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B.P. 193

F-06904 Sophia Antipolis Cedex

France

slock@eurecom.fr

yThis work was supported in part by the CNET, France, under contract nr 93 6 B 005. This work has also
bene�ted from cooperations within the French group of signal processing researchers GDR 134 TdSI.

1



Number of pages: 33

Number of Tables: 1

Number of Figures: 1

Proposed running headline: Fast Subsampled-Updating Recursive Least-Squares

Keywords: Recursive Least-Squares, fast algorithms, displacement structure, Fast Fourier
Transform, acoustic echo cancellation.

2



The Fast Subsampled-Updating

Recursive Least-Squares (FSU RLS) Algorithm

for Adaptive Filtering Based on
Displacement Structure and the FFT

Dirk T.M. Slock and Karim Maouche

Abstract

In this paper, we derive a new fast algorithm for Recursive Least-Squares (RLS) adaptive �ltering.
This algorithm is especially suited for adapting very long �lters such as in the acoustic echo cancel-
lation problem. The starting point is to introduce subsampled updating (SU) in the RLS algorithm.
In the SU RLS algorithm, the Kalman gain and the likelihood variable are matrices. Due to the
shift invariance of the adaptive FIR �ltering problem, these matrices exhibit a low displacement
rank. This leads to a representation of these quantities in terms of sums of products of triangular
Toeplitz matrices. Finally, the product of these Toeplitz matrices with a vector can be computed
e�ciently by using the Fast Fourier Transform (FFT).

Zusammenfassung

Dieser Artikel beschreibt die Herleitung eines neuen Algorithmus zur schnellen adaptiven Recur-
sive Least Square (RLS) Filterung . Dieser Algorithmus eignet sich besonders f�uer aufwendige
Filter, wie sie zum Beispiel zur akkustischen Echounterdr�ueckung benutzt werden. Im Zentrum
dieses Algorithmus steht die Einf�uehrung von unterabgetastetem Updating (SU). Der Kalman
Gewinn und die Likelihood Variable treten im SU RLS Algorithmus als Matrizen auf. Aufgrund
der Verschiebungsinvarianz in der adaptiven FIR Filterung zeigen diese Matrizen einen niedrigen
Verschiebungsrang. Dies f�uehrt zu einer Darstellung dieser Gr�oessen als Summe von Produkten
von triangul�aeren Toeplitz Matrizen. Das Produkt dieser Matrizen mit einem Vektor kann auf sehr
e�ziente Weise mit der Fast Fourier Transform (FFT) berechnet werden.

R�esum�e

Dans ce papier, nous pr�esentons un nouvel algorithme des moindres carr�es r�ecursif rapide. Cet
algorithme pr�esente un int�erêt certain pour l'adaptation de �ltres tr�es longs comme ceux utilis�es
dans les probl�emes d'annulation d'�echo acoustique. L'id�ee de d�epart est d'utiliser l'algorithme RLS
avec une mise �a jour \sous-�echantillonn�ee" du �ltre. Dans cet algorithme (le SU RLS) le gain de
Kalman et la variable de vraisemblance sont des matrices qui ont des rangs de d�eplacement faibles.
Ces quantit�es sont alors repr�esent�ees et mises �a jour par le biais de leurs g�en�erateurs, sous forme
de sommes de produits de matrices de Toeplitz triangulaires. Le produit de l'une de ces quantit�es
avec un vecteur peut alors être calcul�e en utilisant la transform�ee de Fourier rapide (FFT).
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1 Introduction

Fast RLS algorithms such as the Fast Transversal Filter (FTF) algorithm [4],[11],[12] and

the Fast Lattice/Fast QR (FLA/FQR) algorithms [8] e�ciently exploit the shift invariance

structure present in the RLS approach to the adaptive FIR �ltering problem. They reduce the

computational complexity of O(N2) for the conventional RLS algorithm to O(N) operations

per sample. In order to further reduce the computational complexity of these algorithms, it

appears that the sampling rate at which the LS �lter estimate is provided has to be reduced

from the signal sampling rate to a subsampled rate with a subsampling factor of L � 1. Two

strategies emerge in order to accomplish this. One consists of a block processing approach

in which the normal equations governing the LS problem are solved every L samples. This

leads to Block RLS (BRLS) algorithms. An alternative approach (especially applicable when

L < N) consists of using the same strategy as the RLS algorithm and to compute the new

�lter estimate and auxiliary quantities from the same quantities that were available L samples

before. We shall call this the Subsampled-Updating RLS (SU RLS) algorithm. Below, we shall

consider both approaches in detail, but we shall especially focus on a fast version of the SU

RLS algorithm, the FSU RLS algorithm.

2 The Subsampled-Updating RLS Algorithm

In order to formulate the RLS adaptive �ltering problem and to �x notation, we shall �rst

recall the RLS algorithm. We shall mostly stick to the notation introduced in [4],[5],[11],[12],

except that the ordering of the rows in data vectors will be reversed (to transform a Hankel

data matrix into a Toeplitz one) and some extra notation will be introduced.

Suitable position for Figure 1

2.1 The RLS Algorithm

An adaptive transversal �lterWN;k forms a linear combination of N consecutive input samples

fx(i�n); n = 0; . . . ; N�1g to approximate (the negative of) the desired-response signal d(i).
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The resulting error signal is given by (see Fig. 1)

�N(ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

W n+1
N;k x(i�n) (1)

where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the regression vector and superscript

H denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N

transversal �lter coe�cientsWN;k =
h
W 1

N;k � � �WN
N;k

i
are adapted so as to minimize recursively

the following LS criterion

�N(k) = min
WN

(
kX
i=1

�k�i kd(i) +WN XN (i)k2 + �k+1� kWN �W0k2�N
)

=
kX
i=1

�k�i k�N(ijk)k2 + �k+1� kWN;k �W0k2�N
(2)

where � 2 (0; 1] is the exponential weighting factor, � > 0, �N = diag
n
�N�1; . . . ; �; 1

o
,

kvk2� = v�vH, k:k = k:kI . The second term in the LS criterion represents a priori information.

For instance, prior to measuring the signals, we may assume that WN is distributed as WN �
N
�
W0; R

�1
0

�
, R0 = ���N (or any other distribution with the same �rst and second order

moments). The particular choice for R0 will become clear in the discussion of the initialization

of the FSU RLS algorithm. Minimization of the LS criterion leads to the following minimizer

WN;k = �PH
N;kR

�1
N;k (3)

where

RN;k =
kX
i=1

�k�iXN (i)X
H
N (i) + �k+1��N

= �RN;k�1 +XN (k)XH
N (k) ; RN;0 = R0 = ���N

PN;k =
kX
i=1

�k�iXN (i)d
H(i) � �k+1��NW

H
0

= �PN;k�1 +XN (k)dH(k) ; PN;0 = �R0W
H
0

(4)

are the sample second order statistics. Substituting the time recursions for RN;k and PN;k

from (4) into (3) and using the matrix inversion lemma [6, page 656] for R�1N;k, we obtain the

RLS algorithm:

eCN;k = �XH
N (k)�

�1R�1N;k�1 (5)


�1N (k) = 1 � eCN;kXN (k) (6)
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R�1N;k = ��1R�1N;k�1 � eCH
N;k
N (k)

eCN;k (7)

�pN(k) = �N(kjk�1) = d(k) +WN;k�1XN (k) (8)

�N(k) = �N(kjk) = �pN(k) 
N (k) (9)

WN;k = WN;k�1 + �N(k) eCN;k (10)

where �pN(k) and �N(k) are the a priori and a posteriori error signals (resp. predicted and

�ltered errors in the Kalman �ltering terminology) and one can verify (or see [4]) that they

are related by the likelihood variable 
N (k) as in (9). The overnormalized Kalman gain eCN;k

is related to the unnormalized Kalman gain CN;k:

CN;k = �XH
N (k)R

�1
N;k = 
N (k) eCN;k (11)


N (k) = 1 + CN;kXN (k) (12)

and the term overnormalized stems from the relation eCN;k = 
�1N (k)CN;k. Using the recursions

for WN;k, PN;k, one can verify that the minimum value for the LS criterion satis�es the

recursion

�N (k) = �0(k) +WN;kPN;k = ��N (k�1) + �pN(k)
N (k)�
pH
N (k) : (13)

Equations (8)-(10) constitute the joint-process or �ltering part of the RLS algorithm. Its

computational complexity is 2N+1. The role of the prediction part (5)-(7) is to produce

the Kalman gain eCN;k and the likelihood variable 
N (k) for the joint-process part. In the

conventional RLS algorithm, this is done via the Riccati equation (7) which requires O(N2)

computations. Fast RLS algorithms (FTF and FLA/FQR) exploit a certain shift invariance

structure in XN (k) which is inherited by RN;k and PN;k, to avoid the Riccati equation in the

prediction part and reduce its computational complexity vto O(N) (the FLA/FQR algorithms

also provide �pN(k) but replace WN;k by a transformed set of parameters as in the square-

root Kalman �ltering/RLS algorithms). We now investigate alternative ways to reduce the

computational complexity of the RLS algorithm.
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2.2 The Block RLS Algorithm

One way to reduce computational complexity is to not compute the LS �lter estimate every

sample, but only once every L samples. In the block processing algorithms of [3],[16], the LS

solution is in fact not computed recursively in time, but directly from the normal equations

(see (3))

RN;kW
H
N;k = �PN;k : (14)

In the prewindowed problem (x(i) = 0; i � 0), the sample covariance matrix RN;k has a

displacement structure (is close to a Toeplitz matrix [7]) with displacement rank equal to 3.

Therefore a fast (generalized Levinson) algorithm may be applied to solve (14) in 4N2+O(N)

operations (see [3, Table V]). Due to its displacement structure, RN;k can be described by

only two vectors, namely

rN;k = RN;kuN;1 = �rN;k�1 +XN (k)x
H(k) (15)

the �rst column of RN;k (un;m is a unit vector of length n with a 1 in the mth position and

zeros elsewhere), and XN�1(k). So, the only quantities that are computed recursively in time

are the correlation vectors PN;k and rN;k, and at times equal to integer multiples of the block

length L, the normal equations (14) are solved. In fact, when � < 1, instead of using the

recursion indicated in (15), the correlation vectors are best computed as

PN;k = �LPN;k�L +
kX

i=k�L+1

�k�iXN (i)d
H(i) (16)

rN;k = �LrN;k�L +
kX

i=k�L+1

�k�iXN (i)x
H(i) (17)

which leads to 2(L+1)N operations. So the most signi�cant terms of the computational

complexity of the fast BRLS algorithm are 2N+4N
2

L
per sample (compared to 2N for the LMS

algorithm or 7N for the minimal FTF algorithm). Although for computational complexity

reasons, one is inclined to take L very large (larger than N in fact), such a strategy would

be less interesting for two reasons: processing delay (inherent in a block processing strategy)

and loss of tracking capability of the adaptive �lter. Therefore, we shall henceforth assume

L � N . We may also note that so far, we have not considered the computation of the �ltering
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error (also [3],[16] neglect this issue), which would in a straightforward implementation add

N operations per sample.

Using so-called doubling techniques, it is possible to further reduce the complexity of the

generalized Levinson algorithm. In [1] a doubling algorithm is derived for a general displace-

ment rank �. Such an algorithm allows for the solution of the system (14) inO ((��1)N(log2N)2)

operations.

2.3 Fast Computation of the Second Order Statistics using the

FFT

It is possible to reduce the computational complexity of the fast BRLS algorithm further by

introducing FFT techniques as explained in [16]. In what follows, we shall often assume for

simplicity that L is a power of two and that M = N=L is an integer, though more general

cases can be considered equally well. We shall introduce the following notation. Let

dL;k =

2666664
dH(k�L+1)

...

dH(k)

3777775 ; xL;k =
2666664
xH(k�L+1)

...

xH(k)

3777775 ; XN;L;k =

2666664
XH
N (k�L+1)

...

XH
N (k)

3777775 = [xL;k � � � xL;k�N+1] :

(18)

We can now rewrite (16), (17) as

PN;k = �LPN;k�L +XH
N;L;k�LdL;k ; rN;k = �LrN;k�L +XH

N;L;k�LxL;k : (19)

Continuing with PN;k (for rN;k, just replace dL;k by xL;k), consider a partitioning inM = N=L

subvectors of length L:

PN;k =
h
P 1 H
N;k � � �PM H

N;k

iH
(20)

then (19) reduces for subvector j to

P j
N;k = �LP j

N;k�L +XH
L;L;k�(j�1)L�LdL;k ; j = 1; . . . ;M : (21)

In other words, we have essentially 2M times 2Lmultiplications (for e.g. �LP j

N;k�L and �LdL;k)

plus 2M times the product of a L�L Toeplitz matrix with a vector of length L. Such a product

can be e�ciently computed in basically two di�erent ways. One way is to use fast convolution
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algorithms [15], which are interesting for moderate values of L. Another way is to use the

overlap-save method. We can embed the L�L Toeplitz matrixXL;L;k into a 2L�2L circulant

matrix, viz.

X
H

L;L;k =

264 � XH
L;L;k

XH
L;L;k �

375 = C
�
xH2L;k

�
(22)

where C(cH) is a right shift circulant matrix with cH as �rst row. Then we get for the matrix-

vector product

XH
L;L;k�(j�1)L�LdL;k = [IL 0L�L] C

�
xH2L;k�(j�1)L

� 264 0L�1

�LdL;k

375 : (23)

The product of a circulant matrix C(cH) with a vector v where c and v are of length m can

be computed e�ciently as follows. Let Fm be the Discrete Fourier Transform matrix for a

DFT of length m. Then using the property that a circulant matrix can be diagonalized via a

similarity transformation with a DFT matrix, we get

C(cH) v =
1

m
C(cH)FH

mFmv =
1

m
FH
m diagH (Fm c) Fmv (24)

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So

the computation of the vector in (23) requires L multiplications to form the product 1
2L
�LdL;k,

the padding of the resulting vector with L zeros, the DFT of the resulting vector, the DFT of

x2L;k�(j�1)L, the product of the two DFTs, and the (scaled) IDFT of this product. When the

FFT is used to perform the DFTs, this leads to a computationally more e�cient procedure

than the straightforward matrix-vector product which would require L2+L multiplications.

Note that at time k, only the FFT of x2L;k needs to be computed; the FFTs of x2L;k�jL; j =

1; . . . ;M�1 have been computed at previous time instants. The above procedure reduces the

2N(1+ 1
L
) computations per sample for PN;k and rN;k via (16),(17) to

2N

"
2FFT(2L)

L2
+

4

L

#
+
FFT(2L)

L
(25)

computations per sample (FFT(L) signi�es the computational complexity associated with a

FFT of length L) or basically O
�
N log2(L)

L

�
operations.
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2.4 Fast Computation of the Filtering Errors using the FFT

In a block processing approach, also the �ltering errors can be computed more e�ciently than

by computing an inner product every sample period. Indeed, consider the following vector of

(block) a priori �ltering errors

�pN;L;k =

2666664
�HN(k�L+1jk�L)

...

�HN(kjk�L)

3777775 = dL;k +XN;L;kW
H
N;k�L = dL;k +

MX
j=1

XL;L;k�(j�1)LW
j H
N;k�L

(26)

with WN;k =
h
W 1

N;k � � �WM
N;k

i
. We can use the same circular matrix embedding and DFT

techniques as in the previous subsection. Remark that the input data have been transformed

before (in the previous subsection) and that we only need to apply the inverse DFT once after

having summed up the M products in the frequency domain. This leads to a computational

complexity of

N

"
FFT(2L)

L2
+

2

L

#
+
FFT(2L)

L
(27)

per sample instead of N .

2.5 The SU RLS Algorithm

Instead of computing the �lter WN;k from scratch every L samples by solving the normal

equations (14), we may want to exploit information gathered at the previous solution instant,

k�L. If we plug in the recursions (19) for PN;k and RN;k into the solution (3), then we get

similarly to the derivation of the RLS algorithm the following recursion

eCN;k = �XN;L;k�
�LR�1N;k�L (28)


�1
N
(k) = ��1L �XN;L;k

eCH

N;k (29)

R�1N;k = ��LR�1N;k�L � eCH

N;k
N (k)
eCN;k (30)

�pN;L;k = dL;k +XN;L;kW
H
N;k�L (31)


�1
N
(k) �N;L;k = �pN;L;k (32)

WN;k = WN;k�L + �HN;L;k
eCN;k (33)
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where �N;L;k is a vector of a posteriori errors:

�N;L;k =

2666664
�HN (k�L+1jk)

...

�HN (kjk)

3777775 : (34)

In this case, the corresponding unnormalized Kalman gain would be

CN;k = ��LXN;L;kR
�1
N;k = 


N
(k) eCN;k (35)



N
(k) = �L

�
IL +XN;L;kC

H
N;k

�
: (36)

Using the recursions for WN;k, PN;k, one can again verify that the minimum value for the LS

criterion satis�es the recursion

�N (k) = �0(k) +WN;kPN;k = �L�N (k�L) + �p HN;L;k
N (k)�
p
N;L;k : (37)

While the Subsampled-Updating RLS algorithm thus obtained constitutes a valid algorithm to

provide the �lter solutionWN;k everyL samples, it does not represent much computational gain

w.r.t. the original RLS algorithm (L = 1). We could exploit the FFT technique introduced

above to reduce the computational complexity in equations (28),(29) and (31) by a factor

O
�

L

log2 L

�
. On the other hand, we have to invert 
�1

N
(k), a L � L matrix. Below, we shall

introduce a fast version of the SU RLS algorithm.

2.6 Relation Between the Filtering Errors in Block Mode and in

Sequential Mode

Remark that in the SU RLS algorithm, we �nd �ltering errors that are not just predicted one

step ahead, but several steps. This results from the fact that the �lterWN;k gets updated only

once every L samples. The learning curve for the SU RLS algorithm would be the variance

of the �ltering errors obtained from �N;L;k and hence would be piecewise constant, coinciding

with the learning curve for the RLS algorithm at times that are integer multiples of L, and

remaining constant for L�1 samples after those instants. However, it turns out to be fairly

simple to recover the a priori �ltering errors of the conventional RLS algorithm from those of

the SU RLS algorithm.
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By substituting

WN;i�1 = WN;k�L +
i�1X

j=k�L+1

�N (jjj�1) 
N (j) eCN;j (38)

into

�N(iji�1) = d(i) +WN;i�1XN (i) (39)

we get

�N(ijk�L) = �N(iji�1) �
i�1X

j=k�L+1

�N (jjj�1) 
N (j) eCN;jXN (i) ; i > k�L : (40)

Hence, we can relate the a priori �ltering errors in block mode and in sequential mode as

follows 2666664
1 � � � 0

...
. . .

...

� � � � 1

3777775

2666664
�HN(k�L+1jk�L)

...

�HN (kjk�L)

3777775 =

2666664
�HN(k�L+1jk�L)

...

�HN (kjk�1)

3777775 : (41)

The lower triangular factor can be identi�ed as follows. By comparing the recursion (37) for

the minimal cost with L iterations of recursion (13) for the same quantity, we can identify

�p HN;L;k
N (k)�
p
N;L;k =

L�1X
i=0

�i�pN (k�i)
N (k�i)�pHN (k�i) : (42)

Let us introduce the following notation

�pN;k =

2666664
�p HN (k�L+1)

...

�p HN (k)

3777775 =

2666664
�HN (k�L+1jk�L)

...

�HN(kjk�1)

3777775 (43)

�N;L;k = diag f
N (k�L+1); . . . ; 
N (k)g (44)

DN;L;k = �L �N;L;k (45)

then we can rewrite (42) as

�p HN;L;k
N (k)�
p
N;L;k = �p HN;kDN;L;k�

p
N;k : (46)

Now consider the Upper Diagonal Lower (UDL) triangular factorization of the L� L matrix



N
(k), then we get



N
(k) = UN;L;kDN;L;k U

H
N;L;k (47)
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where UN;L;k is upper triangular with unit diagonal. By uniqueness of the triangular factor-

ization, UH
N;L;k is the lower triangular factor in (41) while DN;L;k is indeed the diagonal matrix

introduced in (45). So we can rewrite (41) as

UH
N;L;k�

p
N;L;k = �pN;k : (48)

This relation allows us to compute the a priori �ltering errors �pN;k of the RLS algorithm

from the a priori �ltering errors �pN;L;k in the SU RLS algorithm. The necessary triangular

factorization (47) can easily be made part of the inversion of 
�1
N
(k) in the SU RLS algorithm.

One can now also easily show



N
(k) �pN;L;k = UN;L;k�L �N;L(k)U

H
N;L;k �pN;L;k| {z }

a priori SURLS errors| {z }
�
p

N;k
a priori RLS errors| {z }

�N;k a posteriori RLS errors| {z }
�N;L;k a posteriori SURLS errors

: (49)

2.7 Relation Between the Kalman Gain in Block Mode and in

Sequential Mode

There exists a relation between the Kalman gain in the SU RLS algorithm and L consecutive

Kalman gains of the RLS algorithm, similar to the relation we found in the previous subsection

for the �ltering errors. By repeated application of the relation (7), we get

R�1N;i�1 = ��i+k�L+1R�1N;k�L �
i�1X

j=k�L+1

��i+1+j eCH
N;j
N (j)

eCN;j ; i > k�L (50)

which, using (5), leads to

eCN;i = ���i+k�LXH
N (i)R

�1
N;k�L +

i�1X
j=k�L+1

�
�j�iXH

N (i)
eCH
N;j
N (j)

� eCN;j ; i > k�L : (51)

Putting the relations (51) together for i = k�L+1; . . . ; k gives

�L
eCN;k =

2666664
1 � � � 0

...
. . .

...

� � � � 1

3777775

2666664
eCN;k�L+1

...

eCN;k

3777775 (52)
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which can also be rewritten as2666664
1 � � � 0

...
. . .

...

� � � � 1

3777775 eCN;k = ��1L

2666664
eCN;k�L+1

...

eCN;k

3777775 : (53)

The lower triangular factor can be identi�ed as follows. By using (7) repeatedly and (30), we

get

eCH

N;k
N(k)
eCN;k = �R�1N;k + ��LR�1N;k�L

= �
L�1X
i=0

��i
�
R�1N;k�i � ��1R�1N;k�i�1

�
(54)

=
L�1X
i=0

��i eCH
N;k�i
N (k�i) eCN;k�i

or hence

eCH

N;k
N(k)
eCN;k =

2666664
eCN;k�L+1

...

eCN;k

3777775

H

��1L DN;L;k�
�1
L

2666664
eCN;k�L+1

...

eCN;k

3777775 : (55)

Using the UDL factorization of 

N
(k) in (47) and by uniqueness of the triangular factorization,

putting (53) and(55) together leads to

UH
N;L;k

eCN;k = ��1L

2666664
eCN;k�L+1

...

eCN;k

3777775 : (56)

Let uN;L;k be the last column of UN;L;k. Then (56) leads in particular to

uHL;1
eCN;k = ��L+1 eCN;k�L+1 (57)

uHN;L;k
eCN;k = eCN;k : (58)

3 Displacement Structure of the SU RLS Kalman Gain

Quantities

Consider the displacement structure of a matrix R:

r�R = R� �Z RZH =
�X

i=1

ui v
H
i (59)
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where � is the rank of R � �Z RZH and Z is the lower shift matrix (ones on the �rst

subdiagonal and zeros elsewhere). By solving this Lyapunov equation, it is straightforward to

obtain the following representation for R:

R = r�1�
 

�X
i=1

ui v
H
i

!
=

�X
i=1

1X
j=0

�j Zj ui v
H
i (ZH)j =

�X
i=1

L(ui) e�LH(vi) (60)

where e� = diag f1; �; �2; . . .g and L(u) is a lower triangular Toeplitz matrix with u as �rst

column. We shall exploit this representation for eCN;k and 

�1
N
(k) to reduce the computational

complexity of the SU RLS algorithm. Considering the de�nition of these quantities, we see

that we �rst have to consider R�1N;k.

3.1 Displacement Structure of the Inverse Sample Covariance

Matrix

In [9], the following displacement structure was derived

r�

264 R�1N;k 0

0 0

375 = AH
N;k�

�1
N (k)AN;k �BH

N;k�
�1
N (k)BN;k + �

h
0 eCN;k

iH

N(k)

h
0 eCN;k

i
(61)

where AN;k and BN;k are forward and backward prediction �lters and �N (k) and �N(k) are

forward and backward prediction error variances (see [4]).

3.2 Displacement Structure of the Kalman Gain

Equation (28), can be rewritten as

h eCN;k 0
i
= �XN+1;L;k �

�L

264 R�1N;k�L 0

0 0

375 : (62)

Applying the r� operator to (62) yields:

r�

h eCN;k 0
i
= ���L

0B@XN+1;L;kr�

264 R�1N;k�L 0

0 0

375 + ��XN+1;L;k

264 R�1N;k�L 0

0 0

375 ZH
N+1

1CA
(63)
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with �XN+1;L;k the L� (N+1) matrix given by

�XN+1;L;k = XN+1;L;kZN+1 � ZLXN+1;L;k =

264 XH
N (k�L) 0

0 �xL�1;k�N�1

375 : (64)

Let epN;L;k and rpN;L;k be respectively the vectors of forward and backward a priori prediction

errors de�ned by

epN;L;k = XN+1;L;k A
H
N;k�L (65)

rpN;L;k = XN+1;L;k B
H
N;k�L : (66)

By substituting (61), (64) into (63), and using the notation de�ned in (65), (66) we get

r�

h eCN;k 0
i

= �epN;L;k��L��1N (k�L)AN;k�L + rpN;L;k�
�L��1N (k�L)BN;k�L

� (�N;L;k � uL;1)�
�L+1
N (k�L)

h
0 eCN;k�L

i
(67)

where

�N;L;k = XN+1;L;k

h
0 eCN;k�L

iH
: (68)

Thus, using (60) we can rewrite the Kalman gain in the form

h eCN;k 0
i

= ���L��1N (k�L)L
�
epN;L;k

� e�LLH (AN;k�L)

+��L��1N (k�L)L
�
rpN;L;k

� e�LLH (BN;k�L) (69)

���L+1
N (k�L)L (�N;L;k � uL;1) e�LLH
�h
0 eCN;k�L

i�
:

By using (58), the L� 1 vector �N;L;k introduced above can also be expressed in terms of the

Kalman gain at time k�1 as

�N;L;k = �L�1XN+1;L;k

h
0 eCN;k�1

iH
uL;1 = �L�1XN;L;k�1

eCH

N;k�1uL;1 (70)

which leads to

�N;L;k = �L�1
�
��1L � 
�1

N
(k�1)

�
uL;1 : (71)
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3.3 Displacement Structure of the Likelihood Variable

Consider now the displacement structure of the likelihood variable 
�1
N
(k)

r� 

�1
N
(k) = r� �

�1
L + ��Lr�

�
XN;L;kR

�1
N;k�LX

H
N;L;k

�
: (72)

Straightforwardly, one has

r� �
�1
L = ��L+1uL;1u

H
L;1 : (73)

Now, the second term of the right hand side of (72) gives

r�

�
XN;L;kR

�1
N;k�LX

H
N;L;k

�
= r�

0B@XN+1;L;k

264 R�1N;k�L 0

0 0

375XH
N+1;L;k

1CA (74)

=

0B@r�

0B@XN+1;L;k

264 R�1N;k�L 0

0 0

375
1CA
1CAXH

N+1;L;k + �ZLXN+1;L;k

264 R�1N;k�L 0

0 0

375 (�XN+1;L;k)
H

= ��L
�
r�

h eCN;k�L 0
i�
XH
N+1;L;k � �
N (k�L)ZLXN+1;L;k

h eCN;k�L 0
iH

uHL;1

= ��L
�
r�

h eCN;k�L 0
i�
XH
N+1;L;k � �
N (k�L)

�
I � uL;1u

H
L;1

�
�N;L;ku

H
L;1 :

By using the displacement structure of the Kalman gain given in (67), the displacement

structure of the likelihood variable becomes

r� 

�1
N
(k) = epN;L;k�

�L��1N (k�L)ep HN;L;k � rpN;L;k�
�L��1N (k�L)rp HN;L;k

+(�N;L;k � uL;1)�
�L+1
N (k�L) (�N;L;k � uL;1)

H

+uL;1�
�L+1

�
1 + 
N (k�L)uHL;1�N;L;k � 
N (k�L)

�
uHL;1 : (75)

>From (71) and the UDL decomposition of 

N
(k) in (45), (47), one can see that the �rst

element of �N;L;k is

uHL;1�N;L;k = �L�1
�
��L+1 � ��L+1
�1N (k�L)

�
= 1 � 
�1N (k�L) : (76)

Finally, replacing (76) in (75) gives the expression of the displacement structure of the likeli-

hood variable in terms of three generators as

r� 

�1
N
(k) = epN;L;k�

�L��1N (k�L)ep HN;L;k � rpN;L;k�
�L��1N (k�L)rp HN;L;k

+(�N;L;k � uL;1)�
�L+1
N (k�L) (�N;L;k � uL;1)

H
: (77)
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This last equation exhibits the Hermitian structure inherited from 
�1
N
(k).

Using (60) the likelihood variable can be written as


�1
N
(k) = ��L��1N (k�L)L

�
epN;L;k

� e�L LH
�
epN;L;k

�
� ��L��1N (k�L)L

�
rpN;L;k

� e�LLH
�
rpN;L;k

�
(78)

+ ��L+1
N (k�L)L (�N;L;k � uL;1) e�LLH (�N;L;k � uL;1) :

Because of the shift invariance of the adaptive �ltering problem, the Kalman gain and the

likelihood variable have a low displacement rank of 3; that is, these matrices have a structure

close to the Toeplitz one and can be replaced by their representation as in (60). The appearence

of Toeplitz matrices in this representation allows for an e�cient computation of the product

of the Kalman gain matrix with an a posteriori error vector by using the FFT. Also, the

inversion of the likelihood variable matrix can be done e�ciently by using the generalized

Schur algorithm. Furthermore, instead of updating eCN;k and 
�1
N
(k) by using the SU RLS

equations (28), (29), it su�ces to update the �lters AN;k, BN;k and
h
0 eCN;k

i
, and to compute

the �lter outputs epN;L;k, r
p
N;L;k and �N;L;k from their de�nitions (65), (66) and (68), using the

data available at the time instant k.

This updating of the prediction �lters and Kalman gain is the subject of the next section.

4 The FSU RLS Algorithm

4.1 Update of the Joint-Process Filter

We can rewrite equation (33) in the form

[WN;k 0] = [WN;k�L 0] + �HN;L;k
h eCN;k 0

i
: (79)

The reason why we add the zeros is that for the FSU RLS algorithm, it will turn out to

be more convenient to assume that M = N+1
L

is an integer. The a posteriori �ltering error

vector �N;L;k is obtained by resolving the system of equations (32). This is discussed further

in section 4.4.

Now, if we replace
h eCN;k 0

i
in (79) by its expression given in (69), the joint-process equation

18



takes the form

[WN;k 0] = [WN;k�L 0] + �HN;L;k

3X
i=1

diT i
L;L

e�L GiL;N+1 (80)

where di, T i
L;L and GiL;N+1 are respectively the constants, the L � L lower and L � (N + 1)

upper triangular Toeplitz matrices described in section 3.2.

The last term in equation (80) can be computed in the following manner. For i = 1; 2; 3 do:

� mutiply di by �N;L;k to obtain p1L;i = �HN;L;kdi.

� use the circular embedding and FFT technique to compute the product p2L;i = p1L;iT i
L;L.

� multiply p2L;i with the diagonal matrix e�L. This gives a 1� L vector, say p3L;i = p2L;i
e�L.

� use again the circular embedding and FFT technique to compute the product

p4L;i = p3L;iGiL;N+1 in
N+1
L

portions of length L (see sections 2.3 and 2.4).

Finally, add the three vectors p4L;i and obtain �HN;L;k

3X
i=1

diT i
L;L

e�L GiL;N+1 by applying the inverse

FFT to the sum
3X
i=1

p4L;i .

4.2 Update of the RLS Kalman Gain f
CN;k

Equation (58) can be rewritten as

h eCN;k 0
i
= uHN;L;k

h eCN;k 0
i
: (81)

The computation of this product can be carried out in exactly the same manner as the

computation of �HN;L;k
h eCN;k 0

i
in the previous subsection. Note however, that the Fourier

transform of the generators needs to be computed only once. This leads to the update of

the RLS Kalman gain
h eCN;k 0

i
at time k by representing the SU RLS Kalman gain

h eCN;k 0
i

in terms of its generators which comprise the RLS Kalman gain
h eCN;k�L 0

i
at the previous

iteration.

As we saw, uN;L;k is the last column of UN;L;k, which is the L � L upper triangular matrix

appearing in the UDL decomposition of 

N
(k) (see (47)). It is possible to obtain uN;L;k from


�1
N
(k). This will be elaborated upon in section 4.4.
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4.3 Update of the Prediction Filters

In a way that parallels the update of the joint-process �lter in the SU RLS algorithm, it is

possible to derive the following updates for the prediction �lters and the associated prediction

error variances

BN;k = BN;k�L + rHN;L;k
h eCN;k 0

i
(82)

�N(k) = �L�N(k�L) + rHN;L;k r
p
N;L;k (83)

AN;k = AN;k�L + eHN;L;k
h
0 eCN;k�1

i
(84)

�N(k) = �L�N (k�L) + eHN;L;k e
p
N;L;k (85)

where eN;L;k and rN;L;k are respectively the a posteriori forward and backward prediction error

vectors.

The update equation (82) of the backward prediction �lter BN;k has the same form as equation

(79) of the joint-process �lter and is computed similarly. This is not the case for the forward

part in equation (84) since eCN;k�1 at time k�1 is needed.

To avoid the use of eCN;k�1 , one must update AN;k+1 �rst and then computeAN;k from AN;k+1.

This leads to

AN;k+1 = AN;k�L+1 + eHN;L;k+1
h
0 eCN;k

i
(86)

AN;k = AN;k+1 � eN(k+1)
h
0 eCN;k

i
(87)

where eN (k+1) is the a posteriori forward prediction error at time k+1, and similarly for the

forward prediction error variance

�N (k+1) = �L�N(k�L+1) + eHN;L;k+1 e
p
N;L;k+1 (88)

�N(k) = ��1
�
�N (k+1) � eN(k+1) e

p
N

H(k+1)
�
: (89)

In order to compute (86) e�ciently, one can rewrite it as

AN;k+1 = AN;k�L+1 + eHN;L;k+1
h eCN;k 0

i
ZH
N+1 : (90)

The a posteriori forward prediction error eN(k+1) can easily be obtained from epN(k+1) by

using the well-known relation

eN(k+1) = 
N (k)e
p
N(k+1) : (91)
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N (k) is available after the computation of the likelihood variable 
�1
N
(k) as the inverse of the

last element of the diagonal matrix that appears in its LDU decomposition (see (46)).

Now the a priori forward prediction error epN(k+1) can be obtained from the a priori forward

prediction error vector epN;L;k+1 by using the same relation as the one between the �ltering

error in block and sequential mode (48), viz.

UH
N;L;k e

p
N;L;k+1 = epN;L;k+1 ; (92)

epN;L;k being the L � 1 vector of sequential a priori forward prediction errors. Equating the

last element on both sides of this relation yields

ep HN (k+1) = uHN;L;k e
p

N;L;k+1 : (93)

Equations (86), (88) involve epN;L;k+1. On the other hand, the generators of the Kalman gain

and the likelihood variable require epN;L;k. In order to avoid computing both by inner product,

we shall use a relation between the vectors epN;L;k and epN;L;k+1. Therefore, consider the vector

vN;L+1;k de�ned by

vN;L+1;k+1 = XN+1;L+1;k+1A
H
N;k�L+1 : (94)

It is easy to see that

vN;L+1;k+1 =

264 XH
N+1(k�L+1)AH

N;k�L+1

XN+1;L;k+1A
H
N;k�L+1

375 =
264 eHN(k�L+1)

epN;L;k+1

375 : (95)

Now (87) taken at time k�L can be rewritten as

AN;k�L+1 = AN;k�L + eN(k�L+1)
h
0 eCN;k�L

i
: (96)

When we replace AN;k�L+1 in equation (94) by the expression above, then vN;L+1;k+1 becomes

vN;L+1;k+1 =

264 epN;L;k

eHN(k+1jk�L)

375+
264 �N;L;k

XH
N (k)

eCH
N;k�L

375 eHN(k�L+1) (97)

where epN;L;k is computed like �N;L;k in section 2.4, eN(k+1jk�L) = XH
N+1(k+1)A

H
N;k�L and

eCN;k�LXN (k) are computed by explicitly calculating the inner product, �N;L;k is computed

by calculating the inner product in (68), and eN(k�L+1) is available from the previous
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adaptation (see (91) at time k�L+1). By equating (95) and (97), epN;L;k+1 can be obtained

from epN;L;k as

epN;L;k+1 =

264
�
epN;L;k

�
2:L

eHN (k+1jk�L)

375+
264 (�N;L;k)2:L

XH
N (k)

eCH
N;k�L

375 eHN(k�L+1) : (98)

4.4 Triangular Factorization of the Likelihood Variable

The previous sections showed that uN;L;k and 
N (k) are needed in the process of updating

the prediction �lters. These quantities can be obtained from the UDL factorization of 

N
(k).

They can also be obtained from the LDU factorization of 
�1
N
(k) whose three generators epN;L;k,

rpN;L;k and �N;L;k�uL;1 (and some scalars) are available. We also need 

N
(k) or 
�1

N
(k) to obtain

the a posteriori error vectors from the a priori ones.

Consider the LDU decomposition of 
�1
N
(k)


�1
N
(k) = LN;L;kGN;L;k L

H
N;L;k : (99)

Inverting both sides in this equation gives



N
(k) = L�HN;L;kG

�1
N;L;k L

�1
N;L;k : (100)

By comparing (100) with (47), we get by uniqueness of triangular factorizations

UN;L;k = L�HN;L;k ; DN;L;k = G�1N;L;k : (101)

Hence, using (45), we obtain


�1N (k) = (GN;L;k)L;L (102)

which is the last element of GN;L;k, and

uN;L;k = UN;L;kuL;L = L�HN;L;kuL;L : (103)

So we can compute uN;L;k by resolving the triangular system

LH
N;L;kuN;L;k = uL;L (104)

which requires 0:5L2 +O(L) operations.
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In order to obtain the a posteriori prediction and �ltering errors, one needs to solve the

three systems of equations 8>>>>>>>>>>>>><>>>>>>>>>>>>>:


�1
N
(k) �N;L;k = �pN;L;k


�1
N
(k) rN;L;k = rpN;L;k


�1
N
(k) eN;L;k+1 = epN;L;k+1

(105)

where the relations for the prediction errors can be shown in a similar fashion as we have

shown in section 2.5 for the �ltering errors. Since the displacement rank of the likelihood

variable is 3, the computation of the LDU factors of 
�1
N
(k) takes 2L2+O(L) operations using

the unnormalized generalized Schur algorithm [1]. This algorithm only requires the generators

of 
�1
N
(k), which are available. The triangular decomposition of 
�1

N
(k) allows the systems of

equations in (105) to be computed by consecutively solving two sets of triangular equations

for each of the three systems, viz.

LN;L;k

h
�pN;k r

p
N;k e

p
N;k+1

i
=

h
�pN;L;k rpN;L;k epN;L;k+1

i

�
GN;L;kL

H
N;L;k

�
[�N;L;k rN;L;k eN;L;k+1] =

h
�pN;k r

p
N;k e

p
N;k+1

i
: (106)

These backsubstitutions take 3L2 + O(L) operations. It is possible to solve these systems

of equations in parallel with the factorization of 
�1
N
(k), avoiding backsubstitutions and the

storage of the triangular factor LN;L;k (see [1, page 37],[2]). The computational cost for doing

so remains roughly the same. Alternatively, one may want to use a generalized doubling Schur

algorithm [1] to reduce the computational complexity from O(L2) to O(L(log L)2).

4.5 The Complete Algorithm

In Table I, we present a summary of the FSU RLS algorithm by collecting together the

recursions derived previously. We remind the reader that M = N+1
L

is assumed to be an

integer. We may remark however that the reason why we use vectors of length N+1 instead
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of length N is for notational convenience rather than out of real necessity. At the start of the

update from time k�L to time k, we have the following quantities available:

WN;k�L, AN;k�L, AN;k�L+1, BN;k�L,
h
0 eCN;k�L

i
, �N(k�L), �N (k�L+1), �N(k�L), 
N (k�L)

and eN(k�L+1).
For the initialization of the FSU RLS algorithm, we can consider the soft constraint ini-

tialization technique introduced in [4]. The addition of the soft constraint to the LS cost

function (2) can be interpreted as resulting from an unconstrained LS problem in which the

input signal at negative times contains one non-zero sample: x(�N) =
p
� (see [4]). In order

to simplify the initialization occurring at time k = 0, but which requires also some quantities

from k = 1, we shall assume x(1) = 0. So the (non-zero) input signal actually starts at time

k = 2. With this input signal, the following quantities can be straightforwardly computed

from their de�nition:

WN;0 =W0

AN;0 = AN;1 = [1 0 � � � 0]
BN;0 = [0 � � � 0 1] ; eCN;0 = [0 � � � 0]
�N(0) = �N�; �N (1) = ��N (0)

�N(0) = � ; 
N (0) = 1

eN(1) = 0 :

(107)

With this initialization at k = 0, the FSU RLS algorithm in Table I provides updates at

times k that are integer multiples of L. Note that the sequential �ltering errors of the RLS

algorithm are obtained in the process (see (106)).

Suitable position for Table I

4.6 Computational Complexity

The algorithm can be partitioned in four major parts:

The �rst part comprises equations I-(1-5) (equations (1)-(5) of table I), which involve the

inner products of �lters with the data matrix XN+1;L;k and give the a priori errors and �N;L;k.

The FFT's of (portions of length L extended with L zeros of) [WN;k�L 0], AN;k�L, BN;k�L

and
h
0 eCN;k�L

i
are computed and only x2L;k has to be Fourier transformed at time k for the
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data matrix (for the �rst L� L block XL;L;k of XN+1;L;k, the other L� L blocks having been

treated already at times k�L; k�2L; . . .).
The second part (equations I-(6-9)) concerns the triangularization of the likelihood variable

using the generalized Schur algorithm. This allows the computation of the sequential a priori

errors, the a posteriori errors, and the vector uN;L;k. The total amount of operations is 5:5L2.

The third part (equations I-(11-20)) involves the update of the generators. Finally, the joint-

process �lter gets updated in the last part I-(21).

The complexity of the FSU RLS is O(8N+1
L

FFT (2L)
L

+ 35N
L
+ 5:5L) operations per sample.

This can be very interesting for long �lters. For example when (N;L) = (4095; 256); (8191; 256)

and the FFT is done via the split radix (FFT (2m) = mlog2(2m) real multiplications for real

signals) the multiplicative complexity is respectively 0:81N and 0:61N per sample, compared

to 7N for the FTF algorithm, the currently fastest RLS algorithm. The number of additions

is somewhat higher. The cost we pay is a processing delay which is of the order of L samples.

4.7 Rescue Procedure

We have simulated the algorithm and have veri�ed that it works. Preliminary experience

appears to indicate that the numerical behavior of the algorithmmay require further attention.

Given the numerically unstable behavior of the related Fast Transversal Filter algorithm [11],

this �nding is not really surprising. One way to overcome numerical problems is to elminate

long-term round-o� error accumulation by reinitializing the state of the algorithm (i.e. the

set of quantities that get initialized before running the algorithm) at regular time intervals.

Preferably, one should reinitialize the algorithm state to its correct value (from which the state

is deviating due to round-o� error accumulation). This could be done by computing at regular

time intervals, in parallel with the FSU RLS algorithm, the algorithmic quantities of the FSU

RLS algorithm using the Block RLS algorithm described in the beginning of this paper, and

by refreshing those quantities in the FSU RLS algorithm with their values obtained from the

Block RLS algorithm. However, though this procedure would provide an excellent solution for

the numerical error propagation problem, it leads to an increase in computational complexity

which is furthermore spread out unevenly in time.
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An alternative is to use a rescuing procedure [4]. A rescuing procedure is also a reini-

tialization procedure, but it reinitializes the state of the algorithm to a value that is simple

to compute and hence that deviates from the true RLS value. The rescue procedure in [4]

replaces the past input signal by single pulse and hence the sample covariance matrix gets

replaced by a diagonal matrix. The following rescue procedure is much more data depen-

dent and corresponds to approximating the prewindowed data matrix by a closely related

pre- and postwindowed data matrix, and hence the sample covariance matrix gets replaced

by a Toeplitz matrix (apart from a pre- and postmultiplication with a diagonal matrix that

contains powers of �, see [9]):

AN;k = J BN;k
e�N+1 ; AN;k+1 = AN;k

�N (k) = �N �N(k) ; �N(k+1) = ��N (k) + jx(k+1)j2
eCN;k = [0 � � � 0] ; XN (k) = [0 � � � 0]H


N (k) = 1 ; eN(k+1) = x(k+1) :

(108)

Note that BN;k, being a minimum-phase �lter, is kept rather than AN;k in order to guarantee

the positive de�niteness of the underlying sample covariance matrix. To further reduce the

amount of suboptimality introduced by the rescuing procedure, only the state of the prediction

part of the algorithm should be reinitialized. The �ltering (joint-process) part, which is stable,

should not be reinitialized [10]. Hence the �lter WN;k remains unchanged. Also, a distinction

should be made between the data vector XN (k) used in the prediction part (which gets zeroed

at a rescue as shown in (108)) and the data vector XN (k) used in the �ltering part, which

does not get modi�ed at a rescue.

Apart from a reinitialization procedure, a rescue procedure also requires a timing strategy

to determine at which time instants to reinitialize. One could rescue periodically. However,

the maximum allowable time period depends on the machine precision and on the input sig-

nal. Hence, with a periodic rescuing, one tends to design conservatively and hence to rescue

too frequently (introducig too much suboptimality w.r.t. to the true RLS performance). It is

preferable to monitor the round-o� errors and to rescue only when these become too impor-

tant. This requires a measurement of the accumulated round-o� error. Such measurement

possibilities are available in the FSU RLS algorithm. Indeed, the last column of the Kalman
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gain
h eCN;k 0

i
is zero in an in�nite precision environment, but will di�er from zero due to ac-

cumulated round-o� errors in the state of the prediction part of the algorithm. In particular

we can compute the �rst element of the last column of
h eCN;k 0

i
, viz.

�k =
�h eCN;k 0

i�
1;N+1

= ���L
h
epHN (k�L+1)��1N (k�L) (AN;k�L)N+1

�rpHN (k�L+1)��1N (k�L)� �
� eCN;k�L

�
N

i
: (109)

which requires a negligible amount of computations. In order to decide whether �k is big,

it can be meaningfully compared with
� eCN+1;k�L+1

�
N+1

= �rpHN (k�L+1)��1��1N (k�L). Or,
after averaging instantaneous variations, we decide to carry out a rescue whenever

�2k > K
1� �

�N(k � L)
(110)

Where K is a small constant (e.g. 10�2) to prevent that �k becomes too inportant. After

a rescue, the accumulated round-o� errors are erased and �k redeparts from zero (but on

the other hand, the least-squares problem has been modi�ed a bit). The test on �k and the

ensuing potential rescue are carried out after the updating operations at time k, before moving

to the update operations at time k+L. The rescue procedure has no signi�cant e�ect on the

computational complexity of the algorithm.

4.8 Concluding Remarks

We have proposed a new algorithm for exactly solving the RLS problem, with a computa-

tional complexity that can be lower than that of the usual fast RLS algorithms. The FSU

RLS algorithm applies especially when the �lter to be adapted is very long, such as in the

acoustic echo cancellation problem. The algorithm trades o� computational complexity for

some processing delay. For applications such as video conferencing, this delay should not pose

a problem since the audio should be synchronized with the video, and the video gets delayed

due to its computationally intensive coding.

In [14],[13] we have also presented the FSU FTF algorithm, an alternative algorithm

with a very similar computational complexity, but a very di�erent internal structure. These

developments lead us to conjecture that perhaps a lower bound on computational complexity
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has been reached, at least in the context of the strategy of trading o� complexity for processing

delay. Preliminary experience indicates that the numerical behavior of the FSU FTF algorithm

also requires further attention. A more elaborate investigation of these numerical issues is the

subject of ongoing research. In particular, a stabilization procedure to make the algorithms

inherently stable such as has been done in [11] for the FTF algorithm, would provide a solution

that is preferable over rescue procedures.
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List of Figures

Figure 1: The adaptive FIR �ltering system.
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Table I: FSU RLS Algorithm

# Computation Cost per L samples

1 �
p
N;L;k = dL;k +XN+1;L;k [WN;k�L 0]H (2 + N+1

L
)FFT(2L) + 2(N+ 1)

2 r
p
N;L;k = XN+1;L;k BH

N;k�L (1 + N+1
L )FFT(2L) + 2(N+ 1)

3 �N;L;k = XN+1;L;k

h
0 eCN;k�LiH (1 + N+1

L )FFT(2L) + 2(N+ 1)

4

264 e
p

N;L;k

eHN (k+1jk�L)

375 =

264 XN+1;L;k A
H
N;k�L

XH
N+1(k+1)A

H
N;k�L

375 (1 + N+1
L )FFT(2L) + 3N

5 e
p
N;L;k+1 =

264
�
e
p
N;L;k

�
2:L

eHN (k+1jk�L)

375+

264 (�N;L;k)2:L

XH
N (k) eCH

N;k�L

375 eHN (k�L+1) N + L

6 
�1
N
(k) = r�1

�

n
e
p
N;L;k�

�L��1N (k�L)ep HN;L;k

�rp
N;L;k

��L��1
N

(k�L)rp H
N;L;k

+(�N;L;k � uL;1)�
�L+1
N (k�L) (�N;L;k � uL;1)

H
o

7 LN;L;k GN;L;k L
H
N;L;k = 
�1

N
(k) Generalized Schur algorithm : 2L2

8 LHuN;L;k = uL;L Backsubstitution : 0:5L2

9 
�1
N
(k) [�N;L;k rN;L;k eN;L;k+1] =

h
�
p

N;L;k
r
p

N;L;k
e
p

N;L;k+1

i
Backsubstitutions : 3L2

10
h eCN;k 0

i
= r�1

�

n
�epN;L;k�

�L��1N (k�L)AN;k�L

+rp
N;L;k�

�L��1
N (k�L)BN;k�L

�(�N;L;k � uL;1)��L+1
N (k�L)
h
0 eCN;k�Lio

11 BN;k = BN;k�L + rHN;L;k

h eCN;k 0
i

(3 + N+1
L )FFT(2L) + 6(N + 1) + 10L

12 �N (k) = �L�N (k�L) + rHN;L;kr
p

N;L;k L + 1

13
h eCN;k 0

i
= uHN;L;k

h eCN;k 0
i

(3 + N+1
L )FFT(2L) + 6(N + 1) + 10L

14 
�1N (k) = (GN;L;k)L;L

15 AN;k+1 = AN;k�L+1 + eHN;L;k+1

h eCN;k 0
i
ZHN+1 (3 + N+1

L )FFT(2L) + 6(N + 1) + 10L

16 e
p
N (k+1) = e

p H

N;L;k+1uN;L;k L

17 eN (k+1) = e
p
N (k+1)
N (k) 1

18 AN;k = AN;k+1 � eN (k+1)
h
0 eCN;ki N

19 �N (k+1) = �L�N (k�L+1) + eHN;L;k+1e
p

N;L;k+1 L + 1

20 �N (k) = ��1
�
�N (k+1)� eN (k+1)e

p H
N (k+1)

�
2

21 [WN;k 0] = [WN;k�L 0] + �HN;L;k

h eCN;k 0
i

(6 + N+1
L

)FFT(2L) + 6(N + 1) + 10L

Total cost per sample (20 + 8N+1L )FFT(2L)L + 35NL + 5:5L
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