Institut EURECOM
2229, route des Crétes
Sophia Antipolis
06560, VALBONNE
FRANCE

Research Report N° 92-001

The Fast Subsampled-Updating
Recursive Least-Squares (FSU RLS) Algorithm
for Adaptive Filtering Based on
Displacement Structure and the FFT

Dirk T.M. Slock Karim Maouche

December 14, 1992

Telephone: +33 93 00 26 26 E-mail:

Dirk T.M. Slock: +33 93 00 26 06 slock@eurecom.fr
Karim Maouche: -+33 93 00 26 32 maouche@eurecom.f{r
Fax: +33 93 00 26 27

Abstract

In this report, we derive a new fast algorithm for Recursive Least-Squares (RLS) adaptive
filtering. This algorithm is especially suited for adapting very long filters such as in the acoustic
echo cancellation problem. The starting point is to introduce subsampled updating (SU) in
the RLS algorithm. In the SU RLS algorithm, the Kalman gain and the likelihood variable
are matrices. Due to the shift invariance of the adaptive FIR filtering problem, these matrices
exhibit a low displacement rank. This leads to a representation of these quantities in terms
of sums of products of triangular Toeplitz matrices. Finally, the product of these Toeplitz
matrices with a vector can be computed efficiently by using the Fast Fourier Transform (FFT).

Contents

Abstract i
1 Introduction 1
2 The Subsampled-Updating RLS Algorithm 1
2.1 The RLS Algorithm 1
2.2 The Block RLS Algorithm L. 3
2.3 Fast Computation of the Second Order Statistics using the FFT 4
2.4 Fast Computation of the Filtering Errors using the FFT D
2.5 The SU RLS Algorithm 5
2.6 Relation Between the Filtering Errors in Block Mode and in Sequential Mode . 6
2.7 Relation Between the Kalman Gain in Block Mode and in Sequential Mode . . 8
3 Displacement Structure of the SU RLS Kalman Gain Quantities 9
3.1 Displacement Structure of the Inverse Sample Covariance Matrix 9
3.2 Displacement Structure of the Kalman Gain 9
3.3 Displacement Structure of the Likelihood Variable 10
4 The FSU RLS Algorithm 11
4.1 Update of the Joint-Process Filter 11
4.2 Update of the RLS Kalman Gain 12
4.3 Update of the Prediction Filters 12
4.4 Triangular Factorization of the Likelihood Variable 14
4.5 The Complete Algorithm 15
4.6 Computational Complexity 16

References 18

i

1 Introduction

Fast RLS algorithms such as the Fast Transversal Filter (FTF) algorithm [1],[2],[3] and the
Fast Lattice/Fast QR (FLA/FQR) algorithms [4] efficiently exploit the shift invariance struc-
ture present in the RLS approach to the adaptive FIR filtering problem. They reduce the
computational complexity of O(N?) for the conventional RLS algorithm to O(N) operations
per sample. In order to further reduce the computational complexity of these algorithms, it
appears that the sampling rate at which the LS filter estimate is provided has to be reduced
from the signal sampling rate to a subsampled rate with a subsampling factor of L > 1. Two
strategies emerge in order to accomplish this. One consists of a block processing approach
in which the normal equations governing the LS problem are solved every L samples. This
leads to Block RLS (BRLS) algorithms. An alternative approach (especially applicable when
L < N) consists of using the same strategy as the RLS algorithm and to compute the new
filter estimate and auxiliary quantities from the same quantities that were available L sam-
ples before. We shall call this the Subsampled-Updating RLS (SU RLS) algorithm. Below,
we shall consider both approaches in detail, but we shall especially focus on a fast version of
the SU RLS algorithm, the FSU RLS algorithm.

2 The Subsampled-Updating RLS Algorithm

In order to formulate the RLS adaptive filtering problem and to fix notation, we shall first
recall the RLS algorithm. We shall mostly stick to the notation introduced in [1],[5],[2],[3],
except that the ordering of the rows in data vectors will be reversed (to transform a Hankel
data matrix into a Toeplitz one) and some extra notation will be introduced.

desired-response d(k)

data sequence

/

Adaptive v

input)] Transversal Wik 4@)
data sequence '
Filter
/ en (k)

Figure 1: The adaptive FIR filtering system.

2.1 The RLS Algorithm

An adaptive transversal filter Wy j, forms a linear combination of IV consecutive input samples
{z(i—n),n =10,..., N—1} to approximate (the negative of) the desired-response signal d(i).

2 2 THE SUBSAMPLED-UPDATING RLS ALGORITHM

The resulting error signal is given by (see Fig. 1)
en(ilk) = d(i) + Wi Xn(i) = d(i Z "zlx (i—n) (1)

H
where Xy (i) = [xH(z) o (i-1)-- -xH(i—N+1)] is the regression vector and superscript
A denotes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of N

transversal filter coefficients Wy, = [W]{,k XK W]]VV k] are adapted so as to minimize recursively
the following LS criterion

k
(k) = min{ SN i) + W X+ A -, |
pE 2 2)
S e GBI+ A Wi — TRl

where A\ € (0,1] is the exponential weighting factor, p > 0, Ay = diag{)\Nfl,) ..,)\,1},
|v|| = vAv™, ||.| = ||.l,- The second term in the LS criterion represents a priori information.

For instance, prior to measuring the signals, we may assume that Wy is distributed as Wy ~
N (WO,RU_ 1), Ry = puMAy (or any other distribution with the same first and second order

moments). The particular choice for Ry will become clear in the discussion of the initialization
of the FSU RLS algorithm. Minimization of the LS criterion leads to the following minimizer

WN,k = _PJl\Lrl,kRXr,lk (3)
where

k
Ry = Y N XN0)XHGE) + N Ay

’

=1
=)\RN,k—l + XN(IC)X]{]I(IC) s RN7(] = RO = ,U)\AN (4)
k
PN,k = Z)\k_zXN(’L)dH(Z) -)\k+1MANWOH
=1
= APyj-1+ Xn(k)d? (k) , Pxo=—RWJH

are the sample second order statistics. Substituting the time recursions for Ry and Py
from (4) into (3) and using the matrix inversion lemma [6, page 656] for Ry, we obtain the
RLS algorithm:

Cni = —Xyn(R)AT'RyL (5)
(k) = 1—CnpXn(k) (6)
Ry, = M'Ryhy — CFpn(k)Cni (7)
en(k) = en(klk—1) = d(k) + W1 Xn(k) (8)
en(k) = en(klk) = (k) n(k) (9)
Wi = Wap1 +en(k)Cnx (10)

where €}, (k) and ey (k) are the a priori and a posteriori error signals (resp. predicted and
filtered errors in the Kalman filtering terminology) and one can verify (or see [1]) that they

2.2 The Block RLS Algorithm 3

are related by the likelihood variable vy (k) as in (9). The overnormalized Kalman gain Cy
is related to the unnormalized Kalman gain Cly j:

CN,k = _X]{{(k)R;V,lk = ’YN(k)CN’N,k (11)
(k) = 1+ CnipXn(k) (12)

and the term overnormalized stems from the relation C~’N’k = fy;,l(k)CN,k. Using the recursions
for Wy, Py, one can verify that the minimum value for the LS criterion satisfies the
recursion

En(k) = (k) + WiiPryp = Mn(k—1) + & (k)yw (k) (k) . (13)

Equations (8)-(10) constitute the joint-process or filtering part of the RLS algorithm. Its
computational complexity is 2N+1. The role of the prediction part (5)-(7) is to produce
the Kalman gain Cy; and the likelihood variable vy (k) for the joint-process part. In the
conventional RLS algorithm, this is done via the Riccati equation (7) which requires O(N?)
computations. Fast RLS algorithms (FTF and FLA/FQR) exploit a certain shift invariance
structure in Xy (k) which is inherited by Ry and Py, to avoid the Riccati equation in the
prediction part and reduce its computational complexity to O(N) (the FLA/FQR algorithms
also provide €y (k) but replace Wy, by a transformed set of parameters as in the square-
root Kalman filtering/RLS algorithms). We now investigate alternative ways to reduce the
computational complexity of the RLS algorithm.

2.2 The Block RLS Algorithm

One way to reduce computational complexity is to not compute the LS filter estimate every
sample, but only once every L samples. In the block processing algorithms of [7],[8], the LS
solution is in fact not computed recursively in time, but directly from the normal equations
(see (3))

Ry Wi, = —Pny . (14)

In the prewindowed problem (z(i) = 0,7 < 0), the sample covariance matrix Ry has a
displacement structure (is close to a Toeplitz matrix [9]) with displacement rank equal to 3.
Therefore a fast (generalized Levinson) algorithm may be applied to solve (14) in 4N?+ O(N)
operations (see [7, Table V]). Due to its displacement structure, Ry can be described by
only two vectors, namely

Tng = Byguny = Mygp_1 + Xy(k)x" (k) (15)

the first column of Ry (unm is a unit vector of length n with a 1 in the mth position and
zeros elsewhere), and Xy _1(k). So, the only quantities that are computed recursively in time
are the correlation vectors Py and ry 4, and at times equal to integer multiples of the block
length L, the normal equations (14) are solved. In fact, when A < 1, instead of using the
recursion indicated in (15), the correlation vectors are best computed as

k
Pyj = MPyjp_p+ > NI X (1) d" (i) (16)
i=k—L+1
k .
Nk —)\LTN’k,L + Z)\kilXN(Z)ZBH(Z) (17)

i=k—L+1

4 2 THE SUBSAMPLED-UPDATING RLS ALGORITHM

which leads to 2(L+1)N operations. So the most significant terms of the computational
complexity of the fast BRLS algorithm are 2]\/—|L4NT2 per sample (compared to 2N for the LMS
algorithm or 7N for the minimal FTF algorithm). Although for computational complexity
reasons, one is inclined to take L very large (larger than N in fact), such a strategy would
be less interesting for two reasons: processing delay (inherent in a block processing strategy)
and loss of tracking capability of the adaptive filter. Therefore, we shall henceforth assume
L < N. We may also note that so far, we have not considered the computation of the filtering
error (also [7],[8] neglect this issue), which would in a straightforward implementation add N
operations per sample.

Using so-called doubling techniques, it is possible to further reduce the complexity of the
generalized Levinson algorithm. In [10] a doubling algorithm is derived for a general displace-
ment rank §. Such an algorithm allows for the solution of the system (14) in O ((6—1)N (log, N)?)
operations.

2.3 Fast Computation of the Second Order Statistics using the FFT

It is possible to reduce the computational complexity of the fast BRLS algorithm further by
introducing FFT techniques as explained in [8]. In what follows, we shall often assume for
simplicity that L is a power of two and that M = N/L is an integer, though more general
cases can be considered equally well. We shall introduce the following notation. Let
df (k—L+1) o (k—L+1) XH(k—L+1)
drk = : y ULk = : s XN Lk = :
d (k) v (k) X3 (k)

= [IL,k e 'QTL,k—N+1] .

We can now rewrite (16), (17) as
Pyj, = MN'Pyj_p + X]{[I,L,kALdL,k ;g = ANrvgon+ X]{r{L,kALIL,k - (19)

Continuing with Py (for ry, just replace dp, x by 1 %), consider a partitioning in M = N/L
subvectors of length L:

H
Py = [PAY - PN (20)

then (19) reduces for subvector j to
B?V,k — ALB{V,/C*L + XﬁL,k*(jfl)LALdL,k ,] — 1, ey M . (21)

In other words, we have essentially 20 times 2L multiplications (for e.g.)\LBgv’k_L and Azdp, k)
plus 2M times the product of a L x L Toeplitz matrix with a vector of length L. Such a product
can be efficiently computed in basically two different ways. One way is to use fast convolution
algorithms [11], which are interesting for moderate values of L. Another way is to use the
overlap-save method. We can embed the L x L Toeplitz matrix X, 1 into a 2L x 2L circulant
matrix, viz.

—H * XH, I

Xph = [i Ll] —C (xQL’k) (22)
where C(c!?) is a right shift circulant matrix with ¢¥ as first row. Then we get for the matrix-
vector product

0
Xipk-Guphedoy = (I Opxs] C (ng,kf(jfl)L) l ALde;k] , (23)

2.4 Fast Computation of the Filtering Errors using the FFT 5t

The product of a circulant matrix C(cf) with a vector v where ¢ and v are of length m can
be computed efficiently as follows. Let F,, be the Discrete Fourier Transform matrix for a
DFT of length m. Then using the property that a circulant matrix can be diagonalized via a
similarity transformation with a DFT matrix, we get

1 1
ClcMv = —C(c"FIF,vw = —F" diag" (F, ¢) Fv (24)
m m

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements. So
the computation of the vector in (23) requires L multiplications to form the product iALdL’k,
the padding of the resulting vector with L zeros, the DFT of the resulting vector, the DFT of
Tork—(j-1)r, the product of the two DFTs, and the (scaled) IDFT of this product. When the
FFT is used to perform the DFTs, this leads to a computationally more efficient procedure
than the straightforward matrix-vector product which would require L?+4L multiplications.
Note that at time £, only the FFT of 97, needs to be computed; the FFTs of xor i1, =
1,..., M—1 have been computed at previous time instants. The above procedure reduces the
2N (141) computations per sample for Py, and ry via (16),(17) to

(25)

2FFT(2L) 4] FFT(2L)
L? L

IN |
[i

computations per sample (FFT(L) signifies the computational complexity associated with a
FFT of length L) or basically O (N %) operations.

2.4 Fast Computation of the Filtering Errors using the FFT

In a block processing approach, also the filtering errors can be computed more efficiently than
by computing an inner product every sample period. Indeed, consider the following vector of
(block) a priori filtering errors

el (k—L+1]|k—L) "
€Nk = : = dpy+ XN,L,kWﬁ,k,L = dpyp+), XL,L,k—(j—l)ngv,Hk,L
el (klk—L) g=t
(26)
with Wy = [E}Vk X m%k} We can use the same circular matrix embedding and DFT
techniques as in the previous subsection. Remark that the input data have been transformed
before (in the previous subsection) and that we only need to apply the inverse DET once after
having summed up the M products in the frequency domain. This leads to a computational
complexity of
(27)

L L

FFT(2L) 2] FFT(2L)
[, 2] e

per sample instead of V.

2.5 The SU RLS Algorithm

Instead of computing the filter Wy, from scratch every L samples by solving the normal
equations (14), we may want to exploit information gathered at the previous solution instant,

6 2 THE SUBSAMPLED-UPDATING RLS ALGORITHM

k—L. If we plug in the recursions (19) for Py, and Ry into the solution (3), then we get
similarly to the derivation of the RLS algorithm the following recursion

Cni = _XN,L,k)_LR]_v’lk_L (28)
7 k) = AT = Xl (29)
Ry = MNTRY,, - Qﬁ,klN(k)QN,k (30)
nrr = dop+XnoaWii o (31)
1}1(/‘7)€N,L,k = ik (32)
Wxe = Wyk 1+ enriCra (33)

where ey 1 1 is a vector of a posteriori errors:

€l (k—L+1|k)

€N,Lk — : (34)
en (klk)
In this case, the corresponding unnormalized Kalman gain would be
Cnir = —AMXnopRyy = ZN(k)QN,k (35)
IN(I{)) = AL (IL + XN’L’kgch) . (36)

Using the recursions for Wy i, Py, one can again verify that the minimum value for the LS
criterion satisfies the recursion

é-N(k) = 60(/{}) —+ WN,kPN,k =)\Lé'N(k—L) + 61])V§4,k1N(k)6IJJV,L,k . (37)

While the Subsampled-Updating RLS algorithm thus obtained constitutes a valid algorithm to
provide the filter solution Wy ; every L samples, it does not represent much computational gain
w.r.t. the original RLS algorithm (L = 1). We could exploit the FFT technique introduced
above to reduce the computational complexity in equations (28),(29) and (31) by a factor

(@ (logL2L)' On the other hand, we have to invert lj_vl(k), a L x L matrix. Below, we shall

introduce a fast version of the SU RLS algorithm.

2.6 Relation Between the Filtering Errors in Block Mode and in
Sequential Mode

Remark that in the SU RLS algorithm, we find filtering errors that are not just predicted one
step ahead, but several steps. This results from the fact that the filter Wy ; gets updated only
once every L samples. The learning curve for the SU RLS algorithm would be the variance
of the filtering errors obtained from ey, and hence would be piecewise constant, coinciding
with the learning curve for the RLS algorithm at times that are integer multiples of L, and
remaining constant for L—1 samples after those instants. However, it turns out to be fairly
simple to recover the a priori filtering errors of the conventional RLS algorithm from those of
the SU RLS algorithm.

2.6 Relation Between the Filtering Errors in Block Mode and in Sequential Mode 7

By substituting

i—1
Wizt = Wi + Z en(jli—1) w(j) Cny (38)
j=k—L+1
into
GN(Z|Z—1) = d(l)—i—WN’Z,lXN(Z) (39)
we get
i—1 _
en(ilk=L) = en(ili-1) = ¥ en(jli=1) (i) OnyXn(i) , i>k-L. (40)
j=k—L+1

Hence, we can relate the a priori filtering errors in block mode and in sequential mode as

follows
I -0 eN(k—L+1|k—L) eN(k—L+1|k—L)

= : . (41)
e (k|k—1)

The lower triangular factor can be identified as follows. By comparing the recursion (37) for

the minimal cost with L iterations of recursion (13) for the same quantity, we can identify

$ o1 M (k|k—L)

-1
el y By = D Ney(k—i)yy(k—i)el' (k—i) . (42)
=0

Let us introduce the following notation

& (k—L+1) e (k—L+1|k—L)
Eng = : = : (43)
en' (k) en(klk—1)
Dypi = diag{\N yx(k—L+1),....,yn(k)} (44)
then we can rewrite (42) as
G?Vi,klN(k)GIJ)V,L,k = égjv,fliDN,L,ké)v,k- (45)

Now consider the Upper Diagonal Lower (UDL) triangular factorization of the L x L matrix
7y (k), then we get

Yy(k) = Unpk DNk Uﬁ,L,k (46)

where Uy 1 x is upper triangular with unit diagonal. By uniqueness of the triangular factor-
ization, U¥ ; ;. is the lower triangular factor in (41) while Dy, ;4 is indeed the diagonal matrix
introduced in (44). So we can rewrite (41) as

UJI\LII,L,k‘S?V,L,k = ééjv,k- (47)

This relation allows us to compute the a priori filtering errors €%, of the RLS algorithm
from the a priori filtering errors €y ; , in the SU RLS algorithm. The necessary triangular
factorization (46) can easily be made part of the inversion of 7' (k) in the SU RLS algorithm.

8 2 THE SUBSAMPLED-UPDATING RLS ALGORITHM

2.7 Relation Between the Kalman Gain in Block Mode and in Se-
quential Mode
There exists a relation between the Kalman gain in the SU RLS algorithm and L consecutive

Kalman gains of the RLS algorithm, similar to the relation we found in the previous subsection
for the filtering errors. By repeated application of the relation (7), we get

i—1
j=k—L+1

which, using (5), leads to

i—1
Crg = A HIXT@RY -+ 3 (WTXOCY, () Oy, > k=L (49)

, j=k—L+1
Putting the relations (49) together for i = k—L+1,...,k gives

1 -+ 0] [Onpersn
ACyp = | & . : (50)
* ... 1 éN’k
which can also be rewritten as
1 -0 N 6N,k—L+1
RS Cnp = AL : : (51)
% .-. 1 éN,k

The lower triangular factor can be identified as follows. By using (7) repeatedly and (30), we
get

CniInB)Chyp = _Rﬁ}k + AfLszv,lka
-1
= -2 A (RJ_V,lk—i -)‘_IR]_V,lk—i—l) (52)
i=0
-1 N
= Y ATCN i (k—i)Cnpi
i—0
or hence B . B
. R CNk—1+1 CNk—1+41
CrnpyyB)Chyi = : A7'Dy o pAL! : : (53)
Cni Cni

Using the UDL factorization of v, (k) in (46) and by uniqueness of the triangular factorization,
putting (51) and(53) together leads to

CN’N,kaJrl
U]ffl,L,kQN,k = A' : . (54)
éN,k
Let uy rx be the last column of Uy 1. Then (54) leads in particular to
Ug,1 QN,k =)\7L+IC~’N,I~@—L+1 (55)

u%,L,kQN,k = Cwi - (56)

3 Displacement Structure of the SU RLS Kalman Gain
Quantities

Consider the displacement structure of a matrix R:
5
ViR = R-MNZRZ" = Y wuof (57)
i=1

where § is the rank of R — A Z RZ" and Z is the lower shift matrix (ones on the first
subdiagonal and zeros elsewhere). By solving this Lyapunov equation, it is straightforward to
obtain the following representation for R:

5 ~

R = V! (;W UZH> = Zi N Zhuof (Z"Y =" Llu) AL (vy) (58)

i=1 j=0 i=1

where A = diag {1, A, A2,...} and £(u) is a lower triangular Toeplitz matrix with u as first
column. We shall exploit this representation for QN,k and lgl(lﬂ) to reduce the computational
complexity of the SU RLS algorithm. Considering the definition of these quantities, we see
that we first have to consider RJ’V’I,C.

3.1 Displacement Structure of the Inverse Sample Covariance Ma-
trix

In [12], the following displacement structure was derived

R, 0 _ B ~ H ~
V, l N 0] = AN on (k) Ang — BY 8y () By + A [0 Cri] " (k) [0 Cyi| (59)

where Ay and By, are forward and backward prediction filters and ay (k) and (k) are
forward and backward prediction error variances (see [1]).

3.2 Displacement Structure of the Kalman Gain

Equation (28), can be rewritten as

[6 0] - X AL lRJ_V}k—L 0] (60)
YNk - N+1,L.k 0 0"

Applying the V, operator to (60) yields:

~ _ Ry 0 Ry} 0
Vi [QN,k 0] = -\ (XN-i—l,L,kv/\ l Nk-L] +AAXN+1,L,k[Nok=L] Z]f\71+1>

0 0 0 0
(61)
with AXpyiq 1, the L x (N+1) matrix given by
XH(k—L 0
AXNi1,oe = Xng1,phdne1 — ZiXNy10k = l N(O)] . (62)
—TL-1,k—N-1

10 3 DISPLACEMENT STRUCTURE OF THE SU RLS KALMAN GAIN QUANTITIES

Let e} 1, and 77 ; , be respectively the vectors of forward and backward a priori prediction
errors defined by

p _ H
ENLE — XNi1,Lk AN,ka (63)

» _ H
NLEk — XN+1,Lk BN,k—L' (64)

By substituting (59), (62) into (61), and using the notation defined in (63), (64) we get

Va [QM o] = —eh N P (k—L)An g + 18 p oA B8 (k—L) Byt
— (v,pk = upg) AP N (k—L) [0 CN’N,ka} (65)
where

~ H

NN,Lk = XN+41,Lk [U CN,ka} : (66)
Thus, using (58) we can rewrite the Kalman gain in the form

[Cvi 0] = =M Pag'(k=L)L (Rrs) Ap L7 (Ax 1)
AN By (h=L)L (7 k) Ar L7 (Byg-r) (67)

_)_L+1'7N(k_L)£ (77N,L,k - UL,l) /N\L »CH ([0 éN,k—L]) .

By using (56), the L x 1 vector 7y 1, introduced above can also be expressed in terms of the
Kalman gain at time k—1 as

B - H B ~H
vek = AN XNk [0 QN,k—l] up, = A lXN,L,kAQN,k,lUL,l (68)

which leads to
"IN.Lk =)\Lil (Ail — 1]7\]1(147—1)) ur, - (69)

3.3 Displacement Structure of the Likelihood Variable

Consider now the displacement structure of the likelihood variable ' (k)

Va 1]7\[1 (k) =V, Azl + L Vi (XN,L,kRX]’lkaX]{-{L’k) . (70)
Straightforwardly, one has
Va AL =2] (71)

Now, the second term of the right hand side of (70) is

Va (XncaByy 1 X5 15) (72)
= (V,\ (XN,L,kav,lk,L)) Xﬁ,L,k + AZ XN okBRyy 1 (AXNi1,n0)"
- - H
= —\F (VA QN,ka) Xﬁ,L,k — A XNk [CN,ka U] Uﬁl

= =\ (V/\ [QN,ka 0]) X]{7[+1,L,k — Mn(k—1L) (I - ULJ“?J) nN,L,kal,l ‘

11

By using the displacement structure of the Kalman gain given in (65), the displacement
structure of the likelihood variable becomes

Vady (k) = ehppd Pay (k=L)eR's p — i d "By (k=L)rkL s
+ (v =) Ay (B=L) (g, — ur)”
+upa A (14 g (k= L)ugl s e — v (k=L)) ufl (73)
(From (69) and the UDL decomposition of v, (k) in (44), (46), one can see that the first
element of ny 1 5 is
up yivee = AT ()_Hl -)_LH%QI(I‘?—L))
= 1—y'(k=L). (74)

Finally, replacing (74) in (73) gives the expression of the displacement structure of the likeli-
hood variable in terms of three generators as

iy (k) = e par oy (k—=L)eR'T — s T B (k—L)rRL 4
+ (e — up) X yn (B=L) (v — unn)™ (75)

This last equation exhibits the Hermitian structure inherited from y3'(k).
Using (58) the likelihood variable can be written as

1];1(k) = Atayl(k=L)L (egjv,L,k) ALt (egj\f,L,k)
— NIB =D)L (PRopk) An L (rhs) (76)
+)\7L+1'7N(k_L)»C (MN,Le — Ur,1) Ay (Mn,L e — ura) -

Because of the shift invariance of the adaptive filtering problem, the Kalman gain and the
likelihood variable have a low displacement rank of 3; that is, these matrices have a structure
close to the Toeplitz one and can be replaced by their representation as in (58). The appearence
of Toeplitz matrices in this representation allows for an efficient computation of the product
of the Kalman gain matrix with an a posteriori error vector by using the FFT. Also, the
inversion of the likelihood variable matrix can be done efficiently by using the generalized
Schur algorithm. Furthermore, instead of updating QN,k and lj_vl(k) by using the SU RLS

equations (28), (29), it suffices to update the filters Ay, By and [O (j*N,k], and to compute
the filter outputs el ; ,, 7%z and 7,z from their definitions (63), (64) and (66), using the
data available at the time instant k.

This updating of the prediction filters and Kalman gain is the subject of the next section.

4 The FSU RLS Algorithm

4.1 Update of the Joint-Process Filter

We can rewrite equation (33) in the form

Wik 0] = [Wys-r 0]+ ensp[Crs 0] - (77)

12 4 THE FSU RLS ALGORITHM

The reason why we add the zeros is that for the FSU RLS algorithm, it will turn out to
be more convenient to assume that M = % is an integer. The a posteriori filtering error
vector ey is obtained by resolving the system of equations (32). This is discussed further
in section 4.4.
Now, if we replace [Q Nk 0} in (77) by its expression given in (67), the joint-process equation
takes the form

3
W 0= [Wypr O]+ €N x> Tl AL Gl ni (78)
=1

where d;, T/, and G} y ., are respectively the constants, the L x L lower and L x (N + 1)
upper triangular Toeplitz matrices described in section 3.2.
The last term in equation (78) can be computed in the following manner. For i = 1,2,3 do:

e mutiply d; by ey, to obtain pj ; = e} ; .d;.
e use the circular embedding and FFT technique to compute the product p%’z- = pi’i LZL
e multiply p7 ; with the diagonal matrix Ay. This gives a 1 x L vector, say PrLi= p%’iINXL.

e use again the circular embedding and FF'T technique to compute the product p4L7Z~ =

P} ;Gi ni1 in 25 portions of length L (see sections 2.3 and 2.4).

3
Finally, add the three vectors p} ; and obtain € | > d; T/ | AL G} v, by applying the inverse
i=1

3
FFT to the sum Zp‘lL’Z-.

i=1

4.2 Update of the RLS Kalman Gain C’}Wc

Equation (56) can be rewritten as

[éN,k 0} = Uﬁ,L,k [QNk 0} : (79)

The computation of this product can be carried out in exactly the same manner as the
computation of 6%7 Lk [Q Nk O] in the previous subsection. Note however, that the Fourier
transform of the generators needs to be computed only once. This leads to the update of
the RLS Kalman gain [C~’Nk 0] at time k by representing the SU RLS Kalman gain [QNk 0}

in terms of its generators which comprise the RLS Kalman gain [C~’N’k, I 0} at the previous
iteration.

As we saw, uy,r is the last column of Uy 1, which is the L x L upper triangular matrix
appearing in the UDL decomposition of v (k) (see (46)). It is possible to obtain uy r x from
75 (k). This will be elaborated upon in section 4.4.

4.3 Update of the Prediction Filters

In a way that parallels the update of the joint-process filter in the SU RLS algorithm, it is
possible to derive the following updates for the prediction filters and the associated prediction

4.3 Update of the Prediction Filters 13

error variances

80
81
82
83

BN,k = BN,k—L + 7"]{][71;719 [QNJC 0]
By(k) = MNpy(k—L)+ TJIVI,L,k TN Lk
Ang = Anpr+enix [0 QN,k—l]

an(k) = May(k—L)+ 6%,L,k N Lk

(80)
(81)
(82)
(83)

where ey 1, and 7y 1, are respectively the a posteriori forward and backward prediction error
vectors.

The update equation (80) of the backward prediction filter By has the same form as equation
(77) of the joint-process filter and is computed similarly. This is not the case for the forward
part in equation (82) since QN,k—l at time k—1 is needed.

To avoid the use of QN,k—l , one must update Ay ;4 first and then compute Ay j from Ay jy4.
This leads to

ANjp+1 = AN,k7L+1+€§,L,k+1 [0 QNk] (84)
Ang = Angyr —en(k+1) [0 CN’N,k] (85)

)

where ey (k+1) is the a posteriori forward prediction error at time k+1, and similarly for the
forward prediction error variance

an(k+1) = MNay(k—L+1) +eN [pi1 O g (86)
ay(k) = A" (an(k+1) — en(k+1) & (k+1)) . (87)

In order to compute (84) efficiently, one can rewrite it as

Anjy1 = AnNj—r41 + 6%,L,k+1 [QNk 0] ZJI\LrI+1 . (88)

The a posteriori forward prediction error ey(k+1) can easily be obtained from ek (k+1) by
using the well-known relation

en(k+1) = yn(k)eh (k+1) . (89)

7n (k) is available after the computation of the likelihood variable 7'(k) as the inverse of the
last element of the diagonal matrix that appears in its LDU decomp031t10n (see (45)).

Now the a priori forward prediction error ef (k+1) can be obtained from the a priori forward
prediction error vector ey ; .., by using the same relation as the one between the filtering
error in block and sequential mode (47), viz.

H p _ P
UN,L,k €N,Lkt1 — ENLk+1 (90)

QIJ’\L 1 being the L x 1 vector of sequential a priori forward prediction errors. Equating the
last element on both sides of this relation yields

H
ey’ (k+1) = u%,L,ke;?V,L,kJrl . (91)

Equations (84), (86) involve €& ; ;. On the other hand, the generators of the Kalman gain
and the likelihood variable require eﬁ’v’ Lk In order to avoid computing both by inner product,

14 4 THE FSU RLS ALGORITHM

we shall use a relation between the vectors e ; , and e} ; ;.. Therefore, consider the vector
UN,L+1,k defined by

UN,L+1,k+1 = XN+1,L+1,k+1 A%,k_LH . (92)
It is easy to see that
Xﬁﬂ(k_LﬂLl)Aﬁ,kaﬂ] _ [en(k—L+1)]

93
XNt1,Lkr1AN g1 (93)

UN,L+1,k+1 = eP
N,L,k+1

where e} (k—L+1) is computed by explicitly calculating the inner product and el ; , ., is
computed like €}y ; ; in section 2.4. Equation (84) taken at time k—L can be rewritten as

AN,k—L-i—l = AN’k_L—FeN(k—L—Fl) [0 éN,k—L] . (94)

When we replace Ay 11 in equation (92) by the expression above, then vy 111 41 becomes

p
_ EN,L,k TIN,L .k Hip_
Hence by equating (93) and (95), €}y ; , can be obtained from e} ; ;. as

el(k—L+1)
M= (o — v,k en(k—L+1) . (96)
[(6N7L7k+1)1;L—1 J

Note that ny 1 x is computed by calculating the inner product in (66).

4.4 Triangular Factorization of the Likelihood Variable

The previous sections showed that uy x and yy(k) are needed in the process of updating
the prediction filters. These quantities can be obtained from the UDL factorization of v, (k).
They can also be obtained from the LDU factorization of 1]*\]1 (k) whose three generators e}y ; ,
71 and Ny 1 p—ur,1 (and some scalars) are available. We also need v, (k) or 7' (k) to obtain
the a posteriori error vectors from the a priori ones.

Consider the LDU decomposition of y! (k)

ljivl (k) = LN,L,k GN,L,k L%,L,k . (97)

Inverting both sides in this equation gives

ZN(I‘C) = L;Vi,k G;V,IL,k L]:f,lL,k . (98)
By comparing (98) with (46), we get by uniqueness of triangular factorizations
Uniw=LyLr: Dypw=Gyr'ry- (99)
Hence, using (44), we obtain
(k) = (Grrr) (100)

which is the last element of Gy 1, s, and

—H
unrk=Unzrurr = Ly urr - (101)

4.5 The Complete Algorithm 15

So we can compute uy,r, ; by resolving the triangular system
L%,L,k“N,L,k =ur,r (102)

which requires 0.5 L? + O(L) operations.
In order to obtain the a posteriori prediction and filtering errors, one needs to solve the
three systems of equations

11_\71(]‘9) EN,Lk = GIZJV,L,k
T (k) rvee = TRk (103)
Yy (k) enprr1 = enpra

where the relations for the prediction errors can be shown in a similar fashion as we have
shown in section 2.5 for the filtering errors. Since the displacement rank of the likelihood
variable is 3, the computation of the LDU factors of y.'(k) takes 2L* + O(L) operations
using the unnormalized generalized Schur algorithm [10]. This algorithm only requires the
generators of 7! (k), which are available. The triangular decomposition of 7 (k) allows the
systems of equations in (103) to be computed by consecutively solving two sets of triangular
equations for each of the three systems, viz.

p DD _ [» »
L,k [EN,k TNk QN,k+1] = [EN,L,k T'N,L,k eN,L,k-i—l]

H _ p D p
(GreaLips) lenin ek enpon] =[x Rox g (104)

These backsubstitutions take 3L* + O(L) operations. It is possible to solve these systems
of equations in parallel with the factorization of Lfvl(k), avoiding backsubstitutions and the
storage of the triangular factor Ly 1 ;. The computational cost for doing so remains roughly
the same.

4.5 The Complete Algorithm

In Table I, we present a summary of the FSU RLS algorithm by collecting together the
recursions derived previously. We remind the reader that M = % is assumed to be an
integer. We may remark however that the reason why we use vectors of length N+1 instead
of length N is for notational convenience rather than out of real necessity. At the start of the
update from time k—L to time £, we have the following quantities available:
Wy k-1, ANg—rs ANjk—r+1, BNnj—rL, [0 CN,ka], an(k—L), any(k—L+1), fn(k—L), yn(k—L).
For the initialization of the FSU RLS algorithm, we can consider the soft constraint ini-
tialization technique introduced in [1]. The addition of the soft constraint to the LS cost
function (2) can be interpreted as resulting from an unconstrained LS problem in which the
input signal at negative times contains one non-zero sample: z(—N) = ,/z (see [1]). In order
to simplify the initialization occurring at time k£ = 0, but which requires also some quantities
from k = 1, we shall assume (1) = 0. So the (non-zero) input signal actually starts at time
k = 2. With this input signal, the following quantities can be straightforwardly computed

16 4 THE FSU RLS ALGORITHM

from their definition:

Wino =Wy
Ano=An1=[10---0]
BN’UZ[O---Ol],CN’OZ[U---U] (105)

an(0) = ANy, ay(1) = Aay(0)
Bn(0)=p, yw(0)=1.
With this initialization at £ = 0, the FSU RLS algorithm in Table I provides updates at

times k that are integer multiples of L. Note that the sequential filtering errors of the RLS
algorithm are obtained in the process (see (104)).

4.6 Computational Complexity

The algorithm can be partitioned in four major parts:
The first part comprises equations I-(1-5) (equations (1)-(5) of table I), which involve the
inner products of filters with the data matrix Xy, 1, and give the a priori errors and 9y, .
The FFT’s of (portions of length L extended with L zeros of) [Wx 1 0], Ank—r, BNi—1L
and [O CN’N’k,L] are computed and only zor, , has to be Fourier transformed at time k for the
data matrix (for the first L x L block X, 1, of Xn.i1,14, the other L x L blocks having been
treated already at times k—L, k—2L,...).
The second part (equations I-(6-9)) concerns the triangularization of the likelihood variable
using the generalized Schur algorithm. This allows the computation of the sequential a priori
errors, the a posteriori errors, and the vector uy z 5. The total amount of operations is 5.5L2.
The third part (equations I-(11-20)) involves the update of the generators.
Finally, the joint-process filter gets updated in the last part I-(21).
The complexity of the FSU RLS is 0(8%%(%) +34% +5.5L) operations per sample. This
can be very interesting for long filters. For example when (N, L) = (4095, 256); (8191, 256)
and the FFT is done via the split radix (FFT(2m) = mlogs(2m) real multiplications for real
signals) the multiplicative complexity is respectively 0.8 N and 0.6 N per sample, compared to
7N for the FTF algorithm, the currently fastest RLS algorithm. The number of additions is
somewhat higher. The cost we pay is a processing delay which is of the order of L samples.
We have simulated the algorithm and have verified that it works. Preliminary experience
appears to indicate that the numerical behavior of the algorithm may require further atten-
tion. One way to overcome possible numerical problems by eliminating long-term round-off
error propagation would be to compute at regular time intervals, in parallel with the FSU
RLS algorithm, the algorithmic quantities of the FSU RLS algorithm using the Block RLS
algorithm described in the beginning of this report, and to refresh those quantities in the FSU
RLS algorithm with their values obtained from the Block RLS algorithm. A more elaborate
investigation of the numerical issues is the subject of ongoing research.

4.6 Computational Complexity 17
Table I: FSU RLS Algorithm
Computation Cost per L samples
1 g = Ao+ Xnprok (Was—r 07 2+ MEVFRFT(2L) + 2(N + 1)
2 e = Xnsvok B (1+ XE)FFT(2L) + 2(N + 1)
3 INLk = XN41Lk [0 6N,k,L}H (1+ M) FFT(2L) + 2(N +1)
4 en(k—L+1) _ XNk AN k1 (1 + Y FFT(2L) 4+ 3N
eNL kt1 X (k+1) A%,k—L+1
e (k—L+1)
5 | eNpr= — N1k en(k—L+1) L
(e%’L’]ﬁ_l)l:Lfl
6 T) = Vit {ek h Par! (- D)ek],
—rﬁ,’L’k/*Lﬂﬁl(k—L)rﬁ,ﬁ’k
+ (v, — upa) N EP N (k—L) (n,L.k — “LJ)H}
7T | LNk GNoi Ly = 1&1 (k) Generalized Schur algorithm : 2L*
8 LHun g = up g Backsubstitution : 0.5L2
9 | v k) fenoh TN,k eN.Las1] = [er’L’k e er’L’k+J 312
10 [Crvi 0] = Vit {=ek s Fax! (h=D)Ans 1
+13 A By (k—L)Byi-r
—(nn,pk —up)N EH N (k—L) [0 5N,k—L“}
11 Byi = By 1 +78 14 [Cra 0] (3 + ME)FPT(2L) + 6(N +1) + 10L
12 Bn(k) = MBn(k=L) + 7 1 17N 14 L+1
13 [GN,k 0] =l [QN,,C 0] (3+ XY FFT(2L) + 6(N + 1) + 10L
14 W (k) = (GNnrr)py
15 Anprr = Anporsr +el [QN,,C 0] Z8 | 3+ NEYFFT(2L) + 6(N + 1) + 10L
16 X (k+1) = XM L junLk L
17 en(k+1) = e (k+1)yn (k) 1
18 Ang = Anpsr —en(k+1) [0 éN,k] N
19 an(k+1) = Man(k=L+1) + e} 1 1N 1 pin L+1
20 an(k) = A~ (aN(k—H) - eN(k+1)e§’VH(k+1)) 2
21 Wik 0] = [Wrper 0]+, [Qm 0} (6 +) FFT(2L) + 6(N + 1) + 10L
Total cost per sample (20 + 88+ FF:I;(QL) +34% +55L

References

[

2]

3]

J.M. Cioffi and T. Kailath. “Fast, recursive least squares transversal filters for adaptive
filtering”. IEEE Trans. on ASSP, ASSP-32(2):304-337, April 1984.

D.T.M. Slock and T. Kailath. “Numerically Stable Fast Transversal Filters for Recursive
Least-Squares Adaptive Filtering”. IEEE Trans. Signal Proc., ASSP-39(1):92-114, Jan.
1991.

D.T.M. Slock and T. Kailath. “A Modular Prewindowing Framework for Covariance FTF
RLS Algorithms”. Signal Processing, 28(1):47-61, July 1992.

[4] D.T.M. Slock. “Reconciling Fast RLS Lattice and QR Algorithms”. In Proc. ICASSP

[5]

(6]
7]

8]

[10]

[11]

[12]

90 Conf., pages 1591-1594, Albuquerque, NM, April 3-6 1990.

J.M. Cioffi and T. Kailath. “Windowed Fast Transversal Filters Adaptive Algorithms
with Normalization”. IEEE Trans. on ASSP, ASSP-33(3):607-625, June 1985.

T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, 1980.

J.M. Cioffi. “The Block-Processing FTF Adaptive Algorithm”. IEEE Trans. on ASSP,
ASSP-34(1):77-90, Feb. 1986.

X.-H. Yu and Z.-Y. He. “Efficient Block Implementation of Exact Sequential Least-
Squares Problems”. IEEFE Trans. Acoust., Speech and Signal Proc., ASSP-36:392-399,
March 1988.

T. Kailath, S.Y. Kung, and M. Morf. “Displacement ranks of matrices and linear equa-
tions”. J. Math. Anal. Appl., 68(2):295-407, 1979. (See also Bull. Amer. Math. Soc., vol.
1, pp. 769-773, 1979.).

J. Chun. Fast Array Algorithms for Structured Matrices. PhD thesis, Stanford University,
Stanford, CA, June 1989.

M. Vetterli. “Fast Algorithms for Signal Processing”. In M. Kunt, editor, Techniques
modernes de traitement numérique des signauz. Presses Polytechniques et Universitaires
Romandes, Lausanne, Switzerland, 1991. ISBN 2-88074-207-2.

D.T.M. Slock. “Backward Consistency Concept and Round-Off Error Propagation Dy-
namics in Recursive Least-Squares Algorithms”. Optical Engineering, 31(6):1153-1169,
June 1992.

18

