to converge at false
means of the mixture of Gaussians (if random initialization
is done as in our case). Therefore very good initialization is
needed when number of users grows large.

V1. CONCLUSION

In this paper we presented a Gaussian mixture formulation
of the problem to blindly estimate the users amplitudes for the
synchronous CDMA system. We proposed EM based algo-
rithm to estimate the parameters of the mixture. Theoretical
convergence rate for the means in the Gaussian mixture case
was also presented. Simulations result shows usefulness of
the method. The estimation error is compared with approxi-
mate Cramer-Rao lower bound.
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Fig. 1. Amplitude estimation error.
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