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ABSTRACT 

 
In the past few years, much research on watermarking has 
been focused on improving robustness to attacks. The 
starting point of the present study was an R & D non 
optimised algorithm for still images but offering a good 
trade-off in terms of capacity, visibility and robustness, and 
working in a full blind manner. We focused on adapting it 
to video and on optimising it to the world of embedded 
terminals such as digital still cameras, digital television, 
wireless terminals, where the computing power and 
storage resources of a Pentium are not available. This 
work is the result of a close collaboration between the 
Eurecom research institute and STMicroelectronics. 

1. INTRODUCTION 

The ease of modifying and perfectly copying digital data 
such as audio, video, photos, and the advent of high speed 
internet access and peer to peer networking are making 
increasingly difficult the challenge of protecting copyrights 
and guarantying integrity of digitised multimedia content. 
Watermarking is viewed by many as the last barrier when 
encryption is broken or not feasible, or after the document is 
decrypted for consuming. Watermarking can be used in 
several ways: to prevent a compliant device from playing or 
copying illegally, to trace illegal copies to the indelicate 
person who posted them on the net, to display graphically 
the part of a photograph which was electronically modified, 
to carry invisible information such as place or date of 
purchase, document identifier, number of authorized 
viewings or copies, etc. [1] 
In the last few years, research has been focused on creating 
watermarks resistant to various types of attacks ([2] gives a 
good overview), but with little emphasis on the platform 
running the watermark algorithm. The processor usually 
assumed is a powerful Pentium PC, or Unix workstation. 
We think that many consumer equipments will need in the 
near future to run watermarking algorithms: some MP3 music 
players already do, DVD players and recorders will probably 
be next [7]. Digital TVs, digital still cameras, set top boxes, 
wireless appliances, in fact any device capable of displaying 
or capturing multimedia content may follow. 
Efficient watermarking solutions being generally 
computationally intensive, it is not enough for a watermark 

to exhibit good robustness and visibility performance. It 
needs to be compatible with the host application platform, 
usually a 16 or 32-bit microprocessor, DSP or system-on-
chip (SoC), equipped with only some hundreds of kilobytes 
of memory.  
We first give a short overview of our still picture watermark 
algorithm that is able to defeats many (non destructive) 
attacks including random geometric distortions (e.g. Stirmark 
3) [3]. The initial development was done on workstation, 
without any platform constraint.  
We then describe how we have adapted it to a 32 bit DSP 
embedded processor, and to a 32 bits VLIW multi-issue 
processor core, both processors suitable for wireless, 
embedded applications. The adaptation was made at 
algorithmic level, at C code level, and finally adaptations 
were made for the specific targets. Results are shown in the 
form of execution times versus platform capabilities. 
A third paragraph describes the extension of our watermark 
to digital video, its performances, and the hardware 
accelerator needed to satisfy real time video constraints. 
The accelerator could be attached to the main processor, in 
an hypothetical System-on-Chip MPEG encoder-decoder 
with watermark embedder and extractor. 
Finally, we will conclude with future perspectives.  

2. THE ALGORITHM 

Our technique, first developed for still picture, is inspired 
from fractal image coding theory [4], in particular the notion 
of self-similarity [8]. The main idea is to use some invariance 
properties of fractal coding, such as invariance by affine 
(geometric and photometric) transformations, to ensure 
watermark robustness.  

2.1 Embedding 

The watermark embedding process can be described as the 
following three steps: formatting and encryption of the 
watermark, cover generation, embedding the watermark into 
the cover. 

2.1.1 Formatting and encryption of the watermark 
The message bits to be hidden are redundantly distributed: 
by oversampling and duplication of the message to obtain a 
watermark of the size of the image. This redundancy is 
necessary for a good robustness. Finally, the watermark is 
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globally encrypted using a XOR with a pseudo-random 
noise generated from a secret key, yielding the encrypted 
watermark W. The XOR operation allows, on one hand, to 
secure the hidden message, and on the other hand, to 
remove repetitive patterns reducing in this way the psycho-
visual impact of the watermark embedding. 

2.1.2  Cover generation 
First, a “fractal approximation” Iapprox is computed from the 
original image Ioriginal  (see section 3). The cover  Icover 
corresponds to the error image, that is the signed difference 
between the original image and its fractal approximation. 

approxoriginalcover III −=  

2.1.3 Embedding the watermark into the cover 
The last step of the embedding process consists in 
modulating the cover Icover with W. The modulation consists 
of zeroing some of the cover pixels depending on their sign 
and the corresponding watermark bit to hide. Only pixels 
whose absolute value is below a fixed threshold are zeroed, 
allowing to set visual quality. A threshold of 12 allows to 
make the mark invisible. Finally, the modulated cover Îcover is 
added to the fractal approximation Iapprox to produce the 
watermarked image Iwatermarked. 

coverapproxdwatermarke ÎII +=  

2.2 Extraction 

The watermark extraction algorithm is similar to the 
embedding algorithm (i.e. dual operations). Its complexity is 
very close too.  
First a fractal approximation is calculated from the 
watermarked image, which generates a cover close to the 
original one. Finally the cover is decoded according to the 
modulation rules (e.g. a positive pixel is supposed to carry a 
one valued bit, and a negative pixel a zero valued bit). The 
crucial point is that most geometric transformations on the 
watermarked image are also transferred to the cover: the 
mark is not lost but the noise has to be correctly positioned 
with respect to the cover before applying XOR. Therefore, 
some additional bits called ‘resynchronisation bits’ are 
added to the useful message bits in order to allow a self and 
blind resynchronisation of samples via two procedures:  one 
for global geometric distortions (rotation and rescaling) 
based on FFT properties of periodic signals, one for local 
geometric distortions based on block-matching.  Then the 
watermark can be decrypted and the message rebuilt. 

3. OPTIMIZATION FOR EMBEDDED PROCESSOR 

3.1 Fractal approximation 

The initial research prototype was very performing but not 
optimised: it took about 40s to watermark a 512%512 pixels 
image on a PIII 733MHz.  

We then conducted an optimisation in two steps: first at 
algorithmic level, then at C code level, with some fine tuning 
for porting to a DSP or a VLIW processor.  
 We have focused on the fractal approximation part of the 
algorithm, since it takes about 80% of the total computing 
time both in embedding and extraction. Our fractal 
approximation is very inspired by fractal coding [4]. The 
image is parsed into non overlapping “range” blocks (here 
8%8 pixels) which are matched with larger “domain” blocks 
(here 32%32 pixels, subsampled to 8%8) and  with all the 

isometric domains (we apply the classical 8 isometries: 
identity, 4 reflections, 3 rotations). And to allow the domains 
to be closer from the range, their average brightness and 
contrast are modified to match those of the range, according 
to the exact formu las,  
sopt = ( nS.di . ri  -  S di .S ri )  /  ( nSdi

2 – (Sdi)
2
  )        (1)                                                                       

oopt = ( S.di - sopt .S ri )  /  n                                              (2) 
where sopt and oopt are the optimum contrast and brightness 
modifications, d the rescaled and transformed domain and r 
the range. Then the domain d for which sopt .d +  oopt is the 
closest from range r is searched. The metric used to find the 
best domain is the quadratic norm. The Euclidian error Q is 
computed according to: 
 Q=S(s.d i + o – ri)2            (3)     
which can also be computed as: 
 
                                                                                                (4) 
 
 The main differences with fractal coding are: 
-the search window is limited to a smaller neighbourhood of 
the current range (a 34%34 block centred on the range) to 
allow good robustness especially to cropping  
-after having found the best domain with the best 
transformation, we replace the range with this block to 
obtain the approximation, instead of keeping the IFS 
(Iterated Functions System) code. Figure 1 summarizes the 
general process of fractal coding.  
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3.2 Algorithmic optimisations 

 PSNR 
Visual 
assessment 

Cover 
stability 

Adopted 

Original 
algorithm 

38.69dB - 41% - 

No isometric 
domains 

37.98 
Slightly 
visible 

38% No 

Same isometry 
for all domain 
pool 

38.69 Not visible 41% Yes 

Approached 
computation 
for s and o + 
SAD 

37.27 
Slightly 
visible 

32% No 

Figure 2: evaluations of some possible algorithm 
variations that may reduce computing resources, for 
518%744 ”brandyrose” image. 
 
Many papers deal with fractal coding complexity reduction: 
one can find a good overview in [5]. Inspired by those 
works, several variations have been implemented and 
evaluated: metric SAD (Sum of Absolute Differences) vs. 
Euclidian norm, number of isometric domains used, size of 
the blocks, and computing method for brightness and 
contrast adjustments (exact or approached formulas). To 
assess each of these possible varia tions we needed a 
precise methodology. As for any watermarking technology, 
there  is a compromise between visibility, robustness and bit 
capacity. We have fixed the capacity to 64 bits and 
evaluated the other two parameters. Visibility assessment 
was done by comparing the PSNR original/watermarked 
image between original and modified algorithm and also by 
visual evaluation (since PSNR does not handle efficiently 
human visual system properties). Robustness assessment 
was done by comparing in the original and modified 
algorithms the “cover stability”, i.e. the number of pixels that 
have the same sign in the modulated cover during 
embedding and in the extracted cover during extraction. The 
higher this number is, the more robust the algorithm is, since 
more correct bits will be extracted. This comparison was also 
done after image manipulations (noise addition and 
blurring).  
Surprisingly the Euclidian norm gives globally better results 
than SAD: SAD is faster but does not allow the use of the 
formula (4) that avoids computing photometric changes 
sD+o for all the blocks, which is a very intensive task. Then 
SAD only decreases the computing time if it’s used with 
approximated formulas for s and o. But those formulas 
damaged the cover stability. 
About isometric domains, we found that computing the best 
isometry on the first domain and keep it for the remaining 
domains was a good solution.  It reduces the number of 
matching to do from 72 (9 domains times 8 isometries) to 16, 

without decreasing robustness and visibility (surely 
because the 9 domains are very close). Figure 2 shows some 
of our results. Those modifications have decreased 
computing time from 40s to 10s to watermark a 512%512 
image (PIII 733MHz). 

3.3 Code optimisation and porting 

We then focused on the implementation. We have done 
classical optimisations: decrease memory accesses, avoid 
counter operations in the loops (e.g. by index arrays), 
change float variables into integers. This last transformation 
was difficult for s and o computation since they must be 
very precise to insure good robustness. The resulting code 
took 0.5s to watermark the same image instead of 10s. The 
global gain was 80:1. At the same time the data memory 
space needed was divided by 3.5 to reach 2MB.  
Our first porting was on a DSP from STMicroelectronics. 
Only little work was needed to optimise it to the target 
thanks to the previous generic optimisation. We coded a 
few inner loops in assembler.  We then ported the 
watermarking code to an STMicrolectronics VLIW 
processor. It contains 4 fixed point ALUs which can process 
4 instructions in parallel, thanks to its powerful compiler. 
Figure 3 shows the results for embedding (extraction 
complexity is very close). 

 

4. EXTENSION TO REAL TIME VIDEO 

As our algorithm was designed for still picture we first 
adapted it to video. We think that a high degree of 
robustness will be needed for video, as much as for still 
image, since video specificities together with increasing 
computing power, allowing easy video processing, will soon 
allow new specific attacks. We worked at algorithm level to 
merge the watermark with an MPEG2 codec [6] in order to 
mark video sequences during MPEG2 coding and extract 
watermarks during MPEG2 decoding. To reach the higher 
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robustness, we first chose to mark all the frames, with the 
same message, and to extract watermarks using frame 
accumulation: each bit of the message is averaged on N 
frames to increase robustness. Currently we are testing 
other embedding strategies to improve visual 
quality/robustness trade-off. 
In parallel we worked on the hardware part since an 
important issue to solve was the processing power 
necessary to watermark video in real-time, which cannot be 
done in software only. Figure 3 shows that fractal coding 
takes the biggest share of the CPU time, in fact in the order 
of 0.3 to 1 second depending on the platform. A real time 
video implementation then requires at least a tenfold speed 
improvement (in the worst case where we mark all the 
frames). Hence we defined a hardware accelerator, dedicated 
to the fractal coding part of the algorithm, which could be 
integrated into a system-on-chip as a coprocessor to the 
CPU core. This accelerator receives from the processor the 
8%8 pixel range and associated 34%34 search area (luminance 
data only) and returns to the processor the best domain. 
Such an accelerator allows running repetitive tasks in 
parallel. For example Figure 4 shows the domain extraction 
and subsampling part of the coprocessor. It creates the 9 
domains and simultaneously subsamples them in 64 clock 
cycles (1.28 µs @ 50MHz), using massive parallelism, and 
specific memories to hold the search area and resulting 
domains. Then it computes sopt,  oopt and the error Q in a 
parallel (3 domains at a time) and pipelined way. Our 
simulations show that the complete process takes less than 
6µs on an FPGA running on a 50 MHz clock, compared to 
78µs on a Pentium III 733MHz and 118µs on a VLIW 250 

MHz. The fractal coding of a 512%512 frame would then 
require 4096 % 6µs = 25 ms, which is very close to the 
performance required to achieve video rate. An 
implementation as coprocessor inside a system-on-chip 
would allow a clock frequency of at least 100 MHz, bringing 
this time down to 12.5 ms maximum (to compare to 0.41s, 
software only, on VLIW), making it possible to mark video 
and extract a mark in real time with a single System On Chip. 

5. CONCLUSION 

We showed the feasibility of real-time video watermarking 
with a top performing, then computationally intensive, 
algorithm. We started from a Stirmark resistant, still picture 
algorithm at research level, optimised both algorithm and C 
code and ported it to DSP and VLIW processors. Then we 
designed a hardware accelerator architecture to reach real 
time video requirements. In the future we will focus on better 
adapting our algorithm to video properties to improve both 
robustness and visual quality. 
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