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Abstract—The efficient distribution of stored information has become a
major concern in the Internet which has increasingly become a vehicle for
the transport of stored video. Because of the highly heterogeneous access
to the Internet, researchers and engineers have argued for layered encoded
video. In this paper we investigate delivering layered encoded video using
caches. Based on a stochastic knapsack model we develop a model for the
layered video caching problem. We propose heuristics to determine which
videos and which layers in the videos should be cached. We evaluate the
performance of our heuristics through extensive numerical experiments.
We also consider two intuitive extensions to the initial problem.
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I. I NTRODUCTION

In recent years, the efficient distribution of stored information
has become a major concern in the Internet. In the late 1990s
numerous companies – including Cisco, Microsoft, Netscape,
Inktomi, and Network Appliance – began to sell Web caching
products, enabling ISPs to deliver Web documents faster and to
reduce the amount of traffic sent to and from other ISPs. More
recently the Internet has witnessed the emergence of content dis-
tribution network companies, such as Akamai and Sandpiper,
which work directly with content providers to cache and repli-
cate the providers’ content close to the end users. In parallel
to all of this caching and content distribution activity, the Inter-
net has increasingly become a vehicle for the transport of stored
video. Many of the Web caching and content distribution com-
panies have recently announced new products for the efficient
distribution of stored video.

Access to the Internet is, of course, highly heterogeneous,
and includes 28K modem connections, 64K ISDN connections,
shared-bandwidth cable modem connections, xDSL connec-
tions with downstream rates in 100K-6M range, and high-speed
switched Ethernet connections at 10 Mbps. Researchers and en-
gineers have therefore argued that layered encoded video is ap-
propriate for the Internet. When a video is layered encoded, the
number of layers that are sent to the end user is a function of the
user’s downstream bandwidth.

An important research issue is how to efficiently distribute
stored layered video from servers (including Web servers) to
end users. As with Web content, it clearly makes sense to in-

sert intermediate caches between the servers and clients. This
will allow users to access much of the stored video content from
nearby servers, rather than accessing the video from a poten-
tially distant server. Given the presence of a caching and/or
content distribution network infrastructure, and of layered video
in origin servers, a fundamental problem is to determinewhich
videos andwhich layers in the videos should be cached. Intu-
itively, we will want to cache the more popular videos, and will
want to give preference to the lower base layers rather than to
the higher enhancement layers.

In this paper we present a methodology for selecting which
videos and which layers should be stored at a finite-capacity
cache. The methodology could be used, for example, by a cable
or ADSL access company with a cache at the root of the distribu-
tion tree. Specifically, we suppose that the users have high-speed
access to the cache, but the cache has limited storage capacity
and a limited bandwidth connection to the Internet at large. For
example, the ISP might have a terabyte cache with a 45 Mbps
connection to its parent ISP. Thus, the video caching problem
has two constrained resources, the cache size and the transmis-
sion rate of the access link between the ISP and its parent ISP.
Our methodology is based on a stochastic knapsack model of
the 2-resource problem. We suppose that the cache operator has
a good estimate of the popularities of the the video layers. The
problem, in essence, is to determine which videos and which
layers within the video should be cached so that customer de-
mand can best be met.

This paper is organized as follows. In Section II we present
our layered video streaming model. In Section III we present
our utility heuristics and evaluate their performance. Section IV
extends our caching model by adding the possibility to negotiate
the delivered stream quality. Section V considers a queueing
scheme for managing client requests. Section VI considers the
usefulness of partial caching. Section VII presents an overview
of related work and Section VIII concludes the paper.

II. M ODEL OF LAYERED VIDEO STREAMING WITH PROXY

Fig. 1 illustrates our architecture for continuous media
streaming with proxy servers. We first give a rough overview of



Fig. 1. Architecture for caching and streaming of layered encoded video.

our streaming architecture and then discuss each component in
detail. All available continuous media objects are stored on the
origin servers. Popular streams are cached in proxy servers. The
clients direct their streaming requests to the appropriate proxy
server. If the requested stream is cached in the proxy, it is di-
rectly streamed over the local access network to the client. If
the requested stream is not cached in the proxy, it is streamed
from the origin server over the wide area network to the proxy.
The proxy forwards the stream to the client.

A. Layered Video

The continuous media objects available on the origin servers
are prerecorded audio and video objects, such as CD–quality
music clips, short video clips (e.g., news clips, trailers or mu-
sic videos) or full–length movies or on–line lectures. Our focus
in this study is on video objects that have been encoded using
layered (hierarchical) encoding techniques [1–3]. With hierar-
chical encoding each video object is encoded into a base layer
and one or more enhancement layers. The base layer contains
the most essential basic quality information. The enhancement
layers provide quality enhancements. A particular enhancement
layer can only be decoded if all lower quality layers are avail-
able. Therefore, an enhancement layer is useless for the client if
the corresponding lower quality layers are not available.

Layered video allows service providers to offer flexible
streaming services to clients with vastly different reception
bandwidths and decoding capabilities. Typically, wireless
clients and clients with modem–speed wireline Internet access
will request only the base layer stream. Clients with high–
speed ADSL or cable modem access, on the other hand, may
wish to receive higher quality streams consisting of base layer
as well enhancement layers. Furthermore, layered video allows
for flexible pricing structures. A service provider may offer the
base layer stream at a basic rate and charge a premium for the
enhancement layers. In other words, clients are charged more
when receiving more layers (i.e., higher quality streams). Such
a pricing structure might prompt clients to request the cheaper
base layer–only stream of a news clip or talk show, say, while
requesting the more expensive high quality stream of an enter-
tainment movie.

To make the notion of layered video objects more precise,

suppose that there areM video objects. We assume that the
video objects are encoded into Constant Bit Rate (CBR) layers,
which is a reasonable first approximation of the output of hi-
erarchical codecs. For notational simplicity we assume that all
video objects are encoded intoL layers. (Our model extends to
video objects that differ in the number of layers in a straight-
forward manner.) Letrl(m) denote the rate (in bit/sec) of layer
l; l = 1; : : : ; L, of video objectm; m = 1; : : : ;M . We define
a j–quality stream as a stream consisting of layers1; 2; : : : ; j.
Let T (m); m = 1; : : : ;M , denote the length (in seconds) of
video objectm. Let R(j;m) denote the revenue accrued from
providing aj–quality stream of objectm.

B. Proxy Server

The proxy server is located close to the clients. It is con-
nected to the origin servers via a wide area network (e.g., the
Internet). We model the bandwidth available for streaming con-
tinuous media from the origin servers to the proxy server as a
bottleneck link of fixed capacityC (bit/sec). The proxy is con-
nected to the clients via a local access network. The local access
network could be a LAN running over Ethernet, or a residential
access network using xDSL or HFC technologies. For the pur-
pose of this study we assume that there is abundant bandwidth
for continuous media streaming from the proxy to the clients.
We model the proxy server as having a storage capacity ofG

(bytes). We assume that the proxy storage has infinite storage
bandwidth (for reading from storage). We note that the proxy
storage is typically a disk array with limited storage bandwidth
due to the limited disk bandwidths and seek and rotational over-
heads. Our focus in this study, however, is on gaining a funda-
mental understanding of the impact of the two basic streaming
resources (bottleneck bandwidthC and cache spaceG) on the
proxy performance. We refer the interested reader to [4–6] for
a detailed discussion of the disk array limitations as well as dis-
cussions on replication and striping techniques to mitigate these
limitations.

We consider a caching scenario where the cache contents are
updated periodically, say every few hours, daily, or weekly. The
periodic cache updates are based on estimates of the request pat-
tern of the proxy’s client community. A service provider may es-
timate the request pattern from observations over the last couple
of days or weeks. Suppose that the requests for video streams
arrive according to a Poisson process with rate� (requests/sec).
Let p(j;m) denote the popularity of thej–quality stream of ob-
jectm, that is,p(j;m) is the probability that a request is for the
j–quality stream of objectm. These popularities could be esti-
mated from the observed requests using an exponential weighted
moving average. As a proper probability mass distribution the
p(j;m)’s satisfy

PM

m=1

PL

j=1 p(j;m) = 1. Also, note that the
arrival rate of requests for thej–quality stream of objectm is
given by�p(j;m).

Our focus in this study is on caching strategies that cache
complete layers of video objects in the proxy. Our goal is to
cache object layers so as to maximize the revenue accrued from
the streaming service. When updating the cache our heuristics
give layers of very popular objects priority over layers of moder-
ately popular objects. Moreover, lower quality layers are given
priority over higher quality layers (as these require the lower



quality layers for decoding at the clients).
To keep track of the cached object layers we introduce a vec-

tor of cache indicatorsc = (c1; c2; : : : ; cM ), with 0 � cm � L

for m = 1; : : : ;M . The indicatorcm is set toi if layers 1
throughi of objectm are cached. Note thatcm = 0 indicates
that no layer of objectm is cached. With the cache indicator
notation the cache space occupied by the cached object layers is
given by

S(c) =
MX
m=1

cmX
l=1

rl(m)T (m): (1)

C. Stream Delivery

The client directs its request for aj–quality stream of a video
objectm to its proxy server (for instance by using the Real
Time Streaming Protocol (RTSP) [7]). If all the requested
layers are cached in the proxy (cm � j), the requested lay-
ers are streamed from the proxy over the local access network
to the client. If layers are missing in the proxy (cm < j),
the appropriate origin server attempts to establish a connection
for the streaming of the missing layerscm + 1; : : : ; j at ratePj

l=cm+1
rl(m) over the bottleneck link to the client. If there is

sufficient bandwidth available, the connection is established and
the stream occupies the link bandwidth

Pj

l=cm+1
rl(m) over

the lifetime of the stream. (The layers1; : : : ; cm are streamed
from the proxy directly to the client.) We assume that the client
watches the entire stream without interruptions, thus the band-
width

Pj

l=cm+1
rl(m) is occupied forT (m) seconds. In the

case there is not sufficient bandwidth available on the bottle-
neck link, we consider the request as blocked. (In Section IV
we study a refined model where clients may settle for a lower
quality stream in case their original request is blocked.)

Formally, letBc(j;m) denote the blocking probability of the
request for aj–quality stream of objectm, given the cache con-
figurationc. Clearly, there is no blocking when all requested
layers are cached, that is,Bc(j;m) = 0 for cm � j. If
the request requires the streaming of layers over the bottleneck
link (cm < j), blocking occurs with a non–zero probability
Bc(j;m). We calculate the blocking probabilitiesBc(j;m) us-
ing results from the analysis of multiservice loss models [8]. An
overview of the relevant loss modeling is provided in the Ap-
pendix. In summary, we model the bottleneck link as a stochas-
tic knapsack of capacityC. Requests forj–quality streams
(j = 1; : : : ; L) of objectm; m = 1; : : : ;M are modeled as
a distinct class of requests, thus there is a total ofML distinct
classes of requests. The load offered by requests forj–quality
streams of objectm is �p(j;m)T (m). The blocking probabil-
ities Bc(j;m) for the request classes can be calculated using
the recursive Kaufman–Roberts algorithm [8, p. 23] with a time
complexity ofO(CML). The expected blocking probability of
a client’s request is given by

B(c) =
MX
m=1

LX
j=1

p(j;m)Bc(j;m):

The service provider should strive to keep the expected blocking
probability acceptably small, say, less than 5%. The through-
put of requests forj–quality streams of objectm, that is, the

long run rate at which these requests are granted and serviced is
�p(j;m)(1 � Bc(j;m)). The long run rate of revenue accrued
from the servicedj–quality streams of objectm is the revenue
per served request,R(j;m), multiplied by the throughput. Thus,
the long run total rate of revenue of the streaming service is

R(c) = �

MX
m=1

LX
j=1

R(j;m)p(j;m)(1�Bc(j;m)): (2)

Our goal is to cache object layers so as to maximize the total
revenue rate.

III. O PTIMAL CACHING

In this section we study optimal caching strategies. Suppose
that the stream popularities (p(j;m)) and the stream character-
istics (layer ratesrl(m) and lengthsT (m)) are given. The ques-
tion we address is how to best utilize the streaming resources
— bottleneck bandwidthC and cache spaceG — in order to
maximize the revenue. Our focus in this study is on optimal
caching strategies, that is, we focus on the question: which ob-
jects and which layers thereof should be cached in order to max-
imize the revenue? Formally, we study the optimization prob-
lem maxcR(c) subject toS(c) � G. Throughout this study
we assume the complete sharing admission policy for the bot-
tleneck link, that is, a connection is always admitted when there
is sufficient bandwidth. We note that complete sharing is not
necessarily the optimal admission policy. In fact, the optimal
admission policy may block a request (even when there is suffi-
cient bandwidth) to save bandwidth for more profitable requests
arriving later. We refer the interested reader to [8, Ch. 4] for a
detailed discussion on optimal admission policies. Our focus in
this study is on the impact of thecaching policy on the revenue;
we assume complete sharing as a baseline admission policy that
is simple to describe and administer.

The maximization of the long run revenue rateR(c) over all
possible caching strategies (i.e., cache configurationsc) is a dif-
ficult stochastic optimization problem, that — to the best of our
knowledge— is analytically intractable. To illustrate the prob-
lem consider a scenario where all video layers have the same
rate r and lengthT , i.e., rl(m) = r andT (m) = T for all
l = 1; : : : ; L, and allm = 1; : : : ;M . In this scenario all ob-
ject layers have the sizerT . Thus, we can cache up toG=(rT )
object layers (which we assume to be an integer for simplicity).
Suppose that during the observation period used to estimate the
stream popularities, the proxy has recorded requests forM dis-
tinct objects from its client community. Thus, there are a to-
tal of ML object layers to choose from when filling the cache
(with “hot” new releases there might even be more objects to
consider). Typically, the cache can accommodate only a small
subset of the available object layers, i.e.,G=(rT ) � ML. For

an exhaustive search there are

�
ML

G=(rT )

�
possibilities to fill

the cache completely; a prohibitively large search space even for
smallML.

Recall that with layered encoded video a particular enhance-
ment layer can only be decoded if all lower quality layers are
available. Therefore, a reasonable restriction of the search space
is to consider a particular enhancement layer for caching only if



TABLE I

UTILITY DEFINITIONS .

Popularity utility ul;m =
PL

j=l p(j;m)

Revenue utility ul;m =
PL

j=l R(j;m)p(j;m)

Revenue density utility ul;m =
PL

j=l

R(j;m)p(j;m)

rj(m)T (m)

all lower quality layers of the corresponding object are cached.
Even the “reasonable” search space, however, is prohibitively
large for moderateML; with M = 50, L = 2, G=(rT ) = 20,
for instance, there are2:929 � 1016 possibilities to fill the cache
completely.

Because the maximization problemmaxcR(c) subject to
S(c) � G is analytically intractable and exhaustive searches
overc are prohibitive for realistic problems, we propose heuris-
tics for finding the optimal cache compositionc.

A. Utility Heuristics

The basic idea of our utility heuristics is to assign each of
theML object layers a cache utilityul;m; l = 1; : : : ; L; m =
1; : : : ;M . The object layers are then cached in decreasing order
of utility, that is, first we cache the object layer with the highest
utility, then the object layer with the next highest utility, and
so on. If at some point (as the cache fills up) the object layer
with the next highest utility does not fit into the remaining cache
space, we skip this object layer and try to cache the object layer
with the next highest utility. Once a layer of an object has been
skipped, all other layers of this object are ignored as we continue
“packing” the cache. We propose a number of definitions of the
utility ul;m of an object layer; see Table I for an overview.

The popularity utility is based exclusively on the stream pop-
ularities; it is defined byul;m = p(l;m) + p(l + 1;m) + � � � +
p(L;m). This definition is based on the decoding constraint
of layered encoded video, that is, an object layerl is required
(i.e., has utility) for providingl–quality streams (consisting of
layers 1 throughl), l + 1–quality streams,: : : , andL–quality
streams. Note thatul;m is the probability that a request involves
the streaming of layerl of objectm. Also, note that by defini-
tion ul;m � ul+1;m for l = 1; : : : ; L � 1. This, in conjunction
with our packing strategy ensures that a particular enhancement
layer is cached only if all corresponding lower quality layers are
cached.

B. Evaluation of Heuristics

In this section we present some numerical results from both
analytical and simulation experiments to evaluate various as-
pects of the heuristics algorithms. The analytical experiments
based on exhaustive optimal search are carried out to evaluate
the proximity of the solution provided by the heuristics algo-
rithm to the actual optimal solution. The simulation experi-
ments, on the other hand, are carried out to verify the correctness
of blocking probability calculation used by the heuristics algo-
rithm.

We assume that there are 1000 different movies, each encoded
into two layers. The characteristics of each movie are defined by

the rate for each layer and its length. The rate for each layer is
drawn randomly from a uniform distribution between 0.1 and 3
Mbps, while the length of the movie is drawn from an exponen-
tial distribution with an average length of 1 hour.

In the simulation experiments client requests arrive accord-
ing to a Poisson process. The average request arrival rate is 142
Erlangs. The client can request either a base layer only or a
complete movie. The request type and the movie requested are
drawn randomly from a Zipf distribution with a parameter of
� = 1:0. The revenue for each movie layer is uniformly dis-
tributed between 1 to 10.

The results of interest will be the revenue per hour and the
blocking probabilities. To obtain the results with 99% confi-
dence intervals, we run the experiments with different random
seeds and we require a minimum of 10000 runs before calculat-
ing the confidence intervals. In each run we randomly assign the
popularities of movies from the Zipf distribution, the rates and
the lengths of the movie layers. The results are calculated as the
average value of the revenue per hour from all the runs until the
confidence intervals are reached.

We first tested the performance of our heuristics in small
problems in order to be able to compare the heuristic against
the “reasonable” exhaustive search. For the small problems we
setM = 10 with each movie having two layers. We varied the
link bandwidthC between 3 and 15 Mbit/s and the cache capac-
ity between 3 and 7 Gbytes. The cache could therefore store on
the average between 3.5 and 7.6 layers out of the total 20 layers,
or between 23.1 and 41.7% of the total movie data.

The results of the small problems are shown in Table II. In
Table II we show the average error obtained with each heuristic
compared to the “reasonable” exhaustive search for four differ-
ent cache configurations. TheSmall Link andLarge Link refer
to link capacities of 3 Mbit/s and 15 Mbit/s, respectively, and
Small Cache and Large Cache refer to 3 Gbyte and 7 Gbyte
caches, respectively.

As we can see, our heuristics achieve performance very close
to the optimum in most cases. Only when both the link and the
cache are small is there any marked difference in performance.
This is largely due to the small link capacity, only 3 Mbit/s,
which allows us to stream only one movie on the average. As
both the link and cache grow in size, we can achieve the same
performance as the optimal caching strategy.

To test the performance of our heuristics in real-world size
problems, we ran the heuristics for 1000 movies. We varied
the cache size between 12 and 560 Gbytes. The cache could
therefore hold on the average between 13.9 and 625 layers,
or between 0.9 and 41.7% of the total movie data. Given the
average length of a movieTavg, the average rate of a movie
ravg , and the client request rate�, we would need on the aver-
ageTavgravg� Mbit/s of bandwidth to stream all the requested
movies. We varied the link capacity between 10 and 150 Mbit/s,
or between 1 and 15% of the total bandwidth required.

Because running the exhaustive search was not feasible for
problems this large, we approximated the best possible perfor-
mance by calculating the revenue when the blocking probability
was zero. This means that all client requests are always satisfied
and it provides us with an upper limit on the achievable revenue.
In reality, this upper limit is not reachable unless the link and



TABLE II

AVERAGE ERROR OF HEURISTICS IN SMALL PROBLEMS

Small Link Large Link
Utility heuristic Small Cache Large Cache Small Cache Large Cache
Popularity 1.6% 2.4% 0.006% 0%
Revenue 2.8% 0.4% 0.1% 0%
Revenue density 0.3% 0.3% 0.1% 0%
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Fig. 2. Revenue as function of link capacity for 3 different cache sizes

cache capacities are sufficiently large to ensure that no client
requests are ever blocked. In our tests the smallest observed
blocking probabilities were around 0.005%.

In Fig. 2 we show the revenue relative to the no blocking case
obtained with 3 different cache sizes as a function of the link
capacity. We can see that the revenue density heuristic performs
the best overall and that the performance difference is biggest
when the link capacity is smaller. As the link capacity increases,
the performance difference disappears. We also see that the pop-
ularity heuristic has the worst overall performance.

In Fig. 3 we show the revenue obtained with 2 different link
capacities as a function of the cache size. Here the difference
between revenue density heuristic and the others is clearer. For
example, with a 1% link and a 20% cache (10 Mbit/s link and
a cache of 250 Gbytes in our case), revenue density heuris-
tic achieves 87% of the upper limit while the revenue heuristic
achieves only 79%. Again, as in Fig. 2, when we have enough
link and cache capacity, the difference between the heuristics
disappears. To illustrate the tight confidence intervals we ob-
served, we plot the revenue density heuristic in the 1% link case
with the 99% confidence intervals.

Overall, we can conclude that the revenue density utility
heuristic has the best performance of the three heuristics studied.
This is especially true in situations where we have a shortage of
one of the resources, link capacity or cache size. This implies
that the revenue density heuristic predicts the usefulness of a
layer more accurately than the other two heuristics.

In Fig. 4 we show the revenue obtained with the revenue den-
sity heuristic as a function of both link capacity and cache size.
We observe that if we have a shortage of both resources, we
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Fig. 3. Revenue as function of cache size for 2 different link capacities

should first increase the cache before increasing the link capac-
ity. We see that when the cache size is around 20% of the total
movie data (250 Gbytes in our case), further increase in cache
size provides only small gains in revenue. At this point, increas-
ing the link capacity provides larger gains in revenue. This be-
havior can also be observed in Figs. 2 and 3 where we can see
that the revenue increases roughly linearly with the link capacity
and roughly logarithmically with the cache size.

In Fig. 5 we show the expected blocking probability for the
revenue density heuristic. Note that the plot shows1 � B(c)
and smallest expected blocking probability is therefore obtained
when the curve is close to 1. This plot reflects the typical block-
ing probabilities we obtained in all of our experiments, includ-
ing the experiments in Sections IV, V, and VI.

We also studied the effects of varying the parameter� in the
Zipf-distribution and varying the client request rate,�. Previous
studies in Web caching and server access dynamics have found
that� can vary from 0.6 in Web proxies [9] up to 1.4 in popular
Web servers [10]. We studied four different values of�, namely
0.6, 0.8, 1.0, and 1.3. In Fig. 6 we show the revenue obtained
with each of the four parameter values for three different link
capacities as a function of the cache size. We can see that the
curves corresponding to one value of� are close together and
that there is a significant difference in groups of curves belong-
ing to different values of�. This implies that a decrease in�
(movies become more equally popular) requires significant in-
creases in link capacity and cache size to keep the revenue at the
same level. On the other hand, should� increase (small num-
ber of movies become very popular), we can achieve the same
revenue with considerably less resources.
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In Fig. 7 we show the effects of varying the client request
rate. We plot curves for three different values of� for two dif-
ferent link capacities. The curves for “Low� at 6% link” and
“Medium � at 10% link” fall on top of each other. We can
clearly see that the client request rate has much less effect on
the revenue than the Zipf-parameter. In some cases, it is possi-
ble to counter the changes in request rate by increasing the link
capacity or cache size. For example, if the request rate goes
from Low to Medium, increasing the link capacity from 6% to
10% (60 Mbit/s to 100 Mbit/s in this case) keeps the revenue the
same.

In conclusion, all three of our heuristics perform well un-
der many different link and cache size combinations. The rev-
enue density heuristic achieves the best performance under con-
strained conditions.



IV. N EGOTIATION ABOUT STREAM QUALITY

In this section we study a negotiation scheme where in case
the client’s original request is blocked, the service provider tries
to offer a lower quality stream of the requested object. The client
may then settle for this lower quality stream. The question we
address is: how much additional revenue is incurred with this
“negotiation.” As we shall demonstrate, this intuitively quite
appealing approach adds very little to the revenue in most situ-
ations. For simplicity we focus in this section on video objects
that are encoded intoL =2 layers: a base layer and one enhance-
ment layer. (Our arguments extend to the case of more encoding
layers in a straightforward manner.) Suppose that a client re-
quests a 2–quality stream (consisting of base layer and enhance-
ment layer) of objectm. Suppose that the cache configuration
is given byc. Clearly, the original request can only be blocked
if not all requested layers are cached, that is, ifcm < 2. If the
client’s original request for a 2–quality stream of objectm is
blocked the service provider tries to offer a 1–quality (i.e., base
layer) stream of the object. The service provider is able to make
this offer if the base layer stream is not blocked.

Note that the negotiations increase the arrival rates of requests
for base layer streams. This is because the blocked 2–quality
stream requests “reappear” as base layer stream requests. With
negotiations the arrival rates of base layer stream requests de-
pend on the blocking probabilities of 2–quality stream requests,
that is, the system becomes a generalized stochastic knapsack
[8, Ch. 3]. Calculating the blocking probabilities of the gener-
alized stochastic knapsack, however, is quite unwieldy. There-
fore we approximate the blocking probabilities of the stream-
ing system with negotiations. In typical streaming systems the
blocking probabilities are small, typically less than 5 %. The in-
crease in the arrival rates of base layer stream requests is there-
fore relatively small. We approximate the blocking probabili-
ties of the system with negotiations by the blocking probabil-
ities of the system without negotiations. The probability that
the client’s original request for a 2–quality stream of objectm

is blocked is approximatelyBc(2;m). The probability that the
corresponding base layer stream is not blocked is approximately
1�Bc(1;m). Suppose that the client accepts the quality degra-
dation with probabilityPacc(m). If the client does not accept
the offer the negotiation terminates. Thus, given that the ne-
gotiation is entered, it ends in a success (i.e., service provider
and client settle for a base layer stream) with probability(1 �
Bc(1;m))Pacc(m). The long run rate (successful negotiations
per hour) at which negotiations settle for a base layer stream of
objectm is �p(2;m)Bc(2;m)(1 � Bc(1;m))Pacc(m). Sup-
pose that each successful negotiation resulting in the delivery of
a base layer stream of objectm incurs a revenue ofRneg(1;m)
(which may be different fromR(1;m) as the service provider
may offer the base layer at a discount in the negotiation). Thus,
the long run total rate of revenue incurred from successful nego-
tiations is

Rneg(c) = �

MX
m=1

Rneg(1;m)p(2;m)Bc(2;m)

(1�Bc(1;m))Pacc(m):

The long run total rate of revenue of the streaming service with
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Fig. 8. Increased revenue from renegotiation

negotiations isR(c) + Rneg(c), whereR(c), the revenue rate
incurred from serving first–choice requests, is given by (2).

A. Numerical Results

We experimented with adding the renegotiation revenue to
our tests. We first tested the quality of the approximation used in
calculating the blocking probability of the system with renegoti-
ation against the simulation results. We varied the link capacities
between 10 to 120 Mbps. Our results show a close approxima-
tion of the analysis to the simulation results with an average er-
ror of 0.4–0.5% for 12 Gbyte cache and 0.7–1.1% for 560 Gbyte
cache.

Fig. 8 shows how much extra revenue renegotiation could
bring relative to the baseline revenueR(c). The revenue in Fig. 8
is based on the assumption that the client will always accept the
lower quality version if one is available, i.e.,Pacc(m) = 1 for
m = 1; : : : ;M . We also assumed thatRneg(1;m) = R(1;m)
for m = 1; : : : ;M , i.e., the revenue from the renegotiated
stream is the same as if the client had requested the lower qual-
ity stream in the first place. These two assumptions give us the
maximum possible gain from renegotiation.

As we can see from Fig. 8, the largest gains from renegotia-
tion are achieved when the cache size is extremely small, only
1–2% of the total amount of data. The renegotiation gains are al-
most insensitive to link capacity with the exception of very small
link capacities where the gains are slightly smaller. The maxi-
mum gain we observed is around 20% and the gain drops sharply
as the cache size increases. The maximum gain would decrease
as the client acceptance probabilityPacc decreases. Also, if the
cache size and link capacity are large, the potential gain from
renegotiation is typically well below 1%. We can therefore con-
clude that renegotiation, although intuitively appealing, does not
provide any significant increase in revenue in most situations.
This is because renegotiation is only applicable to blocked re-
quests and one of the goals of a cache operator would be to keep
the expected blocking probability as low as possible.

V. QUEUEING OFREQUESTS

In this section we study a request queueing scheme where in
case the client’s request is blocked, the service provider queues
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Fig. 9. Increased revenue from queueing requests for buffer size of 100

the request. With the queueing strategies, we expect that the
queued requests make use of the resources released by currently
served requests. This has the potential of increasing the resource
utilization and thus, bringing additional revenue. The question
is how much additional revenue does it bring.

We use simulation experiments to answer this question. To
align the experiments with the real-world practice, we assume
that a client will cancel its request after waiting for some time,
referred to as therequest timeout period. We model the timeout
period using an exponential distribution with an average of 5
minutes.

We assume that the queue is of a finite size. An incoming
request finding a full buffer will be blocked. We consider three
different strategies for ordering the requests in the queue, i.e.,
based on the order of requestarrivals, their requiredresources
and the potentialrevenues.

Fig. 9 shows how much extra revenue queueing of requests
could bring relative to the baseline revenueR(c). As we can
see from the figure, the gain from introducing the queue is very
small. The gain is not affected by the cache size. The gain
generally increases with the link capacity.

With the limited bandwidth of the bottleneck link, which
causes request blocking in the first place, the serving of one
request from the queue will mean the blocking of another in-
coming request. This results in a near zero gain in the number
of requests served. A possible gain can be achieved by changing
the request service strategies, for example by serving the request
according to the potential revenue that it brings.

VI. I S PARTIAL CACHING USEFUL ?

Consider a streaming system whereclients are only interested
in complete streams (consisting of allL layers) andno revenue
is incurred for partial streams (consisting of less thanL layers).
The question we address is: in such a system is caching of partial
streams (e.g., base layers) beneficial? Interestingly, the answer
appears to beno.

We focus on the homogeneous two–layer case where the
video objects are encoded intoL = 2 layers: a base layer of
rater1(m) and one enhancement layer of rater2(m). For sim-
plicity we assume that (1) all videos have the same layer rates,

i.e.,r1(m) = rb andr2(m) = re form = 1; : : : ;M , and (2) all
videos have the same lengthT . We study a system where clients
request only complete streams (consisting of both base layer
and enhancement layer), i.e.,p(1;m) = 0 for m = 1; : : : ;M .
For ease of notation we writep(m) for p(2;m) and note thatPM

m=1
p(m) = 1. We order the video objects from most popu-

lar to least popular; thus,p(m) � p(m+1); m = 1; : : : ;M�1.
In the considered system no revenue is incurred for streams con-
sisting of only the base layer, i.e.,R(1;m) = 0. We assume that
all complete streams incur the same revenue, i.e.,R(2;m) = R

for m = 1; : : : ;M .
We investigate a caching strategy that caches both base and

enhancement layer of very popular video objects. For mod-
erately popular objects only the base layer is cached (and the
enhancement layer is streamed upon request over the bottle-
neck link of capacityC). For relatively unpopular objects
neither base nor enhancement layer is cached. LetN1 de-
note the number of completely cached objects. Clearly,0 �

N1 � bG=(rb + re)T )c := Nmax

1
. Let N2 denote the num-

ber of cached base layers. TheN1 completely cached ob-
jects take up the cache spaceN1(rb + re)T . Hence,0 �

N2 � b(G�N1(rb + re)T )=(rbT )c := Nmax

2
. The investi-

gated caching strategy caches base and enhancement layer of the
N1 most popular objects, that is, objects1; : : : ; N1. It caches
the base layers of theN2 next most popular objects, that is of
objectsN1 + 1; : : : ; N1 +N2.

The probability that a request is for a completely cached ob-
ject is P1 =

PN1

m=1
p(m). The probability that a request is

for an object for which only the base layer has been cached
is P2 =

PN1+N2

m=N1+1
p(m). Note that the probability that a

request is for an object which has not been cached at all is
P3 = 1� P1 � P2.

We model the bottleneck link connecting the cache to the
wide area network again as a stochastic knapsack [8]. The bot-
tleneck link is modeled as a knapsack of capacityC. We refer to
streams of completely cached video objects as class 1 streams.
Class 1 streams consume no bandwidth on the bottleneck link,
that is,b1 = 0. The arrival rate of class 1 streams is�1 = �P1.
Streams of video objects for which only the base layer is cached
are referred to as class 2 streams. Class 2 streams consume
the bandwidthb2 = re. The arrival rate for class 2 streams
is �2 = �P2. Streams of video objects which have not been
cached at all are referred to as class 3 streams. Class 3 streams
consume the bandwidthb3 = rb + re and have an arrival rate of
�3 = �P3. All streams have a fixed holding timeT .

Our objective is to maximize the total long run revenue rate,
or equivalently, the long run throughput of requests (i.e., the
long run rate at which requests are granted and serviced). To-
wards this end letTHk denote the long run throughput of class
k requests. Also, letTH denote the long run total throughput of
requests. Clearly,TH = TH1 + TH2 + TH3. LetBk denote
the probability that a request for a stream of classk is blocked.
Obviously,B1 = 0 since class 1 streams do not consume any
bandwidth. Thus,TH = �[P1 + P2(1�B2) + P3(1�B3)].

A. Numerical Results

We used the same experiment setup as for evaluating the per-
formance of the utility heuristics in Section III-B. In fact, we can
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Fig. 10. Normalized throughput for partial caching and trunk reservation with
C = 150 Mbps

consider the partial caching case as a special case of the utility
heuristics. Note that for the partial caching case the utilities of
the base and enhancement layer of a given movie are the same
and thus base layer and enhancement layer are cached together.

In our experiments we question the usefulness of partial
caching where a portion of the cache is reserved for caching
base layers only. Doing so allows us to cache (at least the base
layers of) a larger number of movies for the same cache size. An
intuitive question to follow is whethertrunk reservation is ben-
eficial. With trunk reservation a portion of the link bandwidth,
sayC2 = x% of C, x = 0 � 100, is reserved for streaming
the enhancement layers of the class 2 movies which have base
layers in the cache. We naturally expect that a combination of
these two strategies may give us the best throughput.

Fig. 10 shows the normalized throughput as a function of the
percentage of cache space used for caching complete movies.
The figure also shows the throughput for different link reserva-
tion and cache sizes. The link reservation of 0% implies a com-
plete sharing of the link bandwidth between class 2 and class 3
streams. This case can be analyzed using thestochastic knap-
sack formulation, see Section II-C, which gives us the blocking
probabilitiesB2 andB3 and hence the throughput. On the other
hand, the link reservation of 100% implies a total blocking of
class 3 streams. The link is solely used for streaming enhance-
ment layers for class 2 streams which have base layers cached.
As we have only one traffic class, this case can be analyzed us-
ing the Erlang–B formula with the number of trunks beingC=r e.
For the other cases with the link reservations between 0 to 100%,
we use simulations to obtain the throughput.

The results confirm our intuition that once the base layers are
cached, it is beneficial to reserve some bandwidth to give us
an optimum throughput. For example, if we reserve 30% of
the cache space for complete movies, which also means that we
reserve 70% of the cache for base layers, then reserving any
amount of bandwidth for streaming class 2 movies will give
us better throughput than complete sharing. However, we can
clearly see from Fig. 10 that, for a given cache size, the max-
imum is always obtained at the right edge of the plot, that is,
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when the whole cache is reserved for caching complete movies.
In this case, there are no class 2 streams and thus, the link is
used exclusively for streaming the class 3 movies.

Fig. 11 shows the effect of varying the popularity of the
movies. We observe that the proportion of the cache space
that needs to be reserved to achieve the optimum throughput
for the partial caching case changes with the Zipf parameter.
This makes it harder to dimension the cache properly to achieve
the optimum throughput at all times. Considering this difficulty
and the fact that reserving the entire cache for caching complete
movies give the maximum throughput, our experiments indicate
that the partial caching is not beneficial.

VII. R ELATED WORK

There are only few studies on distributing video objects with
caches, all of which are complementary to the issues studied in
this paper. Rejaieet al. propose a proxy caching mechanism [11]
in conjunction with a congestion control mechanism [12, 13] for
layered–encoded video. The basic idea of their caching mech-
anism is to cache segments of layers according to the objects’
popularities: the more popular an object, the more complete are
the individual layers cached and the more layers are cached (par-
tially). When streaming an object to a client, the layer segments
that are not cached at the proxy are obtained from the origin
server.

A related idea is explored by Wanget al. in their study on
video staging [14]. With video staging the part of the VBR
video stream, that exceeds a certain cut–off rate (i.e., the bursts
of a VBR stream) is cached at the proxy while the lower (now
smoother) part of the video stream is stored at the origin server.

Sen et al. [15] propose to cache a prefix (i.e., the initial
frames) of video streams at the proxy and to employ work–
ahead smoothing while streaming the object from the proxy to
the client. The cached prefix hides the potentially large initial
start–up delay of the work–ahead transmission schedule from
the client.

Tewariet al. [16] propose a Resource Based Caching (RBC)
scheme for video objects encoded into one CBR layer. They



model the cache as a two resource (storage space and band-
width) constrained knapsack and study replacement policies
that take the objects’ sizes as well as CBR bandwidth into ac-
count. The replacement policies are evaluated through simula-
tions. Our work differs from RBC in that we develop anana-
lytical stochastic knapsack model for the two resource problem.
Moreover, we analyze a streaming system where videos are en-
coded into multiple layers.

VIII. C ONCLUSION

In this paper we have formulated an analytical stochastic
knapsack model for the layered video caching problem. We have
proposed three different heuristics for determining which layers
of which videos to cache. Through extensive numerical exper-
iments we have found that all our heuristics perform well and
that the best performance is obtained with the revenue density
heuristic. Our heuristics are useful for cache operators in both
provisioning the caching system as well as deciding on-line the
gain from caching a given layer of a given video. To the best
of our knowledge, this is the first study to consider an analytical
model of this 2-resource problem.

We also considered two intuitive extensions, renegotiation
and queueing of requests, but found that they provide little ex-
tra gain to the cache operator. As a special case we considered
a situation where clients only request complete video streams.
Our results indicate that in this special case, best performance is
obtained if videos are cached completely.

There are also a number of avenues for future research, such
as considering dynamically changing request patterns. Further-
more, there are a number of special scenarios where theoretical
results may be obtainable.

APPENDIX

I. CALCULATION OF BLOCKING PROBABILITIES Bc(j;m)

In this appendix we give an overview of the calculation of
the blocking probabilitiesBc(j;m), which are non–zero for
cm < j. We calculate the blocking probabilities using results
from the analysis of multiservice loss models. We refer the inter-
ested reader to [8] for a detailed discussion of this analysis. We
model the bottleneck link for continuous media streaming from
the origin servers to the proxy server as a stochastic knapsack of
capacityC. We model requests forj–quality streams of object
m as a distinct class of requests. Letbc = (bc(j;m)); m =
1; : : : ;M; j = 1; : : : ; L, be the vector of the sizes of the re-
quests. Note that this vector hasML elements. Recall that a re-
quest for aj–quality stream of objectm of which thecm–quality
stream is cached requires the bandwidth

Pj

l=cm+1
rl(m) on the

bottleneck link; hencebc(j;m) =
Pj

l=cm+1
rl(m) for cm < j

and bc(j;m) = 0 for cm � j. Without loss of generality
we assume thatC and allbc(j;m)’s are positive integers. Let
n = (n(j;m)); m = 1; : : : ;M; j = 1; : : : ; L, be the vector
of the numbers ofbc(j;m)–sized objects in the knapsack. The
n(j;m)’s are non–negative integers. LetSc = fn : bc�n � Cg

be the state space of the stochastic knapsack, wherebc � n =PM

m=1

PL

j=1 bc(j;m)n(j;m). Furthermore, letSc(j;m) be
the subset of states in which the knapsack (i.e., the bottleneck
link) admits an object of sizebc(j;m) (i.e., a stream of rate

Pj

l=cm+1
rl(m)). We haveSc(j;m) = fn 2 Sc : bc � n �

C � bc(j;m)g The blocking probabilities can be explicitly ex-
pressed as

Bc(j;m) = 1�P
n2Sc(j;m)

QM

m=1

QL

j=1(�(j;m))n(j;m)=(n(j;m))!P
n2Sc

QM

m=1

QL

j=1(�(j;m))n(j;m)=(n(j;m))!
;

where�(j;m) = �p(j;m)T (m). Note that�(j;m) is the load
offered by requests forj–quality streams of objectm. The
blocking probabilities can be efficiently calculated using the re-
cursive Kaufman–Roberts algorithm [8, p. 23]. The time com-
plexity of the algorithm isO(CML). The complexity is linear
in the bandwidthC of the bottleneck link and the number of ob-
jectsM , which can be huge. The complexity is also linear in the
number of encoding layersL, which is typically small (2 – 5).
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