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Abstract. We present a new fast algorithm for Recursive Least-Squares (RLS) adaptive �ltering that uses displacement structure
and subsampled updating. The FSU SFTF algorithm is based on the Stabilized Fast Transversal Filter (SFTF) algorithm, which is a
numerically stabilized version of the classical FTF algorithm. The FTF algorithm exploits the shift invariance that is present in the RLS
adaptation of a FIR �lter. The FTF algorithm is in essence the application of a rotation matrix to a set of �lters and in that respect
resembles the Levinson algorithm. In the subsampled updating approach, we accumulate the rotation matrices over some time interval
before applying them to the �lters. It turns out that the successive rotation matrices themselves can be obtained from a Schur type
algorithm which, once properly initialized, does not require inner products. The various convolutions that thus appear in the algorithm
are done using the Fast Fourier Transform (FFT). For relatively long �lters, the computational complexity of the new algorithm is smaller
than the one of the well-known LMS algorithm, rendering it especially suitable for applications such as acoustic echo cancellation.

1 Introduction

Fast Recursive Least Squares (RLS) algorithms such as the
Fast Transversal Filter (FTF) algorithm [1] exploit a certain
shift invariance structure in the input data vector to reduce
the computational complexity from O(N2) for RLS to O(N)
for FTF (N being the FIR �lter length). In [3],[4],[5], we
have pursued an alternative way to reduce the complexity
of RLS adaptive �ltering algorithms. The approach consists
of subsampling the �lter adaptation, i.e. the LS �lter esti-
mate is no longer provided every sample but every L � 1
samples (subsampling factor L). This strategy has led us to
derive two new RLS algorithms that are the FSU RLS and
FSU FTF algorithms which present a reduced complexity
when dealing with long �lters.
Here, we extend the FSU FTF idea to the Stabilized FTF
algorithm (SFTF) which is a numerically stabilized version
of the FTF. The starting point is an interpretation of the
SFTF algorithm as a rotation applied to the vectors of �l-
ter coe�cients. Using the �lter estimates at a certain time
instant, we compute the �lter outputs over the next L time
instants. Using what we shall call a SFTF-Schur algorithm,
it will be possible to compute from these multi-step ahead
predicted �lter outputs the one step ahead predicted �lter
outputs in an e�cient way. These quantities will allow us
to compute the successive rotation matrices of the SFTF
algorithm for the next L time instants. Because of the pres-
ence of a shift operation in the SFTF algorithm, it turns out
to be most convenient to work with the z-transform of the
rotation matrices and the �lters. Applying the L rotation
matrices to the �lter vectors becomes an issue of multiplying
polynomials, which can be e�ciently carried out using the
FFT. The subsampled updating technique turns out to be
especially applicable in the case of very long �lters such as
occur in the acoustic echo cancellation problem. The com-
putational gain it o�ers is obtained in exchange for some

processing delay, as is typical of block processing.
In order to formulate the RLS adaptive �ltering problem
and to �x notation, we shall �rst recall the RLS algorithm.

2 The RLS Algorithm

An adaptive transversal �lter WN;k forms a linear combi-
nation
of N consecutive input samples fx(i�n); n = 0; : : : ;N�1g
to approximate (the negative of) the desired-response signal
d(i). The resulting error signal is given by
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put data vector and superscript H denotes Hermitian (com-
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where � 2 (0; 1] is the exponential weighting factor, kvk2� =
v�vH , k:k = k:k

I
. Minimization of the LS criterion leads to

the following minimizer
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where

RN;k = �RN;k�1 +XN (k)X
H
N (k)

PN;k = �PN;k�1 +XN(k)d
H(k)

(4)

are the sample second order statistics. Substituting the time
recursions for RN;k and PN;k from (4) into (3) and using
the matrix inversion lemma for R�1

N;k
, we obtain the RLS
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WN;k = WN;k�1 + �N(k) eCN;k (10)

where �pN (k) and �N (k) are the a priori and a posteriori error
signals (resp. predicted and �ltered errors in the Kalman
�ltering terminology) and one can verify (or see [1]) that
they are related by the likelihood variable 
N(k) as in (9).eCN;k is the Kalman gain of order N at time k.

3 The Stabilized Fast Transversal Filter
Algorithm

The computational complexity of the FTF algorithm is 7N
in its most e�cient form [1]. However, the FTF su�ers from
numerical instabilities that are due to long-term round-o�
error propagation. In [2], a stabilization procedure has been
introduced to overcome the instability problem. This has
led to the Stabilized FTF algorithm (SFTF) with compu-
tational complexity 8N . In what follows we shall consider
the single-channel case. However the generalization to the
multichannel case can easily be done. The SFTF algorithm
can be described in the following way, which emphasizes its
rotational structure:2664
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where AN;k and BN;k are the forward and backward predic-
tion �lters, epN(k) and eN(k) are the a priori and a posteriori

forward prediction errors, rpN(k) and rN(k) are the a pri-

ori and a posteriori backward predition errors, eCN+1;k =h eC0
N+1;k � � � eCN

N+1;k

i
and �N(k) and �N(k) are the forward

and backward prediction error variances. K1 = 1:5 and
K2 = 2:5 are the optimal feedback gains that ensure the
stability of the dynamics of the accumulated round-o� er-
rors [2]. �k is a 4 � 4 rotation matrix given by
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where the four 4� 4 matrices �i
k i = 1; 2; 3; 4 are
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with a = �N (k), b = r
(1)
N (k), c = �eCN

N+1;k , d = eN (k) and
e = �epN (k)��1��1N (k�1) .
In order to compute the rotation matrices, one must obtain
the a priori errors epN (k) ; rpfN (k) and �

p

N (k) which are the
outputs at time k of the �lters AN;k�1;BN;k�1 and WN;k�1.

4 The SFTF-Schur Algorithm

Now we introduce subsampled updating and from the �l-
ters at time instant k�L, we want to obtain the �lters at
time instant k. This will require the rotation matrices and
hence the a priori errors in that time range. We shall show
that these quantities can be computed without generating
(completely) the intermediate �lter estimates using a SFTF-
Schur algorithm. Let us introduce the negative of the �lter
outputbd p

N (k) = d (k)� �
p
N (k) ; bdN (k) = d (k)� �N (k) : (14)

Consider now the following set of �ltering operations
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where

XN+1;L;k = [XN+1(k�L+1) � � �XN+1(k)]
H (16)

is the L � (N+1) Toeplitz input data matrix. FL(k) is a
4�L matrix, the rows of which are the result of the �ltering
of the data sequence fx(j) ; j = k�N�L+1; : : : ; kg by the
four �lters of the SFTF algorithm. �N;L;k is the output of

the Kalman gain and e
p
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vectors of forward and backward prediction errors
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The last row of FL(k) corresponds to the (multi-step ahead
predicted) adaptive �lter outputs
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The �rst column of FL (k) is
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where uL;n is the L � 1 vector with 1 at the nth position
and 0 elsewhere. In order to obtain �k�L+1, one needs to
compute r

ps

N (k�L+1) and hence eCN
N+1;k�L+1. In fact, it

turns out that the di�erent eCN
N+1;k�L+j for j = 1; : : : ; L can

be obtained by carrying out the SFTF recursions on the last
L � j entries of the �lters.
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Counting only the most signi�cant term as we often do, the
computational complexity of these recursions is 2L2. So
with the quantities in FL (k) uL;1 and the recursions (11)
and (20), it is possible to construct �k�L+1. Now we rotate
both expressions for FL(k) in (15) with �k�L+1 to obtain
�k�L+1FL(k) which equals2666666664
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Or we can write more compactly

S (�k�L+1 FL(k)) = FL�1(k) (22)

where the operator S(M) stands for: shift the �rst row of
the matrix M one position to the right and drop the �rst

column of the matrix thus obtained. Now this process can
be repeated until we get F0(k) which is a matrix with no di-
mensions. So the same rotations that apply to the �lters at
times k�l; l = L�1; : : : ; 0, also apply to the set of �ltering
error vectors Fl(k) over the same time span. Furthermore, at
each rotation instance, the rotation parameters can be calcu-
lated from the �rst column of Fl(k), the recursions (11) and
(20). Inner products (�ltering operations) are only needed
for the initialization (computation of FL(k)). This is the
SFTF-Schur algorithm, which contrasts with the Levinson-
style SFTF algorithm in (11).

5 The FSU SFTF Algorithm

Once we have computed the L consecutive rotation matrices
with the SFTF-Schur algorithm, we want to apply them all
at once to obtain the �lters at time k from the �lters at time
k�L. Due to the shift of the Kalman gain in (11), we need
to work in the z-transform domain. So we shall associate
polynomials with the �lter coe�cients as follows264
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Hence (11) can be written in the z-transform domain as264
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It appears natural to introduce
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Now, in order to adapt the �lters at time k from the ones at
time k�L, we get straightforwardly264
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where

�k;L (z) = �k (z)�k�1 (z) � � ��k�L+1 (z) : (27)

As mentioned before, the successive rotation matrices can
be obtained via the SFTF-Schur algorithm with a computa-
tional complexity of 4:5L2 operations, which takes into ac-
count the fact that a rotation matrix in factored form as in
(13) only contains �ve non-trivial entries. Now also remark
that �k;L (z) has the following structure

�k;L (z) =

264 � � � 0
� � � 0
� � � 0
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375 (28)



Table I: the FSU SFTF Algorithm

# Computation Cost per L samples

1
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L
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L
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where the stars stand for polynomials in z�1 of degree at
most L. Taking into account these two remarks, the accu-
mulation of the successive rotation matrices to form �k;L (z)

takes 7:5L2 operations. As a result of the structure dis-
played in (28), the product in (26) represents 12 convolu-
tions of a polynomial of order L with a polynomial of order
N . These convolutions can be done using fast convolution
techniques. In the case we consider, in which the orders
of the polynomials are relatively large, we will implement
the convolutions using the FFT technique. In that case the
complexity for the update of each one of the four �lters is
3(1 + 2N+1

L
)FFT (2L) + 2 (N + 1)) (multiply/add) opera-

tions plus 6 (N + 1) additions (FFT (m) denotes the com-
putational complexity for computing a FFT of length m,
and we assume that L is a power of 2 and that N+1

L
is an

integer). The computation of FL(k) in (15) can also be done
with the FFT and one should compute the FFTs of the �l-
ters only once. In the Overlap-Save method, the data matrix
is decomposed into N+1

L
blocks of L� L Toeplitz matrices,

which are then embedded into 2L � 2L Toeplitz matrices.
Note that at time k, only the most recent 2L samples of
the input signal, corresponding to the new L � L block in
the data matrix, have to be Fourier transformed. The other
parts have been computed at previous instants (see [5] for
more details). The resulting FSU SFTF algorithm is sum-
marized in Table I.

6 Concluding Remarks

The complexity of the FSU SFTF is
O((8N+1

L
+17)FFT (2L)

L
+ 32N

L
+ 12L) operations per sam-

ple. This can be very interesting for long �lters. For exam-
ple, when (N;L) = (4095; 256); (8191; 256) and the FFT is
done via the split radix (FFT (2m) = mlog2(2m) real mul-
tiplications for real signals) the multiplicative complexity is
respectively 1:2N and 0:8N per sample. This should be com-
pared to 8N for the SFTF algorithm, the currently fastest

stable RLS algorithm, and 2N for the LMS algorithm. The
number of additions is somewhat higher. The cost we pay
is a processing delay which is of the order of L samples.
We have simulated the algorithm and have veri�ed that it
works. In [3],[5], we have introduced the FSU RLS algo-
rithm, an alternative algorithm with a very similar compu-
tational complexity, but a very di�erent internal structure.
These developments leads us to conjecture that perhaps a
lower bound on computational complexity has been reached
for RLS algorithms when the subsampled updating strategy
is applied and when the �lters to be adapted are relatively
long.
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