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Résumé

IP-Multicast[Dee89] est un mécanisme qui permet a une source de distribuer des
données a un ensemble presque illimité de clients sur Internet. Ce mécanisme semble
particulierement bien adapté pour des applications de distribution commerciale de
contenu a grande échelle comme, par exemple, des chaines & péage, la diffusion
de valeurs boursieres ou la mise a jour de logiciels... Force est de constater que
ces applications n’ont pas vu le jour comme on aurait pourtant pu l'imaginer. Un
frein majeur au développement de ces applications est le manque de sécurité des
communications en multicast. Il est clair qu'une distribution de contenu commercial
nécessite de fournir des mécanismes qui restreignent ’acces au contenu distribué
en multicast aux seuls clients légitimes de D’application. D’autre part, dans de
nombreux scénarios le client doit pouvoir s’assurer de 'origine des données regues
et le producteur de contenu veut garantir cette origine afin de se protéger contre
les risques d’une usurpation d’identité. Dans le cadre d’un réseau ouvert comme
Internet, on fait appel a des techniques cryptographiques éprouvées pour résoudre
ces problemes entre deux entités communicantes. Mais pour des raisons de facteur
d’échelle et parfois méme de sécurité, ces techniques ne peuvent pas s’étendre au
multicast. Cette these se focalise donc sur la fourniture de services de confidentialité
et d’authentification spécifiquement pour les applications multicast a grande échelle.

Cette dissertation se divise donc en deux volets orthogonaux mais complémen-
taires : l'authentification et la confidentialité. Dans chacun de ces volets nous pro-
posons d’abord une analyse détaillée de ces problemes et nous mettons en valeur
certains aspects nouveaux ou négligés qui sont spécifiques au multicast. Ensuite
nous présentons les principales solutions existantes, en analysant leurs avantages et
leurs limites. Nous terminons par nos propres solutions originales, en mettant en
valeur les avantages qu’elles offrent par rapport aux solutions précédentes.






Abstract

[P-Multicast[Dee89] is a mechanism that allows a source to transmit packets to an
almost unlimited number of recipients over the Internet. This mechanism would
seem to be particularly well suited for large scale commercial content distribution,
such as, for example, pay-TV, stock quote distribution, or software updates. How-
ever, a large scale deployment of any of these applications remains to be seen. One
of the major reasons that has hindered the deployment of such applications is the
lack of security protocols for multicast communications. Clearly, in many cases,
the distribution of content with a commercial value requires the use of mechanisms
that restricts access to the content solely to the legitimate recipients. Moreover, in
many scenarios the recipient needs to ascertain the origin of the multicast content
he receives and the content provider will also want to provide such a guaranty to
protect himself from the potentially devastating effect of being impersonated by a
third party. In an open network such as the Internet, well studied and reliable cryp-
tographic techniques are used to provide this type of security in two party protocols.
However, for scalability and sometimes even for security reasons, these techniques
cannot easily be extended to the multicast setting.

The goal of this thesis is thus to study and provide basic security services de-
signed specifically for large scale multicast applications. This dissertation is divided
in two orthogonal but complementary themes: authentication and confidentiality.
For each theme, we start with a detailed analysis of the problem, while highlighting
new or neglected aspects of security that are specific to multicast. Then, we review
existing solutions, analyzing their advantages and their limitations. Finally, we pro-
vide our own original solutions, highlighting the advantages they offer over previous
proposals.
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A Dissertation Overview in
French.

0.1 Introduction

Ce chapitre présente un résumé étendu de cette these en Frangais. Un certain nombre
de points sont donc naturellement ici simplifiés ou omis par soucis de concision. Pour
plus de détails, nous ferons référence aux chapitres appropriés de cette these.

0.1.1 IP-Multicast.

[P-Multicast! est un mécanisme qui permet & une source d’envoyer des données a
un groupe de récepteurs sur le réseau Internet. La source envoie une seule copie des
données et c’est le réseau qui se charge de les dupliquer quand cela est nécessaire. Au
lieu d’identifier les membres du groupe par la liste de leurs adresses IP individuelles,
on utilise une unique adresse IP pour identifier I’ensemble du groupe de fagon im-
plicite. Les récepteurs dans un réseau (domaine) local qui désirent faire partie d’un
groupe doivent se manifester auprés de leur routeur multicast local par le protocole
IGMP. Un mécanisme de routage inter-domaine spécifique au multicast est utilisé
pour transmettre les paquets destinés & un certain groupe, a ’ensemble des réseaux
locaux multicast qui le composent. Ce mécanisme de routage inter-domaine fait
aussi intervenir des routeurs multicast qui ne sont pas nécessairement eux-meémes
des routeurs IGMP ayant des récepteurs du groupe, mais qui sont simplement des
entités faisant office d’intermédiaires dans le routage multicast.

Beaucoup d’applications Multicast utilisent UDP comme couche de transport,
avec parfois ’addition d’un protocole supplémentaire comme, par exemple, RTP[SCFJ96].
Ceci implique que ’on a pratiquement aucune garantie de fiabilité sur le transport
des données. Certaines applications multimédias sont d’ailleurs construites pour
tolérer des pertes ou des délais comme ceux que I’'on peut observer dans un réseau
non fiable. Ces applications adaptent la qualité de leur reproduction audio/vidéo
de facon intelligente aux conditions réseaux. Il existe un certain nombre de propo-
sitions pour le multicast fiable (voir [Obr98]), cependant elles souffrent toutes d’un
certain nombre de difficultés de passage a I’échelle. Dans cette these nous souhaitons
nous intéresser a la sécurité multicast pour des applications de trés grande échelle,
et nous supposerons que le mécanisme de transport est peu fiable afin de couvrir le

1 . . . . .
Dans le texte, nous garderons les mots anglais multicast et unicast au sigulier.
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La Sécurité des Communications en Multicast

plus grand nombre de scénarios.

L’ensemble des points précédents est décrit de facon détaillée au début du chapitre
1 de cette these. Cependant, nous pouvons résumer les caractéristiques principales
du multicast qui sont pertinentes pour la conception de protocoles de sécurité en 3
points :

e Le groupe n’est pas identifié explicitement par la liste des récepteurs mais de
facon implicite par une adresse de groupe : un protocole de sécurité doit lui
aussi pouvoir traiter le groupe de fagon globale.

e [l existe un arbre de routage qui transmet les données multicast entre la
source et les différents récepteurs. Cet arbre fait intervenir un certain nombre
d’éléments intermédiaires de routage : pourquoi ne pas les faire intervenir dans
la sécurité 7

e Le transport des données multicast n’est pas fiable : un protocole de sécurité
doit pouvoir tolérer les pertes.

0.1.2 La Sécurité en Multicast.

Le multicast semble étre un mécanisme particulierement intéressant pour des appli-
cations commerciales de grande échelle, comme par exemple:

e La diffusion de télévision a péage.
e La diffusion de contenu audio de haute qualité.
e La distribution de cotations boursieres ou d’informations temps réel en général.

e [a mise a jour automatique de logiciels, etc.

Force est de constater pourtant que ce genre d’application n’est pas déployé sur In-
ternet. Un des freins majeurs a ce déploiement se trouve sans doute dans le manque
de mécanismes de sécurité adaptés au multicast. En effet, pour pouvoir exploiter
ces applications de maniére commerciale, il est nécessaire de garantir au moins deux
besoins de sécurité fondamentaux : la confidentialité et I'authentification. Des mé-
canismes de confidentialité sont nécessaires pour restreindre la diffusion des données
aux seuls récepteurs légitimes de 'application (ceux qui, par exemple, en ont payé
l’acces.) L’authentification est nécessaire pour permettre aux récepteurs de s’assurer
de l'origine des données multicast qu’ils recoivent et pour empécher une source de
contenu d’usurper l'identité commerciale d’une autre.

Pour les communications unicast, il existe un certain nombre de protocoles qui
fournissent ces deux services de fagon souple et puissante. Comme nous le détaillons
au début de la these, ces protocoles unicast ne peuvent pas s’étendre au multicast
principalement pour des raisons de facteur d’échelle mais aussi pour des raisons de
sécurité.

18
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0.1.3 Présentation de la These.

L’objectif de cette these est d’analyser, de discuter et de proposer des solutions
aux deux besoins principaux auxquels les applications multicast de grande échelle
peuvent étre confrontées:

la confidentialité et Uauthentification

De facon naturelle, nous avons donc divisé cette these en deux parties complé-
mentaires qui traitent chacune d’un de ces besoins.

La premiere partie de cette thése que nous résumons dans les sections 0.2 et
0.3 traite de I'authentification des flux de donnés sur un grand groupe IP-Multicast
non fiable. Cette premiere partie se divise elle-méme en trois chapitres. Nous com-
mencons dans le chapitre 2 avec une analyse des besoins et des contraintes, en
mettant "accent sur la nécessité de tolérer les pertes de paquets. Suite & cela, dans
le chapitre 3, nous établissons un état de I’art détaillé des propositions actuelles en
matiere d’authentification multicast. Finalement, dans le chapitre 4 nous proposons
notre propre solution qui présente en particulier I’avantage d’avoir un cott en espace
par paquet plus faible que toute autre solution actuelle.

La deuxieme partie de cette these que nous résumons dans les sections 0.4
et 0.5 se focalise sur la confidentialité multicast. Comme nous ’avons fait pour
I’authentification, nous débutons avec une étude utile et détaillée du probleme et
nous définissons un certain nombre de besoins centraux pour la confidentialité des
applications multicast de grande échelle. La suite de cette deuxieme partie de these
est dédiée aux principaux schémas de confidentialité multicast. Le chapitre 6 pro-
pose un état de 'art critique du domaine, tandis que les chapitres 7 et 8 décrivent
nos solutions qui sont basées sur ’utilisation des éléments intermédiaires du réseau
sans engagement de confiance.

0.1.4 Contributions.

Les contributions de cette these se situent a deux niveaux. Nous proposons tout
d’abord une analyse des problemes et des besoins liés a ’authentification et a la
confidentialité multicast qui est plus approfondie que celle que nous pouvons trou-
ver dans d’autres travaux. En particulier, dans le chapitre 5, nous proposons un
nouveau besoin pour la confidentialité: l’endiguement (a. containement.) Deux-
iemement, nous fournissons nos propres solutions originales aux problemes décrits.
Notre algorithme d’authentification multicast génere un coiit en terme d’espace par
paquets qui est, dans la majorité des cas, plus bas que dans les autres solutions pro-
posées a ce jour. Les deux protocoles de confidentialité multicast que nous décrivons
répondent a un nombre plus important de besoins que les autres schémas proposés
actuellement. En particulier, ce sont les seuls protocoles de confidentialité multicast
qui offrent une propriété d’endiguement sans engagement de confiance envers les
éléments intermédiaires du réseau.
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0.2 Authentification Multicast

0.2.1 Besoins et Contraintes

Dans le chapitre 2 nous rappelons tout d’abord dans quel cadre exact se situe le
probleme que nous traitons : Nous ne cherchons pas a authentifier un document dans
sa totalité, une fois qu’il a été recu par le récepteur. Au contraire, nous considérons
les données envoyées par une source comme une suite potentiellement illimitée de
paquets qui doivent étre authentifiés au fur et a mesure de leur réception et cela
malgré la perte de certain d’entre eux. Nous rappelons aussi les deux principaux
types d’authentification : I'authentification de ’origine et la non répudiation.

Nous établissons un certain nombre de critéres pour étudier les applications
multicast:

Play-back ou Direct.

Il est important de différencier les schémas d’authentifications multicast en fonction
du type de données qu’ils traitent. En effet, pour des données préenregistrées des-
tinées au play-back, il est possible de calculer les informations d’authentifications a
I’avance et sans contrainte de temps. On peut ensuite les insérer dans les données et
les envoyer de facon normale. Pour des données temps réel, comme la retransmission
d’un événement sportif en direct, il faut pouvoir faire les calculs cryptographiques
nécessaires pour authentifier les données en temps réel et insérer 'information dans
le lux immédiatement. Naturellement, un schéma qui fonctionne pour le direct,
fonctionne de facto pour le play-back. Il est donc intéressant de fournir des solu-
tions efficaces pour le direct.

La robustesse.

La tolérance aux pertes est un souci majeur pour 'authentification des données en
multicast. Ceci tient au fait que la plupart des solutions pour I"authentification
créent une dépendance logique entre les paquets de données.

Cette dépendance permet de réduire le cout de 'authentification mais en con-
trepartie, la perte d’un paquet peut alors avoir un impact sur notre capacité a au-
thentifier d’autres paquets qui en dépendent. Dans cette these, nous suivons une ap-
proche récente dans le domaine de ’authentification multicast qui consiste a adapter
le mécanisme d’authentification a des schémas de perte typique de I'Internet plutot
que d’employer un schéma qui tolere des pertes arbitraires, ce qui est naturellement
plus cotiteux. Dans cette theése, nous employons un modele maintes fois suggéré
pour modéliser les pertes dans le réseau Internet : le modele de Gilbert, ou chaine
de Markov a deux états.

La modularité

Comme un flux de données peut étre particulierement long, il n’est pas toujours
possible ou souhaitable, en terme de souplesse, d’obliger le récepteur a étre présent
depuis le début du flux. Idéalement, on souhaite permettre a un récepteur de pouvoir
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authentifier les données a partir d’un point arbitraire dans le flux, ou tout du moins
sur la base d’un bloc de plusieurs paquets suffisamment petit. Cette propriété, nous
’appelons la modularité (a. joinability).

Le délai.

Dans un cas idéal, on souhaite bien stur pouvoir authentifier les paquets individu-
ellement des leur réception. Dans la pratique, 'authentification des paquets peut
dépendre de d’autres paquets qui ne sont pas encore recus, ce qui peut introduire
un délai supplémentaire d’authentification. Ce délai d’authentification (a. latency),
nous le quantifions souvent en terme de paquets. Notre but est naturellement de
limiter ce délai & une valeur raisonnable.

Le tampon (coté serveur).

Coté serveur, le pendant du délai d’authentification est la taille du tampon de pa-
quets. En effet, si certaines informations d’authentification concernent plusieurs
paquets, il est parfois nécessaire de les conserver temporairement sur le serveur pour
faire des calculs avant de les envoyer. Naturellement, plus le tampon est grand, moins
le schéma convient pour du direct, puisque par définition, on souhaite envoyer les
données immeédiatement pour du direct.

Cout

Le critere final qui permet de départager les schémas d’authentification entre eux
est leur colt a la fois en terme de ressources de calcul et en terme d’espace par
paquet. En effet un schéma qui nécessite des temps de calculs important par paquet
va nécessairement limiter le débit de paquets que le serveur peut produire ou que
le récepteur peut vérifier. Pour authentifier les paquets, il est nécessaire de leur
ajouter une certaine information d’authentification. Si celle-ci est cotiteuse en terme
d’espace, elle réduit d’autant la bande passante disponible.

La difficulté principale dans la construction d’un schéma d’authentification est
donc de trouver un compromis entre les différents criteres cités précédemment. Dans
cette theése, nous avons choisit de nous focaliser sur des mécanismes d’authentification
utilisables pour le direct puisqu’ils sont plus généraux.

0.2.2 Etude de I’état de I’art.

Dans le chapitre 3 de cette theése, nous passons en revue les différents systemes
d’authentification multicast proposés actuellement :

1. Les MMAC ou Code d’Authentification de Message Multicast de Canetti et
al. [CGIT99].

2. Les signatures rapides de Rohatgi [Roh99] et de Wong et Lam [WL99].

3. TESLA : ’authentification a engagement temporel de Perrig et al. [Riz97].
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4. Les techniques hybrides qui amortissent une signature sur plusieurs paquets
avec des techniques synthétiques (hachage et MAC):

(a) Les arbres de hachage de Wong et Lam [WL99].
(b) Chaines de Hachage de Golle et Modadugu [GMO01].
(¢) EMSS de Perrig et al. [PCTS00].

Nous établissons que les solutions 1, 2 et 4(a) ne sont pas utilisable en pratique dans
un certain nombre de cas pour des raisons de cout en espace par paquet. La solution
1 posseéde aussi une limitation théorique en terme de sécurité. La solution 3 est tres
intéressante mais nécessite une synchronisation temporelle sécurisée entre la source
et ’ensemble des récepteurs, ce qui peut étre complexe a mettre en oeuvre. En
outre, la solution 3 n’offre pas de non répudiation et doit étre modifiée pour fournir
la propriété de modularité. Les solutions 4(b) et 4(c) sont voisines et répondent
a la plupart des besoins évoqués. Ces solutions sont appelées hybrides car elles
amortissent une signature digitale sur un bloc de plusieurs paquets en utilisant des
techniques symétriques comme les hachages et les MAC. La solution 4(c) offre une
meilleure gestion de la signature de bloc par rapport a 4(b).

0.3 Un Protocole d’Authentification pour le Direct

Le protocole d’authentification multicast que nous proposons dans cette these fait
donc partie de la famille des techniques hybrides. Les paquets sont groupés en bloc
de taille b. Pour chaque paquet P; d’un bloc nous calculons une somme de controéle
cryptographique h; par une fonction de hachage comme MD5 ou SHA. Ensuite,
nous calculons une signature digitale o sur ’ensemble de ces sommes de controle
{h1,..., hs}. Pour garantir un certain degré de robustesse, nous utilisons des codes
de reconstruction (a. FErasure Codes) d’une facon originale afin de permettre au
récepteur de reconstituer la suite {hq,..., hp} et sa signature. Cette méthode nous
permet d’atteindre des coits d’authentification en terme d’espace par paquet qui
sont plus faible que toutes les méthodes d’authentification actuelles dans la plu-
part des scénarios. D’autre part dans notre schéma, nous proposons une méthode
concréte pour transmettre la signature de chaque bloc sans faire de cotteuses re-
transmissions multiples, comme c’est le cas dans les autres solutions hybrides.

Dans la section 4.2 nous introduisons des codes reconstructeurs[Riz97]. La
générateur de code C}, prend un ensemble X de k paquets sources et produit
(k+r) paquets, dont les r derniers représente la redondance Y. Nous noterons donc
{X,Y} « Cy,(X). Lalgorithme Dy de reconstruction de données qui prend un
ensemble Z de k paquets recus et produits les k paquets sources d’origine sera noté
X « Dp(Z).

Le coeur de notre protocole est basé sur un algorithme de génération d’étiquettes
: Tpp) de parametres b, le nombre de packet dans un bloc, et p, le taux de perte
maximal d’un bloc. Cet algorithme accepte en entrée une suite de b sommes de
controle {hq, ..., hy} et génere en sortie une suite {7y, ..., 75} de b étiquettes.
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Génération d’étiquettes: Tp
ENTREE: {hi, ..., hs}

SORTIE: {ry,..., 73}

{X; X} « Gy i (X)

o S(H (hil]...||hs))

{V3V} & Cpa—p L (Xllo) ot YV = X]o

Partager {Y;Y} en b étiquettes de taille égale {7y, ..., 7}.

La principale propriété de cet algorithme est la suivante :

Soit I = [Py, ..., Py] un bloc de b paquets et {hy, ..., hp|h; < H(F;)} 'ensemble
des haschages de ceux-ci. Si nous calculons A = {ry,..., 7}  Tpp({h1, .-y Bp})
alors tout sous ensemble d’au moins [b(1 — p)| paquets dans Il peut etre authentifié
par tout sous ensemble d’au moins |b(1 — p)| étiquettes dans A.

Un flux multicast se subdivise donc en une suite Bj...By, de blocs. Pour chaque
bloc B; nous calculons une suite d’étiquettes {7y,...,7}. Ces étiquettes nous les
ajoutons soit au bloc suivant B(;;1), soit au bloc précedant B(;_;y ou tout simple-
ment au bloc courrant B;. Chacune de ces configurations a des avantages et des
inconvénients que nous analysons dans la section 4.3.2.

Reste & déterminer b et p en fonction des schémas de pertes observés dans le
réseau et des besoins de 'application. La valeur b dépend essentiellement du délai
d’authentification maximal permis, car naturellement plus b est grand plus le délai
augmente. Si b est petit, cela demande plus de ressource de calcul. Nous préconisons
de choisir b le plus large possible en fonction des contraintes de I'application en
terme de délai d’authentification. Pour déterminer la valeur de p, nous modélisons
les pertes du réseau par une chaine de Markov a deux états, comme suggéré dans
de nombreux travaux [BFPT99, YMKT99]. Le choix de p se fait par simulation de
cette chaine de Markov sur un grand nombre de paquets de facon a garantir une
proportion de bloc authentifié supérieur a 99%, comme décrit en 4.3.3.

Dans la section 4.4, nous comparons notre protocole avec les autres approches
voisines et nous montrons que pour des parametres de perte du réseau raisonnables,
notre approche est moins coiiteuse en terme d’espace par paquet. En contrepartie,
notre approche a un coiit en terme de calcul supérieur aux autres approches, ceci
étant di aux codes de reconstruction. Comme nous le soulignons en 4.4, ce coiit
reste cependant tres raisonnable.

Nous discutons aussi des autres aspects de notre protocole en suivant la liste de
criteres établis plus haut et nous montrons que notre protocole constitue dans de
nombreux cas une alternative intéressante aux autres solutions qui ont été proposées
jusqu’a présent.
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0.4 Confidentialité

0.4.1 Définitions et Besoins

Dans un environnement ouvert comme Internet, la confidentialité des données trans-
mises en Multicast s’obtient en les protégeant par des moyens cryptographiques de
fagon a restreindre leur diffusion aux seules entités qui ont légitimement le droit d’y
accéder. L’exemple le plus typique d’une application ayant ce besoin est celle de la
diffusion d’une chaine a péage. Dans cette thése nous définissons un certain nombre
d’éléments qui participent a un protocole de confidentialité multicast. Ces éléments
sont :

Les récepteurs : on appelle ici récepteur toute entité capable de recevoir des
données venant d’un certain groupe multicast, méme si elle ne peut pas les

déchiffrer.

Les membres : on appelle membre tout récepteur possédant des moyens cryp-
tographiques légitimes pour accéder au contenu transmis en multicast.

La source : on appelle source, I'entité qui génere un contenu et le transmet aux
membres de facon sécurisée. Dans cette these, nous nous focalisons sur des
scénarios ayant une ou quelques sources et un ensemble tres important de
membres. Comme l’ont déja remarqué certains auteurs [HC99], cette approche
couvre la plupart des applications commerciales de grande échelle.

Les gestionnaires de membres : Un gestionnaire de membre est une entité qui
gere la liste des membres. Lorsqu’un récepteur souhaite devenir membre il con-
tacte un gestionnaire. Si le récepteur est autorisé & devenir membre, le gestion-
naire lui transmet les parametres cryptographiques lui permettant d’accéder
au contenu des paquets Multicast. On dit alors que le récepteur est ajouté au
groupe. Réciproquement, le gestionnaire de membre peut décider de supprimer
la possibilité pour un membre d’accéder au contenu des paquets multicast. On
dit alors que le membre est supprimé du groupe.

Les intermédiaires : dans certains protocoles multicast, les routeurs ou proxies
qui participent a la transmission des données Multicast sont aussi mis a contri-
bution pour assurer la confidentialité des données. Nous appelons ces éléments
actifs, des intermédiaires.

Un protocole de confidentialité Multicast permet donc a une source de transmettre
des données de facon restreinte a un ensemble de membres choisis. Le premier
but d’un tel protocole est donc d’interdire aux non-membres d’accéder aux données
Multicast. L’ensemble des membres est, la plupart du temps, dynamique car il
évolue avec les ajouts et les suppressions de certains membres. Le deuxieme but
d’un protocole de confidentialité Multicast est donc de garantir ce que nous appelons
le secret postérieur et antérieur. Lorsqu’un membre est supprimé du groupe il ne
doit plus avoir acces aux données Multicast, c’est ce que nous appelons le secret
postérieur. Symétriquement, un membre ne doit pas pouvoir déchiffrer les données
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qu’il a peu enregistrer et qui ont été transmises avant qu’il ne soit ajouté au groupe,
c’est ce que nous appelons le secret antérieur.

Un aspect particulierement important des communications Multicast est qu’elles
impliquent un nombre potentiellement immense de participants. Dans une telle
configuration, il est pratiquement certain que les parameétres d’acces de certains
membres vont étre compromis volontairement ou non. Un membre peut étre tenté
de divulguer ses parametres d’acces a un récepteur pour lui permettre lui aussi
d’accéder au groupe. Pire : un pirate informatique peut publier des parameétres
d’acces sur un site internet. Il est donc primordial de limiter I'impact de la compro-
mission des parametres d’acces détenus par un membre. C’est ce que nous appelons
I’endiguement.

Dans la méme ligne d’idées, il est important que le protocole résiste a la collusion
de certains de ses membres. Un ensemble de membres qui échangent entre eux leurs
parametres d’acces ne doivent pas étre en mesure d’élever leurs privileges au dela de
la somme des privileges correspondants aux parametres échangés.

Dans un certain nombre de protocoles de confidentialité Multicast, on utilise
les intermédiaires comme participants actifs dans la sécurisation des données. Ces
éléments sont potentiellement nombreux et il est donc logique d’étre aussi prudent
avec les intermédiaires qu’avec les membres. Nous chercherons donc a limiter la
confiance que nous placons dans les éléments intermédiaires.

A ces besoins de sécurité viennent s’ajouter des besoins purement algorithmiques

La scalabilité de traitement : Le coiit supporté par une entité individuelle, que
ce soit la source, les intermédiaires ou les membres, doit pouvoir rester raisonnable
quelle que soit la taille du groupe et quelle que soit la durée de participation
d’un membre dans le groupe.

La robustesse de participation des membre : Les membres doivent pouvoir
accéder au contenu des paquets multicast des leur réception.

Ce dernier point peut paraitre évident mais, en pratique, il peut étre difficile a garan-
tir. En effet, des problemes de synchronisation entre les parametres d’acces détenus
par un membre et ceux effectivement nécessaire pour accéder aux données peuvent
apparaitre dans certains protocoles. Ces problemes de synchronisation peuvent in-
duire des probleme de robustesse de participation de certains membres.

Nous avons donc établi les objectifs suivants pour un protocole de confidentialité
multicast :

e Confidentialité des données.

Secret antérieur et postérieur.

Scalabilité de traitement

La robustesse de participation des membres

L’endiguement

25



La Sécurité des Communications en Multicast

e Résistance a la collusion

e Une confiance limitée aux éléments intermédiaires

Le chapitre 6 de cette thése propose une étude de 1’état de I’art des protocoles de
confidentialité multicast. Nous commencons cette étude en traitant des hiérarchies
de clés logiques qui furent introduites par Wong, Gouda et Lam[WGL98] et simul-
tanément par Wallner et al. [WHA98]. Nous étudions les différentes propositions qui
ont suivi cette approche en ’enrichissant : [CEKT99, CGIT99, CVSP98, CWSP9S,
PST01, WL00, MS98]. Nous concluons que malgré un certain nombre de progres,
certains problemes de robustesse de participation des membres demeurent. D’autre
part, nous soulignons que les hiérarchies de clés logiques n’offrent pas d’endiguement.

Ensuite, nous nous intéressons aux arbres de rechiffrement qui ont été proposés
par Suivo Mittra dans le systeme IOLUS [Mit97]. Dans cette approche on utilise un
certain nombre d’éléments intermédiaires comme participants actifs dans la sécurité
des données. Ces éléments intermédiaires déchiffrent et rechiffrent les données, c’est
pour cela que nous appelons cette famille d’approches qui est aussi suggérée dans
[HM97], des arbres de rechiffrement. Cette approche permet d’avoir un bon fac-
teur d’échelle et offre la propriété d’endiguement. Malheureusement cette approche
nécessite de faire une confiance totale aux intermédiaires.

Nous présentons aussi le systeme MARKS[Bri99] qui n’est pas tout & fait un
schéma de confidentialité multicast, mais plutét un schéma d’abonnement non révo-
cable. En effet, dans MARKS le récepteur s’abonne au groupe pour une certaine
durée, et il est ensuite impossible de lui retirer ’acces aux données avant le terme de
son abonnement. Cependant ce systéme présente de nombreux avantages en terme
de robustesse et de scalabilité. Par contre, il n’offre pas d’endiguement.

0.5 Des solutions pour la confidentialité multicast.

Nos propres protocoles que nous présentons dans les chapitres 7 et 8 sont des arbres
de rechiffrement. Notre idée est de proposer une approche qui offre tous les avantages
des arbres de rechiffrement sans hériter de leur faiblesse majeure qui est de faire une
confiance totale aux éléments intermédiaires.

0.5.1 La confidentialité par suites de chiffre.

Nous résumons ici brievement les points principaux du chapitre 7.

Dans notre schéma, nous définissons tout d’abord des transformations cryp-
tographiques ayant une structure particuliere :

Soit G = {g; : N +— N, i € A} un ensemble de permutation sur un ensemble N,
indexé dans \A. On appelle G un groupe de chiffrement s’il vérifie les propriétés
suivantes :

(G, o) forme un groupe par la loi de composition des fonctions o

(G, o) est peut étre indexé par composition: Il existe un algorithme en temps
polynomial Comp : A? + A qui & partir d’une pair d” index (7,5) € A?, calcule
k= Comp(i,j) € A tel que gy = g(j) © 9(3)-
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Si on a une suite F' = {fi,..., fa} d’éléments de G il existe une fonction g € G
tel que g = (fy o...o fy)~L. Cette fonction, nous I’appelons la fonction d’inversion
de la suite F.

Notre approche consiste & choisir un groupe de chiffre G et a distribuer des
éléments aléatoires fo, ..., fiv de ce groupe a ’ensemble des éléments intermédiaires de
larbre de transmission multicast ainsi qu’a la source. Chaque feuille (ou sous-groupe
de membres) de I’arbre regoit la fonction d’inversion correspondant a I’ensemble des
transformations effectuées sur la branche reliant la source a la feuille. La source
souhaitant transmettre une information M a tous les membres lui applique une
premiere transformation fp, puis envoie les données au réseau. Chaque élément
intermédiaire ¢ qui recoit un paquet lui applique lui-méme une transformation f; et
transmet les données au réseau. Quand les données arrivent dans une feuille, les
membres contenus dans celle-ci lui appliquent la fonction inverse correspondant a
I’ensemble des transformations effectuées sur la branche reliant la source a la feuille.
Cette transformation inverse permet aux membres de la feuille d’obtenir M.

Pour garantir qu’un adversaire externe ne puisse pas obtenir des informations
sur M en interceptant les messages transmis dans le réseau, il est nécessaire que
les transformations utilisées dans G aient certaines propriétés de sécurité qui per-
mettent d’assurer la confidentialité des données transmises. Dans cette these, nous
envisageons deux type de transformation ayant a la fois les propriétés de groupe de
chiffrement et de sécurité nécessaires :

e l'exponentiation dans un corps premier 7.5.

e l'exponentiation modulo un composite (extension de RSA) 7.6.

Notre approche par arbre de chiffrement permet d’avoir une forme d’endiguement
similaire a celle qu’on trouve dans IOLUS mais avec un avantage de taille : Nous
ne faisons pas confiance aux éléments intermédiaires. En effet, ceux-ci se contentent
d’effectuer certaines transformations sans accéder directement aux données. Il existe
des scénarios d’attaques complexes possibles mais ceux-ci nécessitent la compromis-
sion de plusieurs éléments, comme nous le décrivons de fagon plus détaillée en 7.3.4.

Le probleme de cette approche réside dans son coiit. En effet, les seules trans-
formations vérifiant les propriétés nécessaires a notre schéma sont des mécanismes
de cryptographie asymétrique. Il n’est pas possible d’utiliser notre schéma de facon
réaliste pour chiffrer des flux entiers de données. Nous ne pouvons que I’utiliser pour
la distribution de clés.

0.5.2 La confidentialité par chiffrements multiples commutatifs.

Nous avons souhaité proposer une autre solution qui s’inspire dans sa philosophie
de la précédente mais qui puisse étre adaptée aux données.

Il existe un mode de chiffrement dit ”counter based” qui permet de chiffrer des
données en générant une suite pseudo aléatoire d’octets qui sont combinés avec le
texte clair par un ou exclusif binaire. Ce mode de chiffrement est aussi celui que
I’on utilise de facon typique avec les ”stream ciphers”. Soit f, une primitive de

27



La Sécurité des Communications en Multicast

chiffrement comme DES ou AES, opérant sur k bits dont la clé est a, le chiffrement
d’un message M se fait comme suit :

e La fonction &,(0, z) est definie comme suit:

soit ¢ = z1@9...2y,
pour i = 1,...,n faire y; = f,(o + i) & z;.
retourner (0, y1Yz...Yn)-

oc+—o+n

Le compteur o est conservé et maintenu par la source. De facon presque similaire
nous obtenons ’algorithme de déchiffrement :

e La fonction D, (o, y) est definie comme suit:

soit Yy = y1y2---Yn
pour i = 1,...,n faire z; = f,(0 +1) B y;

retourner r = r1x3...T,

La sécurité de cet algorithme a été justifié dans [BDJR97]. Dans cette these, nous
proposons une extension XORC! = {5(1), D(l)} a [ clés comme suit :

{
b 5‘541)7a27~~7al (Ula ceny Oy x):

soit ¢ = z129...2),
pour ¢t = 1,...,nfaire y; = fo, (o1 + @) B ... B fo, (01 + 1) D ;.
retourner (0y...07, Yy1Y2...Y1)-

pour j = 1,...,m faire 0; <~ 0;+n
{
L Dt(ll),...,al(gl7 Teey O‘la y)

oIt ¥ = Y1Y2---Yn
fori=1,...,ndoz; = fo,(o1+%) D ...D fo,(c1+1) D y;

retourner ¢ = z1x2...T,.

Les propriétés de cet algorithme XORC' sont décrites dans 8.2.2. Nous pouvons les
résumer de la facon suivante :

e L’ordre de chiffrement et de déchiffrement de [ couches sont indépendant.

e Si on connait la clé correspondant & une couche i, 0 < 7 </, il est possible de
substituer la couche ¢ par une autre couche générée par une clé arbitraire.

Nous utilisons le chiffrement en [ couches de la fagon suivante :
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e [.a source chiffre les données avec [ couches.

e Chaque élément intermédiaire substitue une couche par une autre. Ce qui
implique un seul chiffrement et un seul déchiffrement.

e Les récepteurs déchiffrent [ couches pour accéder aux données.

La philosophie reste la méme que dans notre précédent schéma : les éléments in-
termédiaires n’accedent pas directement aux données, et se contente de faire une
transformation de celles-ci.

La sécurité de ce schéma est évalué de fagon précise dans la section 8.4.
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Chapter 1

Introduction

The subject of this dissertation is the security of Multicast communications. Clearly,
both security and multicast encompass a broad number of problems. In this work we
have chosen to deal with the two most fundamental aspects of security in the context
of multicast: confidentiality and authentication services for multicast applications.
This chapter is designed to introduce and motivate the work presented in this thesis.
We start with a overview of IP-Multicast and next we highlight the main security
requirements of large scale applications which are build upon multicast mechanisms.
Finally, we use these elements to draw the outline of this dissertation.

1.1 TP Multicast

[P-Multicast was introduced by STEVE DEERING [Dee89, Dee91] and describes a
set of mechanisms which allow the delivery of a packet to a set of recipients rather
than just one recipient as in unicast communications. The recipients that receive
the same multicast packets are said to be part of the same multicast group. In
the multicast setting, the sender sends a single copy of a packet and the network
takes care of duplicating the packet at proper branching points in order for each
recipient to receive a copy of the original packet. With this approach, only one copy
of the original packet will be transmitted on most of the network links, which saves
resources compared to an equivalent set of unicast communications, as illustrated in
the example of figure 1.1.

While many local area network protocols such as Ethernet or Token-Ring already
have broadcast or selective broadcast capabilities, they are usually interconnected
through a set of heterogeneous networks in the Internet. In his work, DEERING
proposed an extension to IP to achieve multicast transmission both over the local
area networks and the internetwork that connects them together.

Applications

Multicast is by definition a natural foundation for applications such as:

e Video/audio conferences (for example, [Tur94]).
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8 UNICAST Connections

1 MULTICAST Group

Figure 1.1: Unicast or Multicast

Commercial television broadcastings and pay-per-view.

The distribution of software updates (such as anti-virus database updates).

e News feeds and stock quote distribution.

Cooperative applications, shared white boards (for example The LBL Shared
White Board http://www-nrg.ee.1bl.gov/wb/).

Interactive distributed video games'.

Today a few of these applications have been implemented over the Internet, some
over IP-Multicast while others use multiple unicast connections despite the scalabil-
ity benefits of multicast. As we will see in the next section, security issues are one
of the reasons that have limited the deployment of IP-Multicast.

1.1.1 Primary Multicast Mechanisms

To allow packets to be distributed in a scalable manner to a potentially unlimited
number of receivers, IP-Multicast does not specify the individual IP addresses of all
receivers, but instead uses a single group address to identify the group of recipients.
In practice IP-Multicast packets are quite similar to unicast IP packets, except
that the destination IP address is chosen in the range 224.0.0.0 to 239.255.255.255,
also called class D in IPv4 (there are further assignment restrictions, see [Aut]).
Receivers that are interested in receiving packets from a certain group “subscribe”
to the corresponding group address and the multicast routing protocols take care of
forwarding the packets to these receivers. To achieve this, multicast relies on two
primary mechanisms: first, a local membership protocol which allows recipients to
signify to a subnet router their interest in receiving multicast packets, and second, an
inter-subnet multicast routing protocol that creates a multicast delivery tree between
the subnet routers.

'"There are distributed games which have a big success such as Ultima Online
http://www.uo.con/, but these are build over unicast.
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A local membership protocol

The local membership protocol runs between receivers and their closest designated
multicast router. The protocol allows the recipients to specify to the local multicast
router their interest in receiving packets from a specific multicast group. The local
designated multicast router uses this membership information to decide which mul-
ticast packets it will need to forward from the Internet down to the local receivers.
Currently, the protocol that performs this task is the Internet Group Management
Protocol or IGMP[Fen97].

An inter-subnet multicast routing protocol

To interconnect the IGMP local multicast routers together over the Internet, mul-
ticast uses a specific internetwork routing mechanism. This routing mechanism
constructs a delivery tree between the multicast subnets. In fact, quite a few of
these routing algorithms have been proposed [Moy94, Bal97, WP98, EFH197, ...]
each with their advantages and their drawbacks. These routing protocols are usually
classified in two broad categories:

1. Source based trees: This type of algorithm creates one routing tree for each
sender or source. This approach usually results in the construction of an
efficient delivery tree but suffers from limitations due to its high cost in (some-
times unnecessary) network resources.

2. Shared trees: This type of algorithm creates a single routing tree that is shared
between all the recipients of a specific group, regardless of the sender. This
approach makes a much more efficient use of network resources but may create
traffic bottlenecks and increased transmission delays.

The choice of a multicast routing protocol may further depend on the application
constraints, the density and dissemination of the receiver group and other factors. A
detailed study of multicast routing algorithms is beyond the scope of this work. Nev-
ertheless, there is a characteristic that is common to all protocols: the use of a tree of
network components to interconnect the multicast local routers. This tree involves
other routers that are not necessarily IGMP enabled but still implement one or sev-
eral inter-domain multicast routing protocols. In practice, since not all routers on the
Internet are multicast enabled, tunneling mechanisms are used between multicast en-
abled routers to create parts of the multicast network structure. This creates a mul-
ticast specific virtual network on top of the Internet: the MBone (see The MBONED
charter http://www.ietf.org/html.charters/mboned-charter.html).

Source Specific Multicast

IP-Multicast does not require the sender to be part of the multicast group, which
means that the sender is not required to register to a local IGMP router to send
packets to the group. The number of senders is potentially unlimited. Recently,
however, an opposite approach has been taking some ground: SSM or Source Spe-
cific Multicast. This approach was introduced by HOLBROOK and CHERITON in
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the EXPRESS framework[HC99] and can be found today in commercial enterprise
solutions (see for example, IPTV http://www.cisco.com/iptv).

In SSM, receivers subscribe to a (source, group) address pair instead of just a sin-
gle group address. Multicast addresses ranging from 232.0.0.0 through 232.255.255.255
have been dedicated by the IANA[Aut] specifically for SSM protocols. The first ad-
vantage of using SSM is that since each multicast flow is identified by both a source
and a group address there can be as many multicast groups as there are senders in
the Internet. The number of multicast groups is not limited by the number of class
D addresses available. Consequently, while traditional multicast mechanisms need
to allocate dynamically a group address to multicast applications on demand, such
an allocation scheme is completely unnecessary for SSM.

More importantly, as highlighted in EXPRESS[HC99], SSM corresponds to the
needs of large scale multicast commercial applications where there is one of few
sources and a very large number of recipients. As an illustrative example, consider
the delivery of television broadcasts over the Internet. While this dissertation re-
views and presents many multicast security protocols which work in the general
setting, a particular emphasis is implicitly put on a I-fo-n model since it seems to
correspond to the most important applications in commercial terms.

The Transport Protocol

Multicast itself is not a connection oriented protocol and relies mostly on UDP to
transmit packets in a best effort manner. This naturally has an impact on the
design of multicast applications and also on security, particularly in the context
of authentication as we will see. A few multimedia multicast applications rely on
the Real-time Transport Protocol or RTP[SCFJ96], which adds specific information
needed to identify and reconstruct the multicast data. RTP is often implemented
over UDP and is coupled with a control protocol called RTCP[SCFJ96]. Some
proposals have suggested multicast transport protocols to provide reliable multicast.
A study of reliable multicast is beyond the scope of this thesis; see [Obr98] for a
good overview. Nevertheless, it is usually admitted that these reliable protocols
suffer from some scalability or efficiency drawbacks that make them unsuitable for
most large scale applications in large multicast groups[Obr98]. Consequently, in
this dissertation, we will always assume that the multicast transport protocol is
unreliable, in order to remain as general as possible.

1.1.2 A Multicast Topology

In this work, particularly in the context of access control, we will often describe the
multicast network as a tree with the following elements:

A Source: refers to the sender.

Intermediary elements: or simply intermediaries, refers to routers or proxies that
implement a multicast routing protocol.

Leafs: refers to the set of recipients that are connected to a common IGMP local
router.
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These elements are common to all multicast protocols and, when we have only one
source such as in SSM, it is convenient to view the source as the root of the tree
from an algorithmic point of view.

Since a set of recipients that forms a leaf is attached to a common IGMP router,
each leaf in the tree is the unique child of a single intermediary element represented
by that IGMP router. In this work, we will refer to trees with this property as
singular leaf trees.

1.2 The Security of Multicast Applications

In the previous section we outlined the basic mechanisms behind IP-Multicast.
Clearly, the integrity and accuracy of multicast routing information is important
for the proper functioning of IP-Multicast. Adversaries may inject bogus routing
messages in the network to modify or even disrupt the routing mechanisms. How-
ever, this is true for any routing protocol the only difference being in multicast that
the effects of an attack are perhaps multiplied by the multiparty nature of the pro-
tocol. There proposals have been made to secure the multicast routing protocols
themselves [Moy94, Fen97] and we will not address these issues here. In this disser-
tation we have chosen to deal with the security of applications that are built on top
of TP-Multicast, independently of any routing mechanism employed.

Many large scale commercial applications such as video/audio broadcasting or
stock quote distribution could benefit from IP-Multicast mechanisms to reach many
receivers in a scalable way. However, as we noted previously, these applications have
been deployed on a very limited basis over the Internet. In fact most, prominent mul-
ticast applications have been confined to the enterprise level or for non-commercial
uses such as IETF or NASA broadcastings|MS97]. Though some application specific
issues remain, one of the biggest curb on the deployment of commercial applications
may well be security. Indeed, securing multicast applications turns out to be a
challenge in many situations, mainly because existing solutions that secure unicast
applications cannot be extended to the multicast setting.

1.2.1 An application scenario

One of the best ways to illustrate the difficulty of securing multicast applications is
to use a simple application scenario as an illustration.

Scenario Description. Consider for example a large financial news broadcaster
who wants to create a business by providing financial data and market analysis to
a large set of customers on the Internet through multicast. These customers are
expected to pay for access to the content for variable lengths of time, ranging from
less than an hour to several days, depending on their needs.

Security Issues. This financial news broadcaster is faced with two main security
issues related to the distribution of its commercial content over the Internet:
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Confidentiality: the content should only be accessible to the clients who payed for
the service, and only for the duration corresponding to the payment.

Authentication: the content provider wants to guard itself against the risk of being
impersonated by another entity who could try to generate content on its
behalf, possibly harming its image and credibility.

Adapting Unicast Solutions

In unicast communications, two efficient techniques are frequently used to address
these issues: symmetric encryption[BDJR97] and MACs (Message Authentications
Codes)[BCK96]. To refer to these mechanisms informally, we will denote the sym-
metric encryption of a plaintext message M with a key K as C' < Ex (M) and
the corresponding decryption as M < Dk (C'). We will write 0 < Tgmac(M) the
algorithm that takes a message M and a MAC key K™% to produce a MAC tag
o and we denote {1,0} < Vgmac(M,o) the corresponding verification algorithm
which returns 1 if 0 = Tgmac (M) and 0 otherwise. Informally speaking, it should be
computationally infeasible for an adversary who sees m pairs {M;, 0;} to generate
a new pair {M', o'} which verifies Vgmac(M’, ') such that {M' o'} # {M;,o;} for
¢t =1,...,m without the knowledge of K™*¢.

Confidentiality. If the multicast data is encrypted with a single key K common
to all clients who paid for the service then it should prevent other recipients to access
the data. However, when one of the clients R; ends its subscription then we need
to change K to a new value K’ in order to prevent the client R; to access the data
beyond the limit of its subscription. Without loss of generality, we can assume in
our scenario that each client R; shares a private encryption key K; with the source.
If K is the only secret shared between the source and the clients, in our setting there
is no simple way to exclude a single client from the client group other than sending:
Ex,;(K') for all i # j. This approach is clearly unscalable in anything but relatively
small groups.

Restricting access to the multicast data through the use of encryption poses
another more subtle problem: containing security exposures. Indeed, in a large
group there is a non negligible chance that one recipient will be compromised and
that its keys will be exposed. Let us suppose for example that the key K we used
above to encrypt data is exposed on a web page or in a public newsgroup; this
allows anyone within the scope of the multicast group to access the data. Unlike in
unicast communications, the adversary does not need to be on the link or to corrupt
the routing protocol between the communication endpoints, since multicast data is
forwarded automatically to him if he requests to join the group. Consequently, we
need to provide mechanisms that limit the impact of such exposures.

Authentication. In the multicast setting, if we construct a Message Authentica-
tion Code or MAC[BCK96] for each packet with a common MAC key K™ shared
between the recipient clients and the source, it will disallow non-clients who do not
possess K™ to forge packets that would appear to originate from the source. Since a
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MAC is computed efficiently using symmetric cryptographic techniques, each packet
can be verified independently, thus, lost packets will not affect the ability to authen-
ticate others. But this approach has one big drawback: any client can impersonate
the source, by generating a message M and a valid tag 0 = Tgmac(M) from the key
K™2¢  Since the MAC key K™% is common to all clients and the source, there is
no way to distinguish a packet generated by the source from a packet generated by
a client.

An alternative is to have a different key K¢ for each recipient R; and append
a list of the corresponding MACs to each packet as:

M7 g1 = 7}"{nac(M)7 g9 = 7}{yac(M), ey Oy = ﬁ&'#ac(iw)

This approach is clearly impractical in a large group since the overhead per packet
will increase linearly with the group size.

A third alternative is to replace the MAC with a digital signature (Digital sig-
natures also provide non-repudiation of origin which was not a requirement in our
scenario). However, this solution also has its drawbacks because digital signatures
are based on asymmetric techniques that introduce a significantly higher computa-
tional cost and a non negligible communication overhead, making this alternative
impractical in most scenarios.

A Clash Between Security and Scalability

Though the previous example is somewhat simplified, it highlights some of the main
difficulties associated with the design of security protocols for multicast in large
groups. There seems to be an inherent clash between multicast and security. In the
case of confidentiality, there is a conflict between multicast scalability mechanisms
and security. Indeed, multicast relies on a single group address to identify the set
of recipient rather than explicitly listing them. This anonymous identification is the
primary mechanism that allows multicast to scale to virtually any group size. On
the other hand, confidentiality requires us to identify explicitly the entities that send
or receive data in order to provide them with the right keys to access the encrypted
multicast data. In the case of authentication, the problem is not related to the
group size explicitly but rather to the requirement of an efficient asymmetric mech-
anism to disallow receivers from impersonating the sender. Additionally, since most
multicast protocols are implemented over a best effort channel, these authentication
mechanisms need to tolerate losses.

1.3 Outline of this Thesis

The goal of this dissertation is precisely to analyze, discuss and suggest solutions to
the two cornerstone security issues present in large scale multicast applications that
our example highlighted in the previous section:

confidentiality and authentication.
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Clearly, some applications require exclusively authentication or confidentiality, while
others require a combination of both as illustrated in the example of the previous
section, nonetheless from a formal point of view these two problems are mostly
independent. Consequently, we have chosen to separate this dissertation in two
distinct parts, which reflect these two independent but complementary issues.

The first part of the thesis deals with authentication of lossy digital streams
over a large IP-Multicast group. This part is further subdivided in 3 chapters. We
start in Chapter 2 with an analysis of multicast stream authentication issues and
requirements dealing, in particular, with loss tolerance. We will see that solutions to
this problem need to provide a subtle balance between many competing requirements
that are not necessarily apparent at first. Next, in Chapter 3, we provide a general
overview of existing multicast authentication proposals. Finally, in Chapter 4 we
propose our own solution, which features in particular an improvement in terms of
overhead per packet in comparison to previous proposals.

The second part of the thesis focuses on multicast confidentiality. As we did for
multicast authentication, we start with a useful and detailed analysis of the problem
and define the main requirements for multicast confidentiality in large groups in
terms of both security and scalability. The remainder of this second part of the
thesis is dedicated to multicast confidentiality proposals. Chapter 6 reviews major
proposals for multicast confidentiality while Chapters 7 and 8 put an emphasis on
our own approaches, which use untrusted intermediary elements in the network.

The final chapter of this dissertation serves as conclusion and provides a per-
spective for future work in multicast security.

1.4 Contributions

The contribution of our work is twofold. First, we provide a deeper analysis of the
issues and requirements related to multicast authentication and confidentiality than
previously found in related work. In particular, we propose a new security require-
ment for multicast confidentiality in Chapter 5: containment. Second, we provide
our own original solutions to the described multicast security issues. The multi-
cast authentication algorithm we propose has a lower overhead than any previously
proposed scheme we know of, and our two multicast confidentiality algorithms are
designed to answer a larger set of requirements than previously proposed schemes.
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Chapter 2

Definitions and Requirements

2.1 Background

Authentication protocols provide mechanisms that allow an entity to ascertain the
origin of a piece of information it received. In this dissertation we are interested in
authentication issues related specifically to multicast streams and consequently to
multicast applications, such as the continuous delivery of stock quotes or video/audio
streams for example, to a large group of recipients. In this context, the stream is not
viewed as a single string of bits that we wish to authenticate once it is fully received
but rather as a potentially infinite sequence of consecutive chunks of data that we
wish to authenticate individually as soon as they are received, and in most situations
before the application processes them. Consequently multicast authentication deals
with the continuous authentication of broadcasted data by a large group of recipients.
A lot of requirements further affect how we deal with this problem. Many multi-
cast streams are delivered through an unreliable protocol such as RTP/UDP[SCFJ96],
and many multicast multimedia applications are designed to tolerate partial data
loss with a graceful degradation in playback quality. Consequently, one of the pri-
mary requirements of a stream authentication protocol is the ability to authenticate
received packets amid losses in the network. In some cases, the data itself is pre-
recorded in advance, which allows the sender to compute authentication information
in advance. But the data may need to be broadcasted in real time and in that case
authentication information also needs to be computed in real time. The group of
receivers may change or remain constant during the broadcast. The sender and
receivers may have different computational powers or storage capacities. As we will
show, all these elements influence the design of a stream authentication scheme.
We distinguish the source of the broadcast, which produces the authenticated
packet stream, while we call recipients the entities which need to authenticate the
received packets. We are interested in two types of authentication mechanisms:

e Source authentication: provides a mechanism to convince the recipients
that the received data was generated by a specific source.

e Nonrepudiation (of origin): provides a mechanism that allows a recipient
to prove to a third party that the received data was generated by a specific
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‘ | signatures/sec. | verifications/sec. |

1024 bits 74 1991
2048 bits 12 715

Table 2.1: RSA signatures/verifications performance on 600 Mhz Pentium 11

source.

Naturally nonrepudiation implies source authentication. Note that nonrepudiation is
by definition a multiparty paradigm: only one entity can generate the authentication
information but any third party can verify it.

While unicast source authentication can rely on efficient symmetric crypto-
graphic techniques such as MACs (Message Authentication Codes), such mechanisms
cannot be applied in a straightforward manner to the multicast setting. Indeed, as
we highlighted in the introduction of this thesis, if both the source and the recipi-
ents share a common MAC key, any recipient can masquerade as the source, and if
we use a different key for each source-recipient pair then we run immediately into
scalability issues.

The inadequacy of simple unicast MACs in the multicast setting raises the ques-
tion of the feasibility of constructing a multiparty version of a MAC or MMAC. This
MMAC could be generated by only one entity but verified efficiently by an large or
unlimited number of recipients. As we will see in the next chapter, there has been
some attempts to provide such a mechanism in a limited way. In their work[CGIT99]
CANETTI ET AL. created a rather efficient MMAC that can be verified by all recip-
ients but only resists the collusion of less than w recipients. The advantage of their
algorithm decreases as w grows. Recently, BONEH ET AL. [BDFO01] studied that
question essentially from a theoretical point of view. They have shown that basi-
cally, if an efficient MMAC scheme can be produced, it can be turned into an efficient
digital signature scheme. Digital signature are based on asymmetric cryptographic
techniques, which are several orders of magnitude less efficient than symmetric tech-
niques such as a MAC. Consequently the design of an efficient MMAC does not seem
possible without a major advance in digital signatures.

Extending Asymmetric Cryptography.

Despite the fact that nonrepudiation is not needed in all scenarios the inadequacy
of purely symmetric techniques seems to suggest that asymmetric cryptographic
techniques are needed for multicast authentication even to achieve simple source
authentication. Consequently, a straightforward idea to provide multicast authen-
tication is to let the source sign individual packets in the stream. However, the
cost of digital signatures make this scheme impractical. Table 2.1 shows the perfor-
mance of an RSA signature and verification algorithm using the OpenSSL toolkit,
http://www.opensll.org/ on a 600 Mhz Pentium III. The reason why the verifica-
tion is much faster than the generation is because a small practical public exponent
e is used such as e = 65537 (e = 3 or e = 17 are usually not recommended [Bon99]).
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In our example, these operations take 100% of CPU time but a recipient in a multi-
media application is likely to dedicate most of its CPU power to data processing (for
example the decoding and playback of the received video/audio). For live broad-
castings which would require real time cryptographic operations on individual data
packets of the stream, the signature rate is a true bottleneck. Also, for low computa-
tional power recipients, such as mobile or embedded devices, these figures are likely
to be much lower, making this approach impractical without dedicated hardware.

The second and perhaps more critical problem of this approach is its overhead per
packet, which amounts to at least 1024 bits (128 bytes) for a secure RSA signature.
These bytes need to be added to every packet of data which is to be compared for
example to the RTP/UDP/IP overhead per packet, which is only 20 bytes.

We conclude that it is often not possible to use digital signatures as a drop-in
replacements for MACs to provide multicast authentication. However as we will
see, multicast authentication can be achieved by using an asymmetric mechanism
in combination with other more efficient techniques with reasonable tradeoffs. The
general paradigm is to use a digital signature mechanism as a commitment and use
other techniques to extend this commitment to as much data as possible. In that
sense, we can consider multicast authentication techniques as the art of extending
asymmetric cryptographic techniques.

Offline and Online Authentication.

An important distinction that influences the design and requirements that affect a
stream authentication scheme is whether the authentication scheme is targeted for
an online or an offline stream. Offline or pre-recorded streams refer to streams that
are known in advance to the sender, while online or live streams refer to streams
that are not known in advance to the sender.

Offline streams: Consider the case of a pre-recorded film stream to be multicasted
to a group. In such a case cryptographic authentication information can be
computed before the broadcast without real-time constraints, based on the
whole set of packets in the stream. The cryptographic authentication informa-
tion can then be inserted in the stream. During the broadcast to the group,
the source does not need to make further cryptographic computations.

Online streams: On the other hand consider the delivery of live data, such as the
broadcast of stock quotes or the retransmission of an important live sports
event. In this case, authentication information needs to be computed “on the
fly” with the least possible buffering of packets at the source level. Crypto-
graphic information needs to be efficiently computed in real time by the source
and embedded in the stream as it is produced.

Naturally, if we have an efficient algorithm that provides online or live authentica-
tion, it can also be used for offline or pre-recorded data. This motivates the search
of a good online scheme as a general solution to stream authentication.
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2.2 Robustness Requirements

In this dissertation we focus on stream authentication schemes that can authenticate
received packets despite losses in the network. We believe that this covers most if
not all multicast stream applications. For non-lossy stream authentication, see for
example the work of GENNARO AND RoHATGI[GR97].

2.2.1 Packet Losses in the Internet

One of the primary parameters of multicast stream authentication is its loss tolerance
or robustness, which describes how well the scheme adapts to losses in the network.

Ideally we would like to have a scheme that offers perfect robustness: a scheme
that tolerates an arbitrary number of losses while retaining the capability to authen-
ticate all received packets. But in most realistic situations we do not need such a
strong notion of robustness if we consider Internet loss patterns as opposed to purely
random losses. This idea was first introduced in a stream authentication scheme by
GOLLE AND MoDADUGU[GMO1] and later reused in other schemes [PCTS00, MS01].
Based on the work of PAXsoN [Pax99] who analyzed TCP/IP traffic on a large scale
and showed that losses often occur in bursts, GOLLE AND MODADUGU designed a
stream authentication algorithm that was targeted at bursty loss patterns. We will
see that such an hypothesis allows us in many cases to design more efficient stream
authentication schemes.

A Markovian Model For Internet Losses

There has been quite a few studies about Internet loss patterns for applications
such as Audio Unicast/Multicast [BC93], Internet Telephony[BFPT99], Multicast
[YKT96a, YKT96b], TCP[Pax99] TCP/UDP[BSUBY8]. These studies differ on their
analysis and in their scope, however there is a general consensus among most studies
that:

1. Packet losses are not independent. When a packet is lost the probability that
the next packet will be lost increases, which means that losses in the Internet
are often bursty.

2. However the majority of bursts are small (often less than 6-7 packets).

3. There are some rare long bursts, lasting up to a few seconds (In [BSUB9S] the
authors suggest that these bursts could attributed to network disruption or
maintenance).

Many of these studies have suggested that Internet loss patterns can be satisfactorily
modeled with a k order Markov chain (a chain with 2% states). In this thesis we
propose to refer to a model often suggested to describe the bursty loss nature of
Internet traffic which is a simple 2 state Markov chain [BFPT99, YMKT99] also
called the Gilbert model. This model has also been used in the EMSS[PCTS00]
stream authentication scheme proposed by PERRIG ET AL. In this two state model,
state 0 represents a packet received and state 1 a packet lost by the recipient. We
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(1-1) (0) (1) @

Figure 2.1: The Gilbert Model

denote r # 0 the probability of going from state 0 to state 1 and ¢ # 0 the probability
of going from state 1 to state 0, as illustrated on figure 2.1. Intuitively, we see that
if ¢ is small then the chain has a greater probability of staying in state 1 once
it reaches that state, which corresponds to a burst. This model is conveniently
represented[GS00] by its transition matrix M = [m;;] as:

[ @a=r
M= ¢ (1-gq)

This type of discrete Markov chain is ergodic and we can compute the mean
residence time w; of each state ¢ by solving the equation (wg, wy).M = (wg, wy) and
using the fact that wp+ wy = 1. The mean residence time of state 1, wy corresponds
to the average packet loss rate, and here we have:

— g r
R

When the chain is in state 1 then the probability of leaving that state is gq.

Consequently, taking an analogy with a sequence of Bernoulli trials, the probability
)k—l

of leaving state 1 after being in that state for k consecutive steps is ¢.(1 — ¢
which describes a geometric distribution of mean

1

pa = -
q

and which is called the mean sojourn time of state 1, or in the context of packet
loss modeling: the average loss burst length.

Y

We have shown how to compute both w; the average packet loss rate and p; the
average loss burst length from the corresponding 2 state Markov model. Recipro-
cally, it is possible to compute the Markov chain parameters (r,¢) from the average
loss rate wy and the average loss burst length p:

— 1 — w;
9= = (1—w1 )1

2.2.2 Case Studies

To illustrate the 2 state Markov chain model above, we propose to recall two case
studies from EMSS, the stream authentication scheme proposed by PERRIG ET
AL.[PCTS00]. While the EMSS scheme will be described more in detail in section
3.4.3, we will reproduce the two case studies used in their work here, both as an
illustration of the model and as a useful reference for further comparisons between
some stream authentication algorithms in Chapter 3:
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CASE 1: The traffic information sensors.

A municipality wishes to provide traffic information from traffic sensors distributed
over the streets. The system requirements are as follows:

e The data rate of the stream is about 10 Kbps, about 20 packets of 64 bytes
each are sent every second.

e The packet drop rate is at most 5% for some recipients, where the average
length of burst drops is 5 packets.

e The verification delay should be less than 10 seconds.

Given the drop rate of 0.05 and the average length of bursts of 5, we have a corre-
sponding 2 state Markov chain with » = 0.010526, ¢ = 0.2.

CASE 2: The real time video broadcast.

The second case study proposed by PERRIG ET AL. is related to real-time video
broadcasting, with the following requirements:

e The data rate of the stream is about 2Mbps, or 512 packets of 512 bytes each
every second.

e The packet drop rate is at most 60% for some recipients, with an average
length of bursts of 10 packets.

e The verification delay should be less than 1 second.

Here we have a much higher drop rate of 0.6 and the average length of bursts is 10,
which gives us a corresponding 2 state Markov chain with » = 0.15 and ¢ = 0.1.

2.3 Other Requirements
Though robustness is an important requirement of a multicast stream authentication

scheme, there are quite a few other important additional requirements, which we

define here:

Joinability
e Low authentication latency

e Limited buffering

Limited cost
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Joinability

Since a stream is a potentially very long (or infinite) sequence of packets, we need to
consider that in many situations, the recipient will only want to authenticate part
of the stream. The group of recipients will often change during the broadcast. We
define the joinability of an authentication scheme as its ability to allow recipients to
start verifying packets at a random point in the stream. Ideally we would like the
authentication scheme to be joinable on every packet of the stream, in practice we
believe it is sufficient for an authentication scheme if it is joinable on a reasonable
boundary, or every n packets.

Latency

Multicast streams need to be authenticated continuously. Ideally, we would like
to authenticate packets or application data units individually as soon as they are
received. In practice, a packet may be authenticated by a the next one or even by
another future packet, which introduces a delay that we define as the authentication
latency. In some cases we will refer to the mazimum authentication latency, which
defines the number of packets that need to be transmitted before we can authenticate
a packet in the worst case.

For many applications a small authentication delay is not a problem. Consider
for example, a live video broadcast, in such a situation it is conceivable to have an
authentication delay of about a second, if that small tradeoff allows us to make the
authentication more efficient. Note also that Internet streaming client applications
(for example, realplayer http://www.real.com/) natively include a small client side
buffering scheme to adapt to irregularities of Internet traffic.

(Server Side) Buffering

Some stream authentication algorithms introduce dependencies between the data
packets that require the sender to buffer a few packets before sending them. This
sender side buffering is mainly relevant to online authentication schemes. Symmet-
rically to latency, for quite a few applications it is acceptable to introduce a small
buffering, however if the buffer gets too large then the scheme may not be considered
truly “online” anymore.

Cost

The final criteria that distinguishes a multicast authentication scheme from another
is its cost in terms of computational requirements and in terms of overhead in bytes
per packet of application data. First, if a scheme is too computationally intensive
then it may not be usable in practice because it consumes computer cycles that would
otherwise be used by the application itself (such as video/audio codec processing).
Second, if the scheme has too much overhead, then it may significantly reduce the
network bandwidth available to the stream and create congestion problems that
further downgrade the quality of the stream.
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Conclusion
Authentication in the context of multicast can be summarized as double a problem:

e A multiparty problem: one or few entities can generate the data, many entities
need to verity it. This aspects forces us to use asymmetric mechanisms.

o A streaming problem: a set of packets need to be authenticated sequentially
on a lossy channel. This aspects defines a set of constrains that affect the
asymmetric mechanism we use.

Ideally we seek a robust online stream authentication scheme that is joinable on every
packet, has no buffering as well as no latency and all that for a cost of the same order
magnitude as a MAC without any additional requirement. Unfortunately, as we said
at the beginning of this chapter, such as scheme does not exist. Consequently, to
provide an authentication scheme with a reasonable cost it is often necessary to find
the best compromise between the list of requirements we defined above.

In the next chapter we review prior proposals for robust stream authentication,
most of which are targeted for online authentication. We will highlight how most
practical solutions use different techniques to extend an asymmelric cryptographic
commitment from one to many packets, using hash chaining techniques as in section
3.4 or time constrains as in section 3.3. The following chapter is also meant to allow
us to compare our own scheme, presented next in a separate chapter, with other
related proposals.
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Chapter 3

An Overview of Authentication
Algorithms

3.1 Multicast MACs

Let 0 + M ACK (M) denote the computation of an authentication tag o with a MAC
(Message Authentication Code) algorithm such as HMAC[BCK96], keyed with K.
The security of a MAC scheme is usually defined as its resistance against existential
forgery in an adaptive chosen plaintext scenario, where an adversary A interacts
with a legitimate party O who returns the MAC o; of any message M, that A
asks for. Naturally a query M; may depends on previous queries and replies that
were produced. The key K is only known to O and is chosen randomly before any
interaction with A. An adversary A is considered successful if after querying O on
n messages {Mjy,..., M} and obtaining the corresponding tags {oy,...,0,}, he is
capable of producing a new pair {0, 41, M, 41} without interacting with O such that
ont1 = MACK(My41) where My, 41 ¢ {M, ..., M,,}. A MAC is considered (n,t,¢’)
secure! if the probability that any adversary, asking at most n queries to O and
spending at most ¢ units of time, succeeds with probability less than ¢’. In practice,
a MAC is secure if ¢’ remains negligible for computationally tractable parameters ¢
and n.

3.1.1 Basic Scheme

As already briefly mentioned in the the previous chapter, CANETTI ET AL. con-
structed a MMAC (Multicast Message Authentication Code) scheme that provides
security for a recipient against a coalition of up to w recipients. Their scheme draws
from ideas from set intersection schemes [DFFT95] and proceeds as follows:

Setup.
e The source knows a set of [ MAC keys, R = {Kjy, ..., K|}.

' A weaker alternative sometimes considered is selective forgery, where the message M’ is chosen
before the game starts, for a more formal analysis see for example, [BDFO1].
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e Each recipient ¢ gets a subset R; of ﬁ keys chosen randomly from R.

Authentication.

To authenticate a multicast message M we proceed as follows:

e The source multicasts (M, o1, 02, ..., 01) where 0; = M ACk, (M).

e Each recipient ¢ verifies all the MACs that correspond to the subset R; of
keys it holds. If at least one MAC is not good then the message is considered
corrupt.

The notion of security that is used here is somewhat different from the one we
described above for the MAC. The authors define a MAC scheme to be “g-secure
per message” if an adversary who interacts with an oracle O as above has a small
but not negligible probability ¢ of guessing a good pair {6,411, M, 41}, but still has
a negligible probability of knowing that the guess was correct. In this context, they
suggest to choose ¢ = 1073, which they argue is sufficient for many applications
though not all.

Main Result.

Let ¢' define the probability of computing the output of a MAC without knowing
the key. In their work, CANETTI ET AL. show that, given a recipient u, if we have a
total number of keys [ = e.w.In(1/q), then the probability that a coalition of corrupt
users can forge a message for u is at most ¢ + ¢'.

3.1.2 Extensions

With a classical MAC algorithm, ¢’ will be negligible compared to ¢. Consequently,
it is possible to reduce the MAC output size in bits such that the security of the
MAC decreases down to ¢ = ¢ without compromising the overall security of the
algorithm by a significant factor.

CANETTI ET AL. show that further increasing the number [ of keys held by
the source further increases the security of the algorithm. Reciprocally it allows
to further decrease the size of the MAC output to 1 bit, trading in more MAC
computations for a lower communication overhead. In this lower communication
overhead scheme, the probability that a coalition of w recipients can forge a message
for a recipient u is 2.¢, with a total number of keys | = 4.e.w.In(1/q) and still
l/(w+ 1) keys for each individual user.

3.1.3 Discussion

An important aspect of the security bounds that are given for the algorithms in
[CGIT99] is that they apply to a coalition of w recipients who want to forge a
message for a chosen recipient w. However, these results do not tell us what is the
probability that the coalition can forge a message for any recipient in the group.
CANETTI ET AL. acknowledge (footnote 5 in [CGIT99]) that a scheme such that
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Auth. Verif. | Overhead | Source Receiver
per sec. | per sec. in bits Key Key
basic scheme, 190 19
w =10, g = 1073 2650 26 500 1900 (10 bit MAC) | (10 bit MAC)
keys keys
1 bit scheme 760 76
w=10,¢= 10-3 660 6 600 760 (1 bit MAC) | (1 bit MAC)
keys keys
any recipient security 2500 250
N =10% ¢ =103 200 2 000 25 000 | (10 bit MAC) | (10 bit MAC)
keys keys
| RSA, 1024 bits | 50 [ 30000 | 1024 | 2048 bits | 1024 bits |

Table 3.1: A performance comparison for MMAC schemes.

no coalition of w recipients can cover the set of keys of any user would be more
expensive, with a total number of keys reaching O(w?In(N)) and an number of
keys for individual recipients reaching O(wlIn(N)), where N denotes the number of
recipients in the group.

To provide a more concrete evaluation of the cost and overhead of the scheme,
we reproduce in table 3.1 a numeric comparison of concrete instantiations of their
scheme along with an RSA signature also reproduced from [CGIt99]. The basic
scheme is the first scheme we described above with MAC outputs truncated to 10
bits to match the security ¢’ of the MAC with ¢. The one bit scheme is much more
efficient in terms of communication overhead, with only 760 bits. The third line of
this table illustrates the remark we made above about the security of the schemes:
if we want to make sure that no coalition of w recipients can forge a MAC for any
recipient than the scheme becomes clearly impractical.

3.1.4 Conclusion

The most important aspects of this scheme are summarized in the frame below. The
MMAC scheme provides a Multicast MAC which offers satisfactory security for a
chosen recipient against a coalition of at most w recipients. MMAC has the same
advantage as a MAC in terms of robustness, joinability, latency and buffering.

The scheme is computationally much more efficient than a digital signature,
however, for a coalition resistance factor w = 10 it still has an overhead equivalent
to a signature even in the best scheme based one a one bit MAC. Since this overhead
is proportional to w, higher values of w will make the scheme impractical in many
scenarios. Yet, the overhead is not proportional to the group size but only to the
coalition size.

However, the security of this scheme is defined in terms of a coalition of recipients
trying to forge a message for a chosen recipient. If we want to achieve the same level
of security against forgeries for any recipients, the overhead of the scheme increases
to clearly impractical levels as shown in table 3.1, with an overhead which this time
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increases logarithmically with the recipient group size.

In his work on lower bounds for multicast message authentication[BDF01], BoNEH
ET AL. suggest that the results of [CGIT99] are optimal, within classical definitions
that are applied to a MAC. It is thus unlikely that a better and more practical
MMAC scheme can be constructed without a major advance in cryptography.
MMAC scheme summary

Scheme type: Online source authentication of lossy streams.

Advantages: The MMAC is an online authentication scheme with all the
good properties of a MAC scheme:

e Robustness: perfect robustness.

e Joinability: authentication can begin at any packet in the the
stream.

e Latency & Buffering: none.
Drawbacks: The two main drawbacks are:

e Overhead: an overhead comparable to a signature even with

the 1 bit MAC scheme.

e Security: limitations for the most practical schemes.

3.2 Faster Signatures

If digital signatures were faster and smaller they would provide an interesting so-
lution for stream authentication, allowing us to sign packets individually, providing
unlimited robustness and the lowest possible latency. So quite logically, one of the
directions that has been explored to provide multicast authentication is to develop
more efficient signatures.

3.2.1 Extended Fiege-Fiat-Shamir.

The FIEGE-FIAT-SHAMIR signature scheme is a signature scheme derived from the
FIAT-SHAMIR zero knowledge identification scheme (any zero knowledge identifica-
tion scheme can be converted to a signature scheme [MvOV96]). Let .||. denote
concatenation and let H denote a cryptographic hash function such as MD5[Riv92].
The FIEGE-FIAT-SHAMIR scheme is defined by three algorithms {K, S, V}, parame-
terized by (k,t) as follows:

e [C(t,k): the key generation algorithm.

— Generate 2 random distinct primes p, ¢ and let n = p.¢g
— Choose k integers in Z%: {sy,..., sk}.

—fori=0,..,kdo v « S;Q‘mOd n.
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— Output the public key pk = {vq,...,vp;n} and the secret key sk =
{81y, Sk}

e S;i(m): the signature algorithm.

. . *,
Generate ¢ random integers in Z: {ry,..., 7}

for i =1,...,t do ; + (r;)*modn
let b define the k.t first bits of H (m||zy]]...||2¢)
Split b as b; ; € {0,1} where i =1,...,tand j =1,...,k

fori=1,..,tdoy; = ri.(sii’l.sgi’z...szi’k)modn (1)

The signature of m is ¢ = {{y1, ..., y:}, b}.

e V,i(0,m): the verification algorithm.

parse o as {{y1,...,y:},b}
Split b as b;; € {0,1} where i =1,....,t and j =1,....k

. b; b; b;
fori=1,..,tdo z + y?.(v,"" 0y ...v,"" Ymod n

— if the k.t first bits of of H(m||z1]]...||z) are equal to b then the signature
is valid.

In their work on stream authentication with hash treesfWL99], WoNG AND LAM
propose two types of extensions to the FSS scheme: speedups and adjustable veri-
fication and they call this extended scheme, eFSS. The Speedups try to make the
FFS scheme more efficient comparatively to a traditional RSA signature, in terms of
signature and verification rate per second. Adjustable verification allows receivers
with different computational power to trade in security for speed if needed: receivers
with more power will have greater security while lower power receivers will be able
to cope with high packet rates with lower security.

Speedups

e A known improvement[MvOV96] to the FFS signature scheme is to select
U1, ..., U as small primes that can be represented with two bytes. This shortens
the public key and increases the efficiency of the verification scheme.

e As in efficient versions of RSA[RSA99], we can use the Chinese Remainder
Theorem to improve the operations on line (1) above, by computing the y; in
Zy and Z; and combining the results to get y;.

e If t is expected to remain low we can also do some pre-computations for the
operations on line (1) above. Since b;; only takes values in {0,1} then the
product (sii’l.sgi’r‘)...szi’k) can take all possible multiplicative combinations of
elements in {sy,..., sy} and store them in memory for later use. For example,

for t = 4 we need to store 480 values.
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‘ ‘ signature size in bytes ‘

RSA 128
eFFS(32,4) 912
eFSS(64,2) 400
eFSS(128,1) 144

Table 3.2: RSA 1024 and eFFS(k.t = 128) overhead.

‘ ‘ signature rate ‘ verification rate ‘

RSA 193 5290
DSA 874 609
ElGamal 749 45

eFSS(128,1) 1610 5250

Table 3.3: Signing/verification rates (approx.) 1024 bit signature schemes in packets
per second.

Adjustable Verification

The idea here is to use ¢ greater than 1 to provide a selectable level of security for
the signature. The scheme above is modified by appending to the original signature
{{y1, .-, Y}, b} the values {z, ..., z;} which gives us o = [{y1, ..., ys}, b, {22, ..., 21}].
The verifier can compute a verification of security level [ € [1,...,t] as follows:
. 2 ¢ bi1 bio bi k
o fore=1,...,1do 2z « y?.(vy" v, ...v, " )mod n
o if the (k.t) first bits of of H(m||z1||a2||...||z:) are equal to b, and (22, ..., 21) =
(zg, ..., 21) then the signature is valid.

The scheme can be further iterated for a receiver to increase the level of security
from [ to a higher value !’ with a similar mechanism; see [WGL98] for details.
The signature size for a (k,t) FFS signature and thus the overhead per packet is
kt 4+ (2t — 1) X |n| where |n| denotes the size of n. In their work [WGL9S], WonNa
AND LAM use k.t = 128 and n = 1024 as a point of comparison with 1024 bit
RSA[RSA78, RSA99]. We extend the tables presented in their work, with a few
sample signature sizes in table 3.2. In particular we show values for ¢ > 1 that
were omitted in [WGL98]. This table is interesting because it shows that adjustable
verification has a big cost in terms of overhead. Thus adapting the FFS scheme to
low power devices costs much more bandwidth !

Table 3.3 reproduces some performance results form [WGL9S8] in terms of number
of packets signed and verified per second on a Pentium I1 300 PC running Linux. It
shows much improved signature rates compared to other signature schemes.

Conclusion

First, we need to point out that the eFFS scheme was not designed to be used to
sign each packet, but rather as a complement to the Hash tree construction will will
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review in 3.4. Clearly, despite certain improvements, it is not a practical solution
for signing packets individually. Nevertheless, the eFFS scheme allows improved
signature generation speed. It also offers adjustable security for low power devices
but this comes at the cost of a strong increase in terms of overhead.

3.2.2 k-time Signatures

Confronted with the shortcomings in speed of traditional digital signatures, Ro-
HATGI proposed in [Roh99] to use the offline/online digital signature paradigm[EGM96]
in the multicast setting. The basic idea of this approach is to perform expensive
computations with a traditional digital signature offline, even before the stream is
known, to produce a certificate for a much more efficient one-time signature that will
be computed online during the broadcast. Indeed, the online part of the signature
is basically computed using hash functions which are several orders of magnitude
faster than digital signatures. However, offline/online signatures have not been in
widespread use because they tradeoff online speed for an significant increase in over-
head, even greater than a traditional digital signature. Consequently to make these
signatures more practical in the multicast setting ROHATGI uses several tricks to
reduce this overhead (some of these ideas come from previous work by the same
author and GENNARO on non-lossy streams[GR97]).

To outline the basic idea of this work consider a sender who wishes to sign an
80 bit string Y. Let H define a cryptographic hash function, where H* denotes
k successive applications of H, that is H*(z) = H(H* '(z)) where H%(z) = =.
Also, let {S,V} informally define a “traditional” digital signature and verification
algorithm associated to the sender.

Sender task

e Offline, the sender will compute:

— 23 random values : rq,..., 723
— let hl — H15(T'1), hg — HlS(T'Q), ey h22 — H15(T'22) and h23 — H(T'Qg)
— 0 S(H(hl, . hgg, h23))

e Then he publishes {o, hy, ..., ho3}.

e Online, to sign a 80 bit value Y, the sender proceeds as follows:

split Y in 20 chunks of 4 bits yq, ..., y20.
for i =1,...,20 do t; « H1=%)(r;)

let X = szo y; that we split in 2 chunks of 4 bits {x, #2} and 1 chunk
of one bit {z3}, such that X = zy + 16.25 + 64.23.

— Compute tgl «— H™ (7‘21), t22 «— H?* (7’22), t23 «— H?*s (T23).
Send Y, {tl, ceey t23}
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Receiver task

e Offline, the receiver can verify the public key signature ¢ on {hq, ..., hos}.

e Online, when the receiver gets Y, {¢y, ..., {3} he proceeds as follows:

split Y in 20 chunks of 4 bits y1, ..., y20.

—let X = Ezzfo y; that we split in 2 chunks of 4 bits {z, 22} and 1 chunk
of one bit {z3}, such that X = zy + 16.25 + 64.23.

for i =0, ...,20: verify that h; = HY(;).
Verify that Ay = H15—=1 (tgl), hay = H15—=1 (tgg), haz = H'—®s (tgg).

If all previous verifications are successful then accept Y as valid.

Extensions

Of course the above two mechanisms are not very practical on their own. In his
work, ROHATGT uses several other mechanisms to greatly extend the usability of the
scheme, the two most important ones are:

e TCR hash function: Use keyed hash functions to reduce the security require-
ment to target collision resistance (TCR) instead of strong collision resistance.
Birthday attacks do not apply to TCR hash function, consequently, the hash
length can be reduced from 128/160 bits down to 80 bits. Of course some
additional mechanism is provided to transmit the key of the hash function in
an efficient way. The use of 80 bit TCR hash functions also allows the above
scheme to be applied to a data packet, by using it to sign the corresponding
80 bit hash.

e Sign n? k-time signatures: In the above scheme there is one public key
signature for one online signature. In the scheme proposed by ROHATGI, a
public scheme is used to sign n? offline signatures using a MERKLE authenti-
cation tree [Mer89] of degree n. This only requires 1 public key operation for
n? packets and the authentication tree is pre-computed offline.

According to some simulations performed in [Roh99], 500 to 1000 signature per
second can be generated this way on a workstation class computer. The overhead
includes the transmission of the offline public key certificate and the online signature
for each packet and amounts to approximately 300 bytes per packet.

Conclusion

Despite the potential gain in speed in terms of signature generation and the obvi-
ous advantage of signing each packet individually in terms of robustness, buffering,
latency and joinability, these signature still require a large overhead which makes
them impractical in many situations.
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3.2.3 Faster Signature Summary

The sections presented two improved signature schemes, yet none of them are sat-
isfactory in terms of overhead to sign packets individually. Though perhaps elliptic
curve cryptography and new signature scheme such as NTRU [HPS98] may open the
path to new performance and overhead improvements, signing each packet seems im-
practical today.

Nevertheless, these signatures may be an interesting alternative to RSA in the
hybrid approaches we review in section 3.4.

Faster Signature Summary

Scheme type: Online source authentication of lossy streams.

Advantages:

e Robustness: perfect robustness.

e Joinability: authentication can begin at any packet in the the
stream.

e Latency & Buffering: none.

Main Drawback: the main drawback is a high communication overhead.
In fact, both the adjustable version of the eFF'S and the k-time signa-
ture scheme have an even bigger overhead than traditional signatures.

3.3 Time Committed Authentication

Time Committed Authentication refers to a specific scheme proposed by PERRIG ET
AL. called TESLA[PCTS00]. Here, a signature scheme is used to sign a commitment
and the asymmetry of the signature is propagated by using a time based verification
condition. Note that TESLA does not aim to provide non-repudiation, only message
authentication. This however sufficient for many applications.

3.3.1 Basic Scheme

Let F and F' define 2 distinct pseudo-random functions[GGM84], where F* denotes
k successive applications of F, that is F*(y) = F(F* ' (y)) and F°(y) = y . From

a random seed z, we derive a pseudo-random sequence of n keys {Ky,..., K,} as
follows:
o K, =u

o K;=F"‘(z)fori<n
The main property of this sequence is that given K; and F alone it is computationally
infeasible to compute K;y; assuming F is pseudo-random. However, given K; such

that j > i it is straightforward to compute K; form K; since K; = FU=)(K;).
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Sender Tasks: Let K! = F'(K;). Consider now a sender who wants to send au-
thenticated data packets { My, My, ...} to a group of recipients. The sender produces
packets {Py, Py, ..., P,} that are transmitted individually every unit of time #; as
follows:

o (limety): send Py = Sign(F(Ky)), where Sign(F(K})) is the sender’ s digital
signature on F(K7).

o (time t;): send P; = (M;

K1), 7i), where 7; = MACK(M;]

K(i_y)).
Receiver Tasks: The verification of a packet P; follows three rules:

1. (Chaining) Check that F(K(;_y)) = K(j_z) (or if K(;_y) is missing apply F

until we reach a known value in the chain).
2. (MAC) Check that 7; = MACk (M;||K(;_y)).

3. (Time) Check that P; was received before time #(;41).

The main originality of TESLA resides in the third rule, which is time based. Note
that the second rule cannot not be applied before we receive P;1.1) = (M1 || K, Tig),
consequently the verification of a packet introduces a latency of one packet for the
receiver.

We propose a brief illustration of the TESLA scheme on figure 3.1.

Security

Informally, consider an adversary who wants to forge packets in this scheme. Since
the adversary is potentially one of the receivers we will assume that he knows both
pseudo-random functions F' and F’.

First we observe in the first rule that the receiver always checks that the key K;
is part of the one way hash chain, the first node of which is signed by the source.
Consequently, unless there is a flaw in F or in the original digital signature scheme
in packet Py, the adversary cannot forge K;. Neither can he change K! since it is
also derived from K; through a one way function.

Second, if an adversary wants to forge packet P;, unless there is a flaw in the
MAC, he needs to know K! to produce a valid tag 7; that passes the second rule.
To obtain K he needs to wait for packet F(i 1) which reveals K; needed to derive
K] = F'(K;). Since packet P,y is transmitted at time {(;11), the adversary will
only be able to produce a forged packet P; at a time greater or equal to ¢(;11). But
this attack will fail because of the third rule which does not allow a packet to be
accepted after its MAC key is revealed.

Consequently, these three rules seem sufficient to guaranty the security of this
scheme. For a more formal security analysis, we refer the reader to [PCTS00].
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K!_ K! K!
P } P
~(MAQ ~(MAC ~(MAC

Tic1 T Tit1
M1, Ki g M, Ki—y My, K;

Figure 3.1: The simplified TESLA scheme.

Losses

Once the initial commitment is received, the TESLA scheme tolerates arbitrary
packet loss. If k consecutive packets {Pji1,..., Pj4x} are missing after P; then
we can still compute the corresponding keys in the chain once we receive Pjijyq
which reveals K;i; and thus K;1x—1 = F(K;4+x) and so on until we get to K; =
F* (K, 111), which allows us to authenticate P;.

3.3.2 Enhancements

Our above description of TESLA is partially simplified and relies on an implicit
assumption: the sender and receiver have a common clock which allows them to
share the same values for ¢;. In practice, the sender and the receiver will need to
synchronize with each other. However the sender and the receiver only need to have
a loose synchronization. The receivers need to estimate the sender’ s time ¢; as well
as a value & which represents the maximum uncertainty on the senders time. The
third verification rule is simply reformulated as follows:

3. (Time) A packet P; arriving at time tfm must verify t;AR—I—cst < tig1)-

This new version of the security condition has still some drawbacks. First, it limits
the speed of the transfer rate since we must assume a time interval large enough
between ¢; and t;31 to accommodate the maximum estimation error §; of most
receivers, and it constrains the sender to output packets at a constant rate.

The authors of TESLA solve both problems. First, instead of revealing the MAC
key K] = F(K;) of packet P; in the next packet P,y they propose to reveal K; in a
further packet P,y4. This allows to increase the transfer rate, but also increases the
authentication latency. Additionally, the authors of TESLA propose to use a time
based key selection instead of an index based key selection. All packets send around
the same time use the same MAC key. More precisely, if the stream starts at time
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to then the index of a MAC key K of a packet transmitted at time ¢ is determined

as ¢ = \‘%J where Ta is the interval length. The third verification rule is then:

3. (Time) A packet arriving at time ¢4% apparently send at interval i

must verify {%J <1+d.

We refer the reader to [PCTS00] for methods relating to the selection of Ta and d.

Finally, the authors of TESLA propose to use multiple chains with different
choices of (Ta,d) to accommodate between different receivers with different band-
width and network delays.

3.3.3 Joinability

The scheme we described above clearly assumes that the receivers start authenticat-
ing from the beginning of the stream. To start authenticating a stream at packet
F(iy1) the receiver needs to:

1. Perform time synchronization with the source.

2. Receive a commitment Sign(F(K;)) to a key K; in the chain.

If we implement these operations on a receiver request basis, they will introduce
a two way communication between the source (or a dedicated server) and the re-
cipient. In [PCTS00] the authors suggest to perform periodic broadcasts of com-
mitments Sign(F(K;)), whereas time synchronization can be performed with dis-

tributed trusted time servers in order to avoid scalability issues.

If we perform periodic commitment broadcasts every b packets, this increases
the overhead per packet but allows the stream to be joinable every b packet.

3.3.4 Conclusion

TESLA is a very interesting approach for online stream source authentication where
nonrepudiation is not needed. It performs with a cost almost similar to simple
unicast MAC scheme. It has no sever side buffering with a very reasonable tradeoff
in terms of latency. We summarize our analysis in the frame blow.

60



An Overview of Authentication Algorithms 8.4 Hybrid Techniques

TESLA scheme summary

Scheme type: Online source authentication of lossy streams.

Advantages:

e Robustness: perfect robustness one the original

e Cost: low on average.

e Overhead: low, with only MAC key, a MAC for each packet
only (and the amortization of the commitments if periodic com-
mitment broadcasts are used).

e Latency: reasonable, depends on parameter d above.

e Buffering: none.

Main Drawback: Requires a loose but secure time synchronization be-
tween the source and the recipients, which is not always possible.
Moreover each secure time server is a potential target for an adver-
sary who wishes to subvert the authentication of packets.

Other characteristic: Requires periodic commitment transmission to al-
low joinability.

3.4 Hybrid Techniques

We refer to techniques which combine several hashes (or MACs) with a signature
as hybrid techniques. A single signature is amortized over a block of b packets.
While the previous scheme used time constrains to extend an initial commitment,
here, different hash techniques are used to extend the asymmetric properties of the
signature to all the packets in the block. These hash techniques are designed to
tolerate certain loss patterns.

3.4.1 Hash Trees

Hash trees which where proposed by WonG AND LAM[WL99] are based on MERKLE
authentication trees|Mer89]. Let H denote a keyless cryptographic hash function and
let .||. denote concatenation.

Background

Without loss of generality, we will only describe in detail the general binary tree
construction. Consider a block of b = 2% data packets {Dy, ..., D3} from which we
construct a fully balanced binary tree with n leafs as follows:

e Each leaf ordered from left to right represents the hash h; of a packets F;:
hi «+ H(P)
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‘ Pl‘ PZ‘ PB‘ P4‘ PS‘ PG‘ P7‘ PS‘

Figure 3.2: A 8 packet binary hash tree.

e Fach non-leaf vertex in the tree is the hash of its two children ordered from
left to right and concatenated.

An example of an hash tree for 8 packets is given on figure 3.2. For convenience we
identify vertices in an authentication tree by the hashes they represent. We will let
Parent(h;) denote the hash value of the parent of h;. For example on figure 3.2 we
have hi4 = Parent(hy2) as well as hyjg = Parent(hss).

Let Q; = {hi,, ..., hi,} define a path from the root to the ith leaf in the tree, the
hash of P;. For each packet P, we define the associated hash set @), as the set of (k—1)
hashes {h;,, ...,E-(k_l)} which verify (Parent(ﬁij) € Qi;ﬁij ¢ Qi). For example on
figure 3.2, the associated hash set of Q3 = {hys, h14, h3a, h3} is Q5 = {hss, h12, ha}.

Hash tree property: Given a data packet D; and its associated hash set Q;
it is always possible to compute the hash of the root of the tree.

Indeed from a packet D; we can compute H(P;) and combine it with further
hash operations with the values in Q; to recover the root of the tree. For example
in figure 3.2, we can compute hig form Ps and @3 = {hss, h12, ha} since we have
his = H(H (hyo||H (H (D3)||ha))||h5s).

Sender tasks: To send a stream of packets the sender divides the stream in blocks
of b packets and proceeds as follows:

1. Compute the hash tree associated to the packets of the block {Dy, ..., Dy}
2. Compute the signature o, of the root h, of the hash tree: o, < S(h,).

3. Fori=1,..,bdo
send P; = (D;]|Q;]|o)

The authors of the hash tree construction suggest to append the root signature
to each packet as illustrated on line 3. This allows each packet to be completely
independent from another so an individual packet can be verified even if all other
packets in the block are lost.
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Receiver tasks: The receiver who receives a first packet P; in a block will parse
P; as D;||Q;||o,, then it will use the hash tree property to recover the hash of the
root of the tree h, and next it will verify the signature. For the following packets in
the block, the receiver will not need to verify the signature again, he only needs to
compute enough hashes to verify that the packet is part of the hash tree.

Recalling figure 3.2, let’s assume that P; and P, are lost and Pj is received, form
P; = (D3||Q3||a,~) we can compute hgy = H(H(Ds||h4)), then hyy = H(hqa||haa)
and h,. = h1gs = H(h4||hss) and finally we can verify the signature with V(o,, his).
If the signature is valid and the receiver gets the next packet Py = (D4||Q4]|0,) he
will only need to verify that hy = H (D) since he already authenticated hy with Ps.

Conclusion

Appending the signature of the hash tree to each packet in a block makes the scheme
robust to arbitrary packet losses. The scheme buffers b packets, but has no authen-
tication delay. The computational cost of the scheme is one signature per block and
(2.b — 1) hashes. The overhead per packet is log,(b).h + s where h is the size of the
hash and s the size of the signature.

In this scheme, the choice of b is a compromise between buffering and overhead
versus the computational cost. If b is small then signatures will be verified and
generated more frequently which increases the computational cost of the scheme.
On the other hand, if b is large the server side buffering becomes important and the
overhead will be increased by a logarithmic factor.

We will illustrate this scheme in the two case scenarios we proposed in section
2.2.2, assuming a signature size of 128 bytes and a hash length of 16 bytes.

e CASE 1: We could assume that the traffic sensors don’t have any real buffer-
ing capacity so the hash tree construction might not be the best construction,
however, we propose to assume that b = 32. This gives us a signature ver-
ification approx. every 1.5 seconds and an overhead of 208 bytes ! This is
to be compared to the data itself which only represents 64 bytes. Clearly, if
these sensors communicate through a low bandwidth link, this overhead may
become an issue.

e CASE 2: In this case we can assume that both endpoints of the communica-
tion channel have better buffering and computational capacity than in CASE
1. If we choose b = 512, we have a signature generation and verification every
second, a buffering of one second of video on the sender side and an overhead
per packet of 272 bytes.

The main advantage of this scheme is its robustness, however this comes at a big
cost in terms of overhead, even bigger than signing each block with a traditional
signature. Additionally, in this scheme the sender is required to buffer b packets.
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Wong and Lam scheme summary

Scheme type: Authentication of lossy streams with nonrepudiation.

Advantages:

e Robustness: perfect robustness.
e Joinability: on every packet.

e Latency: none.
Drawbacks:

e Overhead: Even more than a digital signature. Uses Iny(b).h+s
bytes: a digital signature of s bytes is amortized over b packets
using Ing(b) hashes of h bytes.

Other Characteristic:

e Buffering: requires the buffering of b packets at the server.

e Cost: cost 1 signature and (2b — 1) hashes.

3.4.2 Hash Chains

Based on the observations of PAxsoN[Pax99] who conducted a large scale survey of
TCP/IP Internet communications and who showed that losses often occur in bursts,
GoLLE AND MopaDUGU[GMO1] proposed a stream authentication mechanism de-
signed to tolerate the loss of packets in bursts of at most 3 packets in a block.

Background

GOLLE AND MODADUGU construct a directed acyclic graph between the packets of
the block, by putting the cryptographic hash of a packet in one or several other
packets. The hash h of a packet P is computed over the data in that packet as well
as all hashes that have been appended to P. The value & is then appended to other
new packets, and so on, forming an acyclic graph over the packets. If a packet P’ is
signed then any packets P for which there exists a path in the graph joining P to P’
can be authenticated. In their work, GOLLE AND MODADUGU propose methods to
design such acyclic graphs in an optimal way regarding bursty packet losses. Their
simplest scheme is constructed as shown on the example of figure 3.3: the hash of a
packet P; is stored both as part of the following packet F;y; and as part of Fiy14p.
Finally the hashes of the last (3 + 1) packets are sent, along with a signature of
these (3 + 1) hashes for verification.

The same authors further refined their hash chain construction, to create “Aug-
mented Chains”, which require to buffer a few packets, but allows a smaller set of
hashes to be signed at the end. The principle remains the same and we refer the
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Figure 3.3: Augmented chain resisting to bursts of 6 packets in a 16 packet block.

reader to their work [GMO1] for details. It is worth noting that their first scheme
can tolerate several bursts in a block while the augmented chain construction may
have difficulties in some situations if there are several bursts in the same block,
consequently we will focus on their first scheme in this comparison.

Optimality. The authors of this scheme also proved that their constructions were
optimal in terms of overhead in the above setting. More precisely, if we restrict
ourself to hash graphs constructed by replicating the hashes of one packet in other
packets as above then the overhead per packet in terms of number of hashes is
optimal: each packet needs to carry at least 2 hashes in order to tolerate losses.
This fact is based on the following observation: if we want to authenticate packets
in the presence of losses than the hash of a packet needs to be duplicated in a at
least two different locations. (This result does not cover the overhead generated by
the signature.)

Analysis

Hash Chain Overhead: Let h denote the size of the output of the cryptographic
hash function we use, and let s denote the size of the digital signature. The authors of
[GMO01] do not detail how to choose 8 nor do they provide a clear method to deal with
signature loss except to suggest the transmission of several copies of the signature.
If these signatures are transmitted far enough apart, we can consider that their loss
probabilities are uncorrelated. If we assume that v signatures are transmitted, we
can approximate the cost of the hash chain construction as ég¢ (7y,b) = 7@# +
2h bytes per packets, with the notations already used throughout this work. The
size of b is essentially constrained by the authentication delay, which here is at most
the distance between the first packet of the block and the v** redundant signature
that is transmitted for that block. Since the simple hash chain construction is not
sender side buffered the 7 signatures pertaining to a block are transmitted after the
last packet of that block.

Recalling the Markov chain model of section 2.2.1 we estimated that the proba-
bility that a burst of k lost packets occurs is ¢.(¢ — 1)(]“_1) with an average length of
1/q packets in a burst. Consequently we will choose 3 in the hash chain such that the
probability that a burst exceeds § is low, for example such that 1 — Zlé“;(ﬁﬂ) q(1-

q)* 1 < 99%. If we refer to the two case studies in section 2.2.2, we would have:
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e CASE 1: We propose b = 160, v = 2, 8 = 21 since ¢ = 0.2. We would
transmit the first signature at the end of the block and the second signature
20 packets later (1 second). The probability that one of the signature arrives is
approximately 1—0.05% = 0.9975 and the overhead per packet is dgc (7, b) =~ 38
bytes.

e CASE 2: This case is more problematic because the network is extremely
lossy and the signature has a high probability of being lost. Indeed if we
take v = 8 the probability that one redundant signature at least arrives is
1 —0.6% = 0.99 (if we take v = 4 the signature arrival probability is lowered
to 0.87). But this means that each block is transmitted along with 4 to 8
signatures and it becomes difficult to define a reasonable size for b < 512. If
we choose b small then we need to compute several signatures per second and
we need to send several copies of each them during the same time (without a
guaranty that lost signatures will still be independent). If we choose b larger
then the probability of authenticating a packet within the authentication delay
becomes lower. As a indication, if b = 256, v = 8, § = 43 since ¢ = 0.1, we
have g (7,b) = 58 bytes.

No matter how good the network conditions are and no matter how long the block
size is, the hash chains have at least an overhead of 2.h per packets (with an addi-
tional amortized overhead for the signature).

Conclusion

The hash chain construction is an interesting authentication scheme which would
probably deserve greater analysis, such as the one we sketched here, regarding the
choice of 3. The main advantage is its simplicity and robustness to Internet like
packet losses, with a reasonable overhead. On the other hand, in bad network
conditions, signature loss issues may lower the probability of authentication or add
some authentication delay, as illustrated in CASE 2.
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Hash Chain scheme summary

Scheme type: Authentication of lossy streams with nonrepudiation.
This summary applies to the “simple hash chain” construction only.

Advantages:

e Robustness: tolerates several bursts of 3 packets in a block of
b packets.

e Joinability: on every packet.

e Overhead: 2 hashes, plus the cost of the reliable delivery of the
block signature (which may include multiple retransmissions).

e Buffering: none
Drawback: Signature transmission is not clearly addressed,

Other Characteristic:

e Maximum Latency: a block b packets, plus the time needed
for the reliable delivery of the block signature.

e Cost: cost 1 signature and b+ 1 hashes.

3.4.3 EMSS

Similarly to GOLLE AND MOGADUGU, PERRIG ET AL. used hash chain techniques
in their EMSS[PCTSO00] scheme, using a different methodology.

Background

As opposed to the work of GOLLE AND MoDADUGU, which uses a deterministic
edge relationship pattern among the packets in the chain, the EMSS scheme uses
randomly distributed edges.

The Basic Scheme.

In the first variation of the scheme, the current packet’s hash h; is replicated in e
distinct future packets and the distance between the current packet P; and the e
packets carrying h; is chosen uniformly in a finite interval [1, ..., €,,42]. Consequently
the hash h; of packet P; is carried in Piyq,,...,Pi+q, where dy, ..., d. are distinct
random values in [1, ..., €,4,]. This is applied to all packets regardless of any block
consideration.

Packets are only grouped in blocks of b packets for signature purpose: the last
€sig hashes of each block are grouped together and signed. The signature packet
is thus composed of ez, hashes and the actual signatures of these hashes. The
signature packets is transmitted v times to accommodate for potential loss. Note
however that if no signature packets pertaining to a block B; arrive, then the next
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Signature of first block Signature of second block
Transmitted severall times Transmitted severall times

Figure 3.4: The Basic EMSS Scheme

block By; ;1) may still be used to authenticate B; because the hash chain runs across
block boundaries. In that case however, the authentication latency of block B; is
increased.

We sketch a simplified illustration of the basic EMSS scheme on figure 3.4.

The EMSS scheme is parameterized by many variables:

e ¢ : the number of replications of the hash of a packet.

€maz: the maximum size of a single edge in the hash chain.

€sig: the number of hashes in the packet signature.

e b: the size of a block (equivalent here to the frequency of a new signature).

~ : the number of copies of a block signature that are transmitted.

Because of the large number of parameters, the authors of EMSS chose to run
simulations, combined with some heuristics in order to tune these parameters, thus
we cannot provide any analytical results here. They first assumed independent
packet losses, and refined their results by simulating the network losses with a 2
state Markov chain (see section 2.2.1).

A subtle point of the EMSS scheme is the reconstruction of the random graph
by recipients. If this graph is truly random, how do the recipients know how to
reconstruct it 7 In their work, PERRIG ET AL. (section 3.4, footnote 9 in [PCTS00]),
suggest two possible approaches to deal with this issue: first since the probability
of a collision in the output of the hash function is negligible, we can store the last
emar hashes of packets we received, if any packet carries one of the copies of that
hash then the packet is considered verified. The second approach is to construct
a deterministic computable random graph over the packets. Though no details are
provided in [PCTS00], in that case, we believe that some additional information
will need to be provided to the recipient when he begins authenticating the stream
(joinability).
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The Extended Scheme. The authors of EMSS noted that the scheme carries
some redundancy since the hash of a packet is reproduced in e different locations.
As an alternative approach they suggested to split the hash in several chunks and
use a recovery scheme that allows to recover the hash if &’ out & chunks are re-
covered. An example of such a recovery scheme is RABIN’S Information Dispersal
Algorithm[Rab89]. In some situations, recovering &’ blocks out of k, provides more
robustness than recovering 1 packet out of e. The authors give the following exam-
ple: a scheme with packet loss probability of p = 60% and 80 bit hashes. In the
basic EMSS scheme they would use e = 6, and if we assume independent packet
loss, then the probability that one packet arrives is 1 — ¢ = 0.95. In the extended
EMSS scheme they construct & = 30 chunk of 16 bits each such that &’ = 5 chunks
are enough to recover the original 80 bit hash of a packet. The probability that a

receiver gets more than 4 packets is then 1 — Z;Zg( 3;) ). (1 — q)F =~ 0.9999,

higher than in the basic scheme.

Analysis

Let h denote the size of the output of the cryptographic hash function and let s
denote the size of the digital signature. The authors of EMSS do not provide a
detailed algorithmic description of their parameter selection or simulations. Conse-
quently, we can’t provide a precise relationship between the different parameters of
the scheme and the network loss patterns, or the authentication latency. What we
can simply say is that in the basic scheme the overhead per packet is L-I_Z“gﬂ—l—e.h,
in the extended scheme the overhead will further depend on the choice of & and &’
in the recovery scheme.

Since we borrowed the two case studies presented in EMSS in section 2.2.2, we

can conveniently recall their results here:

e CASE 1: They chose e = 2, e42 = 50, €55 = 5 and b = 100. The choice of
b = 100 is to have an most ten second verification with high probability. The
basic scheme is sufficient here and yields an average overhead per packet of 22
bytes and a verification probability of 98.7% according to their simulations.
This result presented in[PCTS00] assumes a hash of 80 bits. Since this not a
secretly keyed hash function we believe that this choice is a little weak. Also
to make a fair comparison with other scheme, we compute their result with a
128 bit hash (such as MD5[Riv92]). This leads to a readjusted overhead of 34
bytes.

e CASE 2: Here they chose e = 6, e5;; = 40 and b = 200 (the choice of €45
is not clear in [PCTS00]). Here the authors use the extended scheme to split
the hash in & =25 chunks. The signature is send twice for each block of 200
packets, thus each packet can be verified with approximately 5 signatures per
second (there are 512 packets per second, if we assume independent signature
packet loss, the probability that one of the 5 packets arrive is 1 — p® = 92%).

The overhead per packet here, again with a 80 bit hash is about 55 bytes per

packet or w} + 50 with 25 chunks of 2 bytes each (their simulation
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predicts an average verification probability of 97% on the final 2000 packets
with a minimum verification probability of 90%). If we adjust the hash length
closer to 128 bytes (we use 120 bytes instead for convenience), each chunk is
now 3 bytes and the overhead becomes i% + 75 or approximately 82
bytes.

Conclusion

With adjusted hash lengths the case studies gives a better perspective to compare the
EMSS scheme with the previous Hash Chain proposed by GOLLE AND MODADUGU.
In CASE 1, both schemes are equivalent in terms of overhead with a slight advantage
for EMSS due to their better signature management. In CASE 2, EMSS has a greater
overhead, but recall that the scheme of GOLLE AND MODADUGU requires more
signatures packets to achieve similar robustness. Both of these hybrid schemes where
published independently and we believe that a combination of both approaches could
lead an interesting scheme: use the simple hash chaining technique from GOLLE AND
MobpADUGU, while extending it across block boundaries like EMSS as well as using
the same approach as EMSS to distribute the signature packets.

EMSS scheme summary

Scheme type: Authentication of lossy streams with nonrepudiation.

Advantages:

e Robustness: tolerates several bursts of 3 packets in a block of
b packets.

e Joinability: on every packet (if a method to reconstruct the
random graph is provided a priori to the receiver).

e Overhead: e MACs and + signatures amortized over b blocks.

e Buffering: none.

Drawback: This scheme has no serious drawbacks regarding the list of
requirements we established in Chapter 2. However, in [PCTS00] no
clear method is provided for the parameter selection, which would be
beneficial to further comparison with other protocols.

Other Characteristic:

e Maximum Latency: a block b packets, plus the time needed
for the reliable delivery of the block signature.

e Cost: cost 1 signature and e.b+ 1 hashes.
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3.4.4 Conclusion.

The most interesting multicast schemes presented in this chapter are TESLA, Hash
Chains and EMSS. In environments where secure time synchronization is possible
and where non repudiation is not required, TESLA is the most interesting authenti-
cation scheme. In other situations a combination of Hash Chains with the signature
chaining mechanisms of EMSS is probably an approach that would deserve further
study. Moreover, in these schemes, traditional signature schemes can be replaced
with faster alternatives such as those presented in the first part of this chapter to
achieve even better performance.

There has been some attempts to provide a more formal framework to the con-
struction of hash or MAC graphs by MINER AND STANDON[MSO01]. These authors
work with an offline approach, where the first packet of the stream is signed and
the hashes or MACs are computed before the stream is broadcasted. Nonetheless
some of their results confirm the good properties of random graphs as used in EMSS
for independent random losses. They also propose methods to construct graphs
with different authentication priority classes, in order to increase the authentication
probability of some packets and reduce it for other. They argue that it is interesting
for application level protocols such as MPEG where certain frames are more im-
portant than others (such as synchronization frames). We refer the reader to their
work for details. Note that one of the main conclusions of their work is that “there
is still much to be done towards forming a comprehensive theory of graph based
authentication schemes”.

In the next chapter, we propose a nonrepudiation scheme that is in the same
category as EMSS and Hash Chain but achieves even lower communication overhead,
additionally providing a uniform mechanism to deal with both data and signature
packet loss.
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Chapter 4

An Integrated Online Stream
Authentication Algorithm

4.1 Introduction

The scheme presented in this chapter, which is based on [PM02a], uses a combina-
tion of hash and signature techniques with FEC, or more precisely, erasure codes.
The two most employed techniques to achieve reliable delivery of packets in com-
puter communication protocols are ARQ (Automatic Repeat reQuest) techniques
and FEC (Forward Error Correction). ARQ techniques are used every day in In-
ternet protocols such as TCP, while FEC techniques have long been confined to the
telecommunications world. However, there has been recently a surge of interest for
FEC techniques in the Internet world, often in combination with more traditional
ARQ approaches|]NBT98, BLMR98]. While in the telecommunications world FEC
techniques are used most often to detect and correct errors occurring in the trans-
mission of a stream of bits, they are used in the Internet world to recover from the
loss of packet sized objects. Indeed, in the Internet world a packet is either received
or lost. A packet can be considered lost if it does not arrive after a certain delay or
perhaps if it has a bad checksum. Considering the hybrid schemes in the previous
chapter, a preliminary idea could be to use FEC to transmit the signature alone,
but it turns out that FEC can also be used as a complete alternative to hash trees
or chains (section 3.4) to transmit authentication information, with lower overhead
per packet in most cases than any other scheme suitable for live broadcasts.

A brief overview of erasure codes will be presented in the next section. Our
scheme is formalized in section 4.3 as well as its relationship with Internet loss
patterns based on the Markov chain model of section 2.2.1. Section 4.4 discusses the
cost and overhead of our scheme and presents its use in a few concrete scenarios.
Finally, we compare other practical online lossy stream authentications schemes in
section 4.5 with our approach.
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4.2 Background

4.2.1 Erasure Codes

Erasure Code techniques are quite similar to secret sharing schemes[Sha79] that are
used in some cryptographic protocols. An erasure code generation algorithm Cf
takes a set X = {ay, ..., xx} of k source packets in a block and produces (k+r) code
packets:

{yh ceey y(k—l—r)} — Ck,r(X)

The main property of the set Y = {yy, ..., y(k_H)} is that any subset of k elements
of Y suffices to recover the source data X with the help of a decoding algorithm
Dy. To be exact, the decoding algorithm Dy needs to know the position, or index,
of the k received elements in Y to recover X. This information can often be de-
rived by other means (such as the packet sequence number) and we will assume in
the remaining discussion that this information is available implicitly to Dy. If the
first k& code packets are equal to the source packets, that is {yy,...,yx} = X where
{U15 s Yhtr)} ¢ Crr(X), we call the code systematic and the extra redundancy
packets {y(k+1), e y(k+r)} are called parity packets. Systematic codes are very use-
ful since they do not require any additional processing from the recipient in the case
where no loss occurs.

It is important to note that Erasure Codes are not used in the same context in
the Internet as in telephony. Here the codes are not designed to recover damaged
packets but rather the loss of full packets in a block of several packets. Intuitively,
a individual packet can therefore be viewed more like a single code symbol rather
than a set of symbols. For a good introduction to practical erasure codes we refer
the reader to the work of L. R1zz0[Riz97] where Reed-Solomon erasure codes are
described. These codes operate in GF(2") and may not be efficient for large data
blocks of packets (several hundred kilobytes). However, they are suitable in our
scenario since we work on data units that are much smaller than a packet (typically
16 or 20 bytes), as shown below. For faster codes, we refer the reader to the work

of M. LUBY ET AL. on Tornado Codes [LMST97, BLMR98], where codes with near
linear coding and decoding times are described.

In the remaining of this work, Cy .(.) will describe a practical systematic erasure
code generation algorithm which takes k& source packets and produces (k + r) code
packets. If X = {zq, ..., 21} is the source data and Y are the r extra generated parity
packets, we will write {X;Y} < C%,(X). The corresponding decoding algorithm
will be denoted Dy (.) and if Z describes the set of received elements and X the source
data, we will write X <+ Dy(Z) to describe the recovery process (where #7 > k).

4.2.2 Notations

In this work we will consider a stream to be divided in consecutive blocks of b
packets. Since a stream does not necessarily exactly contain a number of packets
that is an exact multiple of b we allow the use of dummy padding packets at the
very end of the stream to match a b packet boundary. Our authentication scheme is
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parameterized by b the block size in packets and p € [0..1] the maximum expected
loss rate per block.

We will denote H as a cryptographic hash function such as SHA[Nat95] or
MD5[Riv92] which produces hashes of h bytes. The couple (S,V) will denote the
digital signature and verification algorithms respectively associated with the source
of the packet stream, such as RSA[RSA99, BR95] for example. The size of the sig-
natures will be expressed as s bytes. For RSA, a typical value for s is 128 bytes (or
1024 bits).

4.3 Stream Authentication

4.3.1 Authentication Tags

Consider a block as a sequence of b packets [Py, ..., P]. Let {hq, ..., hs|h; < H(F;)} be
the set of hash values of these packets with a cryptographic hash function H(.). From
this hash set we build a set of b authentication tags {7y, ..., 7} with the following
algorithm 7 ), which uses some of the notations introduced in the previous section:

Tag generation: Ty
INPUT: {hy, ..., l}
OUTPUT: {r,..,7}

{X; X} & Cy o (X) (1)
o = S(H (hyl]...|[hs)) (2)
{Y;V} CLb(l—p)J,[pb'I (YHU) 3)
Split {Y:;Y} into b equal length tags {1, ..., 7}. (4)

We propose a more visual representation of the tag algorithm on figure 4.1.

We observe that Ty ) uses two different erasure codes, in steps (1) and (3). The
values {Y;Y} on line (3) is of total length that is a multiple of b bytes, because
we have b = |b(1 — p)| + [pb]. This allows us to divide {Y;Y} into equal length
tags on line (4). To exploit the tag generation algorithm we will first define our
authentication criterion:

Authentication criterion: In this work we say that a packet P; is fully au-
thenticable in a block if, given the set of hashes 7 = {hq,..., s} of packets in the
block and their signature o = S(H(Z)), we can verify that both V(o, H(Z)) = true
and H(P;) = h;.

The proposed schemes in this work are based on the following property of the
tag generation algorithm.

Proposition 4.1 Let Il = [Py, ..., P)] be a block of b packets and {hy, ..., hy|h;
H(P;)} its associated hash set. If we compute A = {7y, ..., 7o}  Tppp)({h1, .y Bp})
then any subset of at least |b(1 — p)| packets in Il can be authenticated using any
subset of at least |b(1 — p)| tags in A.
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P |\P Py |Py |Ps |FPs |Pr PP

X ={h1,ho,....hp}

Erasure Code 1

T1

Figure 4.1: the tag generation algorithm
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Proof. Define r = [b(1 —p)]|. Let II' = [P,,, ..., P.,] be a subset of r packets in II
and let A’ = [7,,, ..., T,,] be a subset of r packets in A. We can compute {X||o} +
D\y(1-p)) (A’) since A’ contains r = [b(1 — p)] elements. Let £ = {h. ..., he |he;
H(P.,)} be the hashes of the received packets. We can recover {h1, ..., hy} form B and
X by computing {hy, ..., hs} < Dy(E||X). Finally we can compute V(o, {hy, ..., hs})
to authenticate the received packets II’ to verify our authentication criterion. &

A direct corollary of the proposition above is that both a block of packets and
their authentication tags can withstand a loss rate of at most [pb] elements while
allowing us to authenticate the remaining packets.

Finally, from the construction of the algorithm above we can determine the size
of an authentication tag:

Proposition 4.2 Let h define the length of our cryptographic hashes and s the
size of the signatures. The size of an individual authentication lag is expressed as a
function 6(b, p) of both the number of packets in a block and p the mazimum expected
loss rate per block, as follows:

R(1-py (s + [p-b] h)
[(1-p)b]

where R, (z) is an integer function which returns the lowest multiple of n greater or
equal to z.

6(b,p) =

Proof. Let y denote the size of the value {Y;Y} and z the size of X||o padded to
the proper length, both on line (3) of the algorithm. We have §(b,p) = y/b. From

the erasure code parameters on line (3) we have y =z [(Tﬁ)ﬁ]p‘;bfjp-ﬂ =z L(_l—bp)bJ and
thus §(b,p) = 7=577- The value of z is the the sum of the size of X and the

L(1-p)b]"

signature o, padded to the appropriate length for the erasure code of line (3). From
line (1) we compute the size of X as [p.b] h and write s as the size of o which yields

T = R[(l—p)bj (S + ’—p.b-‘ h). ¢

4.3.2 Proposed Schemes

In our stream authentication scheme we propose to piggyback authentication tags
in the packets of a block and use Proposition 4.1 to authenticate received packets
when the loss rate in a block is less than p. We propose 3 different variants of our
scheme which only differ by the positioning of the authentications tags.

In this section we will denote a stream as a set of m blocks By, ..., B,,. The
individual b packets in each block B; are identified as PJi, 1], ..., P[i,b]. The corre-
sponding authentication tags are identified as 7[7, 1], ..., 7[7, b]. The packets P[i, j] are
a combination of just two things: a stream data packet D[i, j] and an authentication
tag.

ECU: The unbuffered sender scheme. In this scheme we use packets in a

block By;,) to piggyback authentication tags related to block B;. The 7t packet

in a block B; is thus defined as P[i,j] = {D]i,j]||7[¢ — 1,7]}. This requires the
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Figure 4.2: The ECU scheme

sender to create an extra padding dummy block By, ) to allow the last block By,
to be authenticated. This scheme has the particularity that it does not require any
stream data packet buffering from the sender, only the hashes of the packets in the
current block need to be stored by the sender who can then compute the necessary
authentication tags to be piggy-backed in the next block. In this sense, this scheme
is truly an live authentication scheme. The tradeoff of this construction is that
the receiver will experience a delay of two blocks in the worst case before he can
authenticate the first packet in a blocks he received.

This construction creates a dependency between two consecutive blocks, thus in
the event of a loss that exceeds the threshold p and in particular if a whole block B;
is lost than we will not be able to authenticate B(;_y).

An interesting aspect of the ECU scheme is that it also gives an extra amount
of time for the sender to compute the signature of a block and the second authen-
tication code. Recalling line (3) of the tag generation algorithm we have {Y;Y} «
Clo1-p) ], [pb] (X||o) where {Y;Y} is split in b authentication tags. Accordingly we
can rewrite {Y;Y} as {X||o; Y}, thus the first Z|Y| authentication tags will contain

elements representing X, then the next group of l|5| tags will represent the signature
o and finally the last group of tags will represent the b— Z|Y| —l|,| associated parities.

Consequently, the first authentication coding operation on line (1) of our algorithm
needs to be produced before sending block B;1), however, the signature on line (2)
only needs to be computed after the first llm packets of B(;;) and the second code

on line (3) only needs to be ready after the I|Y| + ) first packets of Bty

EC2: The double buffer scheme. Instead of piggy-backing tags in the next
block, we examine the possibility of piggy-backing tags in the previous block. In
other words, the tags of block B; are put in the packets of block B(; ;) and the
packets in block B; are defined as P[i,j] = {D[i, j]||7[{ + 1, j]}. This requires the
sender to create an extra padding dummy block at the beginning of the data stream.
The main advantage of this construction is that the receiver can authenticate each
received packet immediately upon reception. The main drawback of this scheme is
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Figure 4.4: The EC1 scheme

that it requires the sender to buffer two blocks at a time. In this sense it is not a
truly live scheme but in some applications, our double buffering is still acceptable.

This construction also creates a dependency between blocks similar to ECU, with
similar consequences.

EC1: The single buffered scheme. The most obvious construction and perhaps
the one that offers the best compromise between the sender buffering and the receiver
authentication delay is to piggyback the tags of a block B; in the block B; itself.
Packets in a block are simply defined as P[i,j] = {DJi,j]||7[{,j]}. This scheme
requires the sender to buffer one block and adds a maximum verification delay of
one block for the receiver.

A advantage of this scheme is that it does not create a dependency between
blocks, thus if a block losses packets beyond the expected maximum loss rate p, the
authentication of neighboring blocks in the stream remains unaffected.
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4.3.3 Parameter Choice

Until now we proposed a method which can authenticate a block when a threshold of
less than pb packets are lost in a block of b packets. However we need to relate these
parameters to concrete average network loss patterns and we will now discuss the
choice of the 2 main parameters of our scheme: b the block size and p the maximum
loss rate per block.

The goal of an hybrid scheme is to amortize the cost of a signature over several
packets. Thus the greater the block size, the less often we will need to compute
a signature. On the other hand the block size influences the authentication delay
and /or the sender buffer size, depending on which scheme is chosen. The EC2 has the
lowest possible authentication delay (1 packet) but the biggest buffering, whereas
ECU has no sender-side packet buffering but a maximum 2 block authentication
delay. As we said above, EC1 seems to be a good compromise in most situations
with both a buffering and a maximum authentication delay of one block. Once a
scheme is chosen, we recommend to choose the largest possible block size b within
the constraints of the application authentication delay requirements.

The parameter p depends on the loss pattern of our network, according to the
Markov chain model presented in section 2.2.1. The strategy we followed in this work
was first to choose b, then to simulate a Markov chain over a very large number of
blocks and adjust the parameter p such that most blocks would be verifiable (we
chose an arbitrary value of 99% verifiable blocks). The Markov chain parameters
were derived from p: the average loss rate and my: the average burst length. Note
that here the number of losses in a block of b packets can be successfully modeled as
a the number of successes in trials of a Bernoulli process with parameter 7y, which
is approached by the normal distribution. This approximation could also give us
some analytical results but we found the simulations to be more informative.

4.4 Discussion

4.4.1 Computational Cost

Our scheme involves 3 types of operations:
e cryptographic hash computations.
e a digital signature.

e 2 coding and decoding operations.

For each block, the source needs to compute b hash operations, a digital signature
(which includes a hash), and generate the 2 codes. Here, the hashing and sign-
ing costs are equivalent to other hybrid schemes such as EMSS[PCTS00] or Hash
Chains[GMO01]. The amount of computation done by the recipient depends on the
loss in the network, in an ideal situation he just computes b hashes and verifies a
signature. If packets are lost some additional decoding operations will be needed.
The codes are used to recover hashes of packets, rather then the packets themselves,
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thus we will be manipulating small amounts of data. In traditional uses of Erasure
Codes, the packets size L is typically over a thousand bytes, while here, we are
looking at figures ranging from L = 1 to L = 150 bytes in the most extreme cases.

If we take a simple Reed-Solomon Erasure Code[Riz97], the computational de-
coding cost is O(m.e.L) where m is the number of original message packets, and e
the additional parities needed (corresponding to the loss) and L the size of a packet.
The coding cost is similarly in O(m.k.L) where k is the number of parities.

For demanding situations, we can turn to more efficient codes such as Tornado
Codes[LMS*97]. These codes are probabilistic and come with what is called a
slight “decoding inefficiency”: (1 4 £)m packets are needed to recover m original
packets with high probability. These codes use the binary XOR operation as a basic
operation as opposed to Galois Field operations in the Reed Solomon case, thus we
achieve very efficient coding and decoding times of O((m + k)in(1/e)L). Note that
the use of tornado codes would thus conduct us to modify our definitions in section
4.3 to take the decoding efficiency into account. However, in [BLMRYS] significant
values of € = 0.05 are considered, thus the results we propose in this work should
not be significantly different with such a small overhead increase if we use Tornado
Codes.

Compared to other hybrid live authentication streams, the main tradeoff of our
scheme is the additional computational cost generated by the erasure code. However,
since we are operating on a small code packet size, the cost over a block should remain
very reasonable. We will show in the next section that the substantial gain we can
achieve in terms of overhead per packet is clearly worth the extra computational
effort.

4.4.2 Overhead
Evaluation

The overhead in bytes per packet of our 3 schemes is uniquely defined by the size of
an authentication tag. Thus, recalling Proposition 2 in section 4.3 we can express
the overhead as a function (b, p) of the maximum expected loss rate per block p
and the number b of packets in a block:

5([),])) =

where R, (z) is an integer function which returns the lowest multiple of n greater
or equal to z.

We would like to emphasize again that this overhead includes the signature over-
head. Table 4.1 presents a sampling of d(p,b) for different values of p and b, with
s = 128 bytes (1024 bit RSA) and h = 16 (MD5[Riv92]). Note that §(b, p) remains
surprisingly small if either b large or p is reasonably low.

Case studies

We now evaluate our scheme in the two EMSS case studies proposed in 2.2.2:
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| p\b [ 16 [32 | 64 [ 128 | 256 | 512 | 1024 |
005106 4] 2 [ 2] 2] 1
01012 |7 |5 3 | 3 [ 3| 2
02516 11| 8| 7 | 6 | 6 | 6
050 | 3224 [20] 18 [ 17 | 17 | 17
0.75 [ 80 | 64 | 56 | 56 | 50 | 49 | 49

Table 4.1: Overhead bytes per packets for different values of p and b

‘ loss rate ‘ mean burt length H b ‘ P H 5(p,b) ‘
Example 1 5% 5 100 | 0.27 8
Example 2 60% 10 512 | 0.73 45
Example 3 10% 3 32 | 0.47 22
Example 4 10% 50 512 | 0.50 18
Example 5 80% 10 200 | 0.905 160
Example 6 5% 5 1024 | 0.1 2

Table 4.2: A few case studies.

e CASE 1: We propose to use the ECU scheme since the sensors may have lim-
ited memory, thus the verification delay of 10 seconds allows us to use a block
of 100 packets (200/2 since a block is authenticated by the next one). Given
the drop rate and the average length of bursts, we constructed a corresponding
2 state Markov chain with r = 0.010526, ¢ = 0.2 and simulated it over 10000
blocks of 100 packets. For Markov chain simulation techniques we referred to
HAcasTrROM[Hag02]. We found that 99% of those blocks experienced a loss
less than 27 packets, thus we decided to choose p = 0.27. The overhead! per
packet is then only §(100,0.27) = 8 bytes !

e CASE 2: We propose again the EC1 scheme and, because of the verification
delay, we have to limit b to 512 packets. We simulated the corresponding
Markov model over 10000 blocks and found that 99% of those blocks experi-
enced a loss of less than 375 packets. We decided to choose p = 0.73 = 375/512,
which gives us an overhead per packet of §(512,0.73) = 45 bytes.

As a complement to the two proposed scenarios above, Table 4.2 shows a few
of our other simulation results, following the same approach as above for different
average burst loss lengths and loss rates. Example 1 and 2 simply repeat the two
case scenarios above. Example 3 shows that with a small block size, parameter p
is significantly higher than the network loss rate. Similarly, an extreme average
burst length increases the value of p as shown in example 4. Finally we have two
extreme examples of the parameters of our scheme: first, a very lossy network that
requires 160 bytes of overhead per packet, which is more than the size of a public
key signature, and finally we have an ideal case, with a small loss and a long block
size, which gives us a surprisingly low overhead per packet of 2 bytes !

'If we had chosen the EC1 scheme instead, we would have b = 200, p = 0.2 and 5(b,p) = 5.
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4.4.3 Denial of Service

In their work presenting offline stream authentication techniques[MS01], MINER
AND STADDON briefly discuss the use of Erasure Code techniques as an additional
robustness mechanism. Their objective is different from ours here, since they use
Erasure Codes as a mean to “reinforce” their “hash and MAC chain” rather than as
a substitute as we do. However, they make an interesting remark that Erasure Code
techniques may be vulnerable to “Denial of Service” since an adversary who modifies
the transmitted parities may render the authentication of the received packets im-
possible. We observe that this remark is also valid for our scheme: if a some packets
are lost and if an adversary modifies the tags piggy-backed on the data packets the
verification process may not function properly if the decoding algorithm requires
those parities. However, we would like to highlight that with or without erasure
codes, this type of vulnerability exists in almost all stream authentication schemes.
If an adversary modifies a single bit of the signature packets then the corresponding
block is not verifiable ! The only exception is perhaps the Wong and Lam hash tree
scheme[WT1.99], which truly allows packets to be verified individually by transmitting
a copy of the signature with every packet.

Consequently we believe that this issue is relevant to almost all stream authen-
tication schemes and is not specific to the use of Erasure Codes.

4.5 Comparison

For online lossy stream authentication, following the conclusion of the previous chap-
ter, we consider 4 possible alternatives: TESLA, Hash Chains, EMSS and our own
scheme.

The comparison with the TELSA scheme is only partially relevant here because
TESLA does not provide nonrepudiation and requires an additional time-based se-
curity condition, which is absent in the 3 other schemes. Nevertheless, we have
chosen to include the TESLA scheme here for completeness.

Robustness

TESLA is clearly the best scheme in terms of robustness, while the 3 other schemes
offer rather equivalent levels of robustness, with a little advantage for our scheme
since it implicitly provides the signature with the same level of robustness as data
packets.

Cost

Though TESLA may seem at first glance much less expensive than the 3 other
schemes, we remark that this depends on the level of desired joinability. Since
joinability in TESLA requires the periodic transmission of commitment signature
packets, the cost of TESLA will approach the cost of the 3 other schemes, if frequent
commitments are broadcasted. While Hash Chains and EMSS can be considered
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roughly equivalent, our own scheme is more expensive since it requires additional
error correcting code mechanisms.

Joinability

The level of joinability of TESLA depends on the transmission of commitments.
Nonetheless, once a recipient holds a commitment for the stream he can trace back
any packet to that commitment. Consequently once a commitment is received, the
stream offers joinability on any packet. Hash Chains and EMSS are joinable on
every packet even if packets are signed over a block. Our scheme is designed to offer
joinability on a block boundary.

Buffering

If we consider the ECU, the unbuffered version of our scheme, all 4 schemes have un-
buffered server side packet authentication. All 4 schemes require the storage a hashes
or MACs on the server, though in this regard TESLA is clearly more demanding
since it requires the storage of set of keys representing the whole stream. It is how-
ever, reasonable to assume that servers in large multicast commercial applications
will be provided with sufficient resources to store these keys.

Latency

In TESLA the latency depends on the parameter d as described in section 3.3. In
the remaining 3 proposals it depends mainly on the block size b, but also on the
reliable delivery of the signature. Our ECU scheme has a maximum latency of 2.b
packets, while our EC1 scheme has a maximum latency of b packets. In both EMSS
and Hash Chains, depending on the signature retransmission policy, the maximum
latency will be at least b packets and may increase significantly with higher losses
in the network if multiple signature retransmissions are necessary. Note the EC2 is
the only scheme here which provides no latency (at the cost of increased sever side

buffering).

Overhead

TESLA is the only scheme which has a constant and low overhead no matter what
the network losses are. The transmission of the commitment increases the overhead
if periodic commitment transmissions are used every r packets to allow joinability.
However, as the receiver only needs to get one commitment to authenticate the
stream while other schemes require a signature to be delivered for every block of b
packets, it does not make sense to compare TESLA with the 3 other schemes, by
assuming r = b for example. Nonetheless we have a lower bound of one MAC and
one MAC key on the communication overhead of TESLA, taking a 80 bit MAC with
a 128 bit output such as MD5-MAC, we have at least 26 bytes.

Now, we turn our attention to the 3 nonrepudiation schemes. We reproduce the
results of our two test cases, using readjusted hash sizes for EMSS in order to make
the comparison fair :
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\ | CASE 1 | CASE 2 |

Hash Chains 38 58
EMSS 34 84
Our scheme 8 45
|  TESLA 26+ | 264
In the two test cases, our scheme has a lower overhead than Hash Chains and

EMSS. TESLA has a better overhead in the very lossy network in CASE 2. But
perhaps more surprisingly our scheme achieves an overhead that is clearly lower
than TESLA in CASE 1. In fact, in situations where the network does not have
excessive losses, our scheme offers the lowest overhead. This can be explained by the
fact that we replaced the hash chaining mechanism with erasure codes, consequently
the lower optimal limits that GOLLE AND MODADUGU used for hash chains do not
apply in our setting. Indeed, Hash Chains carry at least two hashes on average,
which amounts to 32 bytes for MD5, and TESLA has an incompressible 26 byte
overhead, while the table above shows that our scheme can achieve substantially
lower overhead, as low as a few bytes.

Conclusion

In this chapter we proposed a new approach to online lossy stream authentication
with nonrepudiation, which offers joinability on block boundaries. Where previous
proposals used hash linking, we use erasure codes to achieve a lower overhead per
packet. Moreover, we propose a concrete mechanism describing how to transmit
the authentication information as well as the signature associated to a block with
equivalent recovery probabilities. We proposed buffered and unbuffered variations of
our scheme which offer an interesting alternative to other live stream authentication
mechanism in many situations.

We believe that our scheme offers some interesting perspectives for future work.
In particular, it would be interesting to deepen the analysis of the choice of parameter
p, with a more analytical model.
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Confidentiality






Chapter 5

Definitions and Requirements

Introduction

This part of the thesis addresses confidentiality for a large dynamic multicast group.
Providing confidentiality in an open environment such as the Internet requires the
use of encryption since it is assumed that adversaries are able to eavesdrop on
the communication links. To clarify our discussion of encryption in the context of
multicast we will use the following terminology:

Source: We call source an entity that wishes to transmit a certain content to a
selected set of chosen recipients using multicast.

Content: We always use the words multicast content to refer to the actual cleartext
data that the source wishes to transmit securely over a multicast channel.

Recipient: We call recipient any entity capable of receiving multicast packets from
a certain group, regardless of its capacity to actually decrypt the multicast
packets to access the content. The only limit to the set of recipients is dictated
by multicast routing protocol restrictions, mainly the scope of the multicast
group which is limited by the TTL! selected by the source.

Member: We call member, a selected recipient which has been given cryptographic
keys that enable it to access the content of the received multicast packets.

Membership Manager: A membership manager describes the entity (or entities)
that grants or refuses membership to recipients.

The primary focus of this part of the thesis is to analyze and propose methods that
allow a dynamic set of members to access the multicast content transmitted by a
source while disallowing other recipients to do so.

Typical large scale multicast application scenarios that require confidentiality
services are:

e Pay-per-view TV,

'TTL: Time To Live field of the IP packet.
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e High quality streaming audio,
e The distribution of software updates,

e News feeds and stock quote distribution,

All these scenarios involve one of very few sources and potentially a very large
amount of members or clients. In this thesis we have chosen to put an emphasis on
solutions guided towards these scenarios. In particular we do not deal with dynamic
peer groups [BD95, STW96, STW9S8], which involves secure n-to-n communications
in much smaller groups through the cooperation of the entities in the group. Though
this work deals with a selective broadcasting medium, we do not either aim to provide
a solution to the problem of broadcast encryption [FN93] where each message is
encrypted for an arbitrary and potentially disjoint subset of a larger known group.
In particular, in our setting, the set of potential members is not necessarily known
a priori. Consequently, we assume at least a minimal unicast back channel between
the recipients and a membership manager. This channel is used at least once when
a recipient sends a request to a membership manager to become a member of the

group.

5.1 The Security of Dynamic Groups

We qualify the set of members as dynamic because we consider the general case
where the set of members evolves through time as members are added or removed
from the group during a session. We define add and remove operations as follows:

Add: When a recipient becomes a member of the secure multicast group by receiv-
ing proper cryptographic access parameters, we say that he is added to the
group. To be added to a group, a recipient needs to contact a membership
manager through a secure authenticated unicast channel. If the recipient is al-
lowed to become a member then it receives keys and other related parameters
that are necessary to start accessing the multicast content. The membership
policy is application dependent and may be subordinated to other issues such
as payment and billing, which are all beyond the scope of this thesis.

Remove: We say that a member is removed from the group, when its ability to
access the encrypted multicast content is suppressed by the membership man-
ager. A membership manager can decide to remove a member from the group
at any time during the session or at least on a certain interval boundary that
is application dependent (a packet, a frame, a quantity of bytes or time...).

In many publications, add and remove operations are referred as join and leave
operations, respectively. We prefer the former terminology because it highlights
more clearly the fact that providing access to the multicast content is ultimately the
decision of a membership manager rather than the recipient itself. We will restrict
the terms join and leave for multicast routing, to describe the fact that an entity
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requests or relinquishes receiving multicast packets, independently of any security
concerns.

All the application scenarios we described in the previous section involve dynamic
groups where members are added or removed from the member group. A dynamic
set of members implies two security requirements that are not found in traditional
secure unicast communications:

backward secrecy and forward secrecy.

Backward secrecy defines the requirement that an added member should be able to
access multicast content transmitted before it became a member. This means that
if a recipient records encrypted multicast data sent prior to the time it is added to
the group, it should not be able to decrypt it once it becomes a member. Similarly,
forward secrecy® defines the requirement that a member leaving the group should
not be able to further access multicast content.

5.2 Algorithmic Requirements

The forward and backward secrecy requirements have an immediate consequence:
the parameters of the encryption algorithm that protects the multicast content must
be changed each time a member is added or removed from the group. We must simul-
taneously allow members to infer the new parameters used to access the multicast
data while disallowing other recipients to do so. This parameter change must be
domne in a scalable way, independently of the group size, which can be a real chal-
lenge, as illustrated in the simple financial content provider scenario of Chapter 1.
The scalability issues related to multicast key management in dynamic groups were
first highlighted in the IOLUS[Mit97] framework by S. MITTRA, who identified two
generic problems:

1. The “one does not equal n” failure which occurs when the group cannot be
treated as a whole but instead as a set of individuals with distinct demands.

2. The “one affects all” failure which occurs when the actions of a member affect
the whole group.

Our experience with many multicast proposals has prompted us to refine these
definitions to propose the following two requirements:

Processing scalability: The cost supported by an individual component, be it the
source, an intermediary forwarding component or a member, should scale to
any potential group size and membership duration.

Membership robustness: Members must be able to access the content of received
multicast packets as soon as they are received.

2The term “forward secrecy” is used here in the context of multicast security and should not be
confused with perfect forward secrecy in unicast communication, which deals with the security of
past sessions when a session key is compromised.
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The processing scalability requirement was informally illustrated in our simple sce-
nario in Chapter 1, where we tried to use unicast techniques in a multicast setting to
provide confidentiality. To remove a member from a group of N members it required
the source (or the membership manager) to send out a new global key encrypted
with (N — 1) different private keys to replace the previous global key used to access
the content in order to guaranty forward secrecy. Clearly, this method does not offer
processing scalability.

The best effort nature of the Internet is a potential factor that greatly affects
membership robustness. Consider a scenario in which the membership manager is
required to broadcast a single value R to the whole group each time a member
is removed or added, in order for members to update their decryption parameters
to continue accessing the multicast content. As already noted in Chapter 2 for
authentication, many multicast applications can tolerate packet losses. However,
if some members experience the loss or the delay of R they will not be able to
update the keys needed to access the multicast content, thus the newly received
content packets will be worthless. Consequently, in such a scenario, add and remove
operations may impair membership robustness.

5.3 Collusion, Containment and Trust.

While the main goal of multicast encryption in dynamic group is to find a protocol
which satisfies both the security requirements in section 5.1 and the algorithmic
requirements in section 5.2, this is still not quite sufficient to provide security in a
large group. A factor that is often overlooked in most secure multicast proposals
is the potential compromise of a member. Indeed, as the member group becomes
larger, the probability of member key exposure increases. In a sufficiently large
group, there is no doubt that an exposure will occur. These exposures may be
done intentionally by a member: it could send its security parameters to another
recipient, or they may be unintentional: a “hacker” may steal the parameters held
by a member and publish them in a newsgroup or on a web page. Thus, one of
the important concepts we put forward in this thesis is that, since we cannot avoid
security exposures, we need to limit the impact of such exposures, a property that
we call containment.

A second issue is collusion: if a few members collude together they should not
be able to elevate their privileges beyond the sum of their own privileges. For
example, consider a scenario where each member holds secret keys that allow them
temporary access to the group. If these members are able to achieve unlimited
access by exchanging their secrets and making some computations, then the scheme
is clearly weak and will be subverted quickly in a large group.

Some multicast schemes, including our own proposals, use intermediary elements
in the network, such as routers, subgroup servers or proxies as participants in the
security protocol. These elements are external to the member group and most likely
not always fully controlled by the content provider, the members or a membership
manager. In fact, it is quite possible that these intermediary elements will be shared
between several secure multicast groups with different member sets. Moreover, in
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some situations, these elements are numerous enough such that the compromise of
one or a few of these entities is probable. Consequently, while it is quite reasonable
to assume that the source as well as the few other entities such as a membership
manager are secure, this is not realistic for other network resources. Thus we need
to limit the trust that we put in these intermediary elements if they are actively
used in our protocols.

5.4 Summary

We started this chapter by describing the basic requirements of multicast confiden-
tiality in a large dynamic group. Though the problem may seem simple at first,
confidentiality brings out significantly more requirements in the multicast setting
than in the unicast setting. We sumimarize these requirements here as a reference
for later discussion, in particular to analyze current multicast proposals in the fol-
lowing chapters.

Security Requirements:

Requirement 5.1 Data Confidentiality: the multicast content should be only ac-
cessible o members.

Requirement 5.2 Backward and Forward Secrecy: A new (resp. past) member
should not have access to past (resp. fulure) data exchanged by the group members.

Requirement 5.3 Collusion Resistance: A set of members which exchange their
secrets cannot gain additional privileges.

Requirement 5.4 Containment: The compromise of one member should not cause
the compromise of the entire group.

Requirement 5.5 Limited Intermediary Trust: Intermediary elements in the net-
work should not be trusted with the security of the group.
Strictly speaking, the latter requirement (5.5) is only relevant to protocols which

use intermediary elements to actively participate in the security of the group.

Algorithmic requirements:

Requirement 5.6 Processing Scalability: The cost supported by an individual com-
ponent, be it the source, an intermediary forwarding component or a member, should
scale to any potential group size and membership duration.

Requirement 5.7 Membership Robustness: Members should be able to access the
content of received multicast packels as soon as they are received.
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Organization of the Following Chapters

The next chapter reviews previously proposed work for multicast confidentiality. As
we will see, none of those schemes satisfy all the requirements above. In chapters 7
and 8, we propose two algorithms which are based on the use of untrusted interme-
diary elements in the network to achieve the security requirements we established,
and in particular containment.
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Chapter 6

An Overview of Multicast
Confidentiality Algorithms

This chapter is divided in three main sections, each dedicated to a different type
of multicast confidentiality algorithm. The first section reviews the popular Logical
Key Hierarchy construction and the second section describes a re-encryption tree
construction: IOLUS. The third section reviews the MARKS[Bri99] approach which
in not fully a multicast confidentiality scheme as defined in Chapter 5 in the sense
that the removal time of a member needs to be chosen prior to the time it joins
the groups and cannot be changed. Despite this limitation it can still be used in
some scenarios and we include it here for completeness because it offers remarkable
processing scalability and membership robustness.

In the remaining of this chapter, we denote F'x(z) as the encryption of message
z with key K with a standard symmetric encryption technique[BDJR97, oST01].

6.1 LKH: The Logical Key Hierarchy

The Logical Key Hierarchy was independently proposed by WoNG ET AL. [WGLYS]
and WALLNER ET AL.[WHAOS].

6.1.1 Construction

Consider a set of n members {Ry, ..., R,,}. We build a balanced (or almost balanced)
binary tree with n leafs, with a one to one correspondence between a leaf L; and
a member R;. A random key k; is then attributed to each vertex j in the tree,
including the root and the leafs themselves. This construction that we will call logical
key hierarchy (LKH) is illustrated on figure 6.1 with a small set of 7 recipients.

Setup.

Each member R; receives the set of keys corresponding to the path from the root
of the tree to its corresponding leaf L;. The root of the tree which is known by all
members is called the Traffic Encryption Key (TEK) and represents the symmetric
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Figure 6.1: Basic key graph with 7 members

encryption key used to protect the content distributed over the multicast channel.
The remaining keys in the tree are often called Key Fncryption Keys and are used
to update the TEK to guaranty backward and forward secrecy. Referring to our
example in figure 6.1, member Ry would receive the key set {ko, k1, k3, ks} where ko
represents the TEK and {kq, k3, ks} the KEKs.

6.1.2 Usage

Let us denote L(k;) (respectively R(k;)) the predicate that returns true if the node
representing key k; has a left child (respectively a right child). Furthermore we will
denote LK (k;) the key held in the left child of the node representing k; if it exists,

and we similarly define RK(k;) for the right child.

To remove a member R; from the group:

All keys representing the path from the root to the the leaf L; corresponding to
departing member R; are invalidated. The leaf IL; corresponding to the departing
member is removed from the tree. All the remaining invalidated keys {ki, ..., k;}
in the path from the root to the former leaf are replaced with new random values
{k{,...,k}}. For convenience consider {k{, ..., k}} to be ordered by decreasing depth
in the tree. To allow the remaining members in the tree to update their keys, the
membership manager proceeds as follows:

Algorithm 6.1 LKH update
Fori=1,..,(I-1) do
if L(kY) then multicast EE/C(kf)(kE'_l))

if R(K!) then multicast ER’C(kf)(kE _1))

None of the keys that are used for encryption in the previous algorithm are known
by the removed member. However, all the remaining members will be able to recover
enough keys to update their own key set.

As illustrated on figure 6.2, if member R4 leaves, then the membership manager

needs to broadcast Ey,, (k3), Ek, (k1), Ey; (K1), Ey; (k) and kg, (k7).
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Figure 6.2: LKH: A member leaving the group.

To add a member to the group:

When a member is added to the group, the tree is extended with an additional node.
If all leafs in the tree are already attributed we can take a leaf L; and create two
children: the left child is assigned to the member associated with the former leaf L;
and the right child is assigned to the newly added member. Alternatively, we can
simply design the tree to be deep enough to accommodate the potential maximum
number of members.

Assuming that the new member corresponds to leaf L;, the sender makes all the
keys in the nodes on the path from L; to the root invalid. A random key is assigned
to L; and transmitted to the added member with a secure unicast channel. All
other nodes in the path are updated with the same algorithm that was used above
to remove a member from the group.

Key Usage Summary.

The scheme distinguishes two types of keys: a TEK and KEK. The TEK is the
encryption key that protects the multicast content. It is changed each time a member
is added or removed from the group. The KEKSs are used to distribute and update
the TEK for all members. Until a valid KEK set is explicitly invalidated by the
membership manager, it can be maintained in a valid state provided that all update
messages are received. Consequently a valid KEK set represents membership in
a group and provides long term access to the group, while the TEK itself only
represents a short term access to the content.

6.1.3 Algorithmic Properties of the Scheme

Considering a set of at most n members, the basic LKH scheme requires each recip-
ient to store [log,(n)] + 1 keys. Each addition or removal of a member requires the
broadcast of 2. [logy(n)] — 1 messages (alternatively a single message with all key
update messages grouped together). Thus, the processing load of the components
and the key message sizes increase logarithmically with the group size, which allows
to achieve good processing scalability (req. 5.6).
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However, if a member fails to receive just a single key update message because of a
network loss, then it cannot decrypt the new content. Losses have a worsened impact
because subsequent key updates will often depend on previous ones. Consequently a
member cannot always resynchronizes its parameters on a new key update message
if it lost one of the previous key update messages. A member who didn’t receive
a KEK update message might have to re-register with the membership manager
through an authenticated secure unicast channel to receive the proper keys. If many
members do this at the same time we may run into scalability issues. Consequently
in this basic version of the scheme, both add and remove operations do not provide
membership robustness (req. 5.7) in the presence of losses or strong key update
delays.

6.1.4 Improvements

The basic scheme we described previously has been constantly improved by several
authors. We summarize these contributions here.

No-message Member Addition

An interesting improvement was proposed by CARONNI ET AL. [CWSP98] which
eliminates the need to multicast a key update message when a member is added to
the group. In their proposal, the set {ky, ..., k;} of invalidated keys represented on
the path from the root of the tree are replaced with a set {k{,..., k]} where each key
k! is the result of a one way function applied to the previous key, that is k! = F(k;)
where F'is a publicly known one-way function. This allows members to compute the
new keys from the previous ones, and the one-way property of F disallows the new
member to compute the previously used keys. The set {k{, ..., k]} is transmitted to
the newly added member through a secure unicast channel. In their work CARONNI
ET AL. use a counter (a sub-version number) for the TEK and KEKs as ancillary
information in the multicast data packets to keep track of the number of times the
one-way function was applied (this naturally adds a few bytes of overhead to each
packet). Since adding a member does not require the transmission of a multicast
message anymore, membership robustness (req. 5.7) is always assured during this
operation, and the problem is now restricted to the removal of a member.

Halving the Update Overhead

McGREW AND SHERMAN were the first to propose a method to halve the communi-
cation overhead of add and remove operations, with a construction called OFT (One
Way Function Trees, [MS98]). This further increases the processing scalability of
the protocol. We will not describe the OFT construction here, instead we will focus
on the more recent ELK approach presented below, which shares some similarity
with OFT.

More recently CANNETI ET AL. have proposed a method[CGIT99] that achieves
the same reduction and that is compatible with the “no-message-member-addition”
we described above. We will describe the core idea behind their protocol here.
Assume that fis a one way function, and let fk(w) denote k successive applications
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of f to z, where f°(z) = z. As usual, when a member is removed from the group, the
remaining keys {kq,..., k;} represented on the path from the root to the departing
leaf need to be changed to a new set {k}, ..., k]}. Here, instead of choosing all these
keys at random, the membership manager chooses only one random value r and sets

k; «r kzl—l) — fl(r)a kEZ—Q) — f2(7'), teey k{l — f(l_l)(r)

The membership manager then encrypts each k! with the key represented by the
child node of k! that is not in the invalidated path. Thus each individual £} is
encrypted only once as opposed to the original LKH protocol in algorithm 6.1 that
encrypted each key with both child node keys. Because of the relationship between
the keys created by f, the nodes can still reconstruct the set of keys they need by

applying f.

Example: Recall figure 6.2 in which member R4 is removed from the group, the
membership manager will compute a random value r and send Fy,, (1), Er, (f(r)),

Er, (f(F(r)))-

e Member R3 decrypt ki, = r and computes k) = f(kio), k1 = f(f(k1p))
as well as kg = f(f(f(¥10)))-
e Members Ry and Ry decrypt kf and compute &k = f(k}).

e Members Rs, Rg, R7 decrypt k).

Assuming that the tree is balanced, the communication overhead is at most [logy(n)]
keys instead of [2.logy(n) — 1] keys as in the original LKH construction.

Increasing Reliability

Clearly, if the network was perfectly reliable over the whole multicast group the
removal of a member would not introduce any membership robustness issues in the
LKH scheme (req. 5.7). However, multicast uses an unreliable transport protocol
such as UDP. Consequently, increasing the reliability of the leave operation is crucial
if we want to reduce membership robustness issues (req. 5.7).

WoNG AND LAM implemented their LKH[WGL98] protocol over IP-Multicast
in Keystone|WL00], and use FEC (Forward Error Correction) to increase the relia-
bility of the addition and removal operations (since they do not use the no-message-
member-addition method). Recall that when a member is added or removed from
the group in the basic scheme, a set of keys {k, k%, ..., ]} is encrypted with other
keys in the tree and transmitted to the group. In the Keystone scheme, these en-
crypted keys are represented over s packets to which we add r parity packets. The
receiver may reconstruct the encrypted key set if he recovers any subset of s packets
out of the (s + r) transmitted packets. Since we do not have an absolute guaranty
that s packets out of (s+r) packets will always arrive, they combine this mechanism
with a unicast re-synchronization mechanism that allows a member to contact a “key
cache” server in order to update its keys if losses exceed the correction capacity of
the FEC. In their work, they consider a 10-20% loss rate and they show that adding
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redundancy can substantially increase the likelihood that a member will be able to
update its keys. However, as noted by PERRIG ET AL.[PSTO01] in criticism of the
Keystone scheme, the authors assume independent packet losses to compute the key
recovery probabilities, while it has been shown that Internet losses occur in bursts
(For further discussion and references related to Internet loss patterns and FEC we
refer the reader to section 2.2 which discusses these issues in the context of multicast
authentication.)

PERRIG ET AL. proposed a protocol called ELK[PST01] which combines previ-
ously proposed ideas such as “no message member addition” and halving the update
overhead, with new tricks to increase the reliability of the KEK update operation.
The main idea of their work stands in two points:

e First, send a key update message U with reduced communication overhead.

e Second, send many small hints that allow a member to recover updated keys
if U is lost. The hints are smaller than U but require a much higher compu-
tational cost from the recipient.

We will give a slightly simplified description of their protocol, omitting some cryp-
tographic key derivation issues that are described in detail in their work[PST01] but
are not useful to understand the methods employed here.

Reducing the communication overhead. To reduce the communication over-
head of a key update they construct new keys based on contributions from the two
children nodes. Consider for example a node containing the key k; on the path from
the root to a leaf representing a removed member that needs to be updated to a new
value k!. Let kg (resp. k1) define the key held by the right (resp. left) child of the
node associated to k;. Denote F,gp_)m(m) as a pseudo-random function that takes a
p bit value z as input and outputs m bits using a key k. In the ELK construction,
the keys in a node are p bits long and are derived from p; bits of the left child
and py from the right child. To update k; to k! we first derive the right and left
contributions C'r and C'f, from the old key k; as follows:

Cp « FP7 (ky)

Cr — FP7P) (k)

kg
Now we compute the new key k! by assembling these two contributions to derive

ki

k3

/ (p—p) .
ki & Fieyjiog (Fi)

Consequently, to derive k! from k; the members find themselves in two possible
situations:

e They know k7, and thus C7,, and they need to receive Cr to compute k., or,
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e They know kg and thus Cr, and they need to receive Cf, to compute k..

Consequently, the membership manager will send Ej, (Cr) and Fj,(Cr) to the
group where E denotes a stream cipher rather than a block cipher (using the old
root key or TEK as Initial Vector). Using a stream cipher allows the membership
manager to send (Ey, (Cr), Fx,(CL)) over exactly py+py bits. A full key update will
thus require the broadcast of logz(n) chunks of py + py bits. Considering p1+p2 < p
this amounts to having at most 50% of the communication overhead of the original

LKH protocol.

Using Hints to increase reliability. Consider the case where p; < py and where
p1 is small enough such that computing 2P symmetric cryptographic computations
remains feasible in a reasonably short time. In this situation it’s possible to construct
an even smaller key update procedure that the authors of ELK call a hint, which
is defined as the pair {V, E, (h)} where V}s is a p3 bit cryptographic checksum
computed as follows : Z Z

V/ « EP77)(0)

With LSB{(2=71)(z) being the function that returns the (p—p;) least significant
bits of x, h is defined as:

h ¢ LS BW==P) (F"72) (k) = LS BP2~71)(Cry)

The hint {V}:, E}, (h)} of which the second member h is encrypted with kg, is
broadcasted to the group after the initial key update we described previously. The
hint {V}:, Ex, (h)} can be used to recover the value & in a node. Again, depending
on left or right considerations, there are two ways to use the hint:

e Members who know kr can decrypt h, thus they can recover the (p; — p1)
least significant bits of C'r. Since they also know C', they have to make and
exhaustive search for the n; missing bits of C'g to recover a value of the form
CL||CR For each candidate CL||CR they compute the corresponding k' as

lfcv’ — F(%_)'Tg )(k‘z) and use the checksum Vj: to verify that the candidate is
L K3

good, otherwise they continue the exhaustive search.

e Members who know kpr will perform an exhaustive search through the 2™
values that kr can take. For each potential kr value they compute the cor-
responding candidate for k!. They use the checksum V}, to validate the right
candidate. Z

In practice the authors of ELK suggested in a example to use the values p; = 16,
p2 = 35, p3 = 17 and n = 64 using the RC5 cipher[Riv95] both for encryption and
also to construct a CBC-MAC based pseudo random function. The authors of ELK
implemented this example on a 800Mhz Pentium machine to achieve a high number
of computational operations per second.
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Aggregating Member Additions and Removals.

It should be clear from the description of the LKH algorithm that frequent member-
ship changes increase the workload of all the members of the group and require the
membership manager to broadcast a proportional number of key update messages.
In situations where the group has a highly dynamic set of member, the membership
manager will have to deal with both membership changes and re-synchronization
messages for recipients who failed to update their keys correctly, which creates a po-
tential bottleneck. Consequently several authors [CEKT99, LYGLO01] have proposed
methods to reduce this problem by combining several removal operations into one to
achieve a lower communication overhead than the sum of these individual removal
operations. In a related but more theoretical approach, [PB99] proposes to organize
members in the tree according to their removal probability to increase the efficiency
of batch removals and additions.

6.1.5 LKH: Summary and Conclusion

The LKH construction is an interesting approach that satisfies the following require-
ments of multicast confidentiality:

e Data confidentiality (req. 5.1).
e Backward and forward secrecy (req. 5.2).
o Collusion Resistance® (req. 5.3).

e Processing scalability (req. 5.6).

Beyond classical multicast forwarding mechanisms, it does not require any additional
contribution from the intermediary elements in the network, which clearly also sat-
isfies requirement 5.5. While some authors have tried to increase the processing
scalability of the scheme, the main concern about LKH scheme is membership ro-
bustness. Indeed, each time a member is added or removed from the group, all the
members need to receive a key update message. If that message is not received by
some members, it will disallow them to access the multicast content and it may
also disallow them to access further key update messages. The Keystone framework
[WLO00] uses FEC to increase the likelihood that the key update message will be
received by the members, while the ELK framework relies on small “hints” that can
be used by a member to derive missing keys in combination with computational
tradeoffs.

There remains one requirements that none of the LKH protocol addresses: Con-
tainment (req. 5.4). Indeed, each set of keys held by a member can be used anywhere
in the network within the scope of the multicast group to access the encrypted con-
tent.

! An exception is the flat key management scheme presented in [CWSP98], which can be defeated
by a coalition of only 2 members.
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Figure 6.3: IOLUS

6.2 Re-Encryption Trees

In 1997, MITTRA proposed the Iolus framework, which partitions the group of mem-
bers into many subsets and creates a tree hierarchy between them. Each subset of
members is managed by an distinct entity called a Group Security Intermediary
(GSI). The central or top-level subgroup in the hierarchy contains the central group
manager called Group Security Center (GSC), as illustrated on the example on figure
6.3.

6.2.1 Basic scheme

The GSC produces data encrypted with a key K; and multicasts it to a chosen group
address G41. The GSI entities that are direct children of the GSC in the hierarchy
then decrypt the data and re-encrypt it with another key K;, and broadcast it to
their own multicast group G 4;. This mechanism is applied recursively all the way
down the tree hierarchy. Consequently, this construction can be viewed as a tree
network where each node decrypts data received from its parent and re-encrypts it for
its children. In this dissertation we refer to this type of approach as “re-encryption
trees”.

Each node or GSI only needs to know the key from its parent in the hierarchy
and its own subgroup key. Members in a subgroup are managed by a single GSI and
only know the GSI’s key K;.

Removing a member.

When a member is removed from a subgroup, the GSI chooses a new subgroup key
K| and uses several authenticated secure unicast channels to send the new key to
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the remaining members in the subgroup (alternatively one long multicast message
corresponding to the concatenation of these unicast messages).

Adding a member to the group.

When a member is added to a subgroup we can proceed in a similar way as we did to
remove a member, except that we also send the new subgroup key K! to the added
member. An improvement in terms of overhead is to encrypt the new subgroup key
K! with the old one K; and multicast the message F,(K!) to the subgroup while
transmitting K/ to the added member on a separate authenticated secure unicast
channel. However, this improvement is less secure because it creates a potential
chain between subsequent keys, thus the exposure of a single key has a potentially
stronger impact.

6.2.2 Key Distribution

The transformations in a hierarchical tree we describe above operate directly on the
encryption of the multicast content. As an alternative, S. MITTRA also suggests to

use the IOLUS framework to distribute a global short term key. This key is used

to encrypt content to be transmitted on a separate autonomous multicast channel,

which can be based on a different multicast routing scheme.

HARDJONO ET AL. proposed a re-encryption tree for key distribution in IGKMP[HCDO00],

the Intra-Domain Group Key Management Protocol. This protocol essentially de-

scribes a 2 level re-encryption tree that is used to distribute a common group key K

to the group.

6.2.3 Analysis

This scheme provides Data Confidentiality (req. 5.1) as well as backward and for-
ward secrecy (req. 5.2). Since keys in each subgroup are chosen independently,
colluding members do not seem to gain additional privileges beyond the sum of
their own access rights, thus this scheme is collusion resistant (req. 5.3).

In his work on IOLUS, S. MITTRA did not specify a limit to the size of a
subgroup. In practice, however, we need to assume that a subgroup contains no more
than M members, otherwise processing scalability issues will arise in subgroups. The
benefit of IOLUS is precisely to divide a large multicast group into subgroups that are
small enough so that they do not exhibit the scalability issues of a large multicast
group. If subgroups are small enough then this scheme will provide processing
scalability, since computations and communication overhead will depend on M and
not on the full group size.

A second benefit of subgrouping is that it provides stronger membership robust-
ness (req. 5.7). When a member is added or removed from the group it only affects
the other members that depend from the same GSI. Members in other subgroup
are not even aware that a member was added or removed from the group. Conse-
quently, the impact of a membership change is restricted to a subgroup of at most
M members.
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The third benefit of subgrouping is containment (req. 5.4). Since only at most M
members of the same multicast group use the same key K4 to access the multicast
data then the exposure of K4 will only have a local impact, limited to the subgroup
G4 that uses the same key K 4. If the attacker is in another subgroup Gpg, out
of scope of G4 than the exposed key K4 will be useless unless he also manages to
forward traffic from G4 to Gp.

The main drawback of this scheme is that it fully trusts all the intermediary el-
ements to access the multicast content, which is contrary to requirement 5.5. Good
processing scalability, membership robustness and containment all depend on a rea-
sonably small value of M, the size of the subgroup. But if M is small than it
increases the number of Groups Security Intermediaries needed. For large multicast
groups, this means that each content provider will need to construct a large network
of trusted intermediaries. This adds a significant cost for the content provider.

6.3 MARKS

The MARKS scheme was proposed by BRISCOE in [Bri99], and features a subscrip-
tion based approach to multicast confidentiality. Consider a content divided in n
segments {S1,...,5,} each encrypted with a different key {ki,...,k,}: the source
simply broadcasts Fy, (S;) for each 1 < ¢ < n . To provide access to a member R for
segments S; through S(;,;) the membership manager needs to provide R with the
keys {k;, k@Gy1y - k(j+l)}- Simply sending the list of keys creates an overhead that
linearly increases with [, which does not provide processing scalability (req. 5.6). In
his work, BRISCOE provides a method to get around this limitation by constructing
a one-way hash tree as follows.

6.3.1 The Hash Tree

Let n define the number of keys or segments used in the broadcast where n = 2,
Let £ and R define two one-way functions. For example, we can choose £ (resp. R)
to be the left (resp. right) half of of a pseudo-random generator which doubles its
input, or we can use two independently keyed hash functions [BCK96]. We initially
choose a random value ug and we construct a balanced binary tree as follows:

e assign ug to the root.

e if a node is assigned a value u; we assign to the left child of u; the value £(u;)

and to the right child the value R(u;).

The leafs of the tree ordered from left to right represent the keys {kq, ..., k,} used
to encrypt the segments {5y, ..., S,}.

The advantage of this construction is that any sequence {k;, k(iy1)--o k(j+l)} of |
consecutive keys in {ky, ..., k,} can be represented with at most 2.logs(n) — 1 values.
Indeed, instead of describing a sequence of [ keys by listing them in a sequential
order, we can simply provide the points in the tree that can be used to derive
the needed keys (and only those keys) by applying R and £. This problem is quite
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Figure 6.4: MARKS with an eight segment stream.

similar to finding IP network aggregations in CIDR[FLYV92]. Consider the example
on Figure 6.4 where a member subscribes for segments 4 to 8. He receives ug and
u10, next he can efficiently compute k4 = w10, ks = w11 = L(L(uz)), ke = R(L(uz)),
k7 = L(R(u32)), ks = R(R(uz)).

6.3.2 Analysis and Conclusion

In the MARKS approach, once the membership manager provides a member with
access to [ consecutive segments § = [S;41,...,.5;41], it cannot revoke this access
unless it redistributes new keys to all other members whose segments intersect with
S. In practice it would require the construction of a new key tree over the segments
of the stream. Revocation is not possible here without running into strong process-
ing scalability issues. However, there are some multicast applications that will be
satisfied with a non revocable subscription based approach. Consider, for example,
some Pay-per-view TV applications where the content length is know in advance
and the clients pay before the show is broadcasted. For such applications MARKS
offers benefits such as:

e Data confidentiality, backward and forward secrecy, collusion resistance and
no intermediary trust.

e Processing Scalability.

e Perfect membership robustness.

The last characteristic is the strongest point of MARKS: it does not require any
message to be broadcasted to anybody when a recipient’s membership expires in the
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group. When a member is added to the group, he only needs to receives the keys
corresponding to his subscription, which can be transmitted to him in advance.

Similarly to LKH, this scheme does not provide any containment. In terms of key
exposure, the LKH has a little advantage over MARKS, because the membership
can invalidate an exposed key easily, while MARKS by definition does not provide
any practical way to do this.

6.4 Summary of Multicast Confidentiality Algorithms

The three types of multicast confidentiality schemes we reviewed in this chapter all
have a few drawbacks. The LKH scheme does not offer containment and has some
membership robustness issues though some progress has recently been made in that
area. The re-encryption tree approach relies on a potentially large infrastructure of
fully trusted intermediary elements. Finally the MARKS approach does not allow
member revocation prior to the end of their subscription, neither does it offer any
form of containment.

The next chapters provides two schemes that achieve containment in a similar
way to IOLUS but which only rely on semi-trusted intermediary elements. These in-
termediaries are semi-trusted in the sense that they modify the transmitted data yet
they do not have access to the distributed content, nor can they provide membership
to other entities in the network.
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Chapter 7

Untrusted Re-encryption Trees:
Cipher Sequences.

Introduction

The multicast confidentiality framework presented in this chapter is based on [MP99,
MP00]. We classify it in the same family as IOLUS: re-encryption trees. One of the
main drawbacks of IOLUS was that it required to put full trust in all the intermediary
elements in the network. The scheme we propose here solves this issue by proposing
an untrusted re-encryption tree where intermediary elements are only trusted to
perform certain transformations on the data without having actual means to access
the content.

Our framework defines basic properties of a set of cryptographic functions that
assure content confidentiality. Depending on the performance of the underlying algo-
rithm, implementations of the framework may be suitable either for the encryption
of bulk data or only for the encryption of short messages as required by key distribu-
tion. The framework is first validated with respect to the security and algorithmic
requirements of chapter 5. Two different implementations of our framework are
then discussed. Both solutions are based on asymmetric techniques: an extension of
the ElGamal algorithm [Elg84] and a variation on RSA [RSA78]. These algorithms
which offer strong protection are only suitable for key distribution since, due to their
inherent complexity, bulk data encryption with these solutions seems prohibitive.

7.1 Motivation for The Proposed Framework

The inspiration for the approach we propose in this chapter was to apply to multicast
confidentiality some of the principles that make multicast packet forwarding scalable,
and in particular the use of intermediary components.

Intermediary components, be they network nodes, routers, or application prox-
ies, are inherent participants in the basic multicast transmission process. The key
scalability factor in the basic multicast transmission schemes is the spread of the
multicast routing and packet forwarding load over a network of intermediary nodes.
Placing security mechanisms on existing intermediary components seems to be a
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natural extension of existing multicast protocols. Moreover, partitioning the cost of
security mechanisms over the intermediary components appears to be a good way
of assuring processing scalability (Req. 5.6). When the multicast group grows, new
intermediary components are added to support new group members and the cost of
security mechanisms can still be equally distributed by placing the additional secu-
rity processing load due to the new members on the new intermediary components.

The involvement of intermediary components in the security process is also a
premise for meeting multicast security requirements. If the security mechanisms can
be made dependent on the intermediary component in which they are implemented,
group members attached to different intermediary components can be treated inde-
pendently or with different keying material. In addition to its relationship with the
group membership, the keying material can have a relationship with the topology of
the multicast network. The keying material associated with each group member can
thus be a function of the intermediary component to which the member is attached.
This topological dependency assures the containment of security exposures: if some
keying material belonging to a group member attached to an intermediary node is
compromised, this keying material cannot be exploited by recipients attached to
other intermediary nodes (Req. 5.4).

We introduce our solution in two steps: first, we define a general framework for
multicast data confidentiality based on distributed mechanisms involving interme-
diary components and preserving the scalability and security properties, then we
propose actual solutions based on cryptographic functions that comply with the
framework.

This chapter is organized as follows. In section 7.2 we introduce a set of crypto-
graphic sequences with special properties that are organized in a tree. In section 7.3,
we apply this formal graph to a multicast tree. We show how the properties of our
formal graph can be used to offer a multicast confidentiality framework that deals
with the security and algorithmic requirements of Chapter 5. In section 7.4 we con-
sider our framework for key distribution and present two key distribution schemes
based on asymmetric cryptography in section 7.5 and 7.6. Finally, we conclude this
chapter by a comparison with the other key distribution schemes we reviewed in the
previous chapter.

7.2 Cryptographic Functions

The building blocks we have chosen to use to design data confidentiality protocols
over a multicast tree are called Cipher Sequences (CS). This section will give a
formal definition of these sequences and associate them in trees. These threes will
be used in further sections to describe our multicast confidentiality framework.

7.2.1 Cipher Sequences

Definition 7.1 Let G = {g; : N — N, i € A} denote a set of permutations operat-
ing on a message space N and indexed in A. G will be called a« Cipher Group if
it verifies the following properties:
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(i) (G, o) forms a group trough the composition law o. Specifically, it is associative
and contains the identity function Id; if ¢’,¢"” € G then ¢"” o ¢’ € G (closure)
moreover, Vg € G, 3971 such that g7l og=Id = gog™! (inverse).

(ii) (G, o) is indexable through composition: there exists a polynomial time al-
gorithm Comp : A* — A, which given an index pair (i,j) € A%, computes

Moreover:

e G will be called a Symmetric Cipher Group if the knowledge of g € G

1

allows the computation of g7 in polynomial time.

e G will be called an Asymmetric Cipher Group if the computation of g1

from g € G is computationally infeasible without the knowledge of a trapdoor.

Definition 7.2 Let F be a random sequence (foci<n) of n elements in a cipher
group G. By definition, there exists a function g € G such that g = (f, 0 fa—10---0 fl)_l.
We will call this function the Reversing Function of F and denote it as hr or,
more simply h. The sequence F will be called @ Cipher Sequence in G, or CSg.

Consequently, if G is a symmetric cipher group, we will say that F is a Symmetric
Cipher Sequence in G or SCSg. Similarly, if G is a asymmetric cipher group, we
will say that F is an Asymmetric Cipher Sequence in G or ACSg.

Definition 7.3 Let F define a Cipher sequence of n functions in the cipher group
G. From this sequence F we can derive a sequence (So<i<n) of elements in N as
follows:

S; = fi(Si—l); form > 1> 0.

So, the initial value of the sequence.

We will call (Sp<i<n) an instance of F and we will denote it as F(Sp).

7.2.2 CSg’s over a General Tree

A tree can map a family of C'Sg’s which have terms that differ only after a certain
rank, greater than 1. For example, if Fy (resp. F3) is a C'Sg defined as Fy =
{f1, f2, f3, fa} (vesp. Fo = {f1, f2, f4, fi}), a simple tree that maps F; and F; can
be constructed as in figure 7.1. This tree illustrates the fact that F; and F; differ
after rank 2.

This property can be extended from 2 to n different C'Sg’s, Fo<i<n, with a n-ary
tree that branches each time at least two sequences differ. If we instantiate each
Fi in the tree with the same value Sy we can label the edges of the tree with the
elements S: of each F;(Sp) = (Sé<k<ni>' We give a small example on figure 7.2.

Note that all the instantiations F;(Sg) share at least two elements, namely Sp and
S1. These two values are the input and the output, respectively, of the root node of
the instantiated tree.
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-

Figure 7.1: Two CSg’s mapped over a tree.

ROSRD

Figure 7.2: Two instantiated C'Sg’s in a tree.

Remark 7.4 We implicitly require that for all 0 < ¢ # j < n, F; is not included in
F;. In our lrees, this lranslates lo the facl that the number of leafs is equal to the
number of cascade sequences mapped over the tree.

7.3 Multicast Confidentiality Framework

The proposed multicast confidentiality framework consists of a model that is an
abstract definition of the components involved in the security mechanisms and the
relationship between them which is an application of the functions we defined in
section 7.2.

7.3.1 Model

In the abstract definition of the framework, the components of the multicast se-
curity framework form a tree, as suggested in 1.1.2. The root of the tree is the
multicast source and the members of the multicast group form the leaves of the
tree. The intermediary nodes of the tree -referred to as inner nodes- correspond
to the intermediary components of the multicast communication network. Like the
multicast scheme itself, inner nodes can be implemented at the application layer or
at the network layer. In the case of application layer multicast, inner nodes can be
application proxies, such as those in a hierarchical web caching structure. In the
case of network layer multicast, inner nodes can be intelligent routers capable of
performing security operations in addition to multicast packet forwarding functions.

In further abstraction, each leaf of the tree will represent the set of group mem-
bers attached to the same terminal inner node. In the application layer case, a
leal will delimit a sub-group of members attached to a proxy. In the network layer
case, a leaf will delimit a sub-network of recipient stations attached to an IGMP
router. Hence a leal will refer to a set of multicast group members with a common
attachment node in the tree.
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If a set of users represented by a leaf becomes too large, the leaf can easily be
subdivided into several “sub-leaves” by adding new inner nodes. Hence the leaf size
in terms of the group members it represents is not a scalability issue for algorithms
that treat a leaf as a single entity.

7.3.2 CSg’s over a Multicast Tree

Next, we turn to multicast by applying the previous concept of C'Sg from section
7.2 over a tree as a means of performing secret transforms in multicast. Let Sy be
the information to be transmitted over the multicast channel by the source under
confidentiality. Furthermore, Sy might either be the actual data or an encoding
thereof, if possible data values are different from possible values that Sy can take on
from the point of view of the security algorithm.

As part of the setup for a series of secure multicast transmissions, each inner
node N; is assigned a secret function f;»o € G. We require that each inner node is
capable of performing this function f;s¢ as defined in the previous section. During
secure multicast transmission, upon receipt of multicast data S; from its parent
node N;, node N; computes f;(S;), and forwards the resulting value S; as the secure
multicast data to the child inner nodes or the leaves.

Assuming F;(Sp) is an instance of a C'Sg mapped over a path from the root to a
leaf on the multicast tree, the leaf will eventually receive S, which is the final term
of Fi(So). The leaves in the multicast tree bear a special role in that they are able
to recover the original message Sp. Each leaf is assigned a reversing function i* that
allows it to compute S} = Sg from Sj” since Sp = hz(Sﬁh) The leaves don’t use any
other function in G.

The distribution of the secret f; functions to the inner nodes and the reversing
functions to the leafs can be assured by a central membership manager using clas-
sical unicast security mechanisms. Because of the structure of the algorithm, the
central server will need to have a precise image of the tree structure. This doesn’t
mean, however, that membership management cannot be distributed over several
network entities. In fact, the tree structure allows membership management to be
distributed over an overlapping tree of membership managers, each one managing a
large subtree.

Working example

Figure 7.3 depicts a simple tree with three C'Sz’s. Looking at the path from the
root to leaf 3 on figure 7.3, we have:

e The root computes f;(Sp) and sends the result to its children inner nodes.
o Nj receives S? = f1(Sp), computes and sends f7(S7) to Ny.
o N receives S5 = f7(S7) and sends f3(S3) to leaf 3.

o Leaf 3 receives S5 = f3(S3) and recovers the original multicast data by com-

puting So = h? (S3).
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OO

Root node

Figure 7.3: A simple 3 C'Sg tree.

Adding A Member

When a member is added to a group by contacting a membership manager, two
situations can arise:

1. the new member is already in an existing leaf (sub-group) of the tree.

2. the new member is not in an existing leaf (sub-group) of the tree.

In the first situation, a cipher sequence F = (fo<i<y) is already mapped between the
source and the members in the existing leaf. The last inner node on the path which
holds function f, will be assigned a new value f,, updating the last transformation
in the sequence. Hence, the corresponding new h function will be distributed to all
the member in the leaf including the new member.

In the example of figure 7.4 where ' wishes to join the leaf including existing
members A and B, the addition of C' will result in the following events:

1. fg will be substituted to fg by the membership manager in the last inner node.
2. h® will be sent to A, B,C' by a membership manager.

If M is the upper bound on the number of members in a leaf, adding a member
requires the exchange of the following messages:

e 1 message sent to update the value in the last inner node on the path,
e at most M — 1 messages sent to the current members in the leaf,

e 1 message sent to the new member.

A member addition thus requires at most M + 1 messages.
In fact, it’s possible to reduce the number of messages to 3, by slightly changing
the order of operations in the member addition procedure. Instead of changing the
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Figure 7.4: User C joins/leaves.

value f, in the node right away, it’s possible to use the secure sequence to vehicle the
new h function to the current members in the leaf, thus reducing the update to one
message (versus an upper bound of M — 1 messages). Then the value f, in the node
can be changed and the new h function can be transmitted to the added member.
However this approach has a drawback: it creates a chain between the different
values of & which potentially weakens the security of the scheme. Unless the cost of
individually sending a message to each member in the leaf is more important than
the security of the group, such an option should be avoided.

In the second case, the authority which receives a member addition request
has to figure out the path from the new member to the closest inner node in the
active tree. The path establishment method used in this case depends on the layer
(application/network) at which the multicast security scheme is implemented. A
similar decision has to be taken by IP multicast routing algorithms when a new
router needs to be included in a multicast routing tree. Once the path to the new
member is selected, the membership management authority will assign values to the
newly added inner nodes on the path, thus extending the C'Sg mapping. Finally
the new member will receive the h function needed to recover the original multicast
data in the newly created C'Sg. Hence, it’s the only member of the new leaf in the
tree.

The number of messages exchanged here depends on the algorithm used to set the
path between the new member and the tree. Consequently, as stated in section 7.1,
this security framework would be a natural extension of multicast routing schemes.
The number of messages exchanged here to create a new leaf can be assumed to be
proportional to the number of messages exchanged by the multicast routing protocols
when adding a new element in the multicast tree.

In many cases, it will be possible to perform the node setup ahead of time, leaving
only the h function to be distributed when the member is effectively added to the
group. The authority that manages the group does not need to be the root itself
and its functionality can be distributed in a tree hierarchy, where each sub-authority
manages a multicast subtree.
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Removing A Member

Removing a member shares a lot of similarity with the addition of a member. When
a member is removed from a leaf in the tree, the function in the terminal inner
node is changed from f, to ];;1 and the new h reversing function is distributed to
the remaining members in the leaf. In effect, the associated C'Sg has its last term
changed.

7.3.3 Evaluation of the Framework

The previous discussion has focused on the use C'Sg to achieve data confidentiality
over a multicast tree. This section will show how the C'Sg construct meets the
requirements established in Chapter 5, assuming for now that the intermediary
nodes are trusted and secure. The implications of node compromise will be discussed
in the next section.

Data Confidentiality (Req. 5.1). The security of the scheme depends on the
strength of the ciphers that are used to implement it. The functions in a cipher
group should be viewed as building blocks for confidentiality services. A possible
approach, which is beyond the scope of this work, would be to consider these function
as pseudo-random permutations. (As a side effect, it would require the cipher groups
to be of large order: a small order would provide a method to build a polynomial time
distinguisher between cipher group elements and pseudo-random permutations).

Backward and Forward Secrecy (Req. 5.2). A new member is added to
the group a leaf gets a new reversing function I that cannot be used to recover the
old reversing function A . As a consequence, past data is not accessible to a new
member. Similarly, a former member using an old reversing function cannot access
data that is transmitted subsequently to its removal.

Containment (Req. 5.4) Because of the topological dependency introduced by
the model, the reversing function h used in a leaf of the tree will be useless outside
that leaf. An intruder will only benefit from an attack if he is located in the same
leaf as the victim. This greatly reduces the impact of member compromise.

Collusion Resistance (Req. 5.3) Let (G,.) define a group. For a random
(ag, @y, ...,a,) € G"1 define b; = ag.a; for all 1 < ¢ < n. An adversary observing
(b1, b, ..., by) does not gain any knowledge about ag.

Proof. For all ag € G we can write each b; € G as b; = ag.a; where a; = (aal.bi).
Thus, ag can be any of |G| possible values. This means that in a fully balanced
tree of depth 1, members who collude and exchange their reversing functions gain
no knowledge of the intermediary functions. This can be easily generalized to any
tree, provided that no node is both an inner node and a leaf, as already highlighted
in remark 1 of section 7.2.
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Processing Scalability (Req. 5.6) The amount of processing per component
is independent of the group size. First, in our framework, the size of messages
transmitted by a node (be it the source or an intermediary component) does not
depend on the number of group members but it depends only on the size of the
original secret message. Second, the number of messages transmitted by a node does
not depend on the number of group members but it depends only on the number of
child nodes attached to this node.

In a leaf the number of messages exchanged after a member is added or removed
from the group is limited by the size of the leaf and not the whole group. Since the
leafs have a maximum size, this is not a scalability issue.

Membership Robustness (Red. 5.7) There are three basic actions a group
member is involved in: addition, removal and accessing the content. The model is
designed so that none of these actions affects the whole group. In fact these actions
have an impact that is limited to the leaf containing the member performing these
actions as shown in section 7.3.2. Membership Robustness issues are fully localized
and never appear over the whole group.

7.3.4 Node Compromise.

The previous section assumed that the inner nodes of the tree were completely se-
cure. This has to be true for the root node of the tree but it might not be possible
to make such an assumption about the intermediary nodes in the network. Hence
the following section will focus on the impact of intermediary node compromise.
Two type of attacks that derive from node compromise are highlighted in this sec-
tion: unauthorized membership extension and mode compromise by external users.
Unauthorized membership extension happens when a former member of the secure
group is able to maintain access to the data even though he has not received the
new reversing function. Node compromise by external users more generally describes
unauthorized access to the group by users that never became group members.

Unauthorized Membership Extension

If a member Fve in a leaf controls the last inner node on the path from the source
to the leaf ¢, he can intercept changes in the last element of the C'Sg.

Let N be the last inner node on the path from the root to leaf ¢ of the tree and
f the secret function held by N. N receives S;:_l from its parent node and sends
S;: = f(S;:_l) to the leaf elements which will use a A’ reversing function to recover
So. If the group membership manager decides that Fve must leave the group, the
function fin N will be changed to a new function f and the corresponding reversing
function ' will be send to all leaf members except Fve.

Despite its formal exclusion from the group, Fve can ignore the change in the
router and compute Sy from S;:_l using f and the old reversing function h® ob-
tained trough the compromise of node N, simulating the older sequence, where

So = hi (f(s;i_l)).
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This attack works whatever the nature of the sequence, ACSy or SC'Sy, but
requires several conditions to be met:

1. Fwe should be a former member of the group.
2. Fve should be able to access the secret function f held by node N.

3. Fwve should have access to the data transmitted to node NV by its parent node
(1e Sj_l).

Moreover, updates of f; functions in inner nodes at a higher level will limit the scope
of this attack because the resulting reversing functions cannot be retrieved based on
the information gathered in a leaf or from the compromise of the last inner node.

A SCSg specific attack Condition 3 described in the previous paragraph is not
required if the sequence is an instance of a SCSg. To work around condition 3, the
intruder first computes:
f_l from f
because the sequence is symmetric.
Now, using f_l and the new sequence value g; received in the leaf, the former
member computes: o
Sio = 171S))
Next, the intruder uses the value f obtained through the compromise of N to
compute:
51 = f(S1_y) |
Finally, using the old reversing function /' and applying it to S;, we have:
So = hZ(S;)
where Sy is the original multicast data. _
This attack doesn’t apply in an AC'Sy tree because by definition A’ cannot be
deduced form ]7

Node Compromise by External Users

If the intruder Fwve is not even a former member of the group, an attack is still
possible if the sequence is symmetric provided that:

1. Eve has access to the value of the reversing function used by a legitimate
member .

2. Eve controls all the inner nodes on the path between him' and the legitimate
member except the first common ancestor they have in the tree.

If these conditions are met, Fve will be able to forge a reversing function he can use
to access the group.

Instead of a lengthy formal discussion, we choose to illustrate the attack with the
example scenario depicted on figure 7.7, where the malicious user Eve gets multicast

! Eve does not have to be in a real leaf, he can simply intercept traffic somewhere in the tree.
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data S2 from node Ns. If Eve knows A? from a compromised user and { f2, fs, f7, f3},
he can compute:

3= J5'(8%)

because f5_1 can be derived from fs. Similarly,
S7=5t=/7'(53)

because f:,_1 can be computed from f;. Then

55 = e (Sf)
and

55 = fas (Sf)
yielding to

So = h*(S5)

Again, this attack doesn’t apply to an AC'Sg based tree because reversing func-
tions associated with an AC'Sg cannot be derived from the parameters used in the
intermediary nodes.

Node Compromise Summary

The distinction between an ACSg and a SCSg is totally relevant with respect to
node compromise scenarios. Unlike the IOLUS scheme we reviewed in the previous
chapter, when using ACSg’s our framework is immune to node compromise by
external users. The framework does not however dictate the choice of an ACSg
over SC'Sg as one could expect because SC'Sg are likely to be easier to design than
ACSg.

It should be noted that the security containment property is also effective in
case of node compromise. Hence, previously described node compromise scenarios
don’t allow the intruder to provide unauthorized access to just any other user in the
network.

This section concludes the formal presentation of our secure multicast framework.
The next sections present two implementations of this framework based on exten-
sions of public key cryptographic schemes. The first scheme is an SCSg and will
therefore lend itself to further description of a concrete node compromise scenario.

7.4 Key Distribution

Depending on the performance of functions in G our framework can be used either
for bulk data confidentiality or only for key distribution. Current symmetric crypto-
graphic systems provide sufficient encryption speed but they don’t exhibit the math-
ematical properties required to create a C'Sg as demonstrated in [KRS85][CW93].
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On the other hand asymmetric cryptography offers suitable properties to build a
solution compliant with the framework but it doesn’t offer yet the necessary per-
formance for bulk data confidentiality. Consequently, the next two sections will
describe the framework based on asymmetric cryptography for multicast key distri-
bution. The first scheme, derived from the ElGamal encryption algorithm, allows
the creation of a SCSg key distribution tree, whereas the second scheme, based on
RSA, effectively creates an AC'Sg key distribution tree.

Using a C'Sg tree, the source can distribute a secret key k by instantiating the tree
with Sy = & (or otherwise a function of k). The data confidentiality mechanism of the
secure multicast framework will allow to securely transmit k& to the members of the
group. Unlike the reversing function that is different in each leaf, k is shared among
all members of the group so the exposure of k affects the group as a whole. However,
unlike the reversing function that enables each member to access the multicast group,
the shared key k is a short term value that can be frequently updated by the source
using the secure multicast framework. Consecutive values of k are independent.

7.5 Key Distribution using ElGamal.
The ElGamal cryptosystem can be extended to create a SC'Sg.

Proposition 7.5 Let p be a large random prime. Define N as the set of all primitive

elements of Z5. The set G = { fu(z) = 2 mod p;a € Z?p_l)} forms a symmetric

cipher group for the message space N .
, , ?p—l)’
can compute f;)(z) = ' mod p as well as f(;)l(ac) = 2" mod p. Given (i,j) € L, 1),
we can compute k € Zg,_;y such that T (@) = fay o fi(@) = [y o fioy(z) =
2" mod p = z* mod p.

By definition, all the elements in A are of order p — 1. Reasonable assumptions

Properties (i) and (ii) in definition 1 are easily verified. Given an index i € Z we

about the security of these functions are:

1. For random primitive elements z; € A" and a random f € G, an adversary has
a negligible chance to recover any x; without knowing f.

2. For random primitive elements z; € A" and a random f € G, an adversary has
a negligible chance to recover f by observing pairs of the form (z;; f(z;)).

7.5.1 Setup

The source chooses a generator g of the cyclic group Z; and a secret random value
r in Z*p_l . The inner nodes and the root are assigned f,; values in G to form a
SCSg tree. The tree is instantiated with So = ¢g" mod p.

Let {S;,>0} denote the instantiated sequence elements. The reversing function
distributed to the leafs is defined as:

r¥(z) = (i 0z i iy )T mod p
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Figure 7.5: A discrete log tree.

7.5.2 Key Distribution

The source wishing to distribute a key K sends the following initial data to its
children in the tree:

S1 = (S0)" mod p

T=K&Sy

Remark 7.6 Issues such as a proper padding of K, have been omitted here for sim-
plicity. Depending on the exact securily properties we need, we can substitute T with
a better encoding of K as suggested, for example in [ABRYS].

Alternatively, we can simply use a cryptographic hash function and set K = Hash(Sy),
since Sy is changed for each new K.

The intermediary elements in the tree perform faik on their input S;, 1 and send
Si, to their children, along with T, where:

Sik = faik (S(ik—l)) = (S(ik_1))aik modp

An example of this scheme is illustrated on the path from the root to the leaf 3
of the tree on figure 7.5:

e The source sends S? = (Sp)% mod p and T = K ¢ Sy to its children.

e Np receives (S7,T) and sends S5 = (S0)?% mod p and T = K & Sy to its
children.

o N, receives (S3,7) and sends S5 = (S)?197% modp and T = K & Sy to leaf 3.
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Decryption

The decryption process is straightforward, the reverse function h is simply applied
to the received value, and the result is used to extract K from T':

h(S;,) = Somod p

K=T& 5

1
Recalling the previous example, where h?(z) = z1%738 mod p , the value of K is
computed simply:

K=Ta& 5,
where

So = h? (83) = (o)) 71ar3s mod p

The Next Key

Sending the next key K only requires Sg = ¢" modp to be updated as §0 = ¢" modp

where 7 is a random element in pr_l).

7.5.3 Node Compromise and Member Collusion

Many of the requirements established in Chapter 5 are naturally fulfilled by imple-
menting the framework as described above. However member collusion and node
compromise need to be considered on a per-algorithm basis.

Node Compromise

The previously described sequence is clearly a SCSg because the reversing func-
tions can be computed with the knowledge of the secret parameters in the inner
nodes. Hence, compromise of the inner nodes offers some potential for unauthorized
membership extension as described in 7.3.4.

Figure 7.6 will illustrate the node compromise scenario. The hypothesis here will
be that a malicious member F of leaf 3 wishes to maintain membership in the group
using the information of the terminal inner node N5 he has compromised.

In a normal scenario where node compromise is not taken into account, in a
leaf consisting of members {A, B,C, E'}, when F is removed from the group, the
following actions take place:

o In Ny, f4 is changed to f;s by the membership manager.

e The newly computed reverse function 13 is sent to {A, B,C'} but not to F.
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Figure 7.7: Multiple node compromise attack.

Once the leave procedure is complete, F/ cannot access further keys distributed to
{A, B,C} it cannot derive £ from h3.

However, in the case of inner node compromise, if F controls the last inner node,
he can monitor the change from f,, to };8. E can then derive A? from h3, because
if B3 (z) = 2(4197%) ™" 1od p then:

~3 1 X?__S
h?(z) = x*197% " 3 mod p

In summary, even if F/ doesn’t receive the new reversing function, he will be able
to compute it and thus access the keys distributed subsequently to the removal of a
member.

This attack can be extended to allow a malicious user to derive a reversing
function from another one even if the reverse function comes from another leaf. It
requires the attacker to compromise nearly all the inner nodes on the graph between
him and the compromised member.

Figure 7.7 will serve as an example where user Fve -not a member of the group-
listens to traffic coming out of Ns. The malicious user is assumed to know the
following node functions { fa,, fac, fars fas } as well as A® from a compromised member
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in leaf 3. With these conditions together, Fve can compute a new local reverse
function A% from A3 thus violating the containment property of the model:

1
h3(z) = x @147 mod p
which allows to compute:

azag

R (z) = P mod p = (h3(x)) 2% mod p

This second attack assumes that the inner nodes are easy to compromise, and
the first one makes strong assumptions about the compromise power of the attacker.
While these attacks on SCSg’s might be considered hard to implement in some cases,
the possibility itself pushed us to study a second and stronger construction based
on AC'Sg’s, as described in section 7.6.

7.6 Key Distribution using RSA.

Extending RSA to use multiple keys as in [HK89] allows the creation of an ACSg
scheme. Let ¢(.) denote the Euler totient function.

Proposition 7.7 Let n = pg be the product of two carefully chosen large primes,
as in the RSA cryptosystem. Define A = Z;(n) and N = Z,. The set G =
{fa(z) = 2" modn;a € A} is a cipher group for messages in N.

This construction is quite similar to the one from the previous section, except that
we are working with a composite modulus and a different message space.

7.6.1 Setup

The setup is even simpler here than in the ElGamal case. Each inner node in the tree
is assigned a value ;51 and the root uses a; where ged(a;>0,¢(n)) = 1. This assures
that the product A of any subset of these a; values also verifies ged(A, ¢(n)) = 1.
The multiplicative inverse B of A defined as AB = 1 (mod ¢(n)) can be computed
using the Euclidean algorithm.

Let {ak,>0} denote the set of parameters used in the inner nodes between the
source and leaf k, plus ar, = a; in the root. The reversing function distributed to
the leafs is defined as:

hk(x) = 2% mod n
where,

(ag, -Qky...ak,).Dr = 1 (mod ¢(n))

Like the basic RSA algorithm, the asymmetric property of this scheme relies on
the difficulty of computing Dy from the reversing function without the knowledge
of ¢(n) (which currently seems to be only derivable from the factors of n = pq).
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7.6.2 Key Distribution

The source wishing to distribute a key K, sends the following value to its children
in the tree:

S1 = K" = (S0)" (modn)

Remark 7.8 Here we have Sy = K, and for simplicity we have omilled issues
such as padding or semantic security. A proper (and probabilistic) encoding of K is
suggested in [BR95].

Each inner node N; in the secure multicast tree processes the 5;_; value received
from its parent node and sends S; to its children inner nodes where:

Si = Ja; (Si—1) = (Si-1)"" (mod n)

Recalling figure 7.6 while assuming an RSA like AC'Sg sets the following scenario
on the path from the root to leaf 3 of the tree:

e The root send S} = (Sg)? mod n to its children.
e N receives S} and sends S5 = (Sg)*%” mod n to its children.

o N, receives S5 and sends S5 = (Sp)1%7% mod n to leaf 3.

Decryption

The decryption process is also simpler than in the ElGamal case. The decryption
function A is applied to the received value in the leaf to recover K. For example, on
figure 7.7:

K = So = h3(53) = ((So)*%)P* modn
assuming

ajarag.D3 =1 (mod ¢(n))

The Next Key.

Sending a new key K only requires Sp to be changed in the preceding description.
Nothing else needs to be done.

7.6.3 Node Compromise

The node compromise attack previously described in section 7.5 regarding the dis-
crete log case does not apply here essentially because the RSA based sequences are
asymmetric: to compute the inverse of any function {f,,, fa,..., fa, }, the knowledge
of the intermediary parameters {ay, as..., ar} wouldn’t be sufficient as ¢(n) is also
required. However the node compromise attack based on membership extension as
depicted in section 7.3.4 is still possible with the RSA based scheme.
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7.7 Related Work

In this section we compare our framework with the other proposals from chapter
6. Moreover we will look at the particular implication of using our scheme for key
distribution.

Processing Scalability and Membership Robustness.

We believe that MARKS is the most scalable scheme, since the remove operation
introduces no side effects. Containment oriented schemes such as IOLUS and ours,
come next since the side effects are limited to a small subgroup. LKH require a
global update each time a member leaves the group and current research about
LKH aims at reducing the cost of this operation through various techniques.

Trust

Although our solution uses intermediary components, it has a major difference with
IOLUS: our framework puts limited trust in the intermediary components, whereas
in IOLUS each intermediary component has access to the multicast data. This
problem does not appear in LKH or MARKS since no intermediary elements are
involved.

Containment

In terms of containment, our scheme is equivalent to IOLUS, where each subgroup
uses a different key to access the multicast data. On the other hand LKH and
MARKS do not address containment issues even though they use a computational
tree structure. In those schemes, the keys held by any user can be used to access the
multicast group anywhere and all users are equivalently trusted with the security
parameters of the group.

Key distribution

Even though we offer higher security in terms of trust and containment, this has a
cost. Indeed, IOLUS, LKH and MARKS have a clear advantage over our scheme in
terms of performance. This has lead us to consider our scheme for key distribution
and not bulk data encryption. In that respect the framework is used to distribute a
short term data encryption key k. As this short term key is common to all recipients,
it may look as our scheme looses its containment advantage over LKH or MARKS.
However, the short term key can be frequently updated and its disclosure does not
provide a means of long term group access to intruders. This is because in our
scheme the group membership is represented by the long term reversing functions
that are different in each leaf of the multicast tree as opposed to the shared secret

group membership key(s) of LKH and MARKS.

126



Untrusted Re-encryption Trees: Cipher Sequences. 7.8 Conclusion

7.8 Conclusion

This chapter presented framework designed to support data confidentiality in a
large dynamic multicast group. The framework meets a set of requirements wider
than previous proposals. In particular this work was the first one to introduce the
concept of containment in [MP99] and the use of untrusted intermediary elements
in the context of multicast confidentiality.

The introduction of Cipher Sequences, or C'Sg, provides a formal but yet prac-
tical description of the framework elements, with a voluntary distinction between
symmetric and asymmetric behaviors. The mapping of these sequences over a multi-
cast tree is the core mechanism that allows this framework to meet the requirements
of Chapter 5.

Two key distribution schemes have been presented as implementations of the
framework. They have served as a proof of concept for the framework and they have
allowed us to discuss the implication of various node compromise scenarios, as the
possibility of node compromise cannot be neglected in a large multicast network.

The next major step would be the design of efficient functions that could be used
to build C'Sg’s that operate on bulk data, in order to fully capitalize on this frame-
work. However, it seems difficult to find symmetric cryptographic transformation
which exhibit the mathematical structures needed to construct C'Sg’s. In the next
chapter, we propose a solution that operates on bulk data, which approaches the
Cipher Sequences with certain limitations using efficient cryptographic techniques.
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Chapter 8

Untrusted Key Encryptions
Trees: Layered Encryption.

8.1 Introduction

The previous chapter proposed a construction based on sets of functions which exhib-
ited a group structure through composition. The implementations of the framework
we proposed relied on asymmetric cryptographic techniques that are typically much
more expensive than symmetric ones and restrict the field of application of our
framework to key distribution rather than bulk data encryption. It would be nice
however to find a block cipher algorithm £ that would verify &, (Ex,(M)) = Ek, (M)
for a triplet of keys {ky, ko, k3} and any message M. It turns out that such a prop-
erty would probably be considered a weakness by cipher designers. Not only would
it make multiple encryption useless, but also it would allow a meet-in-the-middle
known plaintext attack that would achieve a high probability of success with a cost
of 0(2%) operations. Let C' = &(M), the attack would proceed by encrypting M
and decrypting C' with two varying keys, and then halting on a collision between
any encryption of M and any decryption of €', which is a typical birthday paradox
attack in terms of complexity.

In this chapter we propose to explore another way[PM02b] to combine several
encryption operations, which is in between classical multiple encryptions and the Ci-
pher Sequence construction from the previous chapter. We propose a re-encryption
tree framework that takes advantage of the fact that the so called “counter based”
cipher mode of operation uses the commutative XOR operation to combine a pseudo-
random pad with the plaintext to produce the ciphertext. We use a multiple key
version of this encryption scheme and distribute the keys in a way that limits the
trust we put in the intermediary elements in the network.

This chapter is organized as follows. In the first section, we will look at some
interesting cryptographic primitives that we use in our framework. Then, we present
our framework based on multiple layers of encryption, or [-layer trees. In the follow-
ing section we analyze the security of our construction, and discuss its scalability and
relate it to the list of requirements we presented in chapter 5. Finally, we present a
potential improvement of our scheme with a shorter message expansion.
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8.2 Cryptographic primitives.

Our framework uses a multiple key version of the counter based block cipher mode
of operation (XORC) as described in [BDJR97] and can alternatively be constructed
with any general stream cipher such as SEAL[RC98]. Counter mode has been pro-
posed for standardization to NIST as an official AES mode of operation in [LRW00].
In this section we will briefly recall counter mode (XORC) and present our own
multiple key extension that is used in the framework. We denote “@” as the binary
XOR operation.

8.2.1 XORC encryption scheme.

In [BDJR97] BELLARE ET AL. describe and analyze various cipher modes of op-
eration. We will briefly recall their work on the counter-based XOR mode of op-
eration or XORC, which we use in our own scheme. Assuming that we have a
pseudo-random function family F of domain {0,1}% and range {0,1}”, the scheme
XORC(F) = (K, &, D) is defined as follows:

e the function K flips coins and outputs a random k bit key a, thereby selecting
a function f, from the family F.

e the function £(o,z) is defined as:
let © = 2129...2,
fori=1,...,ndoy; = fulo +1) D a;.
return (0, y1y2...Yn ).
oc+—o+n

e the function D(o,y) is defined as:

let y = y1y2...yn
fori=1,..,ndoaz; = folo+1) Dy

return r = z1x3...2,

Note: The state or counter ¢ is maintained by the encryption algorithm across con-
secutive encryptions with the same key. The decryption algorithm is stateless.

The authors of [BDJRI7] have shown essentially that if F'is a secure pseudo-random
function family then the XORC is a secure encryption scheme. Their notion of
security is left-or-right indistinguishability in a chosen plaintext attack and we refer
the reader to their work for more details. In practice, we will use a family of pseudo-
random permutations such as DES or AES[0ST01] as satisfying approximation of
F.

This scheme has many advantages. First it’s paralellizable because the encryp-
tion of each block is independent of another. Second, the decryption can under
certain circumstances be “prepared” in advance. Since the state is incremented in a
predictable way across several messages, it means that the receiver can pre-compute
some of the values of f, to reduce online computations. Finally, this scheme uses the
XOR operation which is commutative, a property that we will show to be useful.
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8.2.2 Multiple encryptions.

The commutative nature of the XOR operation makes the XORC=(K, £, D) inter-
esting for a special form of multiple encryption. Normally if we encrypt a mes-
sage x several times with a set of keys aq,...,a,, we would compute (o,,,y) =
Eap (Omy o Eay(02,Eqy (01, 7)...) but we proceed slightly differently, by leaving the
counters o7y, ..., o, outside the consecutive encryptions. We define the XORC(™) =
(/C(m), glm), D(m)) algorithms with m independent keys as as follows:

e K™ chooses m random keys.
° 551722,,,,%(01, voey Oy &) 18 defined as:
let 2 = zy25...2,,
fori=1,...,ndoy;= fo,(o1+0)D ... fa,, (om + 1) D ;.

return (01...0m, Y1Y2---Yn)-

fory=1,...,mdoo; < o;+n
° Dgﬁ?__,am(tfl, vy Oy y) s defined as:

let y = y1y2...yn
fori=1,..,ndoz;= fo,(614+0) D ... ® fo,(Om +1) Dy

return ¢ = z1%3...T,.

We note immediately that &, = 5,51) and D, = Dgl). This form of multiple encryption

has the following interesting properties:
Fact 8.1 For any permutation © of {1, ..., m} we have

gaﬂ(l)""’aﬂ'(m) (Uﬂ(l)’ w0 Om(1)s .’E) = gal,az,..,am (017 ooy Oy aj)

and

Daﬂ.(l),...,a.,r(m) (Uw(1)7 ceey U7r(1)7 y) - Dal,ag,..,am (Uh <oy Omy y)

This is a natural consequence of the commutativity of the XOR binary operation.

Fact 8.2 Given a message x if we compute {01, ..., 0(n_1), Y} %Eéﬂi}g(m_l) (015 s O(m—1), T)
1
and{o,z} &l )(U, y) then we have {01, ..., 0(n_1),0,2} = ECET?,,,a(m_l),a(Ul, ey O(me1)s Oy Y)-

A similar result holds for D=1 and DW,

Fact 8.3 When a message is encrypted with m keys as described above it is at least
as secure as anyone of the individual encryplions.
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Proof. (This is a classical result). We will say that an adversary A with access to a
“encryption device” or oracle representing an encryption scheme can (t, g, pt; €)-break
that algorithm if A succeeds in breaking the encryption scheme with a probability
greater than e by asking at most ¢ oracle queries totaling at most p bytes and
spending at most ¢ units of time (where an oracle query itself costs one unit of time).
The property above follows from a simple simulation argument: If an adversary A,
which has access to a “encryption device” or oracle representing an XORC(™)-
encryption, (t,q,u;€) breaks that scheme, then we can design an adversary By,
with access to a I-encryption oracle, which can (' =t + (m — 1)g, q, u; €)-break one
of the XORC encryptions by simulating the m — 1 other encryptions with random
keys.

8.3 [-Layer Encryption Trees.

8.3.1 Construction

As described in section 1.1.2, we call a tree T a singular leaf tree if each leaf in T
has a distinct unique parent. We define a function Depth(N) which for a node N
returns its depth in the tree, where Depth(root) = 0, and we define the function
Parent(N, 1) which returns the [** parent of node N if it exists or {) otherwise.

We call “l-layer tree” the association of a multicast singular leaf tree network
with a set of cryptographic transformations designed to protect the distributed data
with a varying set of [ layers of encryption. We associate a set of keys to the
tree to perform XORC encryptions as described previously, taking advantage of the
commutative nature of the encryption scheme. Let T be a singular leaf tree with n
intermediaries. We associate a set of n + [ different encryption keys [K1, ..., Ki1,]
to the tree as follows:

root: The root receives the encryption keys [K7, ..., K|].

intermediaries: The n intermediaries receive each a distinct key from the set
(K141, ey Kiyn). For example if we number the intermediary arbitrarily from
1 to n we can associate key Kjy; to intermediary number ¢. We call this key
the intermediary’s encryption key. Each intermediary N receives a secondary
key K', which we will call decryption key, as follows:

if Depth(N) <l then K' < Kp.yunn)-

else K’ + (the encryption key of Parent(N,l))
leaves: The leaves each receive | keys. To clarify the notation we will call these

keys Xy, ..., X}, A leaf N receives these keys as follows:

for:=1,...,ldo

(1) if Parent(N,7) = 0 then X(_;11) ¢ Kpepth(N)+i-1

(2) else X(j_j41) + (the encryption key of Parent(N,))
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(K1 Ko K Kglee{Ky Kglood Ky Kol Ky KylfKy KglooK5 KolKg KlHKlo K9 K8 K7)

SOURCE NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6

Figure 8.1: Key distribution on a single path in a 4 layer tree.

Line (1) shows that if the leaf does not have an i** parent then it gets one of

the encryption keys used by the root and line (2) shows that if it does have an
ith parent then it gets the encryption key of that parent.

This key assignment may seem somewhat complex but in fact it’s governed by two
simple principles:

e Each intermediary gets its own encryption key and the encryption key of its
It" parent.

e Each leaf gets all the encryption key of its parents of degree | down to 1.

The complexity only appears in the algorithm for nodes or leaves that are not deep
enough in the tree to fully apply the previous two rules. In such a case, the otherwise
missing keys are taken from the root. If we focus our attention on a single path of
the tree extending from the root to a leaf, we can see that each key used on a node in
a path is used once as an encryption key and once as a decryption key, as illustrated
on figure 8.1.

An example of our key assignment algorithm is shown on figure 8.2 for a 4 layer
tree.

8.3.2 Data Distribution

Once the tree is constructed, its components operate as follows:

root: The root or source encrypts a message M by computing (oy,...,0,C) =
I(é)... Kl(al’ ..., 01, M) and sends the result to its children nodes in the tree.
intermediaries: Each intermediary N receives an encrypted message (o4, ..., 07, C).

The intermediary N performs the following operations:

1. Suppress a layer of encryption: €'« DW(gy,C).

2. Add a new layer of encryption: (r,C") « £ (r,C") where 7 is the internal
counter of N.

3. Let 71, ¢~ 7 and 7; ¢~ o(jyq) fori=1,..., (I = 1). Send (71,72,...,7,C") to the
children nodes.
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Figure 8.2: Key distribution on a 4 layer tree.

leaves: The leaves receive an encrypted message (01,03, ..., 01, C) that they decrypt

. L
by computing M = Dg{l)“le(Ul, ey 01, C).

If we recall the construction of our tree, we see that the keys are distributed to make
the above algorithm work: each key used to encrypt the data is used later as a de-
cryption key. The source and the leaves perform an /-encryption and an [-decryption
respectively. Intermediaries use Fact 8.2 to first transform an l-encryption toa (I—1)
encryption, then using the same property, they transform the (I—1)-encryption back
into an l-encryption. The combination of Fact 8.1 and 8.2 allows us to decrypt a
layer regardless of the order in which the encryptions were done.

As an example, we will examine how our data distribution algorithm is applied
on the path of the 4-layer tree of figure 8.1, where C” denotes the encryption of M
at stage r in the algorithm:
(m)

Source: Computes and sends (o1, 03, 03,04, C%) + &;

K1 ,Ko,K3,K4 (017 02,03,04, ]\4—)

Node 1: Suppresses a layer (09,03, 04,C1) Dgl)(al,co).

Then it computes and sends (o3, 03, 04, 05, C?) 51(35)(05, chy.

Node 2: Suppresses a layer (03,04, 05,C%) 9353(02,02).
Then it computes and sends (o3, 04, 05, 06, C*) 51%)(06, C3).
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(,17)(0'3, 04)

Node 3: Suppresses a layer (04,05, 06, C®) Dx.

Then it computes and sends (o4, 05, 0¢, 07, C%) 51(;7)(07, Ch).

Node 4: Suppresses a layer (03, 0¢, 07, C7) Dgz (04,C").
Then it computes and sends (o5, 06, 07, 08, C%) 51%)(08, CT.

(,17)(0'5,08).

Node 5: Suppresses a layer (0g, 07, 08, C?) Dx:

Then it computes and sends (03, 03, 04, 05, C'°) 51%)(09, ).

Node 6: Suppresses a layer (o7, 03, 09, C1) Dgg (06, C19).

Then it computes and sends (o7, 03, 09, 019, C*?) 5};1)0(010, c1.

(m)

, 12
Leaf: Decrypts the message M < Dy 're o g, (07,08, 09,010,C"%).

8.3.3 Membership Management

After describing how members access the multicast content in the previous section,
we will now turn our attention to the addition and removal of members in our
framework.

Add: When a recipient M wants to be added to the group, he contacts a member-
ship manager (MM) with an authenticated secure channel. If M is allowed to
access the group, then there are 2 possible scenarios:

1. M is already physically in an existing leaf F: the MM sends an authen-
ticated secure message to the parent intermediary P of F, to change the
encryption key K of P to a new value K'. Then the new key K’ is sent
to all the members of the same leaf and to the new member M.

2. M is not in an existing leaf: the tree is expanded to create a new leaf
for M. The corresponding keys are distributed to the new intermediaries
and M.

Remove: When a member needs to be removed from the group, the MM sends an
authenticated secure message to the parent intermediary P of F', to change the
encryption key K of P to a new value K'. Then the new key K’ is sent to all
the members of the same leaf except M. If the leaf is empty because the last
member left, than after a certain delay, we may remove unused intermediaries
from the tree.

The leaf holds [ keys and needs all of them to access the data. Thus, changing
just one of them when we add or remove a member provides us with forward and
backward secrecy (req. 5.2).
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Distributed Membership Management.

This scheme also lends itself to a certain form of decentralized key management.
The tree of intermediary elements can be managed by a hierarchy of membership
managers. It follows from our construction in section 8.3 that an individual mem-
bership manager only needs to know [/ extra keys to manage a subtree on its own.
More precisely, if a membership manager is selected to manage a subtree consisting
of an intermediary N and all its descendants in the tree, then it needs to know the
set Y7, ..., Y] of keys defined as follows:
fori=1,...,ldo
if Parent(N,i) =0 then Y; ¢ Kpcpsn(n)ti-1
else Y; < (the encryption key of Parent(N,1))
In turn a membership manager may delegate the management of some of its own
subtrees to several other membership managers.

8.4 Security Requirements

8.4.1 Encryption

To discuss the security of our construction, we will first look at one-layer trees before
we study the general case. One layer trees are conceptually very simple, since they
only use the original XORC encryption algorithm. The source has a key Ky and uses
it to encrypt data to be sent to its children. The intermediaries decrypt the data
with the key K; that their parents used to encrypt the data and use their own key
K; to encrypt the data again for their children. The leaves use a single key to access
the data. A one-layer tree is quite similar to the IOLUS framework [Mit97], and
it shares one of the drawbacks of that framework: each intermediary is trusted to
access the cleartext data. For now however, let’s examine the security of a one-layer
tree while making the hypothesis that the intermediary elements are secure.

The individual links are secured by the XORC encryption algorithm. In our
framework, an adversary has the ability to observe several links and thus the same
message encrypted under different keys. We can even imagine that the adversary
may modify or input new messages at different points in the tree to try to break the
security of the system. In a recent work evaluating the security of public key cryp-
tosystems in the multiuser setting [BBMO00], BELLARE ET AL. have shown essentially
that if a public key cryptosystem is secure in the sense of indistinguishability, then
it implies the security of the cryptosystem in the multiuser setting, where related
messages are encrypted with different keys. We refer the reader to their work for
further details [BBMO00]. Though their work was targeted at public key cryptosys-
tems, their results can be applied to the private key setting, and since the XORC
encryption is secure in the sense of “indistinguishability” under chosen plaintext
attacks[BDJRI7], we can assert the security of the whole tree by using the results
of [BBMO0O0].

Now for [-layer trees, property 8.3 tells us that they are at least as secure as a
1-layer tree if no intermediary is compromised. But, the advantage of a [-layer tree
is that it remains secure even if some nodes are compromised, more precisely:
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Proposition 8.4 Let B = By, ..., B, define a set of p compromised intermediaries
in a L-layer tree. The tree remains secure as long as there exists a constant ¢ €

{0,...,1 =1} such that Depth(B;) # ¢ mod [ for all 7 € {1, ..., p}.

Proof. This property derives from the arrangement of the keys in the tree. Let
B = By, ..., B, define a set of compromised intermediaries in an [-layer tree T such
that there exists a constant ¢ € {0,...,1 — 1} verifying Depth(B;) mod [ # ¢ for all
i € {1,...,p}. From the tree T we can extract a subtree T iteratively, as follows:

Notations:
Let Ng define the root of T', let {Ny,..., N} denote the intermediaries of 7" and
let Lr>o denote the leafs of T.
Similarly, let Ng define the root of T, let {Ny,..., N,} define the intermediary
nodes of T, and let £ denote the leafs of T.
Construction:
WO — ATO
Select {Ny, ..., Ny}, the set of intermediaries N; of T" which verify Depth(N;) =
¢ mod .
{17\71, ceey qu} — {Nl, ceey qu}
fori=1,...,qdo
if Depth(N;) = ¢ then
connect N; to Ngin T.
let £ be the concatenation of all leaves £ € T such that Depth(Ly) < c.
if £ # () then connect £ to Ny in T.
else
let N; = Parent(N;,1).

connect Nj to N;in T.

let £ be the concatenation of all leaves £, € T such that
(Parent(Ly,r)= N; and j <1).

if £ # () then connect £ to N; in T.

The tree T represents a 1-layer tree such that none of its intermediaries { N1, ..., E\_Tq}
hold a key in common with any of those distributed to the compromised set B. Thus
since there exists an independent 1-layer tree between the root and the leaves, the
encryption of data in the tree remains secure (req. 5.1). &

Corollary 8.5 An obvious implication of this property is that an [-layer tree can
at least withstand the compromise of any set of less than [ intermediaries.

8.4.2 Containment

In singular parent trees, no leaf shares its direct parent with another leaf, thus each
leaf holds at least one key that is not known by any other leaf. This key is the
encryption key used by the parent intermediary node of the leaf. Thus if £ is a leaf,
then no collusion of any group of leaves {Lq, ..., L,|L; # L,i € {1,...,p}} can break
the encryption of data received in the leaf £ (req. 5.3). Moreover, an adversary in a
leaf £ who compromises the keys in a set of leaves {L1, ..., Lp|L; # L,i € {1, ...,p}}
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cannot use this information to access the data in his own leaf. Thus having a singular
leaf tree is a sufficient condition to provide containment (req. 5.4).

There is no containment within a leaf, all the recipients that are physically in
the same leaf use the same key to access the data, thus exposure of keying material
in one leaf allows other members of the same leaf to access the data. However,
unless there is a form of hardware access control installed directly on each recipient,
providing containment in within a leaf is very hard: ultimately, it’s difficult to stop
or even detect if a member rebroadcasts decrypted data to other local recipients
that are not members themselves.

8.4.3 Hybrid attacks

This framework may face more complex attacks that are a combination of both the
compromise of leaves and intermediary elements:

Membership extensions:

If a member M in a leaf £ takes full control of the direct parent P of £, it can
monitor key changes in P. If the membership manager decides to remove M from
the group, it will change the key K held by P and send the new updated key K’
to the other remaining members in £ as well as P. As a consequence the removed
member M will still be able to stay in the group because it will learn the new
value K’ from P. This means that we lose forward secrecy. Recovering from such
a compromise requires a key change in the parent P’ of the compromised node P,
which in turn requires all the leaves that have P’ as an ancestor to be updated.

Containment failures:

Assume that two leafs £ and £, of same depth in the tree share a common ancestor
node P in the tree which verifies |Depth(L£q1) — Depth(P)| < [. In that situation,
the members in £1 and the members in £y have k < I decryption keys in common.
If a member M; in £; compromises the (I — k) first parents of L, than M; will
know enough information to generate the set of [ keys used in L3, by combining
the k£ common keys with the | — k compromised keys. This attacks breaks the
containment property of the scheme, for two leafs that are at the same depth in the
tree.

8.5 Scalability Requirements

The processing load supported by each entity in the tree is not proportional to
the group size. For the leaves and the root it depends on the parameter [, which
defines the number of layers in the tree, while intermediaries always perform a single
decryption and a single encryption regardless of the number of layers. Thus this
framework offers processing scalability (req. 5.6).

When a member is removed or added to the group, the key change remains local
and only affects a leaf at a time. The number of elements in a leaf is not a scalability
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itself itself, because we can simply create more branches in the tree to cope with
leaves that get too large. Asin the construction of the previous chapter, membership
robustness issues (req. 5.7) are limited to a subgroup rather than the whole group.

8.6 Reducing Expansion

In the XORC™ scheme, the encryption of a message results in an expansion of m.|o;]|
bytes where |o;| represents the size in bytes of the state value. We could use a single
state chosen by the source and common to all layers of encryption as well as all
elements in the tree. In other words we would rewrite the encryption algorithm as
follows:

cx(m) .
Cay,az,..,am (Uv :E)

split « as z1, ..., ,
fori=1,..,ndoy;, = fo,(c+) D .. fa,. (0 + 1) D ;.
return (o, y19z...Yn)

oc+—o+n

The intermediaries would use the same ¢ to both encryption and decryption oper-
ations. The algorithm would be simplified and the ciphertext size would be inde-
pendent of the number of layers in the tree. In such a case, however, proving the
security of the scheme is an open problem since the intermediaries are now stateless
and cannot be modeled as independent encrypting devices, which was a requirement
of the security proof found in [BBMO00] upon which we relied for our scheme.

8.7 Conclusion

As we did in the previous chapter, we used intermediary elements in the network to
constructed a scalable framework for multicast access control based on symmetric
cryptographic transforms. This framework offers interesting properties such as con-
tainment, and limited trust in the intermediary elements of the network. It shows
some vulnerabilities to what we called hybrid attacks when both members and in-
termediary elements in the network are compromised, in particular what we called
the “leaf parent” node.

Non trusted re-encryption trees are an interesting approach to multicast confi-
dentiality. However, there remains some challenges for their deployment. First, we
need to evaluate which nodes should become active security intermediaries and how
to deal with routing or node failures. Second, we need to establish a well defined
method to distribute the security parameters to these active intermediaries.
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Chapter 9

Conclusion

9.1 The Complexity of Multicast Security

In this dissertation, we analyzed and suggested solutions for the two most important
security issues in large scale multicast applications: authentication and confidential-
ity. The set of requirements that we established for multicast authentication in
Chapter 2 and for multicast confidentiality in Chapter 5 are clearly more complex
than their unicast counterparts.

In this thesis we highlighted several reasons to this additional complexity. First,
the participants in a multicast security protocol change dynamically through time.
Adapting to dynamic groups adds certain requirements, such as joinability for au-
thentication or backward and forward secrecy for confidentiality. Second, we have
a different notion of trust in the participating entities of multicast security proto-
cols. In a good multicast authentication scheme, though the source will share some
security parameters with the recipients, these recipients should not have the ability
to forge packets that seem to originate from the source. Similarly, we introduced
containment in multicast confidentiality to limit the impact of potential key expo-
sure, because we cannot trust the recipients with the same strength as the source
or the membership managers. More generally, the fundamental source of additional
complexity in multicast security protocols can be found each time the need of one
or few participants is opposed to the rest of the participants in the protocol. For
authentication, the source is opposed to the rest of the recipients, which are treated
as potential adversaries. For confidentiality, added and removed members are in
opposition with the rest of the group. Properties such as containment, joinability,
backward and forward secrecy can all be viewed as resulting from the opposition
between an individual entity and the rest of the group.

9.2 Maturity of Multicast Security Solutions

Authentication

Multicast authentication is essentially a one-way protocol where a source provides
information to a set of recipients for verification. All practical protocols we presented
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in this thesis rely partly on a digital signature verification mechanism which requires
the recipients to acquire the public key of the source. Besides this minimal setup,
the recipients don’t communicate with any additional entity or back with the source
in order to authenticate packets. For this reason, multicast authentication protocol
design and specification seems like a less complex problem than for confidentiality.
As a consequence, we believe that standards for multicast authentication will appear
sooner than for confidentiality.

Confidentiality

Multicast confidentiality is a more complex issue, because it involves membership
managers that communicate on a bidirectional channel with members in different
situations. Note that specific membership management issues are rarely mentioned
in multicast confidentiality frameworks, however we believe that these issues would
deserve to be explored in future research. For example, in large commercial appli-
cations, distributed membership management will become a needed feature. One
reason is scalability. Indeed, in a very large multicast group, a single membership
manager serving all requests, would quickly become a bottleneck. A second reason
relates to laws and regulations. Different countries have different commercial laws
and sometimes different cryptography regulations. It makes sense to distribute sev-
eral membership managers according to these constrains. Re-encryption trees are
well suited for distributed membership management, and the MARKS subscription
approach is even better. However, it seems that a construction such as LKH is
inherently hard to distribute.

Someone who wishes to implement multicast confidentiality as described in this
dissertation is faced with a dilemma. If he uses approaches that share a common
key among members, without any form of containment, then piracy related issues
will greatly hinder the use of such schemes in large groups. On the other hand
the schemes that provide containment, require the use of intermediary elements
in the network, which has a deployment cost. Note that the new approach that
we suggested, which uses only semi-trusted intermediary elements in the network,
partially reduces that cost because it does not require the content provider to own
the whole infrastructure, but allows it to be shared among several providers.

Because of all these issues, it is not clear yet what type of solution will emerge
for confidentiality in large scale multicast applications. In fact it is quite possible
that some solutions will rely on a combination of both re-encryption trees for inter-
domain communications in combination with a LKH approach in local domains.

9.3 Future Directions

In recent years, content providers have shown a strong concern in protecting the
content they distribute beyond the notion confidentiality we described in this the-
sis. Recall for example, the highly publicized lawsuit[USDC99] that opposed the
RIAA to Napster, the mp3 audio download service. Issues such as copy protec-
tion and copyright have become paramount for content distributors. Architec-
tures that provide these additional services typically rely on several cooperating
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tamper-proof elements that provide end to end protection to the content from the
source directly to the video or audio playback hardware (see for example, CPRM,
http://www.4Centity.com/tech/cprm/). Future commercial multicast confiden-
tiality frameworks will potentially rely on such tamper-proof hardware platforms.

The non-negligible level of piracy that affects the Digital Video Broadcasting
industry which uses tamper-proof hardware to provide access control is one of many
examples that show that these technologies have their own source of challenges.
Developing and extending these technologies in the context of the Internet to provide
new security services for multicast applications presents a potentially strong area of
research. We believe that some of the ideas we introduced in this thesis, such as
containment and the use of untrusted elements to perform security transforms in a
network will find good applications in this extended context.
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Résumé

IP-Multicast est un mécanisme qui permet & une source de distribuer des données a un
ensemble presque illimité de clients sur Internet. Ce mécanisme semble particuliérement
bien adapté pour des applications de distribution commerciale de contenu & grande échelle
comme, par exemple, des chaines & péage, la diffusion de valeurs boursiéres ou la mise a
jour de logiciels... Force est de constater que ces applications n’ont pas vu le jour comme
on aurait pourtant pu I'imaginer. Un frein majeur au développement de ces applications est
le manque de sécurité des communications en multicast. Il est clair qu’une distribution de
contenu commercial nécessite de fournir des mécanismes qui restreignent ’accés au contenu
distribué en multicast aux seuls clients 1égitimes de I’application. D’autre part, dans de
nombreux scénarios le client doit pouvoir s’assurer de l'origine des données regues et le
producteur de contenu veut garantir cette origine afin de se protéger contre les risques
d’une usurpation d’identité. Dans le cadre d’un réseau ouvert comme Internet, on fait
appel a des techniques cryptographiques éprouvées pour résoudre ces probléemes entre deux
entités communicantes. Mais pour des raisons de facteur d’échelle et parfois méme de
sécurité, ces techniques ne peuvent pas s’étendre au multicast. Cette thése se focalise donc
sur la fourniture de services de confidentialité et d’authentification spécifiquement pour les
applications multicast & grande échelle.

Cette dissertation se divise donc en deux volets orthogonaux mais complémentaires :
I’authentification et la confidentialité. Dans chacun de ces volets nous proposons d’abord une
analyse détaillée de ces problemes et nous mettons en valeur certains aspects nouveaux ou
négligés qui sont spécifiques au multicast. Ensuite nous présentons les principales solutions
existantes, en analysant leurs avantages et leurs limites. Nous terminons par nos propres
solutions originales, en mettant en valeur les avantages qu’elles offrent par rapport aux
solutions précédentes.

Abstract

IP-Multicast is a mechanism that allows a source to transmit packets to an almost unlimited
number of recipients over the Internet. This mechanism would seem to be particularly well
suited for large scale commercial content distribution, such as, for example, pay-TV, stock
quote distribution, or software updates. However, a large scale deployment of any of these
applications remains to be seen. One of the major reasons that has hindered the deployment
of such applications is the lack of security protocols for multicast communications. Clearly,
in many cases, the distribution of content with a commercial value requires the use of
mechanisms that restricts access to the content solely to the legitimate recipients. Moreover,
in many scenarios the recipient needs to ascertain the origin of the multicast content he
receives and the content provider will also want to provide such a guaranty to protect
himself from the potentially devastating effect of being impersonated by a third party. In
an open network such as the Internet, well studied and reliable cryptographic techniques
are used to provide this type of security in two party protocols. However, for scalability
and sometimes even for security reasons, these techniques cannot easily be extended to the
multicast setting.

The goal of this thesis is thus to study and provide basic security services designed
specifically for large scale multicast applications. This dissertation is divided in two orthog-
onal but complementary themes: authentication and confidentiality. For each theme, we
start with a detailed analysis of the problem, while highlighting new or neglected aspects of
security that are specific to multicast. Then, we review existing solutions, analyzing their
advantages and their limitations. Finally, we provide our own original solutions, highlighting
the advantages they offer over previous proposals.



