
TOWARDS REAL-TIME VIDEO WATERMARKING FOR SYSTEM-ON-CHIP

G. Petitjean∗, JL. Dugelay∗∗, S. Gabriele* , C. Rey∗∗, J. Nicolai*

*STMicroelectronics, Advanced System Technology, Rousset Lab , http://www.st.com
** Institut Eurécom, Sophia Antipolis, Dept. of Multimedia Communications, http://www.eurecom.fr/~image

ABSTRACT

In the past few years, much research on watermarking has
been focused on improving robustness to attacks. The
starting point of the present study was an R & D non
optimised algorithm for still images but offering a good
trade-off in terms of capacity, visibility and robustness, and
working in a full blind manner. We focused on adapting it
to video and on optimising it to the world of embedded
terminals such as digital still cameras, digital television,
wireless terminals, where the computing power and
storage resources of a Pentium are not available. This
work is the result of a close collaboration between the
Eurecom research institute and STMicroelectronics.

1. INTRODUCTION

The ease of modifying and perfectly copying digital data
such as audio, video, photos, and the advent of high speed
internet access and peer to peer networking are making
increasingly difficult the challenge of protecting copyrights
and guarantying integrity of digitised multimedia content.
Watermarking is viewed by many as the last barrier when
encryption is broken or not feasible, or after the document is
decrypted for consuming. Watermarking can be used in
several ways: to prevent a compliant device from playing or
copying illegally, to trace illegal copies to the indelicate
person who posted them on the net, to display graphically
the part of a photograph which was electronically modified,
to carry invisible information such as place or date of
purchase, document identifier, number of authorized
viewings or copies, etc. [1]
In the last few years, research has been focused on creating
watermarks resistant to various types of attacks ([2] gives a
good overview), but with little emphasis on the platform
running the watermark algorithm. The processor usually
assumed is a powerful Pentium PC, or Unix workstation.
We think that many consumer equipments will need in the
near future to run watermarking algorithms: some MP3 music
players already do, DVD players and recorders will probably
be next [7]. Digital TVs, digital still cameras, set top boxes,
wireless appliances, in fact any device capable of displaying
or capturing multimedia content may follow.
Efficient watermarking solutions being generally
computationally intensive, it is not enough for a watermark

to exhibit good robustness and visibility performance. It
needs to be compatible with the host application platform,
usually a 16 or 32-bit microprocessor, DSP or system-on-
chip (SoC), equipped with only some hundreds of kilobytes
of memory.
We first give a short overview of our still picture watermark
algorithm that is able to defeats many (non destructive)
attacks including random geometric distortions (e.g. Stirmark
3) [3]. The initial development was done on workstation,
without any platform constraint.
We then describe how we have adapted it to a 32 bit DSP
embedded processor, and to a 32 bits VLIW multi-issue
processor core, both processors suitable for wireless,
embedded applications. The adaptation was made at
algorithmic level, at C code level, and finally adaptations
were made for the specific targets. Results are shown in the
form of execution times versus platform capabilities.
A third paragraph describes the extension of our watermark
to digital video, its performances, and the hardware
accelerator needed to satisfy real time video constraints.
The accelerator could be attached to the main processor, in
an hypothetical System-on-Chip MPEG encoder-decoder
with watermark embedder and extractor.
Finally, we will conclude with future perspectives.

2. THE ALGORITHM

Our technique, first developed for still picture, is inspired
from fractal image coding theory [4], in particular the notion
of self-similarity [8]. The main idea is to use some invariance
properties of fractal coding, such as invariance by affine
(geometric and photometric) transformations, to ensure
watermark robustness.

2.1 Embedding

The watermark embedding process can be described as the
following three steps: formatting and encryption of the
watermark, cover generation, embedding the watermark into
the cover.

2.1.1 Formatting and encryption of the watermark
The message bits to be hidden are redundantly distributed:
by oversampling and duplication of the message to obtain a
watermark of the size of the image. This redundancy is
necessary for a good robustness. Finally, the watermark is

0-7803-7304-9/02/$17.00 ©2002 IEEE

globally encrypted using a XOR with a pseudo-random
noise generated from a secret key, yielding the encrypted
watermark W. The XOR operation allows, on one hand, to
secure the hidden message, and on the other hand, to
remove repetitive patterns reducing in this way the psycho-
visual impact of the watermark embedding.

2.1.2 Cover generation
First, a “fractal approximation” Iapprox is computed from the
original image Ioriginal (see section 3). The cover Icover
corresponds to the error image, that is the signed difference
between the original image and its fractal approximation.

approxoriginalcover III −=

2.1.3 Embedding the watermark into the cover
The last step of the embedding process consists in
modulating the cover Icover with W. The modulation consists
of zeroing some of the cover pixels depending on their sign
and the corresponding watermark bit to hide. Only pixels
whose absolute value is below a fixed threshold are zeroed,
allowing to set visual quality. A threshold of 12 allows to
make the mark invisible. Finally, the modulated cover Îcover is
added to the fractal approximation Iapprox to produce the
watermarked image Iwatermarked.

coverapproxdwatermarke ÎII +=

2.2 Extraction

The watermark extraction algorithm is similar to the
embedding algorithm (i.e. dual operations). Its complexity is
very close too.
First a fractal approximation is calculated from the
watermarked image, which generates a cover close to the
original one. Finally the cover is decoded according to the
modulation rules (e.g. a positive pixel is supposed to carry a
one valued bit, and a negative pixel a zero valued bit). The
crucial point is that most geometric transformations on the
watermarked image are also transferred to the cover: the
mark is not lost but the noise has to be correctly positioned
with respect to the cover before applying XOR. Therefore,
some additional bits called ‘resynchronisation bits’ are
added to the useful message bits in order to allow a self and
blind resynchronisation of samples via two procedures: one
for global geometric distortions (rotation and rescaling)
based on FFT properties of periodic signals, one for local
geometric distortions based on block-matching. Then the
watermark can be decrypted and the message rebuilt.

3. OPTIMIZATION FOR EMBEDDED PROCESSOR

3.1 Fractal approximation

The initial research prototype was very performing but not
optimised: it took about 40s to watermark a 512%512 pixels
image on a PIII 733MHz.

We then conducted an optimisation in two steps: first at
algorithmic level, then at C code level, with some fine tuning
for porting to a DSP or a VLIW processor.
 We have focused on the fractal approximation part of the
algorithm, since it takes about 80% of the total computing
time both in embedding and extraction. Our fractal
approximation is very inspired by fractal coding [4]. The
image is parsed into non overlapping “range” blocks (here
8%8 pixels) which are matched with larger “domain” blocks
(here 32%32 pixels, subsampled to 8%8) and with all the

isometric domains (we apply the classical 8 isometries:
identity, 4 reflections, 3 rotations). And to allow the domains
to be closer from the range, their average brightness and
contrast are modified to match those of the range, according
to the exact formu las,
sopt = (nS.di . ri - S di .S ri) / (nSdi

2 – (Sdi)
2
) (1)

oopt = (S.di - sopt .S ri) / n (2)
where sopt and oopt are the optimum contrast and brightness
modifications, d the rescaled and transformed domain and r
the range. Then the domain d for which sopt .d + oopt is the
closest from range r is searched. The metric used to find the
best domain is the quadratic norm. The Euclidian error Q is
computed according to:
 Q=S(s.d i + o – ri)2 (3)
which can also be computed as:

 (4)

 The main differences with fractal coding are:
-the search window is limited to a smaller neighbourhood of
the current range (a 34%34 block centred on the range) to
allow good robustness especially to cropping
-after having found the best domain with the best
transformation, we replace the range with this block to
obtain the approximation, instead of keeping the IFS
(Iterated Functions System) code. Figure 1 summarizes the
general process of fractal coding.

()







−+








+−+= ∑∑ ∑ ∑ ∑ iiiiii ronodorddssr

n
Q *2****2**2***1 22

Original Image

Geometric Tf..

PhotometricTf.

Domain block

Range

Fig. 1 : IFS computation in fractal coding. s and o are the
photometric parameters computed in formulas (1) and (2)

block matchingOriginal Image

Geometric Tf..

PhotometricTf.

Domain block

Range

Fig. 1 : IFS computation in fractal coding. s and o are the
photometric parameters computed in formulas (1) and (2)

block matching

3.2 Algorithmic optimisations

 PSNR
Visual
assessment

Cover
stability

Adopted

Original
algorithm

38.69dB - 41% -

No isometric
domains

37.98
Slightly
visible

38% No

Same isometry
for all domain
pool

38.69 Not visible 41% Yes

Approached
computation
for s and o +
SAD

37.27
Slightly
visible

32% No

Figure 2: evaluations of some possible algorithm
variations that may reduce computing resources, for
518%744 ”brandyrose” image.

Many papers deal with fractal coding complexity reduction:
one can find a good overview in [5]. Inspired by those
works, several variations have been implemented and
evaluated: metric SAD (Sum of Absolute Differences) vs.
Euclidian norm, number of isometric domains used, size of
the blocks, and computing method for brightness and
contrast adjustments (exact or approached formulas). To
assess each of these possible varia tions we needed a
precise methodology. As for any watermarking technology,
there is a compromise between visibility, robustness and bit
capacity. We have fixed the capacity to 64 bits and
evaluated the other two parameters. Visibility assessment
was done by comparing the PSNR original/watermarked
image between original and modified algorithm and also by
visual evaluation (since PSNR does not handle efficiently
human visual system properties). Robustness assessment
was done by comparing in the original and modified
algorithms the “cover stability”, i.e. the number of pixels that
have the same sign in the modulated cover during
embedding and in the extracted cover during extraction. The
higher this number is, the more robust the algorithm is, since
more correct bits will be extracted. This comparison was also
done after image manipulations (noise addition and
blurring).
Surprisingly the Euclidian norm gives globally better results
than SAD: SAD is faster but does not allow the use of the
formula (4) that avoids computing photometric changes
sD+o for all the blocks, which is a very intensive task. Then
SAD only decreases the computing time if it’s used with
approximated formulas for s and o. But those formulas
damaged the cover stability.
About isometric domains, we found that computing the best
isometry on the first domain and keep it for the remaining
domains was a good solution. It reduces the number of
matching to do from 72 (9 domains times 8 isometries) to 16,

without decreasing robustness and visibility (surely
because the 9 domains are very close). Figure 2 shows some
of our results. Those modifications have decreased
computing time from 40s to 10s to watermark a 512%512
image (PIII 733MHz).

3.3 Code optimisation and porting

We then focused on the implementation. We have done
classical optimisations: decrease memory accesses, avoid
counter operations in the loops (e.g. by index arrays),
change float variables into integers. This last transformation
was difficult for s and o computation since they must be
very precise to insure good robustness. The resulting code
took 0.5s to watermark the same image instead of 10s. The
global gain was 80:1. At the same time the data memory
space needed was divided by 3.5 to reach 2MB.
Our first porting was on a DSP from STMicroelectronics.
Only little work was needed to optimise it to the target
thanks to the previous generic optimisation. We coded a
few inner loops in assembler. We then ported the
watermarking code to an STMicrolectronics VLIW
processor. It contains 4 fixed point ALUs which can process
4 instructions in parallel, thanks to its powerful compiler.
Figure 3 shows the results for embedding (extraction
complexity is very close).

4. EXTENSION TO REAL TIME VIDEO

As our algorithm was designed for still picture we first
adapted it to video. We think that a high degree of
robustness will be needed for video, as much as for still
image, since video specificities together with increasing
computing power, allowing easy video processing, will soon
allow new specific attacks. We worked at algorithm level to
merge the watermark with an MPEG2 codec [6] in order to
mark video sequences during MPEG2 coding and extract
watermarks during MPEG2 decoding. To reach the higher

0

0.2

0.4

0.6

0.8

1

1.2

PC PIII 733MHz VLIW 250MHz DSP 200MHz

Time (s) Modulation
fractal approximation generation
watermark formatting & encryption

0.351s
0.425s

0.959s

Fig.3: Complexity comparison PC / VLIW / DSP

robustness, we first chose to mark all the frames, with the
same message, and to extract watermarks using frame
accumulation: each bit of the message is averaged on N
frames to increase robustness. Currently we are testing
other embedding strategies to improve visual
quality/robustness trade-off.
In parallel we worked on the hardware part since an
important issue to solve was the processing power
necessary to watermark video in real-time, which cannot be
done in software only. Figure 3 shows that fractal coding
takes the biggest share of the CPU time, in fact in the order
of 0.3 to 1 second depending on the platform. A real time
video implementation then requires at least a tenfold speed
improvement (in the worst case where we mark all the
frames). Hence we defined a hardware accelerator, dedicated
to the fractal coding part of the algorithm, which could be
integrated into a system-on-chip as a coprocessor to the
CPU core. This accelerator receives from the processor the
8%8 pixel range and associated 34%34 search area (luminance
data only) and returns to the processor the best domain.
Such an accelerator allows running repetitive tasks in
parallel. For example Figure 4 shows the domain extraction
and subsampling part of the coprocessor. It creates the 9
domains and simultaneously subsamples them in 64 clock
cycles (1.28 µs @ 50MHz), using massive parallelism, and
specific memories to hold the search area and resulting
domains. Then it computes sopt, oopt and the error Q in a
parallel (3 domains at a time) and pipelined way. Our
simulations show that the complete process takes less than
6µs on an FPGA running on a 50 MHz clock, compared to
78µs on a Pentium III 733MHz and 118µs on a VLIW 250

MHz. The fractal coding of a 512%512 frame would then
require 4096 % 6µs = 25 ms, which is very close to the
performance required to achieve video rate. An
implementation as coprocessor inside a system-on-chip
would allow a clock frequency of at least 100 MHz, bringing
this time down to 12.5 ms maximum (to compare to 0.41s,
software only, on VLIW), making it possible to mark video
and extract a mark in real time with a single System On Chip.

5. CONCLUSION

We showed the feasibility of real-time video watermarking
with a top performing, then computationally intensive,
algorithm. We started from a Stirmark resistant, still picture
algorithm at research level, optimised both algorithm and C
code and ported it to DSP and VLIW processors. Then we
designed a hardware accelerator architecture to reach real
time video requirements. In the future we will focus on better
adapting our algorithm to video properties to improve both
robustness and visual quality.

REFERENCES

[1] S. Katzenbeisser, F. A.P. Petitcolas , Information Hiding –
Techniques for Steganography and Digital Watermarking,
Artech House, Boston-London, 2000.
[2] N. Nikolaidis, I. Pitas, Digital image watermarking:an
overview, ICMCS 99, vol I, pp 1-6, 1999.
[3] J.-L. Dugelay & F . Petitcolas, Image Watermarking:
Possible counterattacks against Random Geometric
distortions, Conference SPIE, California, Jan. 2000
[4] Fisher Y., Editor, Fractal image encoding and analysis,
NATO ASI Series, Series F: Computer and Systems
Sciences, vol. 159, Springer-Verlag, 1998.
[5] D. Saupe , R. Hamzaoui, Complexity Reduction Methods
For Fractal Image Compression, in Proc. IMA Conf. On
Image Processing; mathematical methods and applications
(1994). Oxford University Press, 1996
[6] F. Rovati, D. Pau, L. Pezzoni, E. Piccinelli, J. Bard, An
Innovative, High Quality and Search Window Independant
Motion Estimation algorithm and Architecture for MPEG2
Encoding, IEEE transactions on Consumer electronics, vol.
46 n.3, August 2000
[7] M. Maes & al, Digital Watermarking for DVD Video
Copy Protection, IEEE Signal Processing Magazine 1053-
5888, September 2000
[8] J.-L. Dugelay, S. Roche, C. Rey, Pending Patents
PCT/FR99/00485(EURECOM 09-PCT), March 1999, EP
99480075.3(EURECOM 11/12 EP), July 1999, EUP
99480075.3(EURECOM 14 EP), May 2001

+ -

+ -

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+ -
+ -

+ -
+ -

search area memory

34 x 34 bytes

D3,D6,D9 D2,D5,D8

domain
memory
D1,D4,D7

ling;

+ -

+ -

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+ -
+ -

+ -
+ -

search area memory

34 x 34 bytes

D3,D6,D9 D2,D5,D8

domain
memory
D1,D4,D7

Fig. 4 : hardware architecture for domain extraction and
subsampling, based on parallel accumulators. The 9 domains
are extracted and subsampled in 64 clock cycles.

	Home Page
	Conference Info
	Sessions
	Tuesday, 27 Aug
	TueAmPO1
	TueAmPO2
	TueAmPO3
	TueAmPO4
	TueAmPO5
	TueAmOR1
	TueAmOR2
	TueAmOR3
	TueAmOR4
	TueAmOR5
	TueAmOR6
	TuePmOR1
	TuePmOR2
	TuePmOR3
	TuePmOR4
	TuePmOR5
	TuePmOR6

	Wednesday, 28 Aug
	WedAmPO1
	WedAmPO2
	WedAmPO3
	WedAmPO4
	WedAmPO5
	WedAmOR1
	WedAmOR2
	WedAmOR3
	WedAmOR4
	WedAmOR5
	WedAmOR6
	WedAmOR7
	WedPmOR1
	WedPmOR2
	WedPmOR3
	WedPmOR4
	WedPmOR5
	WedPmOR6

	Thursday, 29 Aug
	ThuAmPO1
	ThuAmPO2
	ThuAmPO3
	ThuAmPO4
	ThuAmPO5
	ThuAmOR1
	ThuAmOR2
	ThuAmOR3
	ThuAmOR4
	ThuAmOR5
	ThuAmOR6
	ThuPmOR1
	ThuPmOR2
	ThuPmOR3
	ThuPmOR4
	ThuPmOR5

	Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Copyright
	About
	Current paper
	Presentation session
	Authors
	Guillaume Petitjean
	Jean-Luc Dugelay
	Sophie Gabriele
	Christian Rey
	Jean Nicolai

