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Abstract

In this work we propose a new stream authentication scheme that is suitable for live packet streams
distributed over a lossy channel, such as an [P-multicast group. Packets are signed together in a block and
the recipient can authenticate this block if the loss rate per block is lower than a certain threshold, which
can be chosen based on the characteristic of the communication channel. This scheme provides both
integrity and non repudiation of origin, and in a majority of situations, it performs with less overhead in
bytes per packet than previously proposed practical live stream authentication schemes.

1 Introduction

Despite intensive research related to multicast applications and routing protocols, security issues[8] such as
privacy and integrity have limited the deployment of large scale commercial multicast applications. The goal
of this work 1s to describe a practical authentication mechanism suitable for IP-multicast and more broadly
for lossy packet streams.

Consider the delivery of live television video, radio broadcasts, or stock quotes over the Internet. In
many cases the recipient needs to have guarantees of integrity and non-repudiation on the received data.
Symmetrically, the entity which generates the data may not want another party to send data on its behalf.
For these reasons stream authentication mechanisms are paramount for any commercial application. The two
major challenges in the design of such mechanisms are first the best effort characteristic of the communication
channel and second the live characteristic of the distributed content. A lot of Internet video or audio streaming
protocols are designed to tolerate some packet loss patterns with a graceful degradation in playback quality.
A good authentication scheme must allow the recipient to authenticate the received data despite these losses.
While in some examples, such as a pre-recorded video, it is possible to compute the authentication information
to be sent with the packets offline, in many cases such as live or real time event broadcasts, the computations
need to be done online or with reasonably small buffering. Interesting protocols targeted mainly for offline
streams have been proposed by Miner and Staddon[12] were the sender is assumed to buffer very large



amounts of data. Our goal is to provide a scheme which works with the constraints of a live event broadcast,
for streams that are not known in advance.

Furthermore, a desirable property of a live authentication stream is to allow a receiver to start authenti-
cating from any point in the stream to another (which is not necessarily the end of the stream). Though we
would ideally like to be able to start and end authentication on a packet boundary, in practical situations
we believe that starting and ending authentication on the boundary of a group of packets is a satisfactory
compromise for most applications. To describe this feature, we will say that a stream authentication scheme
is joinable/leavable on a certain boundary.

A straitforward stream authentication method would be to use a public key signature on each packet
of the stream. In theory, this is well suited for live streams and the the authentication joinable/leavable
on any packet. However, adding a typical 1024 bit signature[20] (or 128 bytes) to every packet represents
a consequent overhead, moreover the computational cost of a public key signature makes such a solution
impractical in many scenarios. Consequently stream authentication proposals have taken two approaches,
sometimes in combination: design more efficient signature schemes and amortize the cost of signatures over
several packets. Faster digital signatures designed with stream authentication in mind where proposed by
Rohatgi [19], as well as Wong and Lam [21], moreover newer digital signatures schemes such as NTRU[10]
could open the way for more efficient stream signature protocols. Despite these improvements, a signature
for each packet is still impractical today.

A complementary approach is to amortize the signature over several packets in a block. The stream is
itself divided into many small blocks that have each a unique signature that is combined with hash techniques
to authenticate the packets in the block. We refer to these techniques as well as the one we propose in this
work as “hybrid” approaches. Wong and Lam proposed one of the first hybrid approaches in their hash tree
construction[21], which is robust to any number of losses in a stream but has a consequent overhead per
packet, even larger than the size of a signature. Instead of being robust to any type of packet loss, recent
stream authentication proposals have focussed to adapt to specific loss patterns that are more specific to
the Internet. This allows a significant gain in terms of overhead. First, based on the observation that loss
usually occur in bursts in TCP/TP[15], Golle and Mogadugo[6] proposed a scheme that could tolerate (1 or
several) bursty loss(es) of at most n packets in a block. Packets are linked together in a “hash chain”, the
last packet of which is digitally signed. However the scheme has some drawbacks, and in particular, the
transmission of the signature is not clearly addressed. Independently Perrig et al. proposed a more complex
“hash chain” construction called EMSS[16] which is adapted to multiple losses and which also addresses
signature transmission. We discuss these related proposals more in detail in section 5.

As a complementary approach to their EMSS scheme Perrig et al.[16] proposed a very efficient time based
stream authentication scheme called TESLA. It offers integrity but does not provide non-repudiation, which
is not a problem for many applications. Its most interesting feature is that it tolerates arbitrary packet loss
with a reasonably low overhead. Its main drawback is that it requires a secure clock synchronization between
the source and the recipients which may not be always feasible in a large multicast group. Moreover, all
secure clock servers become potential targets for adversaries who wish to defeat the authentication scheme.
The scheme relies on the reliable transmission of a signature as a commitment during initialization, thus it
is worth noting that without modifications such as additional commitment sending, the TESLA scheme is
only joinable on a stream boundary.

Our scheme uses a combination of hash and signature techniques with FEC, or more precisely, erasure
codes. The two most employed techniques to achieve reliable delivery of packets in computer communication
protocols are ARQ (Automatic Repeat reQuest) techniques and FEC (Forward Error Correction). ARQ
techniques are used every day in Internet protocols such as TCP, while FEC techniques have long been
confined to the telecommunications world. However, there has been recently a surge in interest for FEC
techniques in the Internet world, often in combination with more traditional ARQ approaches[14, 5]. While
in the telecommunications world FEC techniques are used most often to detect and correct errors occurring



in the transmission of a stream of bits, they are used in the Internet world to recover from the loss of packet
sized objects. Indeed, in the Internet world a packet is either received or lost. A packet can be considered
lost if 1t does not arrive after a certain delay or perhaps if it has bad checksum. Our idea was first to use
FEC to transmit the signature alone, but we soon realized that FEC could also be used as an alternative
to hash trees[21] or chains[16, 6] to transmit authentication information, with lower overhead per packet in
most cases than any other scheme suitable for live broadcasts.

The central contribution of this work is the proposal of an original joinable/leavable live lossy stream
authentication scheme with non-repudiation of origin. It uses Erasure Codes to provide a lower overhead per
packet than previous live authentication stream proposals, while being adapted to realistic multicast Internet
loss patterns.

A brief overview of erasure codes will be presented in the next section. Our scheme is formalized in section
3 as well its relationship with Internet loss patterns based on a Markov chain model. Section 4 discusses the
cost and overhead of our scheme and presents its use in few concrete scenarios. Finally, we review other live
lossy stream authentications schemes in section 5 and compare them with our approach.

2 Background

2.1 Erasure Codes

An erasure code generation algorithm CY , takes a set X = {x1,..., 2} of k source packets in a block and
produces (k + r) code packets:

W, s Ygr) ) & Crr(X)

The main property of the set Y = {y1, ..., Y1)} is that any subset of k elements of ¥ suffices to recover
the source data X with the help of a decoding algorithm Djy. To be exact, the decoding algorithm Dy
needs to know the position, or index, of the k received elements in Y to recover X. This information can
often be derived by other means (such as the packet sequence number) and we will assume in the remaining
discussion that this information is available implicitly to Dg. If the first k& code packets are equal to the
source packets, that is {y1,...,yx} = X where {y1, ..., yu4r)} & Cr»(X), we call the code systematic and
the extra redundancy packets {y(r41), -, Yk+r)} are called parity packets. Systematic codes are very useful
since they do not require any additional processing from the recipient in the case where no loss occurs.

It 1s important to note that Erasure Codes are not used in the same context in the Internet asin telephony.
Here the codes are not designed to recover damaged packets but rather the loss of full packets in a block of
several packets. Intuitively, a individual packet can therefore be viewed more like a single code symbol rather
than a set of symbols. For a good introduction to practical erasure codes we refer the reader to the work
of L. Rizzo[18] where Reed-Solomon erasure codes are described. These codes operate in GGF(2") and may
not be efficient for large data blocks of packets (several hundred kilobytes). However, they are suitable in
our scenario since we work on data units that are much smaller than a packet (typically 16 or 20 bytes), as
shown below. For faster codes, we refer the reader to the work of M. Luby et al. on Tornado Codes [11, 5],
where codes with near linear coding and decoding times are described.

In the remaining of this work, Cj ,(.) will describe a practical systematic erasure code generation algorithm
which takes k source packets and produces (k + r) code packets. If X = {#1,..., 25} is the source data and
Y are the r extra generated parity packets, we will write {X;Y} < C} ,(X). The corresponding decoding
algorithm will be denoted Dy (.) and if Z describes the set of received elements and X the source data, we
will write X < Dy (7) to describe the recovery process (where #7 > k) .



2.2 Notations

In this work we will consider a stream to be divided in consecutive blocks of b packets. Since a stream does
not necessarily exactly contain a number of packets which is an exact multiple of b we allow the use of dummy
padding packets at the very end of the stream to match a b packet boundary. Our authentication scheme is
parameterized by b the block size in packets and p € [0..1] the maximum expected loss rate per block.

We will denote H as a cryptographic hash function such as SHA[13] or MD5[17] which produces hashes of
h bytes. The couple (S,V) will denote the digital signature and verification algorithms respectively associated
with the source of the packet stream, such as RSA[20, 1] for example. The size of the signatures will be
expressed as s bytes. For RSA, a typical value for s is 128 bytes (or 1024 bits).

3 Stream Authentication

3.1 Authentication Tags

Consider a block as a sequence of b packets [P, ..., Py]. Let {h1, ..., hplh; < H(P;)} be the set of hash values of
these packets with a cryptographic hash function I7(.). From this hash set we build a set of b authentication
tags Z = {71, ..., } with the following algorithm 7, ,) which uses some of the notations introduced in the
previous section:

Tag generation: Tp
INPUT: {hi, ..., hv}
OUTPUT: {7, ..., 7}

{X; X} Cy ey (X) (1)
o S(H(h|].-.||hp)) (2)
{5V} & Clo—pyy. o0 (X1|0) (3)
Split {Y;Y} into b equal length tags {7, ..., 7}. (4)

We propose a more visual representation of the tag algorithm on figure 1.

We observe that 7, ) uses two different erasure codes, in steps (1) and (3). The values {Y;Y} on line
(3) is of total length that is a multiple of b bytes, because we have b = |b(1 — p)| + [pb]. This allows us to
divide {Y; Y} into equal length tags on line (4). To exploit the tag generation algorithm we will first define
our authentication criterion:

Authentication criterion: In this work we say that a packet P; is fully authenticable in a block if, given
the set of hashes 7 = {hy,..., hp} of packets in the block and their signature ¢ = S(H (7)), we can verify
that both V(e, H(Z)) = true and H(P;) = h;.

The proposed schemes in this work are based on the following property of the tag generation algorithm.

Proposition 1.  Let IT = [Py, ..., P] be a block of b packets and {hy, ..., hy|h; < H(P;)} its associated
hash set. If we compute A = {1, ..., .} + Tppp)({h1, ..., ho}) then any subset of at least [b(1 — p)] packets
in IT can be authenticated using any subset of at least [b(1 — p)| tags in A.

Proof. Define r = |b(1 — p)|. Let TI' = [P.,, ..., P,] be a subset of r packets in IT and let A" = [r,,, ..., 74, ]
be a subset of r packets in A. We can compute {X||o} = D|p(1_p)j(A’) since A’ contains r = [b(1 — p)]
elements. Let £ = {he,, ..., he |he, < H(Pe,)} be the hashes of the received packets. We can recover
{h1, ..., hp} form B and X by computing {hy, ..., hs} + Dy(E||X). Finally we can compute V(o, {hy, ..., hs})
to authenticate the received packets II' to verify our authentication criterion. &
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Figure 1: the tag generation algorithm



A direct corollary of the proposition above is that both a block of packets and their authentication tags
can withstand a loss rate of at most [pb] elements while allowing us to authenticate the remaining packets.
Finally, from the construction of the algorithm above we can determine the size of an authentication tag:

Proposition 2. Let h define the length of our cryptographic hashes and s the size of the signatures.
The size of an individual authentication tag is expressed as a function d(b, p) of both the number of packets
in a block and p the maximum expected loss rate per block, as follows:

Ri(1—pyp| (s + [p-b] h)
L(1—p)b]

where R, (z) is an integer function which returns the lowest multiple of n greater or equal to z.

6(b,p) =

Proof. Let y denote the size of the value {Y;Y} and z the size of X||o padded to the proper length,
both on line (3) of the algorithm. We have §(b,p) = y/b. From the erasure code parameters on line (3) we

have y = x L(lf(pl)_bjp-;brjp'b] == L(l—bp)bJ and thus 6(b,p) = m. The value of z is the the sum of the size of

X and the signature o, padded to the appropriate length for the erasure code of line (3). From line (1) we
compute the size of X as [p.b] h and write s as the size of ¢ which yields = = R (1=pyp (s + [p.b] h). &

3.2 Proposed Schemes

In our stream authentication scheme we propose to piggyback authentication tags in the packets of a block
and use Proposition 1 to authenticate received packets when the loss rate in a block is less than p. We
propose 3 different variants of our scheme which only differ by the positioning of the authentications tags.

In this section we will denote a stream as a set of m blocks By, ..., B,,. The individual & packets in
each block B; are identified as P[i, 1],..., P[¢,b]. The corresponding authentication tags are identified as
7[i,1], ..., 7[i,b]. The packets P[i, j] are a combination of just two things: stream data packet D[i, j] and an
authentication tag.

ECU: The unbuffered sender scheme. In this scheme we use packets in a block B(;11) to piggyback
authentication tags related to block B;. The j'* packet in a block B; is thus defined as P[i, j] = {D[i, j]||7[i —
1, j1}. This requires the sender to create an extra padding dummy block B(,,41) to allow the last block By,
to be authenticated. This scheme has the particularity that it does not require any stream data packet
buffering from the sender, only the hashes of the packets in the current block need to be stored by the sender
who can then compute the necessary authentication tags to be piggybacked in the next block. In this sense,
this scheme is truly an live authentication scheme. The tradeoft of this construction is that the receiver will
experience a delay of two blocks in the worst case before he can authenticate the first packet in a blocks he
received.

This construction creates a dependency between two consecutive blocks, thus in the event of a loss that
exceeds the threshold p and in particular if a whole block B; is lost than we will not be able to authenticate
B(i—1)~

An interesting aspect of the ECU scheme is that it also gives an extra amount of time for the sender to
compute the signature of a block and the second authentication code. Recalling line (3) of the tag generation
algorithm we have {Y; Y} < Cy(1-p),[ps1 (X ||o) where {Y;Y} is split in b authentication tags. Accordingly
we can rewrite {Y;Y} as {X||o; Y}, thus the first l|y| authentication tags will contain elements representing

X, then the next group of lio| tags will represent the signature ¢ and finally the last group of tags will
represent the b — l|y| — l|g| associated parities. Consequently, the first authentication coding operation on

line (1) of our algorithm needs to be produced before sending block B(;11), however, the signature on line (2)



only needs to be computed after the first l|y| packets of B(;11) and the second code on line (3) only needs
to be ready after the l|y| + 1o first packets of B;j1).

EC2: The double buffer scheme. Instead of piggybacking tags in the next block, we examine the
possibility of piggybacking tags in the previous block. In other words, the tags of block B; are put in packets
of block B(;_1) and packets in a block B; are defined as P[i,j] = {D[i,j]||7[i + 1,j]}. This requires the
sender to create an extra padding dummy block at the beginning of the data stream. The main advantage
of this construction is that the receiver can authenticate each received packet immediately upon reception.
The main drawback of this scheme is that it requires the sender to buffer two blocks at a time. In this sense
it 1s not a truly live scheme but in some applications, our double buffering is still acceptable.
This construction also creates a dependency between blocks similar to ECU, with similar consequences.

EC1: The single buffered scheme. The most obvious construction and perhaps the one that offers the
best compromise between the sender buffering and the receiver authentication delay is to piggyback the tags
of a block B; in the block B; itself. Packets in a block are simply defined as P[i, j] = {D[i, j]l|7[¢, j]}. This
scheme requires the sender to buffer one block and adds a maximum verification delay of one block for the
receiver.

A advantage of this scheme is that it does not create a dependency between blocks, thus if a block losses
packets beyond the expected maximum loss rate p, the authentication of neighboring blocks in the stream
remains unaffected.

3.3 Parameter Choice

Until now we proposed a method which can authenticate a block when a threshold of less than pb packets
are lost in a block of b packets. However we need to relate these parameters to concrete average network loss
patterns and we will now discuss the choice of the 2 main parameters of our scheme: b the block size and p
the maximum loss rate per block.

The goal of an hybrid scheme is to amortize the cost of a signature over several packets. Thus the greater
the block size, the less often we will need to compute a signature. On the other hand the block size influences
the authentication delay and/or the sender buffer size, depending on which scheme is chosen. The EC2 has
the lowest possible authentication delay (1 packet) but the biggest buffering, whereas ECU has no sender-side
packet buffering but a maximum 2 block authentication delay. As we said above, EC1 seems to be a good
compromise in most situations with both a buffering and a maximum authentication delay of one block.
Once a scheme is chosen, we recommend to chose the largest possible block size b within the constraints of
the application authentication delay requirements.

The parameter p depends on the loss pattern of our network. There has been quite a few studies about
Internet loss patterns for applications such as Audio Unicast/Multicast [2], Internet Telephony[3], Multicast
[22, 23], TCP[15] TCP/UDP[4]. These studies differ on their analysis and their applications, however there
is a general consensus among most studies that:

1. Packet losses are not independent. When a packet is lost the probability that the next packet will be
lost increases, which means that losses in the Internet are often bursty.

2. However the majority of bursts are small (from 1 to 6-7 packets).

3. There are some very rare long bursts, lasting up to a few seconds (In [4] the authors suggest that these
bursts could attributed to network disruption or maintenance).



In this work, we propose to refer to a model often suggested to describe bursty losses in Internet traffic which
is a simple 2 state Markov chain [3, 24] also called the Gilbert model, where state 0 represents a packet
received and state 1 a packet lost by the recipient. If » denotes the probability of going from state 0 to state
1 and ¢ the probability of going from state 1 to state 0 we have the following transition matrix[7]:

1= r
M= g (1-9q)

This model simulates well the fact that the loss probability of packet increases when the previous packet
is lost (r < 1 —gq), rather than being uncorrelated (r+¢ = 1). The probability that & consecutive packets are
lost is equal to (1 — ¢)*~1q which describes a geometric distribution of mean y = 1/¢. According to [3], the
head of the distribution seems to model Internet loss patterns well with some inaccuracies in the tail. But
in any case, if a very long burst rarely occurs, with extremes such as those stated in point 3 above, it does
not make sense to invest much effort to make our scheme robust for those bursts since most the data that
needs to be authenticated is likely to be lost itself. The long term average loss rate w1 i1s given by solving
the equation (g, m1). M = (7, m1), which yields 7, = ﬁ. We further note that Perrig et al. have used this
model for their simulations in their own stream authentication scheme, EMSS[16].

The strategy we followed in this work was first to chose b, then to simulate a Markov chain over a very
large number of blocks and adjust the parameter p such that most blocks would be verifiable (we chose an
arbitrary value of 99% verifiable blocks). The Markov chain parameters were derived from pu: the average
loss rate and my: the average burst length. Note that here the number of losses in a block of b packets can be
successfully modeled as a the number of successes in trials of a Bernoulli process with parameter 71, which
is approached by the normal distribution. This approximation could also give us some analytical results but
we found the simulations to be more informative.

4 Discussion

4.1 Computational Cost

Our scheme involves 3 types of operations:

e cryptographic hash computations.
e a digital signature.

e 2 coding and decoding operations.

For each block, the source needs to compute b hash operations, a digital signature (which includes a hash),
and generate the 2 codes. Here, the hashing and signing costs are equivalent to other hybrid schemes such
as EMSS[16] or Hash Chains[6]. The amount of computation done by the recipient depends on the loss in
the network, in an ideal situation he just computes b hashes and verifies a signature. If packets are lost some
additional decoding operations will be needed. The codes are used to recover hashes of packets, rather then
the packets themselves, thus we will be manipulating small amounts of data. In traditional uses of Erasure
Codes, the packets size L is typically over a thousand bytes, while here, we are looking at figures ranging
from L =1 to L = 150 bytes in the most extreme cases.

If we take a simple Reed-Solomon Erasure Code[18], the computational decoding cost is O(m.e.L) where
m is the number of original message packets, and e the additional parities needed (corresponding to the loss)
and I the size of a packet. The coding cost is similarly in O(m.k.L) where k is the number of parities.

For demanding situations, we can turn to more efficient codes such as Tornado Codes[11]. These codes
are probabilistic and come with what is called a slight “decoding inefficiency”: (1 + £)m packets are needed



[p\b [ 16 [ 32 [ 64 [ 128 [ 256 [ 512 | 1024 |
005106 [ 4] 2 [ 2 2] 1
010 (127 [5] 3 |3 |3 | 2
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0.75 | 80 [ 64 | 56 | 56 | 50 | 49 | 49

Table 1: Overhead bytes per packets for different values of p and b

to recover m original packets with high probability. These codes use the binary XOR operation as a basic
operation as opposed to Galois Field operations in the Reed Solomon case, thus we achieve very efficient
coding and decoding times of O((m+k)in(1/e)L). Note that the use of tornado codes would thus conduct us
to modify our definitions in section 3 to take the decoding efficiency into account. However, in [5] significant
values of ¢ & 0.05 are considered, thus the results we propose in this work should not be significantly different
with such a small overhead increase if we use Tornado Codes.

Compared to other hybrid live authentication streams, the main tradeoff of our scheme is in the is the
additional computational cost generated by the erasure. However, since we are operating on small code
packet size, the cost over a block should remain very reasonable. We will show in the next section that the
substantial gain we can achieve in terms of overhead per packet is clearly worth the extra computational
effort.

4.2 Overhead
4.2.1 Evaluation

The overhead in bytes per packet of our 3 schemes is uniquely defined by the size of an authentication tag.
Thus, recalling Proposition 2 in section 3 we can express the overhead as a function 6(b, p) of the maximum
expected loss rate per block p and the number b of packets in a block:

Ri(=pyi(s + [p-b] h)
L(1—p)b]

where R, (z) is an integer function which returns the lowest multiple of n greater or equal to z.
We would like to emphasize again that this overhead wncludes the signature overhead. Table 1 presents a
sampling of d(p, b) for different values of p and b, with s = 128 bytes (1024 bit RSA) and h = 16 (MD5[17]).

Note that §(b, p) remains surprisingly small if either b large or p is reasonably low.

6(b,p) =

4.2.2 Case studies

To be more concrete we applied our scheme two the two case studies Perrig et al. propose in their work for
the EMSS[16] live stream authentication scheme. We recall their first case study:

A municipality wishes to collect traffic information from sensors distributed over the streets. The system
requirements are as follows:

e The data rate of the stream is about 8 Kbps, about 20 packets of 64 bytes each are sent every second.

e The packet drop rate is at most 5% for some recipients, where the average length of burst drops is 5
packets.

e The verification delay should be less than 10 seconds.



| | loss rate | mean burt length || b | p || d(p,b) |

Example 1 5% 5 100 | 0.27 8
Example 2 60% 10 512 0.73 45
Example 3 10% 3 32 0.47 22
Example 4 10% 50 512 0.50 18
Example 5 80% 10 200 | 0.905 160
Example 6 5% 5 1024 | 0.1 2

Table 2: A few case studies.

We propose to use the ECU scheme since the sensors may have limited memory, thus the verification delay
of 10 seconds allows us to use a block of 100 packets (200/2 since a block is authenticated by the next one).
Given the drop rate and the average length of bursts, we constructed a corresponding 2 state Markov chain
with » = 0.010526, ¢ = 0.2 and simulated it over 10000 blocks of 100 packets. For Markov chain simulation
techniques we referred to Haggstrom[9]. We found that 99% of those blocks experienced a loss less than 27
packets, thus we decided to chose p = 0.27. The overhead® per packet is then only §(100,0.27) = 8 bytes !

The second case study proposed by Perrig et al. is related to real-time video broadcasting, with the
following requirements:

e The data rate of the stream is about 2Mbps, or 512 packets of 512 bytes each every second.

e The packet drop rate is at most 60% for some recipients, with an average length of burst drops of 10
packets.

e The verification delay should be less than 1 second.

We propose again the EC1 scheme and because of the verification delay, we have to limit b to 512 packets. We
simulated the corresponding Markov model over 10000 blocks and found that 99% of those blocks experienced
a loss of less than 375 packets. We decided to chose p = 0.73 = 375/512, which gives us an overhead per
packet of §(512,0.73) = 45 bytes.

As a complement to the two proposed scenarios above, Table 2 shows a few of our other simulation results,
following the same approach as above for different average burst loss lengths and loss rates. Example 1 and
2 simply repeat the two case scenarios above. Example 3 shows that with a small block size, parameter p
is significantly higher than the network loss rate. Similarly, an extreme average burst length increases the
value of p as shown in example 4. Finally we have two extreme examples of the parameters of our scheme:
first in a very lossy network which requires 160 bytes of overhead per packet which more than the size of a
public key signature, and to finish we have an ideal case, with a small loss and a long block size which gives
us a surprisingly low overhead per packet of 2 bytes !

4.3 Denial of Service

In their work presenting offline stream authentication techniques[12], Miner and Staddon briefly discuss the
use of Erasure Code techniques as an additional robustness mechanism. Their objective is different from
ours here; since they use Erasure Codes as a mean to “reinforce” their “hash and MAC chain” rather than
as a substitute as we do. However, they make an interesting remark that Erasure Code techniques may be
vulnerable to “Denial of Service” since an adversary who modifies the transmitted parities may render the
authentication of the received packets impossible. We observe that this remark is also valid for our scheme: if
a some packets are lost and if an adversary modifies the tags piggybacked on the data packets the verification

LIf we had chosen the EC1 scheme instead, we would have b = 200, p = 0.2 and §(b,p) = 5.
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Figure 2: Authentication tree for an 8 packet block

process may not function properly if the decoding algorithm requires those parities. However, we would
like to highlight that with or without erasure codes, this type of vulnerability exists in almost all stream
authentication schemes. If an adversary modifies a single bit of the signature packets then the corresponding
block is not verifiable ! The only exception is perhaps the Wong and Lam hash tree scheme[21], which truly
allows packets to be verified individually by transmitting a copy of the signature with every packet.

Consequently we believe that this issue is relevant to almost all stream authentication schemes and is not
specific to the use of Erasure Codes.

5 Comparison

5.1 Hash Trees

Wong and Lam[21] proposed the construction of hash trees, in a scheme that can authenticate received packet
in a block no matter how many packets are lost. In their most interesting scheme, using a cryptographic hash
function H, they construct a complete balanced binary tree, where the leafs are the hashes h; of the packets
P; in the block and the other vertices are hashes of their two children as shown on the example on figure 2.

The source computes a signature of the value representing the root of the binary tree and sends it to the
recipients. Each data packet P; is augmented with the minimum set A; of complementary values it needs to
recompute the value associated to the root of the tree. This set A; is the set of vertices that are siblings to
all the vertices on the path from h; to the root of the tree. For example on figure 2, packet P» is sent with
Az = {hy, haa, hss} and the recipient can verify the signature of the root h1g = H(H (H (h1|H (P2))|ha4)|hss).
To allow the received packets to be authenticated independently (and make the scheme joinable/leavable on
any packet), the authors of [21] suggest to append the signature of the root of the tree to every packet which
leads to an overhead per packet of s+ (Ina(b) — 1).h bytes. This schemes has thus an even larger overhead
per packet than the “sign each” approach, though the signature only needs to be computed once for each
block. Just like EC1 (and EC2), the scheme requires the sender to buffer the whole block before the first
packet of that block can be sent.

5.2 Hash Chains

Based on the observations of Paxson[15] who conducted a large scale survey of TCP/IP Internet commu-
nications and who showed that losses often occur in bursts, Golle and Modadugu[6] proposed a stream
authentication mechanisms designed to tolerate the loss of packets in bursts of at most 5 packets in a block.
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Figure 3: Augmented chain resisting to bursts of 6 packets in a 16 packet block.

P1

They construct a directed acyclic graph between the packets of the block, by putting the cryptographic hash
of a packet in one or several other packets. If a packet P is signed then any packets P’ for which there
exists a path in the graph joining P’ to P can be authenticated. In their work, Golle and Modadugu propose
methods to design such acyclic graphs in an optimal way regarding bursty packet losses. Their simplest
scheme 1s constructed as shown on the example of figure 3: the hash of a packet P; is stored both as part
of the following packet P11 and as part of Piy145. Finally the hashes of the last (3 + 1) packets are sent,
along with a signature of these (5 + 1) hashes for verification.

The same authors further refined their hash chain construction, to create “Augmented Chains”, which
require to buffer a few packets, but allows a smaller set of hashes to be signed at the end. The principle
remains the same and we refer the reader to their work [6] for details. Tt is worth noting that their first
scheme can tolerate several bursts in a block while the augmented chain construction may have difficulties in
some situations if there are several bursts in the same block, consequently we will focus on their first scheme
in this comparison.

Hash Chain Overhead: The authors of [6] do not detail how to choose 8 nor do they provide a clear
method to deal with signature loss except to suggest the transmission of several copies of the signature. If these
signatures are transmitted far enough apart, we can consider that their loss probabilities are uncorrelated. If
we assume that v signatures are transmitted, we can approximate the cost of the hash chain construction as
dpe(y,b) = 'y@b'h& + 2h bytes per packets, with the notations already used throughout this work. The
size of b 1s essentially constrained by the authentication delay, which here is at most the distance between
the first packet of the block and the 4'* redundant signature that is transmitted for that block. Since the
simple hash chain construction is not sender side buffered similarly to ECU, the v signatures pertaining to a
block are transmitted after the last packet of that block.

Recalling the Markov chain model of section 3 we know that the probability that a burst of & lost
packets occurs is ¢.(¢ — 1)(’“_1) with an average length of 1/q packets in a burst. Consequently we will
choose 3 in the hash chain such that the probability that a burst exceeds 3 is low, for example such that
1— ZZO:(ﬁH) q(1 — ¢)F =1 < 99%. If we refer to the two case studies we borrowed from EMSS in section 3,
we would have:

e Case 1: We propose b = 160, v = 2, § = 21 since ¢ = 0.2. We would transmit the first signature at
the end of the block and the second signature 20 packets later (1 second). The probability that one of
the signature arrives is approximately 1 —0.052 = 0.9975 and the overhead per packet is dgc (7, b) &~ 38
bytes.

e Case 2: This case is more problematic because the network is extremely lossy and the signature has
a high probability of being lost. Indeed if we take v = 8 the probability that one redundant signature
at least arrives is 1 — 0.6% ~ 0.99 (if we take v = 4 the signature arrival probability is lowered to 0.87).
But this means that each block is transmitted along with 4 to 8 signatures and it becomes difficult to
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define a reasonable size for b < 512. If we chose b small then we need to compute several signatures per
second and we need to send several copies of each them during the same time (without a guaranty that
losses will be independent). If we chose b larger then the probability of authenticating a packet within
the authentication delay becomes lower. As a indication, if b = 256, v = 8, § = 43 since ¢ = 0.1, we
have dgc(7,b) =~ 58 bytes.

No matter how good the network conditions are and no matter how long the block size is, the hash chains have
at least an overhead of 2.h per packets (with perhaps 1 or 2 extra bytes for the signature). Comparatively,
our scheme has clearly a lower overhead when the network is not too lossy, with such extremes shown as
in Example 6 in table 2. For more lossy streams, our scheme maintains a high authentication probability
despite the losses, without encountering the problems we described here in Case 2.

5.3 EMSS

Perrig et al. used a similar hash chain idea in their EMSS[16] scheme. Their work is targeted at more
general loss patterns and proposes a method to deal with signature loss. As opposed to the work of Golle
and Modadugu which uses a deterministic edge relationship pattern among the packets in the chain, the
EMSS scheme uses randomly distributed edges. Moreover, packets are chained across blocks, thus event if
all the redundant signatures pertaining to a block are lost the signature in the next block can be used to
authenticate the data (potentially out of authentication delay). They performed several simulations in order
to tune the right number of hashes to include in each packet depending on the loss characteristics of the
stream. The signature of a block is transmitted several times to allow it to reach the recipient with high
probability, depending on the characteristic of the network.

Since we borrowed our 2 test cases directly from EMSS, we can recall their results here as a comparison.
The simulations conducted in the EMSS scheme, give an overhead of 22 bytes in the traffic information
scenario (with an average verification probability per packet of 98,7%) and an overhead of 55 bytes in the
video stream scenario (with a minimum verification probability of 90%). In the latter scenario, the signature
of a block alone which is transmitted twice only has an estimated probability of arrival of 0.64 & 1 — 0.62,
but since there is linking between blocks a packet may be verified by the signature of future blocks, however
in this case we understand that the verification delay of a packet will be exceeded. We would also like to
highlight that their scheme used 80 bit hashes while we use 128 bit hashes (MD5). A similar value in our
scheme would have given an even lower overhead per packet and also a lower overhead in the Hash Chain
construction.

Despite longer hashes, in both cases, our scheme has lower overhead and a higher probability of block
verification within the required authentication delay.

Conclusion

In this work we propose a new approach to live lossy stream authentication, which is joinable/leavable on block
boundaries. Where previous proposals used hash linking, we use erasure codes to achieve a lower overhead
per packet. Moreover, we propose a concrete mechanism describing how to transmit the authentication
information as well as the signature associated to a block with equivalent recovery probabilities. We proposed
buffered and unbuffered variations of our scheme which offer an interesting alternative to other live stream
authentication mechanism in many situation.
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