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06904 Sophia Antipolis Cedex, FRANCE
Tel: +33 93002606 Fax: +33 93002627

email:fslock,carvalhog@eurecom.fr

ABSTRACT

We propose a decision-aided equalizer that uses past sym-
bol decisions, like classical decision-feedback equalizers, but
also future decisions, hence the name Non-Causal Decision-
Feedback Equalizer (NCDFE). Its derivation is done in a
burst processing and multichannel context, using Maximum
Likelihood Sequence Estimation (MLSE). The forward �l-
ter of the NCDFE is proportional to the channel matched
�lter and the feedback �lter is the cascade of the channel
and the forward �lter (without the central coe�cient). This
NCDFE corresponds to the Unbiased MMSE solution. Blind
MLSE is usually solved using alternating minimizations. We
propose to replace herein the repeated use of the Viterbi al-
gorithm with the much less complex NCDFE. Finally, some
simulation results are presented

1 Introduction

In wireless communications, multipath propagation intro-
duces Intersymbol Interference (ISI). Techniques to com-
bat ISI include decision-aided ISI cancellation, like decision-
feedback equalizers, where the ISI corresponding to past
symbols is synthesized and subtracted from the slicer input.
It is however possible to extend this concept to future deci-
sions. If past and future symbols as well as a perfect model
of the ISI process are known, all ISI can be eliminated from
the signal, and the matched �lter bound can be achieved.
This was �rst proposed by Proakis [1]: future decisions are
tentative decisions given by another equalizer. Gersho and
Lim [2] have determined the structure of such an equalizer,
using the MMSE criterion: the forward �lter of their equal-
izer is proportional to the channel matched �lter and the
feedback �lter is the cascade of the channel and the forward
�lter (without the central coe�cient). However, the propor-
tionality factor for the MMSE solution di�ers from the one
in the Unbiased MMSE solution.

We propose the derivation of an ISI canceler using past
and future symbols, starting from the Maximum Likelihood
(ML) criterion, in a burst processing mode, i.e. symbol
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detection is done burst by burst, using only the symbols
present in the burst.

2 The Multichannel Model

We consider here a FIR Multichannel model. The multiple
FIR channels are due to oversampling of a single received sig-
nal and/or the availability of multiple received signals from
an array of antennas (in the context of mobile digital com-
munications). To further develop the case of oversampling,
consider linear digital modulation over a linear channel with
additive noise so that the cyclostationary received signal can
be written as

y(t) =
X
k

h(t � kT )a(k) + v(t) (1)

where the a(k) are the transmitted symbols, T is the symbol
period and h(t) is the channel impulse response. The channel
is assumed to be FIR with duration NT (approximately). If
the received signal is oversampled at the rate m

T
(or if m

di�erent received signals are captured by m sensors every T
seconds, or a combination of both), the discrete input-output
relationship can be written as:

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k) = HAN (k) + v(k) ;
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H = [h(N�1) � � �h(0)] ; AN (k) =
�
aH (k�N+1) � � �aH (k)

�H
(2)

where the subscript i denotes the ith channel and super-
script H denotes Hermitian transpose. In the case of
oversampling, yi(k) ; i = 1; : : : ;m represents the m phases
of the polyphase representation of the oversampled signal:
yi(k) = y(t0 + (k + i

m
)T ). In the polyphase representation

of the oversampled signals, we get a discrete-time circuit in
which the sampling rate is the symbol rate. Its output is a
vector signal corresponding to a SIMO (Single Input Multi-
ple Output) or vector channel consisting of m SISO discrete-
time channels where m is the sum of the oversampling fac-
tors used for the possibly multiple antenna signals. Let



i 0
channel transfer function. Consider additive independent
white Gaussian noise v(k) with rvv(k�i) = Ev(k)vH (i) =
�2vIm �ki. Assume we receive M samples:

Y M(k) = TM (H)AM+N�1(k) + V M (k) (3)

where Y M(k) = [yH (k�M+1) � � �yH(k)]H and similarly for
V M (k), and TM(H) is a block Toepliz matrix withM block
rows and [H 0m�(M�1)] as �rst block row.

3 Non-Causal DFE

3.1 Burst Mode Detection

In burst mode processing, which is particularly well adapted
to mobile communications where the data is organized in
bursts, only the symbols present in the burst are processed.
On the other hand, in continuous processing, all the data
(from t = �1 to t = +1) is available.

In burst mode, symbol decisions are then made on a burst
by burst basis. Furthermore, the channel is supposed to be
constant during the transmission of a burst.

As the processing is the same for each burst, we adopt
simpli�ed notations in the whole paper. The burst we are
trying to detect, A, is of lengthM +N �1, and composed of

elements
�
aH (�N+1) � � �aH (M�1)

�H
. The corresponding

observations are Y =
�
yH(0) � � �yH (M�1)

�H
, and the noise

is denoted V . The relationship (3) is then written:

Y = T A + V (4)

3.2 Derivation

We suppose here that the channel is known and we propose
to determine the input symbols from the received signal Y ,
by solving the Maximum Likelihood criterion:

min
a(k)2A

kY � T Ak2 (5)

where A is the discrete constellation alphabet. We shall
detect the symbols recursively. Hence consider the detection
of the symbol a(k). For that purpose, we decompose the
quantity T A as follows:

T A = T �A(k) �A(k) + Ta(k)a(k) (6)

Ta(k) is the column of T that gets multiplied by a(k), T �A(k)
is the matrix T from which the column Ta(k) has been elim-
inated, �A(k) contains past and future symbols w.r.t. a(k).
Ta(k)a(k) contains the contribution in T A from the symbol
a(k) to be detected, and T �A(k) �A(k) the contribution from
the other symbols. Fig. 1 shows more explicitly the structure
of this decomposition. The blocks in the matrix T represent
the channel H , here of length N=3, composed of the co-
e�cients h(0), h(1) and h(2). Using this decomposition,
criterion (5) can be rewritten as:

min
a(k)2A

k
�
Y � T �A(k) �A(k)

�
� Ta(k)a(k)k

2 (7)

Its solution gives:�
â(k) = dec fz(k)g
z(k) = (T H

a (k)Ta(k))
�1T H

a (k)
�
Y � T �A(k) �A(k)

� (8)

where decf:g is the decision operation that chooses the ele-
ment in the alphabet A closest to its argument.

Contains past and future Contains 
a(k) onlysymbols w. r. t . a(k)

= + +=+

H

A
( ) ( )a( )( )

a(k)
h(0)

h(1)

h(2)

Figure 1: Decomposition of T A in the case of a channel of
length N=3

3.3 Decision Feedback Structure

This solution may be thought of in terms of decision feed-
back. We consider here that for the detection of a(k), we
dispose of past and future decisions w.r.t. a(k), grouped

in the vector b�A(k). If we suppose that those decisions are

correct so that b�A(k) = �A(k), then, using (8):

z(k) =
�
(T H
a (k)Ta(k))

�1T H
a (k)

�
Y

�
�
(T H
a (k)Ta(k))�1T H

a (k)T �A(k)
�
�̂A(k)

(9)

We can now recognize a decision feedback structure.
The forward �lter, applied to Y , is

(T H
a (k)Ta(k))�1T H

a (k), the feedback �lter, applied to the
past and future decisions, is (T H

a (k)Ta(k))�1T H
a (k)T �A(k).

The feedback �lter synthesizes the cascade of the channel
and the forward �lter, except for the central coe�cient cor-
responding to the symbol to be detected a(k). It then elimi-
nates the contribution of past and future symbols present in
the signal at the output of the forward �lter. If past and fu-
ture decisions are correct, all the ISI can be eliminated and
the only symbol present at the input of the decision device
is then a(k). In that case, this equalizer would attain the
matched �lter bound.

Unlike classical decision-feedback equalizers, past, but
also future symbol decisions are used: the feedback �lter
is not causal anymore but becomes anticausal, this is why
we call it Non-Causal Decision-Feedback Equalizer

(NCDFE).

3.4 Forward and Feedback Filters

Let's take a closer look at the forward and feedback �lters.
T H
a (k) contains the coe�cients of H , surrounded by zeros:

multiplying Y by T H
a (k) gives one output sample of the

�ltering of Y by the channel matched �lter. The product
T H
a (k)Ta(k) being simply a scalar equal to kHk2, the for-

ward operation is:

(T H
a (k)Ta(k))

�1T H
a (k)Y =

H
t�

kHk2
Y N (k+N�1) (10)

where Ht is the block-wise transpose of H, Ht =�
h(N�1)T � � �h(0)T

�
.

Because the channel is FIR, only N observation samples
are needed to detect one symbol. Furthermore, as the signal
at the output of the matched �lter T H

a (k) contains N � 1



and N � 1 past decisions are needed.
The feedback �lter, as already mentioned, is the cascade

of the channel and the matched �lter, except for the central
element of the cascade. The feedback operation is:

(T H
a (k)Ta(k))

�1T H
a (k)T �A(k) �̂A=

Ht�

kHk2
T Â2N�1(k)�a(k)

(11)
where Â2N�1(k) contains the N � 1 past and N � 1 future
decisions w.r.t. a(k).

The above description of the forward and feedback �l-
ters, however, does not take into account the edge e�ects,
which are due to the fact that we are processing in a burst
mode. The expressions in (9) remain valid though. The
edges correspond to the N � 1 �rst and N � 1 last symbols
of the burst. In continuous processing, where all the data
necessary for detection is assumed to be available, we need
N present and future received samples, and N � 1 future
and N � 1 past symbols for a channel impulse response of
length N . Burst mode processing corresponds to continuous
processing, except for the two edges.

Consider again �g. 1: at the edges, the vector Ta(k) does
not contain all the coe�cients of the channel. It is a trun-
cated version of the continuous processing forward �lter.
The edge feedback �lter is not a truncated version of the
continuous processing feedback �lter, as it results from the
multiplication of a truncated version of the matched �lter
by a truncated version of the convolution matrix T .

To sum up, the forward and feedback �lters are time-
varying at the edges, and time-invariant in between, corre-
sponding then to the continuous processing case.

3.5 Continuous Processing Case

We see then that it is immediate to extend the results ob-
tained for burst detection to the case of continuous process-
ing.

The forward �lter is simply the matched �lter to the mul-
tichannel �lter H(z), i.e. Hy(z), where Hy(z) = HH(1=z�),
and the feedback �lter Hy(z)H(z)� kHk2. The scaling fac-
tor kHk�2 is added after the feedback loop. Figure 2 shows
the set-up of the continuous NCDFE.

possible feedback of improved decisions for causal ISI cancellation

Other Equalizer

y(k)

v(k)

Channel Matched Filter
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H
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z
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H
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z
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Figure 2: Continuous NCDFE

The future decisions are given by another (classical)
equalizer (linear, or causal DFE), the past symbol decisions
are either given by the NCDFE itself, or by the �rst equal-
izer. The output of the NCDFE can be used as feedback for

tation would be the same as the one above, except for the
processing of the edges, for which the �lters are time-varying.
This structure represents an alternative to the Viterbi algo-
rithm, less complex as it consists of FIR �ltering and slicing.

3.6 MMSE Criterion

In [2] and [3], a similar non-causal DFE structure was de-
termined starting from the MMSE criterion:

min
F;B

jF (q)y(k) �B(q)a(k) � a(k)j2 (12)

where F is the forward �lter and B the feedback �lter. We
show now that our solution corresponds to the unbiased
MMSE solution.

It is easy to see from criterion (12) that the feedback
�lter is equal to the cascade of the channel and the forward
�lter, from which the central coe�cient is eliminated. The
feedback �lter can be written as FT �A(k).

According to the decomposition (6), if we denote Z =
Y � T �A(k) �A(k) = Ta(k)a(k) + V , the input to the decision
device is:

z(k) = FZ = FTa(k)a(k) + FV (13)

The MMSE solution to (12) is:

zMMSE(k) = �2aT
H
a (k)

�
�2aTa(k)T

H
a (k) + �2vI

��1
Z (14)

Using the Matrix Inversion Lemma:

zMMSE(k) =
T H
a (k)

T H
a (k)Ta(k) +

�2
v

�2
a

Z (15)

zMMSE(k) =
T H
a (k)Ta(k)

T H
a (k)Ta(k) +

�2
v

�2
a

a(k) +
T H
a (k)

T H
a (k)Ta(k) +

�2
v

�2
a

V

(16)
Let's compare it with our ML solution:

zML(k) =
T H
a (k)

T H
a (k)Ta(k)

Z = a(k) +
T H
a (k)

T H
a (k)Ta(k)

V (17)

We notice that the ML estimate of a(k) is unbiased, but also
we have the following relationship:

zML(k) =

0
@ T H

a (k)Ta(k)

T H
a (k)Ta(k) +

�2
v

�2
a

1
A
�1

zMMSE(k) (18)

It was proven in [4] that this simple scaling of the MMSE
estimate leads to the optimum unbiased MMSE estimator.

The structure we derived from the ML criterion corre-
sponds to the unbiased MMSE NCDFE. This estimator, al-
though it increases the SNR at the output of the equalizer,
has the advantage to reduce the error probability when the
input constellation is not constant modulus.

4 Blind Adaptation

4.1 Blind Estimation Algorithm

We now assume that we do not know the channel, as well as
the input symbols. Our purpose is to �nd a blind algorithm
to determine them. Our minimization criterion is:



H;a(k)2A

To solve it we use a technique of alternating minimizations,
where we minimize alternatively w.r.t. the channel coe�-
cients and w.r.t. the input symbols.

Here is the principle of the algorithm, where an alternat-
ing minimization is used at step 1 and 2:

0. The initialization is furnished by another classical
blind algorithm which gives symbol estimates. Alter-
natively, the blind algorithm may provide a channel
estimate, with which the symbols are determined us-
ing a classical equalizer (linear or DFE).

1. If we suppose the symbols known, then the estima-
tion of the channel is the one obtained from a train-
ing sequence by the least-squares criterion. By ex-
ploiting the commutativity of the convolution, we get:
T A = AH t T , where:

A = AM;N 
 Im (
 = tensor product)

AM;N =

2
66664

a(�N+1) a(�N+2) � � � a(0)

a(�N+2) . .
.

. .
. ...

... . .
.

. .
. ...

a(M�N+2) � � � � � �a(M�1)

3
77775

Criterion (5) admits as solution: Ht T=(AHA)�1AHY

2. If we suppose the channel known, each symbol a(k) of
the burst is determined by the NCDFE, according to
equation (8). We have two possibilities for past symbol
decision feedback. We can use the previous iteration
of the algorithm for past and future decisions w.r.t.
a(k). But we can also use the past decisions given by
the NCDFE during the current iteration, the future
decisions still being given by the previous iteration.
Then we return to point 1.

5 Simulations

For all simulations, we consider bursts of length 100. The
input symbols, of variance �2a = 1, are -1 and 1. Di�erent
SNRs are also considered: 7dB and 10dB. What we call SNR
is the average SNR per subchannel at the channel output.

It is de�ned as SNR =
1

m

kHk2�2a
�2v

.

The measure chosen is the error probability: we average
the number of errors at the equalizers output over di�erent
random instances of the input burst symbols and noise and
over some symbols of the burst. In burst mode, performance
depends on the position of the symbol in the burst: when no
symbols at the edges are known, the performance degrades
at the edges w.r.t. to the middle. When at least N � 1
symbols are known at each edge, the performance gets better
at the edges compared to the middle. In the simulations we
consider the average number of errors over all symbols in
the burst but also over the 50 central symbols for which
performance is asymptotically equivalent to the continuous
processing level.

In a �rst simulation, we compare the performance of the clas-
sical DFE and the NCDFE. The channel is assumed known;
its coe�cients are randomly chosen (N = 7 and m = 3).
The output of the DFE is used to initialize the NCDFE; 5
iterations of the NCDFE are then done. In �g. 3, we plot-
ted the average number of output errors for SNR=7dB and
SNR=10dB, as well as the Matched Filter Bound (MFB)
and the ideal error probabilility of the DFE (for an unbi-
aised equalizer, the error probability can be found from the
MSE using the Gaussian approximation [4]): in the left �g-
ure all the symbols of the burst are considered for averaging,
in the right �gure only the middle symbols are considered.
The error probability of the DFE corresponds to iteration 0.

We observe that the NCDFE improves performance
w.r.t. the DFE as more and more iterations are done. It
gets below the ideal error probabilities of the DFE. It can
be noted that the simulated error probability are higher than
the ideal ones: this is due to the error propagation.
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Figure 3: Error Probabilities for the DFE and the NCDFE.

5.2 Blind Algorithm Simulations

To illustrate the blind algorithm used to adapt the NCDFE,
we propose some simulations. The channel considered has
length 3 (N=3) and 2 subchannels (m=2):

H =

�
1:1650 0:0751 �0:6965
0:6268 0:3516 1:6961

�
:

The algorithm is initialized by estimates of the symbols
given by a Burst Multichannel Zero-Forcing Linear Equal-
izer (ZFLE). This Zero-Forcing Equalizer uses itself a blind
estimate of the channel. As a �rst approach, we model
this blind estimate by taking a perturbation of the true

channel: H(0) = H + fH , where the coe�cients of fH
are gaussian, i.i.d., of variance �

trace(HHH)

mN
, where � =

[0 0:1 0:2 0:3 0:4 0:5]. For � = 0, we simply evaluate the
performance of the (non-blind) NCDFE. Five iterations of
the algorithm are done.

In �g. 4, the error probability for SNR=7dB and
SNR=10dB is plotted. We see a good behavior of the al-
gorithm for small values of � ( � = 0 and 0:1): the error
probability is close to the MFB, and inferior or close to the
error probability of the ZFLE. However for greater values of
�, the algorithm seems to converge towards local minima,



nish a good initialization to our blind algorithm. Remark
that in the multichannel case, with su�cient diversity, the
ZFLE performance is not that far from the MFB.
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Figure 4: Error Probabilities over all symbols and middle
symbols of the burst for � = 0 (lower curve) to � = 0:5
(upper curve) for SNR=7dB and SNR=10dB.

In a second approach, the channel is initialized by a blind
algorithm based on multichannel linear prediction [5]. Re-
sults are shown in �gure 5 where the error probability over all
symbols burst at each iteration for blind initialization is com-
pared to the non blind case for SNR=7dB and SNR=7dB.

5.3 Blind Algorithm Improvements

The proposed blind algorithmwith blind initialization works
well in our example. However, some channels cannot be well
estimated by blind techniques and a bad initialization could
result in a convergence to a local minimum.

Several solutions to improve the algorithm were tried.
Instead of taking the decisions of the previous iteration as
past decisions, we took the decisions of the current iteration,
hoping this would reduce error propagation. Simulations
did not shown any signi�cant improvements w.r.t. to the
simulations presented in section 5.2.

We also compared the middle error probability in the
case where no symbols at the edges are known and in the
case where N-1 symbols are known at each edges. In the last
case, the error probability at the edges being lower than at
the middle, it could result in less error propagation. Once
again simulations did not show signi�cant improvements.

Another variation we did not exploit yet is to make soft
decisions instead of hard decisions.

5.4 Channel Estimation Performance

The previous simulation study concentrated on the detec-
tion performance of the symbols. However, the blind equal-
ization algorithm considered here provides an estimate of
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Non Blind NCDFE
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Figure 5: Error Probabilities over all burst symbols for
SNR=7dB and SNR=10dB with blind channel initialization.

both the symbols and the channel. The main point we want
to make here is that the exploitation of the �nite alpha-
bet nature of the symbols signi�cantly improves the blind
estimation performance of the channel, compared to the re-
cent wave of blind channel estimation algorithms that are
based on the second-order statistics of the received signal
only. The following reasoning leads to a lower bound of the
channel estimation error covariance matrix. By exploiting
the �nite alphabet of the symbols, the symbols actually get
detected. Assume that these detections are error-free. Then
all symbols present in the problem act as training sequence
for the channel estimation. Since we use the ML criterion,
the channel estimation error covariance matrix will hence
equal the Cramer-Rao bound (CRB) for training-sequence
based channel estimation, with all symbols constituting the
training sequence. Due to detection errors, this training se-
quence CRB only constitutes a lower bound on the channel
estimation error covariance matrix. However, the bound will
be tight if the probability of error (using the ML channel es-
timate) is low. In summary, since the burst length will nor-
mally be signi�cantly longer than typical training sequences,
the channel estimation performance of a blind approach that
exploits the symbol alphabet will normally be better than
that of a classical training-sequence based approach.
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