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Abstract

The definition of the mobile code paradigm appears as a natural step in the
evolution of distributed systems and encompasses programs that can be exe-
cuted on one or several hosts, other than the host from which they have orig-
inated. Mobile code is generally justified on the grounds of greater
efficiency and increased flexibility, even if these features have not been fully
exploited yet. However, flexibility does not come without a price: increased
exposure to security threats.

Possible vulnerabilities with mobile code fall in one of two categories:

• Attacks performed by the mobile program against the remote execution
environment and its resources;

• Subversion of the mobile code and unauthorized modification of its data
by the remote execution environment.

Our work focuses on the second category aiming at the protection of mobile
code from the execution environment. This category results in new and
challenging problems which have not yet attracted much attention from
software manufacturers and for which no practical solutions exist at this
moment. This category is also quite atypical since it does not rely on the
security of the execution environment which has always been a basic
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assumption in classical reasoning about the security of cryptographic sys-
tems. We further analyze mobile code protection in two directions: code
protection focusing on the integrity and privacy of the code semantics at
run-time and data protection focusing on the security of the data transported
by the mobile code.

Code protection addresses a more systematic form of maliciousness in
which the environment where the mobile code runs cannot be trusted. Code
protection means the protection of the code during its execution, consider-
ing the environment as a potential adversary, rather than the protection of
the code during transmission.

Data protection deals with the security of data gathered by mobile code
roaming through a set of competing hosts. Classical data protection tech-
niques are not suited to the protection of data that changes dynamically dur-
ing the code’s trip. We present a protocol based on a cryptographic
technique that assures the integrity of a sequence of data segments regard-
less of the order of each segment in the sequence. The protocol allows each
host to update the data it previously submitted, in a way that is suitable for
free competition scenarios like comparative shopping or distributed auction,
and for highly dynamic environments like stock markets. The set of hosts
can be visited several times in random order and a short message digest
allows for the integrity verification of all the collected data.

Concerning code protection, we further classify the problems into two cate-
gories: privacy of execution and integrity of execution. Privacy of execution
aims at preventing the disclosure of the code semantics during its execution
in a potentially hostile runtime environment. Integrity of execution assures
that a program, executed in a potentially hostile environment actually com-
plies with its original semantics. We present original solutions that deal with
both requirements (privacy and integrity of execution). We present solutions
without Tamper Proof Hardware (TPH) that address a very limited model of
computation.

Then, we build solutions using an auxiliary trusted TPH acting on behalf of
the code owner. The limited TPH allows us to deal with a more flexible
model of computation. The trusted TPH interacts with the untrusted execu-
tion environment in order to fulfill the security requirements akin to privacy
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and integrity of execution. The goal is not to execute the code on the trusted
TPH, but to extend its inherent security to the more powerful untrusted
environment. The solutions minimize the computational and storage
requirements on the trusted TPH.

The solution with TPH assumed that the data involved in the computations
is stored in secure memory. We further enhance this solution by focusing on
the protection of the data stored in untrusted memory. Based on the solu-
tions for the protection of the code execution and the solutions for the stor-
age of data in untrusted memories, we suggest an integrated architecture for
code and data protection that relies on a limited TPH.



Abstract

xiv



xv

Résumé

Le concept de code mobile apparaît comme une étape naturelle dans
l’évolution des systèmes répartis : il correspond à l’ensemble des
programmes qui ont la capacité de se déplacer pendant l’exécution ou entre
différentes exécutions. L’utilisation de code mobile est généralement
justifiée par une plus grande efficacité, ainsi que par une flexibilité accrue,
même si ces avantages n’ont pas encore été entièrement exploités.
Cependant, la flexibilité s’accompagne d’une exposition accrue aux
menaces de sécurité.

Les vulnérabilités possibles du code mobile peuvent être classées en deux
catégories :

• Les attaques perpétrées par le code mobile contre l’environnement
d’exécution et ses ressources;

• La subversion du code mobile et la modification non autorisée de ses
données par l’environnement d’exécution.

Notre travail porte sur la protection du code mobile vis-à-vis de
l’environnement d’exécution. La plupart des problèmes de ce type sont
nouveaux et représentent un défi ; ils n’ont pas encore attiré l’attention des
éditeurs de logiciels et aucune solution pratique à ces problèmes n’existe à
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ce jour. Cette catégorie est également tout à fait atypique puisqu’elle ne se
fonde pas sur la sécurité de l’environnement d’exécution qui a toujours été
une condition de base dans le raisonnement classique au sujet de la sécurité
des systèmes cryptographiques. Nous analysons la protection du code
mobile à deux niveaux : la protection du code visant à assurer l’intégrité et
la confidentialité du code pendant l’exécution et la protection des données
afin d’assurer la sécurité des données contenues dans un code mobile.

La protection du code a pour objet une forme plus systématique de
malveillance dans laquelle on ne peut pas faire confiance à l’ environnement
où le code mobile s’exécute. La protection du code s’effectue pendant
l’exécution, en considérant l’environnement en tant qu’adversaire potentiel.

La protection des données traite de la sécurité des données recueillies par le
code mobile qui se déplace entre un ensemble de serveurs concurrents. Les
techniques habituelles de protection de données ne conviennent à la
protection des données qui évoluent dynamiquement pendant le trajet du
code. Nous présentons un protocole basé sur une technique cryptographique
qui assure l’intégrité d’un ensemble de segments de données
indépendamment de l’ordre de chaque segment dans l’ensemble. Le
protocole permet à chaque serveur de mettre à jour les données qu’il a
précédemment soumises. Ce protocole répond aux besoins des scénarios de
libre concurrence comme les achats comparatifs ou l’enchère distribuée et il
convient particulièrement aux besoins des environnements fortement
dynamiques comme les marchés boursiers. Les serveurs peuvent être visités
plusieurs fois de façon aléatoire et l’intégrité de toutes les données
collectées peut être vérifée par le calcul d’un condensat.

Pour ce qui concerne la protection de code, nous classifions ces problèmes
dans deux catégories : confidentialité de l’exécution et intégrité de
l’exécution. La confidentialité de l’exécution vise à empêcher la révélation
de la sémantique du code pendant son exécution dans un environnement
d’exécution potentiellement hostile. L’intégrité de l’exécution assure qu’un
programme est exécuté dans un environnement potentiellement hostile
conformément à sa sémantique initiale.

Pour chacun de ces deux problèmes , nous présentons d’abord une famille
de solutions sans noyau sécurisé (NS) concernant un modèle de calcul très
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limité. Puis, nous montrons des solutions utilisant un NS auxiliaire agissant
au nom du propriétaire du code. Le NS nous permet d’utiliser un modèle de
calcul plus flexible. Le NS communique avec l’environnement d’exécution
afin de satisfaire les besoins de sécurité, c’est-à-dire la confidentialité et
l’intégrité de l’exécution. L’objectif n’est pas d’exécuter le code sur le NS
mais d’étendre la sécurité inhérente de ce dernier à un environnement plus
puissant. Nos solutions réduisent la complexité en calcul et en mémoire
imposée au NS.

Notre solution avec NS suppose que les données impliquées dans les calculs
sont sauvegardées dans une mémoire sécurisée. Nous étendons cette
solution en nous concentrant sur la protection des données sauvegardées
dans une mémoire potentiellement malveillante. Grâce à l’utilisation des
solutions pour la protection de l’exécution du code et des solutions pour la
sauvegarde des données dans des mémoires potentiellement malveillantes,
nous mettons au point un architecture pour la protection de code et de
données qui se base sur un NS limité.
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CHAPTER 1 Introduction

1.1 The Mobile Code Paradigm

The mobile code paradigm encompasses programs that can be executed on
one or several hosts, other than the host from which they have originated.
Mobility of such programs implies a built-in capability for each piece of
code to migrate smoothly from one host to another. A mobile code is asso-
ciated with at least two parties: its owner, and the host that runs the code.
Advances in software technology allow for the design of mobile code capa-
ble of moving over the network, and running independently at remote hosts.
Mobile code systems range from simple Java applets and ActiveX programs
to intelligent mobile software agents. Recently, we witnessed the deploy-
ment of a large number of mobile code platforms (for example, see the short
survey in [KT98]), which provide the required services for code mobility.

Depending on the type of mobility, a mobile code can be further classified
into strong and weak mobility, as described in [FPV98] and [Pic98].

Our work is orthogonal to the discussions about the taxonomy of mobile
code and different types of mobility, in the sense that we focus on the gen-
eral case of the security of a code executed on an untrusted host. As a result,
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the fact that the code encompasses some form of intelligence or that it can
move anytime in a completely autonomous way is not relevant for our
study. Therefore, we adopt the more general denomination of mobile code
rather than mobile agents. However, the term agent is also used in this
manuscript when appropriate.

This chapter presents a brief introduction to mobile code focusing on secu-
rity threats to better identify the scope of this dissertation. Next, a simple
classification of the problems that affect mobile code is established. Finally,
the structure of the thesis presented at the end of this chapter is clarified.

1.1.1 Benefits and Drawbacks

Mobile code systems offer several advantages over the more traditional dis-
tributed computing approaches [LO99][CHK97] in terms of:

• Network load reduction;

• Network latency avoidance;

• Protocols encapsulation;

• Asynchronous and autonomous execution;

• Dynamic adaptation;

• Support for heterogeneous architectures;

• Robustness and fault-tolerance.

All these advantages need to be critically analyzed. The advantages are
mainly due to the fact that the execution is performed locally, close to the
data to be analyzed or near the system outputs to be processed. For exam-
ple, [HI99] shows through an experimental study that bandwidth optimiza-
tion can be achieved using mobile agents, although the experiments focused
on a very specific application and scenario, hence the results should be con-
sidered with care. It was particularly clear from the experiments that the
overhead on size, and thus on communication and computational complex-
ity imposed by the mobility platform, may compromise the bandwidth
advantage.
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The Mobile Code Paradigm

Nevertheless, we believe that despite controversial arguments about specific
criteria, mobile code offers a clear advantage over traditional programming
paradigms in terms of flexibility in the development of applications.

1.1.2 Applications

Some applications have been cited in [LO99] as very suitable for mobile
agents or mobile code as follows:

• Electronic commerce. There are already a large number of mobile agent
mediated electronic commerce frameworks [GMM98]. Researchers
[MGM99] envision agents embodying the intentions of their owners,
acting and negotiating on their behalf while travelling through the net-
work;

• Personal assistants. Assistants can operate remotely without being
dependent on the state of network connections [Kru97];

• Distributed information retrieval. Mobile code that roams the network to
gather data is one of the simplest applications envisaged by developers.
The ability of mobile code to process searches locally on large databases
is very attractive. This specific application will be the focus of Chapter 8;

• Monitoring applications. The asynchronous nature of mobile code is
highlighted by this application. The code can be dispatched to monitor
sources of information available remotely, avoiding network latencies
and the need for a reliable connection;

• Information and code dissemination. Mobile code can provide additional
content delivery services;

• Parallel processing. Complex computations can be performed by a set of
mobile code fragments that will execute in parallel on different hosts.

This list is not exhaustive, but it gives clues to the scenarios where mobile
code can be applied.
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1.2 Mobile Code Security Threats

The increased flexibility offered by mobile code comes at the expense of
increased vulnerability in the face of malicious intrusion scenarios akin to
networking.   The following security exposures derive from code mobility:

• Host and mobile code can represent different parties that may exhibit
malicious behavior toward one another;

• Mobile code can be exposed to third-party intruders through the net-
work;

• Several mobile code segments representing different parties may exhibit
malicious behavior toward one another.

The second and third types of exposures call for solutions based on classical
communication security mechanisms, such as the approach suggested in
[KLO97]. However, the first type of exposure raises new requirements that
cannot be met by classical security techniques. As for the first problem, the
type of exposures falls into one of two categories:

• Host protection from mobile code.Attacks performed by the mobile pro-
gram against the remote execution environment and its resources;

• Mobile code protection from malicious hosts.Subversion of the mobile
code and unauthorized modification of its data by the remote execution
environment.

1.2.1 Host Protection from Mobile Code

A first security threat consists of a mobile code generated by a malicious
outsider attacking the environment where the code is executed, such as in
the example of malicious Java applets. This problem has already been thor-
oughly studied in recent years. The first solution consisted in restricting
capabilities of code segments in order to limit vulnerabilities. Techniques
for host protection now evolve along two directions [LMR00]:

• Enhancement of the mobile code infrastructure with authentication, data
integrity and access control mechanisms;

• Verification of the semantics of the mobile code.
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Mobile Code Security Threats

In the following, we give a brief description of the best known solutions to
the problem of host protection in order to show the difference in complexity
between host and mobile code protection. The surveys
[HLPS98],[RG98],[LMR00] and references indicated below provide more
information about this topic.

Sandboxing

Sandboxing consists of running a mobile code inside a restricted environ-
ment called the “sandbox”. A remote host may execute an otherwise
untrusted mobile code inside the sandbox, without worrying about security.
This approach is well illustrated by the early Java JDK 1.0 [GJS96], where
it was used in order to enable applets available anywhere on the Internet to
run within a browser. The major drawback of sandboxing is that applica-
tions running in such a restrictive environment are themselves seldom use-
ful because their operations are limited.

Code Signing

Code signing is the process through which a code is digitally signed by the
code owner in order to assure strong authentication and integrity of the code
to whomever executes the code. This model was first introduced by
Microsoft within the ActiveX framework. Java JDK 1.1 also follows the
code signing model, with so-called signed applets. Upon receipt of an
applet with a valid signature, the Java virtual machine executes the applet as
a trusted piece of code, authorizing it to access all features available in Java.
An applet without a proper signature is run inside a sandbox as in the previ-
ous version of the JDK. However, securing a host from a malicious mobile
code program raises more security issues than just making sure that this
program has been correctly signed by someone on the Internet.

Access Control

In order to limit the impact of an attack, one way to enhance the previous
approaches is to enable more complex access control schemes. This can be
seen as the refinement of a monolithic sandbox policy into smaller, applica-
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tion-specific policies. The identity of the code signer, as described in the
previous section, also helps to further refine the execution policy definition.
Java JDK 1.2 security model [Gon98] follows this direction and thus allows
the definition of finer-grained security policies more suited to executing
untrusted mobile code. Compared with sandboxing and code signing, the
access control model has the best of both worlds: mobile code actions can
be restricted to a set of resources while the model allows to write and run
really useful software at the same time. However, since it is performed
dynamically at runtime the enforcement of the access scheme has a cost in
performance.

Code Verification

Code verification provides further assurance on the code semantics through
the analysis of the structure or behavior of the mobile code against a given
security policy. Sandboxes have already exercised some rudimentary pro-
gram checks, either statically or dynamically, for instance to ensure that
operands of an instruction are of the correct type. A newer approach to host
protection is to statically type-check the mobile code; the code is then run
without any expensive runtime checks. Promising results were obtained in
this area by the Proof-Carrying Code (PCC) work [Nec97] [NL98], and
even to some extent by the Java virtual machine (for safety checks). In
Proof-Carrying Code, the remote host first asks for proof that the code
respects his security policy before he actually agrees to run it. The code
owner sends the program and an accompanying proof, using a set of axioms
and rewriting rules. After receiving the code, the host can then check the
program with the guidance of the proof. This can be seen as a form of type
checking of the program, since the proof is directly derived from it. In PCC,
checking the proof is relatively simple compared to constructing it, thus this
technique does not impose much computational burden on the execution
environment. However, the proofs can be large and automating the proof
generation is still an open problem.

1.2.2 Mobile Code Protection from Malicious Hosts

The problem of mobile code protection from a malicious host has only
recently been studied, and it is intrinsically more difficult because the run-
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Mobile Code Security Threats

time environment has total control over the mobile code. This problem has
not yet attracted much attention from software manufacturers. Research is
still in its infancy as well, and the existing mobile code platforms only pro-
vide solutions for host protection.

This category is also quite atypical as it does not rely on the security of the
execution environment which has always been a basic assumption in classi-
cal reasoning for the security of cryptographic systems. This assumption is
often denoted by the term "trusted computing base". Protecting mobile code
from malicious remote execution environments may be rephrased as carry-
ing out a trusted operation (defined by the mobile code), using an untrusted
host as execution environment. Some authors [CGH+95] postulate that
mobile code cannot be effectively protected against a malicious execution
environment that has full access to both code and data segments.

The problems encountered by the execution of mobile code on untrusted
and possibly malicious hosts are the focus of this dissertation. In the case of
mobile code protection, the existing surveys [JK99][KP00] are limited to
the description of the few approaches proposed to address this problem. A
deeper analysis of the security issues and their solutions is needed to gain an
insight into the problem of mobile code protection. Concretely, we start by
classifying the security requirements according to the information carried
by the mobile code. This information can be classified as follows:

• Code. The set of executable instructions;

• Static data. Data not modified during the trip;

• Collected data. Data collected during the trip performed by the mobile
code;

• State. Dynamic data used as input to the computations performed on
remote hosts during the trip.

The aim of mobile code protection is to protect the above information from
the execution environments visited by the mobile code. Starting from this
classification, possible violations originating from running a program in a
potentially hostile environment may lead to the following different security
requirements:
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• A company might need to prevent the disclosure of certain sensitive
algorithms implemented in its mobile code despite extensive code analy-
sis and reverse engineering by potential intruders, including its custom-
ers;

• A mobile software agent acting on behalf of a person might need to
assure the integrity of some critical operations performed on an
untrusted remote host;

• A data collection agent might need to assure both the confidentiality and
the integrity of the data gathered at various competing sites.

From the above discussion, the difference between requirements related to
code execution and the ones related to data protection naturally comes up.
Through this thesis, we show that there is a broad class of problems corre-
sponding to each set of requirements. Therefore, we will clearly distinguish
the problems of code protection from data protection.

Code Protection

We further classify the problems related to code protection (as in
[BMW98]) into two categories, namely privacy of execution and integrity
of execution:

• Privacy of executionaims at preventing the disclosure of the code
semantics during its execution in a potentially hostile runtime environ-
ment. This is a hard problem because the disclosure of the code seman-
tics to the runtime environment is considered a basic requirement for
code execution;

• Integrity of executionassures that a program executed on a potentially
hostile environment actually complies with its original semantics.

We analyze these two problems in Chapters 2 and 3, respectively. In Chap-
ters 5 and 6, we present original solutions addressing these problems.

Data Protection

Mobile or roaming agents are a form of mobile code especially talked about
in electronic commerce, but usual data protection techniques are not suited
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Contributions

to the protection of data that change dynamically during the code’s trip. A
good example might be the so-called “comparison shopping” application,
where an agent looks for the lowest priced shopping item among several
retailers. In this scenario, it is necessary to know whether the data collected
has been changed or not. In a distributed auction scenario, it might also be
necessary to prevent a host from exploiting the offers made by the previous
bidders. These scenarios show that there is a need for data protection
schemes outside the sphere of code protection. We focus on data protection
in Chapters 7 and 8.

1.3 Contributions

This thesis focuses on problems related to mobile code protection from
potentially malicious hosts. Our contributions may be summarized as fol-
lows:

• We elaborate an original list of requirements imposed by the problem of
privacy of execution in Chapter 2;

• We introduce the concept of verifier in Chapter 3. This original definition
is more suitable to tackle the problem of integrity of execution in the
mobile code scenario;

• We present an original solution to the problem of code protection in
Chapter 5. This solution applies to a simple model of computation
(Boolean functions), based on error correcting codes and provides pri-
vacy and integrity of execution;

• We extend the previous solution to a more powerful model of computa-
tion in Chapter 6. This solution requires a limited Tamper-Proof Hard-
ware, like a smartcard, acting on behalf of the code owner and located
near the execution environment. A new set of requirements is presented
as well as a solution that applies to sets of Boolean functions;

• We introduce the concept of off-line verifier in Chapter 6. We develop an
off-line solution where the verification process is not performed by the
TPH, but by the code owner. A small check value computed by the TPH
is transmitted to the code owner, assuring the integrity of execution of
several computations;
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• We present techniques to address the problem of data storage in
untrusted memory in Chapter 7;

• We present some guidelines for the development of an architecture for
software protection in Chapter 7. This architecture is original in the
sense that previous proposals had considered a trusted CPU and
untrusted memory, while we extend the security of a limited Tamper-
Proof Hardware to the computations performed on an untrusted CPU;

• We develop a new technique to protect the data collected by mobile code
roaming through a set of competing hosts in Chapter 8.

1.4 Structure

This thesis focuses on the problem of mobile code protection from possibly
malicious hosts as depicted at the top of Figure 1.1. The general problem of
mobile code protection from untrusted execution environments is divided
into two sub-problems as shown in Figure 1.1:

• Code Protection;

• Data Protection.

Chapter 2 describes the problem of privacy of execution and refers to
related work. Privacy of execution is a hard problem that consists in hiding
information about the code while giving a description that allows its execu-
tion. At the end of the chapter, we specify the requirements imposed by pri-
vacy of execution.

Chapter 3 focuses on the problem of integrity of execution and it discusses
existing approaches to tackle this problem. Verifiers are defined, which
make possible the design of more efficient solutions to the problem of integ-
rity of execution.
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Structure

Figure 1.1 Scope and structure
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Chapter 4 provides an introduction to the cryptographic tools used in subse-
quent chapters. These tools exploit the hardness of some problems found in
coding theory. This chapter focuses on the complexity of the problems used
to construct cryptosystems based on coding theory. At the end, the chapter
includes a cryptoanalysis of these systems.

The remaining chapters (last row of blocks of Figure 1.1) present our solu-
tions to the problems stated in the first three chapters. We further classify
our solutions to mobile code protection, as:

• Solutions that do not rely on Tamper-Proof Hardware (Chapter 5);

• Solutions that rely on it (Chapter 6).

Chapter 5 presents solutions without Tamper-Proof Hardware (TPH). This
chapter defines a framework for mobile code protection. We start by consid-
ering a simple example, and we present solutions to general Boolean func-
tions afterwards. A simple model of computation based on Boolean
functions is adopted in Chapter 5 to illustrate our solution in practical appli-
cations. We extend this model in the subsequent two chapters.

Chapter 6 builds solutions using an auxiliary trusted TPH acting on behalf
of the code owner. The trusted TPH interacts with the untrusted execution
environment in order to fulfill the security requirements of privacy and
integrity of execution. The goal is not to execute the code on the trusted
TPH, but to extend its inherent security to the more powerful untrusted
environment. The solutions try to minimize the computational and storage
complexities imposed on the trusted TPH.

The solutions described in Chapters 5 and 6 focus on the problem of code
execution explained in Chapters 2 and 3. These chapters do not address the
problem of data protection, specifically the protection of the dynamic data
involved in the computations (state).

Chapter 7 focuses on the protection of the data used during the computa-
tions. In Chapter 6 we assumed that the limited TPH has enough memory to
securely store all the values involved in the computations. In Chapter 7, sev-
eral solutions are developed to address the protection of data stored in
untrusted memory. Using solutions for the protection of code executions
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and solutions for the storage of data in untrusted memory, we build an archi-
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col allows each host to update the data it previously submitted in a way that
is suitable for free competition scenarios such as comparative shopping or
distributed auction and for highly dynamic environments such as stock mar-
kets. The set of hosts can be visited several times in random order, and a
short message digest allows for the integrity verification of all the collected
data.

Chapter 9 ends this thesis with a conclusion and some unanswered ques-
tions.
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CHAPTER 2 Privacy of Execution

2.1 Introduction

This chapter deals with the problem of privacy of execution. The goal of
privacy of execution is to hide the actions performed by a piece of code
from the environment that executes the code. We do not focus on the confi-
dentiality of this code when transmitted over the network. There are several
applications where privacy of execution is important:

• Personal assistants. With the increasing use of personal assistants for
searching and shopping applications, someone who monitors the inten-
tions of these agents can retrieve a large amount of information about the
owner of the agents. In particular, the execution environment where each
agent executes should be considered as a potentially malicious party
from which privacy violations can originate;

• Electronic Commerce - bargaining agents. It is important to hide the
strategy implicitly implemented within the code. In order to conduct a
fair negotiation, each party’s reasoning process about the negotiation
should be kept secret from the other participant. The typical application
of this scenario is a shopping agent that is able to bargain on behalf of its
owner.
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• Valuable algorithms. Privacy of execution is required to prevent the dis-
closure of the algorithms implemented by mobile code.

Privacy of execution is not a new problem, but research has not come up
with many practical solutions. The emergence of the two first applications
has renewed the need and motivation for research on this topic.

Confidentiality of data has been thoroughly studied and many encryption
methods have been proposed to satisfy this requirement. Nevertheless, the
use of data encryption techniques to address privacy of execution has to take
into account that the ciphertext must be understood by the execution envi-
ronment in order to be executed. The fact that the execution environment
needs full access to both code and data segments in order to accomplish the
execution has incited some authors [CGH+95] to hypothesize that privacy
of mobile code cannot be effectively achieved.

In this chapter, an overview of the techniques developed to tackle this prob-
lem is provided. This overview tries to be as comprehensive as possible and
attempts to cover both theoretical and heuristic settings. In order to better
understand these techniques, the threats to the code execution in terms of
privacy are enumerated. Then, we present the existing solutions to this
requirement. At the end, a more formal definition of privacy of execution is
presented and discussed.

2.2 Threats

The execution environment may threaten the privacy of execution of mobile
code in several ways. Privacy of execution encompasses all the information
the environment can retrieve from the execution of the code. Roughly, it is
possible to classify these threats as follows:

• Code interpretation. In order to execute the code, the environment has to
understand it. Therefore, the environment can inspect the code with the
objective of disclosing the functions that the code encompasses. Due to
the fact that source code is usually easier to understand than machine
code, the first step of this attack often consists of performing the inverse
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function of a compiler. The automatic tools that implement this first step
are usually called de-compilers;

• Code interpolation. In this case, the code is regarded as a black-box and
the analysis performed by an attacker focuses on the relationship
between inputs and outputs, that intrinsically defines the functions
implemented within the code. This attack is always possible if the input
and output data are in cleartext form, and its complexity basically
depends on the complexity of the implemented functions.

The privacy of execution requirement has been tackled in different ways, as
follows:

• Tamper-proof hardware (TPH);

• Obfuscation;

• Secure function evaluation.

In the next three sections, we analyze these approaches in detail, and pro-
vide references to related work.

2.3 Tamper-Proof Hardware

The use of tamper-proof hardware aiming at mobile code protection was
proposed in [WSB98] and [Yee97]. The approach suggested in [WSB98]
requires code and data segments to be confined to trusted execution envi-
ronments. In addition, providing privacy with that approach requires all the
code to be transmitted over a private channel. This work focuses on imple-
mentation issues, such as the authentication of the code and its installation
in the TPH.

The solution in [Yee97] considers a model with a trusted CPU and untrusted
memory. The computation is therefore trusted, and the security concerns are
shifted to the integrity of data stored in untrusted memories. The same set-
ting is addressed in the more general proposal for software protection in
[GO96]. However, the latter scheme is more complete because it hides all
information about the software, i.e. the contents of the memory and the
memory access pattern.



20

In all solutions referred to so far, the computation is executed inside the
trusted TPH. Therefore, they all share the drawback of the limited capacities
of the more practical and cheaper forms of Tamper-Proof Hardware such as
smartcards.

It is not always efficient to rely on limited devices to perform complex
tasks. This was the starting assumption for the proposals in [MKI88],
[Fei93], and [Bla96] where the trusted device takes advantage of the supe-
rior computational power of an untrusted host without compromising secu-
rity. These solutions focused on the specific applications of public-key
cryptography ([MKI88] and [Fei93]) and symmetric key encryption, called
Remotely Keyed Encryption [Bla96] (afterwards formalized in [BFN98]).
In addition to server-aided RSA computation, [MKI88] provides some solu-
tions to other applications, such as matrix multiplication and solving modu-
lar equations, but all the schemes presented in this paper were sucessfully
attacked in [PW92]. The work presented in [Fei93] provides a comprehen-
sive and formal treatment of host-assisted public-key cryptography when
several servers are available.

Solutions for host-assisted computation focusing on more general functions
can be found in the field of secure function evaluation discussed later in this
chapter. The issues presented in this section will be revisited later, in our
description of solutions using limited Tamper-Proof Hardware in chapter 6
and 7. One drawback of all approaches relying on Tamper-Proof Hardware
is the additional cost of the TPH itself. Furthermore, these approaches must
establish a private channel between the function owner and the TPH to
transmit the function in order to achieve privacy.

2.4 Obfuscation

Obfuscation, as described in [CTL98] and [Hoh98], is a mechanism that
transforms an application into another application which is functionally
identical but more complex to understand. Functionally identical means that
the two applications are equivalent concerning the relationship between
inputs and outputs. There are many obfuscators proposed as automatic tools
that encompass mostly heuristic and ad-hoc algorithms that scramble code
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in order to render the code interpretation more complex. A taxonomy of
obfuscation techniques can be found in [CTL97].

This approach does not address interpolation attacks. The goal of obfusca-
tion is to render the interpretation of the code harder than learning its
semantics by running it. One of the advantages of this technique is the low
increase of the program size. Its major drawback is the lack of theoretical
foundations in order to establish precise definitions of security, and accord-
ingly to be able to quantify the security of the underlying transformations.

2.5 Secure Function Evaluation

This section focuses on the problem of preserving the privacy of functions
executed on untrusted environments in a more theoretical way. Two parties
are involved: the function owner and the environment that executes the
function. The execution environment provides input data to the function.
When getting the result of the function execution, the function owner does
not want to reveal information about the function.

In other words: Alice has a functionf and Bob has an inputx. The function
evaluation takes place in Bob’s environment, but he should learn nothing
significant about the function. Alice should learn the valuef(x).

The problem addressed here is sometimes called computing with encrypted
functions and can be seen as an instance of the more general problem of
secure function evaluation. Research on cryptography has addressed this
problem from different points of view. This section provides an overview of
these techniques and attempts to analyze them taking the mobile code sce-
nario into perspective.

The problem of secure function evaluation was mainly addressed in two dif-
ferent scenarios, as follows:

• Secure multi-party computation;

• Instance hiding.
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2.5.1 Secure multi-party computation

In this case, each party has one input to the public function to be evaluated.
The goal of each player is to compute the result of the function revealing no
information about his own data. More precisely, the information about each
party’s inputs that may be extracted from the execution of the scheme
should be, at most, the information that can be retrieved from the overall
result.

This problem was introduced by Yao in [Yao82] with the famous “Million-
aires’ Problem” where two millionaires want to know who is richer without
revealing their wealth. The author proposed a solution based on the intracta-
bility assumption of factoring. In [Yao86], a more detailed formalization of
the problem is presented. Later, Goldreich, Micali and Wigderson
[GMW87] weakened the intractability assumption to the existence of any
trapdoor permutation and extended the solutions to the multi-party case.
However, the round complexity of the solution is at least linear in the depth
of the underlying circuit. The work of [BMR90] focused on reducing the
round complexity without significantly increasing the communication com-
plexity, but both complexities continue to be high.

2.5.2 Instance Hiding

These schemes highlight the dichotomy between two parties that do not
necessarily trust each other: the owner of the data and the owner of the cir-
cuit or execution environment. In this case, the data owner is a computation-
ally limited player that wishes to use the help of a powerful but untrusted
player (called an oracle) to compute a complex function. The limited player
wishes to hide information about his data while retrieving the result of the
function.

This problem was first introduced by [RAD78] in terms of "computing with
encrypted data" (CED). The data owner wants to keep his data secret while
the data is stored in an untrusted host. Moreover, the data owner wants to
perform operations in the stored data without having to decrypt it for per-
forming operations and then re-encrypting. The authors tried to find a
homomorphic encryption schemeE with respect to an operationop. An
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encryption schemeE is homomorphic concerning the operationop if there
is an efficient operationop’ to computeE(x op y)from E(x)andE(y), that is
E(x op y)= E(x) op’ E(y).

Nevertheless, the solutions proposed by the authors were sucessfully
attacked in [BO92]. Later, [BL96] proved that all such deterministic
encryption schemes are insecure.

The secure function evaluation problem was also referred to in the paper by
Abadi, Feigenbaum and Kilian [AFK89], and it was called "hiding data
from an oracle". In this case, a computationally limited player wants to use
the computational power of a powerful player (the oracle) but without dis-
closing his data. The authors formalized the problem of computing with
encrypted data in the two-party case. Based on this idea, Abadi and Feigen-
baum [AF90] developed a two-party protocol for secure circuit evaluation,
that is also similar to the protocol of [CDvdG87], and which allowed a
player to evaluate his data on another player’s Boolean circuit. This proto-
col preserved the confidentiality of the data and also hid the circuit from the
owner of the data. The major drawback of both protocols is the round com-
plexity between the two players, which is proportional to the depth of the
Boolean circuit.

Protocols for computing with encrypted data can be characterized by how
they perform the evaluation in an operation-by-operation basis (gate-by-
gate in the case of circuits). A natural way of designing these protocols is to
use privacy homomorphisms, but this has been an open research issue since
the seminal paper of [RAD78].

2.5.3 Computing with encrypted functions

The problems of secure multi-party computation and hiding instances are
closely related to the problem of computing with encrypted functions. We
may build solutions for computing with encrypted functions based on the
two kinds of schemes described above. In the case of secure multi-party
computation, if a universal circuit is used as the public function, then the
description of the function is the private input of the function owner. Once
again, using universal circuits, the encrypted data in instance hiding
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schemes can represent the encrypted form of a circuit. The use of universal
circuits incurs a cost of a polynomial expansion [CCKM00]. On the other
hand, a thorough study about the characterization of more general functions
(non-Boolean) that can be securely evaluated was begun in [CK91]. In gen-
eral, secure two-party computation is not possible without some complexity
assumption, as shown in [BGW88] for the case of an OR gate.

The major drawback of the solutions that achieve secure function evaluation
is their complexity in terms of round and communication complexity. One
of the main advantages of mobile code is the ability to execute tasks locally
in an autonomous way, as seen in Chapter 1. Autonomy means that the code
is able to perform its tasks with no interaction with the code owner. There-
fore, non-interactivity is an important requirement. Next, we look at non-
interactive solutions in greater detail.

Non-Interactive Solutions

Figure 2.1 describes the non-interactive setting for providing privacy of exe-
cution. There are three phases without interaction:

• The scrambling phase, where a transformationE is applied tof. The
resulting functionE(f) should leak no information aboutf ;

• The evaluation phase, where the functionE(f) is evaluated on the datax ;

• The result retrieval phase, where the cleartext resultf(x) can be derived
from the encrypted result[E(f)](x)  using a transformationD.

Sander and Tschudin [ST98] illustrated the concept with a method that
allows to compute with encrypted polynomials, based on the Goldwasser-
Micali [GM84] probabilistic encryption scheme. The authors took advan-
tage of the additively and mixed multiplicatively homomorphic properties
of the encryption scheme. The transformationE consists of the encryption
of the coefficients of the polynomial. Thus, this technique does not hide the
skeleton of the polynomial.

Recently, [SYY99] presented a non-interactive solution for secure evalua-
tion of log-depth circuits. The evaluation is done in a gate-by-gate basis
using a new privacy homomorphism for processing NOT and OR gates in a
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secure way. The restriction on the depth of the circuit comes from the
increase of the output size by a constant factor when computing an OR gate.

In [CCKM00], a more powerful technique that combines the technique of
“garbled” circuits by [Yao86] and one-round oblivious transfers (see for
example [Kil89]) is presented. This work extended non-interactive secure
computations to polynomial-size circuits. Moreover, the technique
addressed the multi-hop scenario, where a mobile code may visit several
(possibly malicious) hosts. Each visited host can use outputs computed on
previously visited hosts without learning anything about the previously used
inputs and obtained outputs.

The major drawback of the secure function evaluation approaches is their
complexity in terms of computation, communication and rounds. This is the
cost of having very strong security properties related to cryptographic or
information-theoretic assumptions. There is a panoply of different schemes
that fit different requirements, such as non-interactivity. However, non-
interactivity is achieved with an additional cost in terms of computational
and communication complexity. We invite the reader to refer to [Fra93] and
[Gol98] for an in-depth analysis of the theoretical approaches to the prob-
lem of secure function evaluation.

Figure 2.1 Non-interactive protocol for privacy of execution
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2.6 Requirements

In this section, we focus on a scenario without TPH. The requirements
imposed to solutions with TPH will be elaborated in chapter 6. Our goal is
to address flexible models of computation, in an efficient way. The overhead
brought up by the security primitives must not render the use of mobile code
unattractive. We can now define an ideal set of requirements that should be
imposed on techniques addressing privacy of execution in the mobile code
scenario.

We consider the same non-interactive scenario as depicted on Figure 2.1.
The privacy off is assured by the algorithms {E, D} that should satisfy the
following properties, stated in an informal way:

Correctness. There is a polynomial time algorithmD to retrieve the desired
resultf(x) from the obtained resulty’=[E(f)](x) ;

Privacy of execution.The resulting functionf ’=E(f) preserves the privacy of
f if it is computationally unfeasible to derivef from f ’ . We noticed from
related work that perfect privacy is hard to achieve. Therefore, the solutions
may admit information leakage about the functionf that should be mini-
mized;

Remote host computational complexity.The complexity off ’ should not be
increased by more than a polynomial factor when compared with the com-
putational complexity off;

Communication complexity.The communication complexity should not be
increased by more than a polynomial factor when compared with the
scheme wheref itself is transmitted and evaluated;

Round complexity.The scheme should be non-interactive, or the round com-
plexity equal to two. The evaluation off ’ should be performed without the
help of Alice. Additionally, algorithmsE andD should not need the help of
Bob;

Privacy of data. The obtained resulty’ should not reveal more information
about datax to the function owner than what the actual resulty reveals.
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Conclusion

This is an ideal set of requirements that will be analyzed during the security
evaluation of our solutions in chapter 5. These requirements will be adapted
in chapter 6 to the case where Tamper-Proof Hardware is available.

2.7 Conclusion

Two main approaches have been developed to address the problem of pri-
vacy of execution without Tamper-Proof Hardware. On one hand, there are
more practical solutions like obfuscation with a lack of theoretical founda-
tions. On the other hand, there are the stronger theoretical solutions of
secure function evaluation, that apply to more limited models such as cir-
cuits and that have a large complexity associated to each bit of output. Solu-
tions for code privacy against possibly malicious hosts are thus still in their
infancy.

Our aim is to create new solutions that offer a trade-off between these two
worlds: less complex and more flexible than secure function evaluation and
stronger in security terms than obfuscation. The set of requirements defined
is hard to fulfill in a complete way. Our objective is to achieve security in
cryptographic terms while reducing the complexity of the solutions.

In addition, our objective is also to tackle the problem of integrity of execu-
tion in an efficient way. The function owner should have a way of verifying
if the obtained result is a possible result of the function. Usually, the integ-
rity problem is not considered in the scenarios illustrating privacy of execu-
tion. This fact relies on the trust assumption that if the host cannot get
information about the function, then the remote host will not be able to
tamper with the function in a meaningful way. In the next chapter, we focus
on the problem of integrity of execution. In Chapters 5 and 6, we will show
how to tackle privacy and integrity of execution in an efficient way.
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CHAPTER 3 Integrity of Execution

3.1 Introduction

As stated before, this thesis deals with the protection of mobile code from
the execution environment, a problem brought up by the mobile code para-
digm. In this scenario, there is a conflict between two sides: the mobile code
and the security requirements of its owner on one side, and on the other side
the execution environment and its security requirements. We focus on
mobile code protection from possibly malicious hosts, namely the problem
of integrity of execution. The owner of the mobile code should be able to
verify the correctness of the code execution. Our concern is not the integrity
of the code itself, but the integrity of its execution.

Without integrity of execution, the number of possible applications for
mobile code becomes smaller and the computations are restricted to trusted
environments. The possibility of detecting misbehaviors from remote hosts
is also fundamental for the enforcement of control policies.

This chapter presents a short but comprehensive survey of techniques
addressing integrity of execution. Then, a definition for integrity of execu-
tion is given and analyzed.
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3.2 Problem Statement

The aim of integrity of execution is to give the code owner the ability to ver-
ify the correctness of the execution of his code. This can be done at the end
of the agent trip, or as suggested in [FGS96], the code can contain state
appraisal functions that will verify the state of the agent on each host that
the agent visits. The authors claimed that an agent can become malicious
when its state is tampered with, based on the example of a shopping agent
that searches forn seats on an airplane. A malicious host can augment the
number of seats to be reserved in order to cause bogus reservations on com-
peting hosts. In this case, it is important to check the state of the code at
each host.

In our case, the code owner wishes to verify the integrity of the results at the
end of the code’s trip. The code owner should be able to detect attacks
regarding the correctness of the code execution from the remote execution
environments. It is possible to classify the solutions to this problem into
four categories, as follows:

• Proof systems;

• Traces of execution;

• Fault tolerance;

• Result checking.

Moreover, the solutions called secure function evaluation schemes, pre-
sented in chapter 2, also prevent any player or groups of players from cheat-
ing. Therefore these solutions also achieve integrity of execution.
Obviously, settings relying on tamper-proof hardware accomplish this goal
as well. In the next sections, we analyze in more detail the existing
approaches that deal with integrity of execution.

3.3 Proof Systems

Yee [Yee97] suggested the use of proof based techniques to address the
problem of integrity of execution in the mobile code scenario. Each host
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that executes the mobile code has to send a proof of the correctness of the
execution with the result. The objective of proof systems is to make the ver-
ification of the proof easier than the construction of the proof.

Definition: A language L belongs to NP if there exists a polynomial time

non-deterministic Turing machine V such that for all :

• implies that there exists a sequence of non-deterministic choices

(or proof) , such that V on choice  accepts the inputx;

•  implies that there is no proof  for which V will acceptx.

Proof systems have been extended over the years with the possibility of a
probabilistic verification procedure. The results include very well known
techniques such as interactive proof systems and zero-knowledge proofs.
There is extensive work on proofs, see for example [Gol99] for a compre-
hensive survey.

In [BC86], the authors illustrated this concept with a protocol where Alice
can convince Bob of the good result of a Boolean circuit simulation, with-
out revealing her inputs, under the Quadratic Residues Assumption. How-
ever, this protocol required the knowledge of the Boolean circuit by both
parties. The protocol developed for the circuit model entailed a communica-
tion complexity dependent on the number of wires or gates of the circuit.

In [Yee97], the author pointed out the possible use of Probabilistic Check-
able Proofs (PCP) [ALM+91] [AS98]. PCP proofs assure the correctness of
a statement while checking only a subset of the proof. In more formal
terms:

Definition: A language if there exists a probabilistic polyno-

mial time oracle machine V, accessing a polynomial sized oracle , such

that for all :

• implies that such that for all choices of random strings, the
verifier V acceptsx.

x 0 1,{ }n∈

x L∈

π π

x L∉ π

L PCP r q,( )∈

π

x 0 1,{ }n∈

x L∈ π∃
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• implies that , V rejectsx with probability of at least 1/2 (over
internal coin flips).

Furthermore, V uses at mostr(n) coin flips for its probabilistic verification

and queries the oracle  at mostq(n) times.

This concept is similar to the definition of transparent proofs introduced in
[BFLS91] and [Bab93]. With transparent proofs, the input has to be pro-
vided to the verification process in an encoded form (using a specific error
correcting code). In this way, membership proofs for NP may be verified in
polylogarithmic time. One interesting result is thatNP=PCP(log n, 1)
[ALM+91], which means that there are proofs of membership for any NP
language that can be checked by examining only a constant number of bits
of the proof. However, the process of converting a proof into a PCP proof
produces a super-quadratic increase in size [PS94]. Fortunately, the same
authors presented an optimization in [PS94], and probabilistic proofs of
nearly linear size were obtained.

In our case, it is important to analyze the round complexity of these
approaches. One appealing idea is the use of Non-Interactive Zero Knowl-
edge Proofs [BSMP91]. Based on some reasonable complexity assump-
tions, one may construct non-interactive zero-knowledge proofs for every
NP language, but the prover and the verifier have to interact with a trusted
random sequence of bits (which can be considered as being selected by a
trusted third party [Gol99]).

PCP proofs may be used non-interactively, but the subset of verified bits has
to be randomly determined by the verification process and the prover has to
commit to the overall PCP proof. This commitment is necessary in order to
prevent the prover from adapting the proof to the queries being made. In the
mobile code scenario, the use of PCP proofs in a non-interactive way
implies that the prover should send the complete PCP proof to the code
owner. Therefore, the increased size of PCP proofs when compared with
non-probabilistic proofs becomes a drawback in the mobile code scenario.

In [BMW98], the authors presented an interesting model for mobile com-
puting as well as a solution that overcomes the problem of using PCP

x L∉ π∀

π
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proofs. The agent is modelled as a probabilistic Turing machine, and the set
of all possible states of this machine constitutes an NP language. So, the
verification process consists of checking whether an obtained state belongs
to this language. In order to avoid the transmission of the overall PCP proof,
the randomly chosen queries from the checker are encrypted using non-
interactive Private Information Retrieval (PIR) techniques [CGKS98]
[CMS99]. These private queries are then sent to the remote host. In a few
words, single database PIR consists of retrieving a bit from a string (the
database), without revealing the index of the desired bit. Therefore, the
remote host has only to send the answers to the encrypted queries and not
the complete PCP proof.

We may use more practical and attractive proof systems in which the prover
is restricted in computational terms, such as cryptographic CS-proofs
[Mic94] and arguments [Kil92]. Considering intractability assumptions, it
is then possible to build more communication efficient proof systems. With
cryptographic CS proofs, the programs may be transformed in order to sup-
ply a very short proof which is easy to inspect in addition to the result
[Mic94]. Nevertheless, it is an open problem whether such cryptographic
proofs can be constructed, for example for NP. In the case of CS-proofs and
argument systems, we need either three messages of interaction or the
assumption of the existence of a random oracle [Gol99], consequently they
are not really non-interactive.

Recently, [ABOR00] improved the above results to one-round proofs for
NP with poly-logarithmic communication complexity in the length of the
proof. The authors extended the idea presented in [BMW98] in that they
used a combination of PCP proofs and PIR techniques. Nevertheless, the
solution proposed in [ABOR00] achieves stronger security properties.

3.4 Traces of Execution

In a more practical sense, one could think about storing the entire trace of
execution in the mobile code. Then, the code owner would re-execute the
code and compare it with the trace. Such a process is so cumbersome that it
renders the use of mobile code unattractive.
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A more efficient way of implementing this idea was proposed in [Vig97].
Firstly, the author divided the code statements into white and black state-
ments. The black statements are the critical ones because they result from
interactions with the environment. The trace of execution of the black state-
ments has to be signed and transmitted to the code owner. Secondly, in
order to avoid the transmission of the complete trace, the author proposed
that the remote host send a hash of the trace. The host hereby commits to
the trace. If the code owner suspects that the code was not correctly exe-
cuted, the remote host has to send the trace to prove his correct behavior. A
Trusted Third Party may arbitrate conflicts at the moment they occur, thus
enforcing an optimistic control of integrity of execution. The drawbacks of
this approach are:

• Each host has to keep the traces of the executions it performs in order to
prove its innocence in case of dispute;

• Each time the code owner wants to perform a verification, he has to re-
execute the code.

In order to increase the power of the traces, we may use the techniques
described in [KV98] where the authors used fault injection to simulate pos-
sible malicious host systems. The objective is to build assertions, that will
be included in the code, therefore increasing the observability of the traces.
The traces of execution become more powerful and an oracle may be auto-
matically generated to check these traces. Once more, the traces have to be
sent to the code owner in order to be verified with the help of the oracle.

3.5 Fault Tolerance

Fault tolerance approaches are based on techniques for software reliability.
The distinguishing feature of these approaches is the redundancy of execu-
tions, which means that the result of the computation comes from the co-
operation between different execution environments.

In [Rot98], the problem of integrity of execution is mentioned in the case of
the protection of a mobile agent’s itinerary. Preventing the tampering of
routing decisions by the agent is not easy, if these decisions are to be taken
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in a possibly malicious host. This problem is a good illustration of the need
for integrity of execution. Without integrity of execution, the mobile code
can be sent where the execution environment wants, rather than to the place
it was supposed to go otherwise. The author proposed using a backup agent
executed on a trusted environment. This backup agent verifies the routing
decisions taken by the agent executed on a possibly malicious host.

Without recurring to previously known trusted environments, [MvRSS96]
presented an approach where several instances of the same code are exe-
cuted on different hosts and the right result is elected by a voting mecha-
nism. The very efficient solution for voting proposed in [Nou96] can be
used if the voting procedure is performed on a trusted environment. The
security of the scheme in [MvRSS96] relies on the fact that a bigger number
of executions should occur in non-malicious hosts. Thus, the approach
assumes that attackers cannot have access to all the execution environments,
or that the execution environments do not cooperate. However, this model is
not realistic because it supposes that there exists replicated servers that are
not controlled by the same entity.

3.6 Result Checking

Program result checking, first introduced in [Blu88] and further developed
in [BK89], deals with the problem of software reliability. The authors
defined a program checker in the following way:

Definition: Given a programP that should implement a functionf, a pro-
gram checker C aims at catching with high probability that for an arbitrary
input x, . Moreover, the checker should be efficient in the sense
that its computation time should be shorter, i.e.o(T(n)), than the smallest
known computation timeT(n) for f.

The latter condition prevents the checker from just re-computing the func-
tion at the given point. The methodologies used in program checking are
usually linked to the algebraic properties of the function, namely random
self-reducibility:

P x( ) f x( )≠
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Definition: A function f is k-random self-reducible iff(x) can be expressed
as an efficient function of , where the are uni-

formly and randomly distributed.

A similar concept called coherent functions was defined by [Yao90], which
allows an adaptive choice of points . The self-reducibility property can be

used by querying the programP on several random inputs and then check-
ing a known relationship between the outputs. Furthermore, result checking
techniques consider programP as a non-malicious adversary. Result check-
ing aims at achieving reliability (refer to [BW97] for a survey) without tak-
ing into account a possible malicious behavior from the execution
environment. Being resilient to a malicious behavior is equivalent to having
a programP that attempts to defeat the checker. However, this requirement
is not included in the definition of a checker.

In addition, if the program owner does not trust the checker, then we may
use witnesses [FGY96]. In order to address this requirement, the program
owner constructs the answers to the checker in such a way that the checker
can infer no information about the program from these answers. For the
same reasons, witnesses do not tackle the possible maliciousness of pro-
gramP.

3.7 Verifiers

We now present the definition of a new concept meant to address the prob-
lem of integrity of execution. This definition is presented in the same non-
interactive scenario of chapter 2.

Using the same notation as in chapter 2, Alice receives the resulty’ of the
execution of functionf ’ . With this value, Alice should be able to retrieve the
resulty of the execution of the functionf (using algorithmD) and to per-
form a polynomial time verification of this result, using a verifierV.

f x1( ) f x2( ) … f xk( ), , , xi

xi
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Definition: Given a program that should implement a functionf and consid-
ering Y as the set of all possible outputs of the function , with

, a verifierV satisfies the following condition:

if  then .

WhereP represents a probability and thus is the error probability of the
verifier. Additionally, as already stated in chapter 2, the computation and
communication complexities of transmitting and calculatingy’ should not
exceed the complexities associated withy by more than a polynomial factor.

The verifier concept has a common point with CS Proofs [Mic94] in that
there may exist invalid proofs, but they should be hard to find. In short, the
integrity of execution property relies on the difficulty of finding a valuey’
accepted by the verification process, that do not correspond to a valid output
y.

To our knowledge, the verifier definition is original. In spite of being similar
to the checker definition [BK89], there are two main differences between
the two definitions:

• A checker focuses on the correctness of a computation for specific inputs
xi, whereas a verifier aims at detecting that the output is a possible output
of the functionf. The computations performed by the verifier do not rely
on the knowledge of the inputxi;

• Maliciousness of the program (or its execution environment) is not taken
into account in the checker definition. A checker needs the computation
of a set of outputs of the function and checks the relationship between
these outputs. A malicious program may build a set of outputs that sat-
isfy the relationship but that are not outputs of the program.

Note that a verifier only ensures that the cleartext result is a possible output
of the function. However, the remote host is able to identify all the possible
outputs.

f xi( )

xi 0 1{ , } l∈

y D y'( )=( ) Y∉ P V y'( ) Accept=( ) δ<

δ
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3.8 Conclusion

Detecting wrong executions of a mobile code is a fundamental issue for the
success of the mobile code paradigm. We reviewed the existing approaches
to the problem. The solutions inspired by software reliability techniques
(fault tolerance and result checking) do not cope with the maliciousness of
the execution environment. The solutions satisfying stronger security prop-
erties, such as proofs and traces of execution, suffer from their high com-
plexity.

We defined the new concept of verifier to address the requirement of integ-
rity of execution. We believe this concept is more suitable for the design of
efficient solutions and for expressing the possible maliciousness of the exe-
cution environment. However, a verifier does not prevent re-executions of
the function and selection of the best result. Furthermore, it does not prevent
attempts to invert the function in order to retrieve an input that corresponds
to a desired output. However, when integrated with privacy of execution, the
two attacks mentioned above are defeated.

Briefly, a verifier only guarantees that it should be computationally intracta-
ble to a malicious execution environment, to find values accepted by the
verifier for bogus outputs. The implementation of verifiers should be effi-
cient, that is the remote hosts should have a limited increase in computa-
tional and communication complexity and the verification process should be
easy.

We have searched for implementations in the field of coding theory. The
goal is to build programs that are resilient to errors of execution, such as
data is resilient to errors of transmission when encoded by an error correct-
ing code.
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CHAPTER 4 Introduction to Coding
Theory

4.1 Introduction

This chapter focuses on the cryptographic tools used to tackle the problems
stated in chapters 2 and 3. The tools presented here are used in the solutions
described in the following three chapters. The security of these solutions
relies on intractability assumptions found in the field of coding theory.

Coding consists of adding redundant information to the data exchanged dur-
ing a communication in order to allow the receiver to recover the original
data even in the presence of transmission errors. Basically, an error correct-
ing code transforms a data block ofk symbols into a coded block ofn sym-
bols. Then-k redundant symbols allow for the detection and correction of
transmission errors, if the number of error symbols is bounded.

The complexity of some instances of coding theory problems has been used
to construct cryptosystems and our solutions also exploit the hardness of
such instances.

In this chapter, we provide a brief introduction to coding theory. We focus
on linear block codes and on the complexity of the decoding process in the
presence of errors. We then show how it is possible to construct hard
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instances of the decoding problem. The most well-known cryptosystems are
described and an introduction to possible attacks is finally given.

4.2 Linear Block Codes

A q-ary linear block codeC of lengthn over and of dimensionk is a

linear subspace of  with dimensionk.

The elements of the code are called codewords and the Hamming weightw
of a word is the number of non-null bits of the word. The Hamming distance

d(a,b) between two wordsa andb in the set  is defined as:

.

The minimum distanced of a codeC is equal to:

.

It is straightforward to see that the minimum distance of a codeC is equal to
the minimum non-zero weight codeword ofC. A linear code with lengthn,
dimensionk and minimum distanced is referred to as an [n,k,d] code. The
information rate of a code is expressed as . Since the code is a linear
subspace of dimensionk, there existk linearly-independent codewords that
form a basis of the subspace. Whenk independent codewords are the rows
of a  matrixG, G is called a generator matrix of the code.

A vectorm is encoded into a codewordc as follows: . A generator
matrix is in systematic form when , where is the identity

matrix and A is a matrix (| means concatenation). Another
important matrix in coding theory is the parity-check matrixH of a code.
This matrix has size and it defines the code in the following way:

GF q( )

GF q( )n

0 1,{ }n

d a b,( ) 1 i n ai bi≠≤ ≤{ }=
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which implies , where is the all-zero

matrix. When the generator matrix is in systematic form , then the

parity check matrix assumes the form . Furthermore, there is
always a polynomial time algorithm to derive G from H and vice-versa.

4.2.1 Error Correction

Consider , wherec is a codeword and is an error vec-

tor. The syndrome ofv is defined by . Therefore, the syndrome is
zero if and only ifv is a codeword. Hence:

The expression definesn-k linear equations, withn unknowns (the
n bits of the vectore). Thus, an error correcting scheme is a method of solv-

ing then-k equations [LC83]. For example in the binary case, there are

solutions, which means that there are error patterns that result in the
same syndrome. Then, the most probable error pattern should be chosen.
This pattern is the one that has minimum weight. In other words, the
received vector should be decoded to the nearest codeword.

One can show that if a code has minimum distance , then there is
only one error pattern satisfying then-k equations and having weight infe-
rior or equal tot. Therefore, the code is capable of correcting all the error
patterns oft or fewer errors. Letc andv be the transmitted codeword and the
received vector respectively. Letw be any other codeword inC. The Ham-
ming distances satisfy the triangle inequality:

Let us suppose that an error pattern oft’ errors occurs. Then
and since , the following inequality is obtained:

GHT 0k n k–,= 0k n k–, k n k–( )×
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.

If , then . If an error pattern oft or fewer errors occurs, the
received vectorv is closer to the transmitted codewordc than any other
codewordw in C. Thus, the valuet represents the maximum number of
errors the code can correct.

4.3 Complexity

In their seminal paper, Berlekamp, McEliece and van Tilborg [BMvT78]
proved that the following problem, stated in the style of [GS79], is NP-com-
plete:

Problem: Maximum-Likelihood Decoding

Instance:Let H be a binary matrix,sa binary vector of lengthmand
p a nonnegative integer.

Question: Is there a binary vectorx of length n, such that and
?

This problem was originally termed Coset Weights in [BMvT78] and syn-
drome decoding in [Ste93] but we use the denomination proposed in
[Var97]. This problem is more general than the one relevant to decoding
because it is not stated that the matrix has maximum rank. However, this
does not affect NP-completeness [BMvT78]. The problem stated in terms of
the generating matrixG instead of the parity check matrixH is also NP-
complete [BMvT78]. This problem was called G-Syndrome Decoding
[Ver95a]:

Problem: G-Syndrome Decoding

Instance: Let G be a binary matrix,y a binary vector of sizen andp
an integer.

d w v,( ) 2t 1 t'–+≥

t' t≤ d w v,( ) t>

m n×

xHT s=

w x( ) p≤

n k×
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Question: Is there a binary vectorx of size k, and a vectore with

, such that ?

NP-completeness ensures that there is no polynomial time algorithm for
solving the problem in the worst case. However, many NP-complete prob-
lems can be attacked after a preprocessing phase. Namely the beforehand
knowledge of the parity check matrix can be used, but [BN90] showed that
the problem remains complex even with a large amount of preprocessing on
the matrix. Furthermore, the possibility of approximating the problem was
also proven to be hard [ABSS97].

Nevertheless, there may exist easy instances of the problem. In the section
on cryptanalysis, we will focus on this particular problem. The decision
problems mentioned above are connected to the optimization problem of
complete decoding:

Problem: Given a matrixG of rankk and a vectorx of sizen, find a

vectorm of sizek such that  is minimum.

This problem is NP-hard. However, instances used in cryptosystems may be
attacked with algorithms for decoding up to a given bound, as described
later in this chapter. This problem is called Bounded Distance Decoding
[Var97], and it is not necessarily NP-hard [Can96][vT94].

Recently, [Var97] proved that the Minimum Distance problem is also NP-
complete. To end this section, we state the Minimum Distance problem:

Problem: Minimum Distance

Instance: Let H be a  binary matrix, andp a nonnegative integer.

Question: Is there a binary non-zero vectorx of length n, such that

 and ?

The author [Var97] (agreeing with [Bar97]) conjectured that the Bounded
Distance Decoding is also NP-hard.

w e( ) p≤ xG e+ y=

k n×
d x mG,( )

m n×

xHT 0= w x( ) p≤
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4.4 Cryptosystems

Cryptosystems based on coding theory take advantage of the hardness of the
problems mentioned above. Next, the specific implementations in terms of
public key cryptosystems are described and analyzed, namely the McEliece
[McE78] and Niederreiter [Nie86] cryptosystems. Gabidulin [GPT91] also
proposed a public key cryptosystem using rank distance codes. The cryp-
toanalysis of systems using rank distance codes can be found in [CS96],
[Gib95a], and [Gib96] but our discussion will be restricted to Hamming dis-
tance codes.

One of the major obstacles to the widespread use of the above cryptosys-
tems is certainly the impossibility of performing digital signatures. Several
implementations have been proposed but they do not withstand cryptanaly-
sis. It is currently believed [Ste94][vT94] that such a scheme will be hard to
find.

Secret-key variants of the McEliece scheme appeared in [Jor81], [RN86]
and [HR89] just to cite a few. Basically, they are very similar to the public
key versions but the codes used are smaller. A description and cryptanalysis
of these schemes can be found in [vT94]. We will revisit these kind of sys-
tems later in this chapter.

Some identification schemes that take advantage of these problems were
also proposed, for example in [Gir90], [Ste93] (formalized in [Ste96]), and
[Ver95a]. They have interesting properties including zero-knowledge but
the major drawback is their communication complexity. Veron [Ver95b]
studied the optimization of this kind of authentication schemes and he
achieved very interesting results, including the possibility of an implemen-
tation on a very limited device such as a smartcard.

4.4.1 The McEliece Public-Key Cryptosystem

Let be aq-ary linear code. Let be a generator matrix of
the code for which an efficient decoding algorithm exists. The encryption

matrix is , where is a random invertible matrix over

 and  is a random  permutation matrix.

C n k d, ,[ ] G k n×
C

E SGP= S k k×
GF q( ) P n n×
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Encryption: A plaintext message represented by the vector is

encrypted into the ciphertext by , wheree is a ran-
domly chosen error vector that belongs to the set:

.

Decryption: A ciphertexty is decrypted by , and is

decoded with the decoding algorithm of to retrieve ( is correct-

able since ). The plaintext is then obtained by

.

Keys: The public key is the matrix and . The secret key consists of
the matrices  and , and of the decoding algorithm for the code .

4.4.2 The Niederreiter Public-key Cryptosystem

Let be aq-ary linear code. Let be a parity check
matrix of the code for which an efficient decoding algorithm exists. The

encryption matrix is , where is a random

invertible matrix over  and  is a random  permutation matrix.

Encryption: A plaintext message represented by the vector has
to satisfy the condition: . The message is encrypted into the

ciphertext  by .

Decryption: A ciphertexty is decrypted by . Next, is
obtained by applying the decoding algorithm of . The plaintext is then

easily obtained: .

Keys: The public key is and . The secret key consists of the matrices
and , and of the decoding algorithm for .

x GF q( )k∈

y GF q( )n∈ y xE e+=

e GF q( )n w e( )∈ d 1–( ) 2⁄={ }
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The McEliece scheme uses a generator matrix while the Niederreiter
scheme uses a parity-check matrix, but they were proven to be equivalent in
terms of security for the same code [LDW94]. The code initially proposed
by Niederreiter was too small and this version was broken in [BO92]. Nev-
ertheless, for the same code, the Niederreiter cryptosystem reveals some
advantages in terms of size of the public key, the number of operations to
encrypt and the transmission rate [CC98]. On the other hand, the McEliece
scheme is easier to use because it does not put any restriction on the weight
of the message. Moreover the complexity of the decryption algorithm is
lower [CC98].

In comparison with the RSA public key cryptosystem, the disadvantages of
coding theory based cryptosystems are the lack of a signature scheme, the
size of the public key and the transmission rate. However, the operations of
encryption and decryption are much faster (see [Can96] for a detailed anal-
ysis).

4.5 Cryptanalysis

Generally speaking, the secret key to this kind of cryptosystems is the code
itself, for which an efficient decoding algorithm is known, and the public
key is a transformation of the generator or parity-check matrices. In other
words, the efficient decoding algorithm is the trapdoor to the public key
transformation. There are two main attacks:

• Retrieving the secret code from the public code;

• Finding an efficient algorithm to decode the public code.

4.5.1 Retrieving the Secret Code

This first attack depends on the class of codes used in the instance of the
cryptosystem. We focus on the McEliece scheme, which uses Goppa codes.

The complexity of the brute force attack on the original McEliece public
key cryptosystem can be measured by searching exhaustively for all the

possible combinations of permutations (n!), Goppa codes (~2mt / t, with
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m=logn), and invertible matrices (~0.29*2k^2)[MS77]. Using the code size
proposed by McEliece ([1024, 524, 50]), this attack is obviously not feasi-
ble [Til88].

The other possibility is to explore the characteristics of the code transforma-
tion in order to identify its building blocks. The hardness of identifying a
Goppa code from a permutation has been thoroughly analyzed.

Heiman [Hei87] was the first to study this attack and stated that the random
matrix S used in the original McEliece scheme serves no security purpose
concerning the protection of the code, because it does not change the code-
words of the original code. However, Canteaut [Can96] showed that the
matrix S may be important to hide the systematic structure of the Goppa
code therefore having an important security role. Adams and Meijer
[AM87] showed that the likelihood of identifying a Goppa code is small
and that there is usually only one trapdoor to a given public code. Later,
[Gib91] challenged this result and proved that each permutation applied to
Goppa codes can be regarded as a possible trapdoor and there are at least
m.n.(n-1)trapdoors. This results from the fact that non-equivalent Goppa
polynomials can generate permuted equivalent codes. However, the number
of trapdoors is very small when compared with then! possible permuta-
tions. The number of trapdoors is still open for large codes, but calculated
lower bounds [Gib95b] showed that an exhaustive search remains unfeasi-
ble.

Furthermore, there were efforts to find an efficient algorithm to retrieve the
characteristics of the code from a permuted code represented by the genera-
tor or parity check matrix using techniques that try to identify invariants
among the classes of codes [Sen94]. However, the results were negative for
the case of Goppa Codes. There is currently no efficient algorithm to
retrieve the characteristics of a code from a permuted generator matrix for
Goppa Codes [CS98].

4.5.2 Finding a Decoding Algorithm

In spite of being conjectured as NP-hard [Bar97][Var97], many probabilis-
tic algorithms have been developed to tackle the problem of Bounded Dis-
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tance Decoding. The better known algorithms include the ones of Lee-
Brickell [LB88], Leon [Leo88], Stern [Ste89] and Canteaut-Chabaud
[CC98].

We refer the reader to [Cha96], [vT94] and [Can96] in order to have a more
detailed view of their possible implementations and actual performances.
Nevertheless, their running time increases exponentially with the length of
the code. In practical terms, the mentioned algorithms are efficient to solve
the problem for small codes and for errors with low weight, but the proba-
bility of success is negligible for large codes (n>1024 [CS98]) when the
weight of errors is close to the maximum correction capability of a code.

4.5.3 Classes of Codes

The security of the cryptosystem is highly dependent on the class of codes
used, especially concerning the complexity of the first attack, described in
section 4.5.1. Some classes of codes reveal their characteristics even when
they go through the permutation used to construct the public key.

Niederreiter’s initial proposal used concatenated codes, which were proven
to be insecure [Sen94]. Reed-Solomon codes were also proven to be inse-
cure [SS92]. McEliece proposed Goppa codes that proved to be secure.
Nevertheless, Goppa codes generated by a Goppa polynomial with binary
coefficients are also insecure [Loi98].

The properties that a code should have in order to be an eligible candidate
for these cryptosystems, which result from the experience gained from suc-
cessful attacks against this kind of cryptosystems, are the following [CC98]:

• The type of codes must be large enough to avoid any enumeration, which
is important to defeat a brute force attack. This attack can use Sendrier’s
algorithm [Sen97] that determines if codes are equivalent given two gen-
erator matrices. If the answer is positive, then the permutation can be
retrieved. In brief, equivalence means that one matrix is a permutation of
the other, because matrix S does not change the code, but only performs
a modification on the basis of the linear subspace;

• An efficient decoding algorithm should exist for this class in order to
build efficient systems;
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• The generator or parity-check matrix of a transformation of the code
must not give any information about the characteristics of the code in
order to be resilient to the attack described in section 4.5.1.

If the class of codes fulfills these requirements, as in the case of Goppa
codes, then the security of the cryptosystem is equivalent to the problem of
bounded distance decoding any linear code [CS98].

Goppa Codes

This is the most interesting subclass of alternant codes. Concretely, Goppa
codes result from the restriction toGF(q)of the Generalized Reed-Solomon
(GRS) codes [MS77]. Goppa codes are specified in terms of a generator
polynomial g(z), called a Goppa polynomial, with coefficients from

. An important property is that the minimum distance is easily esti-

mated: . Let be a subset of ,

such that .L is called the support of the code. The Goppa

code  consists of all vectors  satisfying:

In the binary case, ifg(z) is irreducible (consider ) then
the parameters are:

,  and .

There are approximately2mt / t different irreducible binary polynomials of

degreet over . A different Goppa code corresponds to each polyno-
mial. The decoding of Goppa codewords can be done using the extended
Euclidean algorithm (see for example [Sen91]) or the Berlekamp-Massey
algorithm (see for example[Bla83]). For more information on Goppa Codes,
see [MS77].

GF q( )m

d degree g z( )( ) 1+≥ L α1 … αn, ,{ }= GF q( )n

g αi( ) 0 0 i n≤<,≠

Γ L g,( ) Ci GF q( )∈ n

Ci

z αi–
-------------

i 1=

n

∑ 0mod g z( )( )=

degree g z( )( ) t=

d 2t 1+≥ n 2m= k n mt–=

GF 2( )m



58

Without loss of generality, we focus on binary codes, because they are suit-
able for tackling Boolean functions, but the technique can be used for alge-
braic functions, where the elements are defined in GF(q). This implies the
use ofq-ary Goppa codes and the security analysis of this kind of codes can
be found in [JM96].

4.5.4 Linearity

In the case of the McEliece cryptosystem, there is one weakness due to the
linearity of the codes, as well as the non-deterministic nature of the system.
Non-deterministic means that one plaintext results with strong probability
in two different plaintexts. Furthermore, the error vectors do not completely
hide the linearity of the transformation due to their small Hamming weight.
Therefore, it is possible to easily identify that two ciphertexts result

from the same plaintext because the distance will be small (inferior

to 2t).

In the case of public key cryptosystems, this attack is described in [Can96]
and [Ber97] and it allows the plaintext to be recovered when the attacker
gets two or more ciphertexts corresponding to the same plaintext (with high
probability the ciphertexts use different error vectors). In order to avoid this
attack, several techniques were suggested:

• Introducing randomness as proposed in [BR94]. For example, [Sun98]
proposed to change the encryption algorithm to: ,
whereh is a collision free hash function. The ciphertexty is decrypted by

decoding , which givese and . The plaintext is

obtained by applying  and then addingh(e) to the result;

• Using patterns of errors with higher weight [Loi00].

4.5.5 Secret Key Cryptosystems

The secret-key variants of the McEliece scheme (for example [Jor81],
[RN86] and [HR89]) are similar but the code used is kept secret, thus the
length of the codes used can be made smaller.

yi yj,( )

d yi yj,( )

y x h e( )+( )E e+=
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The security of such schemes relies on the secrecy of the code. Therefore,
the hardness of the problem of disclosing the secret code from a set of
ciphertexts is further analyzed. Each ciphertext is a codeword with errors. In
another context this problem was called the Maximum Likelihood Code
Recognition Problem [Val99].

Maximum Likelihood Code Recognition

Imagine an eavesdropper catching several encoded messages with errors but
without knowing the error correcting code used. The goal is to perform the
recognition of the code. This problem was reduced to the decision problem
of Rank Reduction, which was proved to be NP-complete [Val99]:

Problem: Decision Rank Reduction

Instance: Let Y be an matrix formed byN words of lengthn andk, p
nonnegative integers.

Question: Is there a matrixE satisfying and ?
Where the Hamming weight of a matrix denotes the number of its non-null
elements.

In the same paper, a probabilistic algorithm to address the problem was
devised, but its probability of success decreases heavily with the Hamming
weight of the matrixE, being negligible for more than a few errors in the
overall matrix.

Linearity

The linearity of the code can be exploited to obtain more efficient solutions
to the code recognition problem. This fact is used on the attacks to symmet-
ric key cryptosystems based on the McEliece scheme called Majority Vot-
ing and its extensions [MvT91] [SvT87], whose goal is to recover the secret
code from the knowledge of several ciphertext values.

Due to the small weight of the error vectors and with several ciphertexts of
the same plaintext, it is possible to determine the codeword corresponding

N n×

rank Y E+( ) k= w E( ) p≤
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to the plaintext with high probability. By applying this technique a number
of times equivalent to the dimension of the code, it is possible to retrieve the
secret code. The probability of success of this attack depends on getting a
high numberl of different ciphertexts for each plaintext. Moreover, this
probability decreases exponentially with the length of the code, and the
attack has a work factor ofO(knl). Hence, the attack is only an obstacle to
the use of small codes. For large codes, the attack is unfeasible unless more
information about the error patterns can be obtained.

In the case of secret key cryptosystems, in addition to the solutions that use
higher weight error patterns to break the linearity of the system [Loi00], we
can as well use pattern of errors in a different coset such as in [RN86]. Both
alternatives can defeat the majority voting attacks for recovering the secret
code.

4.6 Conclusion

This chapter reviewed some hard problems brought up by coding theory and
it analyzed their use in cryptography. We showed that after thorough stud-
ies, cryptosystems based on coding theory appear as an alternative to cryp-
tography based on number theory. We should emphasize the high level of
efficiency of these cryptosystems.

Cryptanalysis revealed some weaknesses of the existing systems that have
to be taken into account when designing protocols based on the same intrac-
tability assumptions. Our solutions presented in the next three chapters take
advantage of the security properties revealed in this chapter.
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CHAPTER 5 Code Protection

5.1 Introduction

This chapter presents solutions for the protection of privacy and integrity of
code executed on possibly malicious environments. The solutions we
present here do not use Tamper Proof Hardware. The next chapter shows
how these solutions can be extended, concretely in terms of computational
model, if an auxiliary trusted hardware is available.

The chosen computational model consists in Boolean functions. On one
hand, it can be easily related to other models, like Random Access
Machines [AHU74]. On the other hand, the model allows for the establish-
ment of a formal framework. The model also makes it possible to link the
security of the solutions to known cryptographic assumptions.

The design of solutions places a special emphasis on the efficiency require-
ment. Apart from security issues, one of the most solid arguments against
the use of mobile agents is performance. The mobility property in mobile
code platforms often causes the increase not only in the code size but also in
communication complexity. Therefore, solutions that inflate the computa-
tional and communication complexity are not likely to be adopted in prac-
tice. Our solutions are based on the composition of functions. The
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properties of functions used in coding theory are exploited in order to effi-
ciently address both privacy and integrity of execution.

The definition of the computational model and the definition of a security
framework for mobile code protection are the starting sections of this chap-
ter. Then we provide solutions to Boolean functions. One example focusing
on the function representation is also given. Finally, a security evaluation of
the solution is described.

5.2 Computational Model

Let represent the set of all functions from into . In the

mobile code scenario, a function owned by Alice is evaluated by

Bob on his input data . In a protocol that additionally provides

privacy of execution, Alice obtains the result , and Bob

provides the input data , while preventing the disclosure off to
Bob.

Figure 5.1 Framework for Code Protection
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Security Framework

A function does a conversion between inputs from the set

and outputs belonging to the set . Therefore,Y

defines a subset of . Integrity of execution allows the function owner
to verify in an efficient way that the obtained outputy indeed belongs to the
setY.

5.3 Security Framework

A mobile function protection framework is a set of efficient algorithms {E,
Q, D, V}, as depicted in Figure 5.1. For the sake of completeness, an algo-
rithm Q was included to represent the function evaluation on the remote
host. Such a framework should fulfill the following properties:

Correctness. There is a polynomial time algorithmD to retrieve the result
f(x) from y’;

Privacy of execution.It is computationally hard to get information about the
function f from the functionf ’=E(f) . The execution of algorithmQ should
not leak any additional information aboutf;

Remote host computational complexity.The complexity of evaluating algo-
rithm Q with inputsf ’ andx should beO(T(n)), whereT(n) is the worst case
running time forf;

Communication complexity.The communication complexity associated with
the evaluation off ’ should beO(S(n)), whereS(n)is the worst case commu-
nication complexity associated with the evaluation off;

Round complexity.The scheme should be non-interactive, or should have
round complexity equal to two;

Integrity of execution. Using the same notation as defined in chapter 3, Alice
receives the resulty’ of the evaluation of functionf ’ at the pointx. With this
value, Alice should be able to perform a polynomial time verification of this
result, using a verifierV:

f Fl k,∈

X 0 1{ , } l= Y f x( ) x X∈{ }=

0 1{ , } k
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if  then .

Privacy of data. The resulty’ should not reveal more information about data
x to the function owner, than what the actual resulty reveals.

5.4 Example

Let us start by considering a set of easy functions from into .
Concretely, we consider functions where each bit of the output may be rep-
resented as a linear combination of the inputs. Such a function can be rep-
resented by a  matrixM.

This matrix will be evaluated by Bob using the data . This is
equivalent to saying that Bob will perform the vector by matrix multiplica-
tion .

We present a simple protocol to address privacy of execution. The aim is to
introduce the techniques used later in this chapter.

5.4.1 A Simple Protocol for Privacy of Execution

Let be a generating matrix for an Goppa code andt the number
of errors the code is able to correct. Let be an random permutation
matrix.

Algorithm E. The goal is to achieve the privacy of the function, which
means hidingM. Alice calculates another matrixM’  as follows:

The matrix has size , thus there is an increase in the matrix size
inversely proportional to the information rate of the codeC.

y Y∉ P V y'( ) Accept=( ) δ<

0 1{ , } l 0 1{ , } k

f

l k×

x 0 1{ , } l∈

y xM=

G n k d,[ , ] C

P n n×

M' MGP=

M' l n×
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Algorithm Q. Bob performs the operation:

.

The resultz is protected against eavesdroppers by adding a random error

vector , with . The result is then sent to
Alice.

Algorithm D. Alice decrypts the result by computing , which is

, and usesC’s secret decoding algorithm to retrieve the

cleartext result fromya. The error vector is a correctable error

vector since .

5.4.2 Security Analysis

In this example we focus on the privacy of execution. That is why algorithm
V is not mentioned.

Concerning the privacy of execution, one can see that from , Bob cannot
distinguishM from another matrixN built in the following manner:

and then , whereR is a random invertible
matrix.

However, the transformationE does not hide the rank of the matrixM. Fur-
thermore, Bob may identify inputs that result in the same output, even if he
cannot disclose the output. The case of matrices whose ranks are inferior to
the maximum is not very interesting for either player, because they are
obliged to handle redundant equations (other than those generated by the
code).

Alice does not get more information aboutx. The number of information
bits aboutx is equal to the rank of the matrix which is the same as the
matrix M. More important is that Bob can easily check the rank of matrix

z xM'=

e 0 1,{ }n∈ w e( ) t= y' z e+=

ya y'P 1–=

ya yG eP 1–+=

y xM= eP 1–

w eP 1–( ) t=

M'

N MR= M' NR 1– GP= k k×

M'
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. Therefore, our protocol satisfies the property of privacy of data from the
function owner.

The increase in communication and remote host computational complexity
is inversely proportional to the information rate of the code.

5.4.3 Discussion

Although not being mentioned in the requirements section, our protocol
addresses confidentiality of data during the transmission of the result back
to Alice. The security of this property is equivalent to decoding the code
generated by , which is hard as shown in the previous chapter. The possi-
bility of protecting the data during transmission, with just an addition of an
error vector is an advantage in comparison with schemes that use composi-
tion with random matrices.

The transformation on the original function (algorithmE) consists of a com-
position used to create a well defined subspace from the subspace of the
solutions of the function. Next, we use the error detecting capability of the
code to implement efficient Verifiers (rather than to protect the data during
transmission).

5.5 Protocol Description

In this section, we redraw the restrictions that we have imposed on the func-
tion in the previous section, and we consider general functions. Each bit

of the outputy can be represented as a Boolean function on the bits of

the inputx. For example, in the Algebraic Normal Form [MS77]:

where  and .
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M'
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f i xi
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The function may be seen as a set ofk Boolean functions

. Most part of the Boolean functions have very large combi-
national complexity [Sav87]. For the sake of simplicity, we consider the
number of Boolean outputs as our measure of complexity, rather than the
size or depth of the Boolean circuits representing each output bit.

Therefore, a function is a set ofk equations. Thesek equations are

the inputs to algorithmE, and they can be represented in every form, and
furthermore they can be optimized. AlgorithmE performs linear combina-
tions between these equations, which is easy to compute if the equations are
in Algebraic Normal Form.

5.5.1 Error Function - Function e

Algorithm E introduces some errors in the function in order to detect integ-
rity attacks. In order to generate the errors we need to define an error func-
tion.

Let us assume that there exists a function that outputs randomn-bit

vectors with a given weightt.

Let be a function, which given anl-bit argumentx, returns ann-bit

string with weightt, denotede(x), such that it is computationally unfeasible
to distinguish the responses ofe from the responses ofr.

This means that the functione should be computationally indistinguishable
from the set of functions satisfying the weight restriction. This definition
tries to adapt the definition of pseudorandom functions [GGM86] to the
case where the outputs of the functions have a given weight.

We further assume that is possible to efficiently build functions satisfying
these requirements. In our case, this function has to be expressed in terms of
each output bit .
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In [Sen95], the author proposed an efficient construction for functions that
output words of a given weight. However, the indistinguishability from
other functions that satisfy the weight requirement was not proven.

5.5.2 Function Transformation - Algorithm E

Alice constructs a new function , that is a set ofn Boolean equa-

tions. The represents the equation corresponding to theith bit of the

function , as follows (all the operations are performed over GF(2)):

The new function is sent to Bob.G andP are kept secret by Alice.

The construction of can be seen as the composition off with a transfor-
mation similar to the one used to construct the public-key cryptosystem of
McEliece [McE78]. However, we further include the error function. The set

Y’ of all the possible outputs of  defines a subset of .

5.5.3 Remote Function Evaluation - Algorithm Q

Bob evaluatesf ’ on his data and gets the result .
There is an increase in the number of Boolean outputs while the number of
inputs is kept unchanged. The result is then sent to Alice.

5.5.4 Result Retrieval - Algorithm D

Alice decrypts the result by computing or , and uses

C’s secret decoding algorithm to retrieve the cleartext result

and the error vectorz from ya. The error vector is a correctable

error vector since .
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Function Representation

5.5.5 Result Verification - Algorithm V

Alice performs the following verification:

If  then Accept.

5.6 Function Representation

A small example is given to show how algorithmE works. We only perform
the multiplication of the function by an error correcting code (matrixG).
Consider the function  defined as follows:

•

•

•

•

or in the form of truth table:

If we use the followingG matrix (in systematic form for the sake of sim-
plicity):

x0 x1 x2 y0 y1 y2 y3

0 0 0 1 0 0 0

0 0 1 0 1 0 1

0 1 0 0 0 0 0

0 1 1 1 0 0 1

1 0 0 0 1 1 0

1 0 1 0 0 1 0

1 1 0 0 0 1 1

1 1 1 1 1 1 0

w z( ) t=

f F3 4,∈

y0 x0x1x2 x1x2+=

y1 x0x1x2 x0x1x2 x0x1x2+ +=

y2 x0=

y3 x0x1x2 x0x1x2 x0x1x2+ +=
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Then the following is defined as follows (after some manual opti-

mizations):

•

•

•

•

•

•

•

or in truth table format:

The first four outputs are identical due to the systematic form of the code.
Then, we have to permute the expressions and to add the error function. One

x0 x1 x2 y0 y1 y2 y3 y4 y5 y6

0 0 0 1 0 0 0 1 1 0

0 0 1 0 1 0 1 1 1 0

0 1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 1 1

1 0 0 0 1 1 0 1 0 0

1 0 1 0 0 1 0 1 1 1

1 1 0 0 0 1 1 0 1 0

1 1 1 1 1 1 0 0 1 0

G

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

=

f ' F3 7,∈

y0 x0x1x2 x1x2+=

y1 x0x1x2 x0x1x2 x0x1x2+ +=

y2 x0=

y3 x0x1x2 x0x1x2 x0x1x2+ +=

y4 x1=

y5 x0x1 x0x1x2 x0x1x2 x0x1+ + +=

y6 x0x1x2 x0x1x2+=
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Security Evaluation

drawback of our solution is that the function must be expressed in a per out-
put bit form.

5.7 Security Evaluation

5.7.1 Complexity

We consider the number of Boolean outputs as our measure of complexity,
rather than the size or depth of the Boolean circuits representing each output
bit. This simplification relies on the fact that the majority of the possible
Boolean functions have very large combinational complexity [Sav87]. Tak-
ing this simplification into account, the proposed framework fulfills the
requirements in terms of communication and remote host computational
complexity.

Algorithm D consists of applying a permutation and decoding (knowing the
secret code). Thus it is a polynomial time algorithm and our framework sat-
isfies the correctness property.

The privacy of data property is not satisfied by our protocol. Actually, the
multiplication by the matrixGP just adds linearly dependent bits, therefore
not giving more information aboutx. But the error function gives the func-

tion owner the possibility of revealing bits aboutx (logarithm is base

2).

5.7.2 Privacy of Execution

Privacy of execution relies on the hardness of retrieving the functionf from
its composition with the matrixGPand an addition with an error functione.
We show that for functions and codes of large dimensions, there are many
possible solutions to this problem.

n
t 

 log
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For a givenf ’ , there are several possible combinations of functions, Goppa
codes, permutations and error functions, so an enumeration attack is unfea-
sible for large codes.

Next, we analyze the hardness of identifying the blocks involved in the
composition. Let us start by retrieving the error functione from the function
f ’ . In another context, the problem of retrieving a subspace from a set of
codewords with errors has been called Decision Rank Reduction and its
hardness has already been discussed in chapter 4. The best probabilistic
algorithm to address the problem has a probability of success that decreases
heavily with the weight of the errors. In our solution, we use errors with
Hamming weight equal to the maximum correction capability of the code.
Therefore, the matrix considered as the input of the algorithm proposed by
[Val99] has a large Hamming weight and the probability of success of the
algorithm is negligible.

Nevertheless, transformationE does not hide everything about the function
f. Error functione does not completely hide the linearity of the transforma-
tion due to the small Hamming weight of its outputs. Therefore, Bob can
identify inputs that have the same output because the dis-

tance will be small (inferior to2t). Even in the case where an effi-

cient algorithm could be devised for searching this specific case, only the
size ofY and information about the distribution of the function outputs may
be obtained, but not the actual outputs. The complexity of this algorithm
depends heavily on functionf. We discuss in more detail how to avoid infor-
mation leakage aboutf :

• There is information revealed about the fact that two given inputs have
the same output, but retrieving the cleartext value of the output using the
attacks described in [Can96] and [Ber97] is not possible because the
code is unknown;

• For applications where the information aboutf showing that two inputs
have the same output must be hidden, we have to use the more complex
transformations described in section 4.5.4. Namely, the proposals of
[Sun98] are effective to hide this information, but they imply an increase
in the computational complexity of the code owner (algorithmE and
algorithmD);

xi xj,( ) yi yj=

d yi' yj',( )
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• The majority voting attack described in section 4.5.5 that exploits the
non-deterministic nature of the cryptosystem is not effective for large
codes and it requires a lot of different ciphertexts of the same cleartext.
In the case of a functionf that has many collisions among its outputs, the
majority voting attack may be feasible. In order to be resilient to the
majority voting attack, we may use higher weight error patterns as
described in section 4.5.5.

5.7.3 Integrity of execution

The verifier can accept an invalidy’ in the case where . On the

other hand, if the outputs of functionf do not generate the space , the

outputs of function do not completely define the code (this happens if
linear combinations of the output vectors of the functionf cannot generate

all the space ). To our knowledge, there is no efficient algorithm to
find a codeword that is not defined by a subpart of a Goppa code. Moreover,
the code is scrambled with the errors introduced by the error function. The
fact that it was not possible to find an invariant seems to be good evidence
that such an algorithm will be difficult to find.

Due to the definition of the error function given in section 5.5.1, we assume
it is hard to build relationships between inputs to the error function and the

error patterns. Thus, picking a random value has a probability of

success  that can be easily calculated as:

. For a code [1024,524,101] .

Nevertheless, there is a better attack that explores the linearity of the trans-
formation. If an adversary uses a sum of two outputs of the functionf ’ , then
the probability of success is:

Y 0 1{ , } k⊂

0 1{ , } k

f '

0 1{ , } k

r 0 1{ , } n∈

δ

δ 2k n– n
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, for the same code .

Using linear combinations between more than two outputs gives a smaller
probability of success.

5.8 Conclusion

The aim of our solution was to address the issue of secure evaluation of
functions in potentially hostile environments. Both integrity and privacy of
execution were addressed, satisfying the requirements described in the
framework definition. It must be noted that if an attacker cannot disclose the
original function, and if the final result is encrypted, he will not be able to
tamper with the function for his benefit.

The security of our solution was related to the hardness of coding theory
problems described in the previous chapter. The novelty of the approach
consists of using error correcting codes to hide functions instead of encrypt-
ing data vectors. On the other hand, the overhead on the communication and
on the remote host computational complexity introduced by our solutions is
linear.

A drawback of our solution is the limited computational model. In addition,
the result is only meaningful for the function owner. In order to perform fur-
ther computations based on the previous computed results, the help of the
function owner is needed. Nevertheless, the function owner can use the
technique presented here to address a sequence of functions. This is possi-
ble by cascading several transformations. However, the functions have to be
executed in a pre-established order. Furthermore, this construction is very
cumbersome.

δ

t
t 2⁄ 
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CHAPTER 6 Code Protection with
TPH

6.1 Introduction

The solution presented in the previous chapter lacks the possibility of re-
using the obtained result in subsequent computations without the help of the
code owner. The originality of the model presented here is the delegation of
the code owner functionalities (integrity verification and cleartext result
retrieval) to tamper proof hardware available at the remote host.

We take advantage of limited Tamper-Proof Hardware (TPH) acting on
behalf of the code owner to perform multi-step executions and giving the
cleartext result to the remote host. Although the new solution is based on
the technique described in the previous chapter, it does not consist of a
straightforward substitution of the code owner of the previous scheme for a
trusted party located at the remote site. Our solution takes into account the
limitations of the TPH, in terms of storage and computational power, while
in chapter 5 these requirements were not important to the code owner.

The new solution requires a TPH with limited capacity, such as a smartcard,
and it assures the security of the functions executed on untrusted runtime
environments by means of some interactions between the remote host and
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the trusted hardware. Unlike the scheme described in the previous chapter,
the proposed technique allows multi-step execution, as well as the delivery
of the cleartext output at the remote site.

This chapter describes the extended computational model and the new
requirements imposed by the new scenario. Then, a first solution is
described and its security evaluation is discussed. Next, the concept of off-
line verifiers is introduced. An off-line verifier allows the integrity verifica-
tion to be performed after the execution of several functions, instead of at
the end of each individual function execution. Finally, an off-line solution is
presented and its security is analyzed.

6.2 Computational Model

Our model is a set of Boolean functions {fi| }, such that

, as depicted in the left side of Figure 6.1. The computation of each

function fi depends on the inputxi received from the host and on the inputyi

which is the result of the functions that were previously evaluated.

For the sake of simplicity, we assume that every individual functionfi has
the same number of inputs and outputs. Without this assumption, we may
add bogus equations and variables. We represent the set of functions
sequentially, but each function is independent of the others. Therefore,

the order of execution of the functions may change between different execu-
tions. So, this computation model allows conditional jumps.

As in chapter 5, the goal of the transformationE is to achieve the privacy of
each functionfi. The output of the algorithmE is a set of functions

{ f’ i| }, where each . The computation of each function

f ’ i depends on the inputxi received from the host and on the inputmi calcu-

lated from the result  of the functions that were previously evaluated.

0 i p 1–≤ ≤
f i Fl k,∈

f 'i

0 i p 1–≤ ≤ f 'i Fl n,∈

y'i
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For each output of the transformed functionf ’ i, the Tamper-Proof Hardware
should be able to check the integrity of the result and to get the cleartext
result in an efficient way as shown in the right side of Figure 6.1.

Figure 6.1 Extended model and AlgorithmE

6.3 Requirements

The requirements defined in chapter 5 have to be adapted to the new sce-
nario. The computational and storage complexity of the algorithms that are
executed on the TPH have to be taken into account. Basically, the cleartext
result retrieval (algorithmD) and result verification (algorithmV) will be
performed by the TPH. Therefore, we need to reduce the complexity of
these algorithms. In order to establish the difference, we will call the new
verification algorithmEV and the result retrieval algorithmED as depicted
in Figure 6.2.
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We define the new requirements as follows:

TPH computational complexity.The computational complexity of the algo-
rithms evaluated by the TPH (ED andEV) must be smaller than evaluating

each function  itself in the TPH.

Otherwise, we may not justify our solutions, in comparison to the case
where the functions {fi| } are downloaded over a private channel
and executed on the TPH. When comparing these two approaches, we
should also include the computational complexity related to the transmis-
sion of the functions over a private channel between the function owner and
the TPH. However, we adopted the more stringent requirement.

The algorithmsD andV as defined in the previous chapter do not fulfill the
computational complexity requirement. The same discussion applies to the
communication and storage complexity:

Communication complexity. The communication complexity over a private
channel implied by the solution should be smaller than the transmission of
the functions  to the TPH.

Figure 6.2 Code Protection with TPH
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f i

0 i p 1–≤ ≤
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TPH storage complexity. The storage complexity imposed to the TPH by the
solution should be smaller than the storage of the functions  in the TPH.

Each function is a set ofk Boolean functions . We

consider the number of non-null Boolean outputs as our measure of com-
plexity as in the previous chapter. This simplification relies on the fact that
the majority of the possible Boolean functions have very large combina-
tional complexity [Sav87].

Based on the assumption that privacy of the datax from the TPH is not cru-
cial, we use datax as an input to the ED and EV algorithms in order to
achieve lower complexity. In addition, we adopt a stronger integrity of exe-
cution property that uses the datax. The compromise of the secrets distrib-
uted to the TPH results in the very cumbersome task of changing these
secrets. This is the reason for the use of a stronger definition.

Integrity of execution. Integrity relies on the hardness of creating a valid
input xi, for an invalid outputy’i+1. Using the same terminology as before,
we can state this probability as follows:

if  then ,

where .

6.4 Protocol Description

6.4.1 Error Function

Let q be a security parameter with , and let be a pseu-

dorandom function [GGM86] ( represents theath bit of the output ofr).

We may choose a family of efficient functions, where each function is iden-
tified by a seeds.

f i

f i Fl k,∈ 0 1{ , } l 0 1,{ }→

yi 1+ f i xi mi( )≠ P EV xi mi y', i 1+,( ) Accept=( ) δ<

yi 1+ D y'i 1+( )=

0 q< n k–( )≤ r F l q,∈

r a
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Furthermore, consider a set constructed by randomly takingq elements

from the set{0,1,...,n-1}. We define a function , , where

represents the Boolean function defined by the bit of the output of

 ( ):

if  then  else ; With .

This construction gives . Each function is

defined either byq equations (because(n-q) are null) or by the seed , and

their positions (set ).

6.4.2 Function Transformation - Algorithm E

Alice applies the following transformation to the expressions representing
each outputyi,j of each functionfi (all the operations are per-
formed over GF(2)):

This transformation builds a new set of functions {f’ i| } that are sent
to Bob. Over a private channel, Alice transmits the error functions
{ ei| } to the TPH.G, P, andS are kept secret by Alice.

6.4.3 TPH Storage Requirements

If we consider theG matrix as , the TPH has to permanently storeA, S

andP. The matrixA has size . Furthermore, the TPH receivesp
error functions.

Each error function may be represented by a seedsi. In this case, the TPH

must store a pseudorandom function, and the communication complexity

Ri

ei Fl n,∈ 0 i p 1–≤ ≤

ei j, j th
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consists of a seed and the set of the error positions for each error function

. Otherwise, the functions {ei| }, where each function consists ofq

equations and their positions (the set ) have to be transmitted.

The construction of the error functions tries to minimize the complexity
imposed to the TPH.

6.4.4 Remote Function Evaluation - Algorithm Q

In order to evaluate each functionf ’ i the following procedure applies:

• The TPH sends  to the host;

• The host evaluates the functionf ’ i at the inputs ;

• The host sends back the result and the input dataxi to the

TPH.

The initial value given by the TPH, as depicted in Figure 6.1 is a random

seed.

We did not discuss what the relationship between the valuesy andm was,
nor the problem of the storage of these values in memory. These two prob-
lems will be the focus of the Chapter 7. The simplest case is when the val-
uesy andmare identical and when the TPH has enough memory to securely
store the values involved in the computations.

Compared with the case without privacy, there is no modification concern-
ing the inputsxi given by the host (Bob). There is an increase in the number
of outputs in comparison with the original functionfi.

6.4.5 Result Retrieval - Algorithm ED

For each evaluation of a functionf ’ i the TPH starts by receiving and con-

secutively computing the following expressions:

si
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• ;

• ;

• ;

•  becomes the first k bits of  (theG matrix is in systematic form);

• .

6.4.6 Result Verification - Algorithm EV

The TPH verifies if . In order to perform this, the TPH only requires

that the last bits of , called satisfy the equation defined by the

generator matrix of the code, as follows:

Is ?

If the answer is affirmative, then the result is accepted since it is a word

at distance  from a codeword of the codeC.

6.5 Security Evaluation

6.5.1 Complexity

We consider the number of non-null Boolean outputs as our measure of
complexity. In our approach, the communication complexity over a private
channel is equivalent to the parameters that define the several error func-
tions . Each function is defined by a seed (orq equations) and a set

of q elements. In comparison, if the functions are executed on the TPH,

the communication complexity is equivalent to the size of all these func-
tions. Therefore, our solution satisfies the communication complexity
requirement.

zi ei xi mi( )=

ya y'i zi+=
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Similar reasoning applies to the computational complexity imposed on the
TPH. Nevertheless, the algorithmsED andEVdo not consist of just evaluat-
ing the function . AlgorithmED has one addition, one permutation and

one vector by matrix multiplication. AlgorithmEVhas one vector by matrix
multiplication. These operations are less complex than evaluating .

The TPH storage complexity must take into account the secrets required to
perform theED andEValgorithms (the matricesS, P andA and the descrip-
tion of the pseudorandom function). However, the cost associated with these
secrets is amortized during the evaluation of thep executions.

6.5.2 Privacy of Execution

The security evaluation of the privacy property is built from the same prin-
ciples as in chapter 5. In the previous chapter, the security evaluation con-
sidered only one function and no cleartext result was given back. Here we
will focus on the impact of these modifications:

• We suggested the use of the same code (defined by matricesS, G andP)
for all functions. Using the same code with several functions does not
significantly impact the security of the overall scheme in terms of enu-
meration attacks (section 4.5.1) since the number of combinations
between all possible functions, codes, permutations and error functions
is very high;

• The fact that the result is given back to the untrusted environment is cru-
cial. With sufficient cleartext pairs of inputs/outputs, the remote host is

able to interpolate the functionfi. In general,2l pairs of inputs and out-
puts are needed to completely define the function. However, if it is possi-
ble to identify inputs that give the same output, as referred in section
5.7.2, then fewer pairs are needed. We may then apply the techniques
mentioned in section 5.7.2 to avoid the information leakage aboutf ;

• Because of the importance of having a matrix to hide the systematic
form of the code, the additional matrixSis used. The functionsfi are par-
tially revealed. Therefore as was shown in [Can96], the matrixS is
important to avoid the disclosure of the code;

ei

f i
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• The fact that, for a given functionfi, the errors always have the same
positions can decrease the complexity of the problem of identifying the
code. However, the best known probabilistic algorithm presented in
[Val99] (discussed in section 4.5.5) cannot take advantage of this fact
since the success probability depends on the weight of errors. This suc-
cess probability is negligible in our case;

• The Majority Voting attacks described in section 4.5.5 are more efficient
in disclosing the secret code, because the errors have the same positions
for a given function. The complexity of this attack depends heavily on
the functionfi. This is the reason why we used different positions for
each error function. Furthermore, this attack may be defeated by using
higher values for the security parameterq, but the drawback of this solu-
tion is its additional complexity.

Nevertheless, the execution sequence of the different functions is disclosed.
This calls for techniques that hide the sequence of accesses to a given set of
cells, such as the ones described in [GO96]. This issue is further discussed
in the next chapter.

6.5.3 Integrity of Execution

We adopted a new implementation of the result verification algorithmEV. In
our solution, the verification is done using the actual error pattern and not
the weight of errors as those described in chapter 5.

The algorithmEV accepts a result ifyb is a codeword. This implies thatya

should also be a codeword of the permuted codeGP. The decomposition of
ya yields:

ya = yi’ + r i

In order forya to be a codeword,yi’ has to be at distanceri of a codeword of

the codeGP. If the host randomly picks a word, then the probability is

equivalent to the inverse of the number of codewords, i.e.2-k.

δ
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A better attack is to pick a valid output offi’ . The attack would take advan-

tage of the probability that a valid outputfi’(x), along with an input
are accepted by the integrity verification process as a valid pair. Therefore,
the integrity of execution can be reduced to:

The error function is constructed from a pseudorandom function withq

bits of output. Therefore this probability is equal to2-q if we assume that is
unfeasible to get information about the error positions. With a reasonable
code size (code [1024, 524, 101] andq=t=50 for example), this probability
is negligible.

However, some of the inputs are provided by the TPH. In fact the verifica-
tion consists of:

If  then accept

As mentioned before, the best attack is to choose an output of the function,
called . Thus, the integrity of execution property is equivalent to:

Under the assumption of pseudorandomness of the function used to con-
struct the function , this probability is the same as before.

6.6 Off-line Verifiers

In the previous solution, the verification algorithmEV is called each time a
result is computed by the untrusted environment. Using an analogy with
memory checkers [BEG+94] we call this verifieron-line. In order to reduce
the computational burden associated to the verification task, we try to

x' x≠

P ei x( )( ei x'( ) )= δ<

ei

yi' ei xi' mi( )+ codeword=

f i' xa xb( )

P ei xa xb( ) ei xi' mi( )=[ ] δ<
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develop solutions which verify a set of results with a single call to the veri-
fier. We call these verifiersoff-line.

The possibility of doing the off-line verification at the end of all computa-
tions in the function owner environment is specially interesting. We present
a solution for this scenario where the integrity of execution is verified by
Alice afterwards, as shown in Figure 6.3. Our solution provides a simple
check value with all the results computed at the remote host.

6.6.1 Function Transformation - Algorithm E

Let be a function as defined in section 6.4.1, namely satisfying:

Alice applies the following transformation to the outputsyi,j of
the functionfi (all the operations are performed over GF(2)):

Figure 6.3 Off-line Verifier with verification performed by Alice

f
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This transformation builds a new set of functions {f’ i| } that is
sent to Bob.

Over a private channel, Alice transmits a nonce and the error functions

{ ei| } (seeds and positions like in the previous solution) to the
TPH.G, P, andS are kept secret by Alice.

6.6.2 Remote Function Evaluation - Algorithm Q

Each functionf ’ i is evaluated as follows:

• The TPH transmitsmi to Bob;

• Bob evaluates the functionf ’ i at the inputs ;

• Bob sends back the resulty’i+1 and the input dataxi to the TPH.

6.6.3 Cleartext Result Retrieval - Algorithm ED

For each function execution, the TPH starts by consecutively computing the
following expressions:

,  and .

The firstk bits of , called , are multiplied by the matrixS-1 revealing

the cleartext result .

6.6.4 Off Line Verification

The TPH computes for each computed function. The last

bits of are called .h is a one way collision free hash function

[Sti95] and the first hash is calculated using the nonce provided by

Alice.

0 i p 1–≤ ≤
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At the end of the executions, the TPH sends the cleartext results
{ yi| }, and the value  to Alice.

Considering theG matrix as , Alice performs the following opera-

tions:  and after  (p times).

At the end, the calculated  should be equal to the received .

6.6.5 Security Evaluation

The TPH stores a small value that assures the integrity of all the results.

As a result, the TPH does not have to storeA, but it has to store the descrip-
tion of the hash functionh.

We concentrate on the off-line verification. The addition of the values as

the check value does not work due to the linearity of the algorithmE, apart
from the addition with the error function. Even though a malicious host may
not calculate the error vector , it knows that by giving the correct to the

TPH, it will sucessfuly cancel the error included in . If the overall

integrity value consists of the addition of values, then an attack that adds

a pattern of values whose addition is null to the set of the values would

not be detected. This happens because the relationship between the and

is not verified for each value, as in our solution. This is the reason for

using a collision-free hash function.

If there is a value that does not satisfy the integrity of execution property,

then this attack will be detected due to the fact that the received hash value
is going to be different from the one calculated with overwhelming prob-

ability. The goal of the nonce is to avoid replay attacks where an overall

set of previous values with a valid check value is resent.

We assumed that each function is only calculated once on a sequential

order and where all thep functions are executed. Otherwise, the intermedi-
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ary results and the sequence of executions have to be transmitted back to
Alice in order for her to be able to perform the verification.

6.7 Conclusion

Our solutions provide a fundamental building block for secure computing in
potentially hostile environments. The solutions presented apply to a more
general computational model, when compared with the previous solutions
presented in chapter 5. The difference between the computational models of
Chapters 5 and 6 is equivalent to the difference between combinational and
sequential circuits. The enhancement of the computation model is possible
due to the limited TPH.

The scenario with TPH raises new security requirements. Due to the limita-
tions imposed by a TPH, such as a smartcard, our solutions require only a
small function to be downloaded and executed on the TPH, while extending
the TPH’s intrinsic security to the untrusted environment where the main
computations are executed. Furthermore, we presented an off-line Verifier,
where a single check value accounts for the integrity of execution of a set of
functions.

In our solutions, the error correcting code is only used to create a structure
suitable for the integrity verification, while the decoding algorithm is not
used at all. The fact that the algorithmsED andEV are highly coupled is
one of the reasons for the high level of efficiency achieved by our solutions.

An advantage of the two solutions presented is that the different functions
may be executed in any order because each transformed function is inde-
pendent of the others. Therefore, our solutions apply to computational mod-
els that include conditional jumps.

Nevertheless, the execution sequence of the different functions is disclosed
to the remote host (Bob). In addition, we supposed that the TPH has enough
memory to store all the cleartext results. These two points will be the focus
of the next chapter.
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CHAPTER 7 Code and Data
Protection

7.1 Introduction

In the previous chapters, we focused on the problem of the computation of
functions on untrusted environments. In Chapters 5 and 6, we presented
solutions that take advantage of interesting properties of error correcting
codes.

The solutions presented in Chapter 6 took into account the integrity and pri-
vacy of execution, while neglecting the problem of data storage. Therefore,
we implicitly considered that secure storage was available to store the data
involved in the computations. A limited TPH, such as a smartcard, may not
have enough memory to store all the results. Thus we envisage using the
memory of a more powerful component. Therefore, we address the problem
of secure storage of data in untrusted memories.

We first consider a scenario where the CPU is trusted and the memory is
considered untrusted. We define a Secure Memory Manager (SMM) to han-
dle the CPU requests for data storage and retrieval. The SMM performs
integrity checks on memory accesses in order to detect data tampering
attacks occurring while data resides in memory.
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We present solutions for memory protection based on coding theory tech-
niques, since the goal is to later combine these solutions with the solutions
developed in the previous chapter for code protection. Next, we consider a
model with untrusted memory and untrusted CPU, and we combine the
SMM with the solution for code protection presented in Chapter 6 to
address the problems raised by this model. We succinctly analyze the char-
acteristics and the weaknesses of this combined solution.

This chapter introduces a technique based on error correcting codes to deal
with memory protection. Then, we use this technique to address the protec-
tion of the memory space where the data is stored. We present an architec-
ture for code and data protection that combines solutions for code
protection from Chapter 6 and memory protection, at the end of the chapter.

7.2 Memory Protection

In this section, the main emphasis is placed on data protection as opposed to
the previous chapters that focused on code protection. In the solution in
Chapter 6, we implicitly assumed that a secure storage medium was avail-
able. Secure storage is needed to save the intermediary results and data
structures used during the code execution.

Due to the inherent limitations of storage capacity in most TPH implemen-
tations, we suggest an approach for secure storage of data in the untrusted
host. In the first solution, we only address the secure storage problem
assuming that security of the computations can be assured by other means
such as a trusted CPU or the solutions presented in chapter 6. We then
present a comprehensive solution that assures both secure storage and
secure computation in untrusted environments.

7.2.1 Requirements

Data storage in untrusted memory raises several security requirements, as
follows:
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• Privacy. The data stored in the memory should be protected against
unauthorized disclosure;

• Integrity. Unauthorized modification of data stored in the memory
should be detectable;

• Access Pattern Protection. Unauthorized monitoring of memory access
operations concerning the location of memory cells should be prevent-
able.

7.2.2 Model

Our memory protection scheme is based on a new component called a
secure memory manager (SMM) that is an extension of the memory checker
concept introduced by [BEG+94]. The main difference between a memory
checker and an SMM is that the checker only addresses integrity, while an
SMM also provides privacy. The model consists of a powerful trusted CPU
that interacts with an untrusted memory, as depicted in Figure 7.1.

Inspired by the memory checker model, we define a SMM as a probabilistic
Turing machine that performs the interface between the trusted CPU and the
memory. All the interactions between the CPU and the memory are handled
by the SMM. The SMM uses two pairs of tapes to communicate with the
CPU and the memory. Each pair of tapes consists of a read-only tape and a

Figure 7.1 Secure Memory Manager - SMM

CPU

SMM

Trusted Memory
Untrusted



102

write-only tape. In addition, the SMM includes an internal read/write work-
tape of limited capacity that is considered reliable and secret.

The SMM translates the operations requested by the CPU in a way that
ensures the protection of the memory contents. The memory is considered
as being controlled by a powerful attacker, so the secure memory manager
should withstand possible attacks from the memory. As in the case of mem-
ory checkers [BEG+94], after reading the operation requested by the CPU,
the SMM should answer (with a high probability) with the correct output or
“BUGGY” if an error is found in the memory.

If a memory checker verifies the integrity of each operation, it is calledon-
line. Alternatively, if the checker waits until the end of a sequence of opera-
tions to report an error, then the checker is calledoff-line. In addition,
checkers which introduce operations that imply the storage of checking
information in the untrusted memory are calledinvasive. Otherwise, they
are callednon-invasive. We consider the same definitions for the case of the
SMM.

The important characteristics of a SMM are:

• The computational complexity of each memory operation performed by
the SMM;

• The amount of trusted and secret memory required by the SMM;

• The space overhead introduced by the SMM in the untrusted memory.

7.2.3 Related Work

The proposals for software protection [Gol86][Ost90][GO96] tackle a set-
ting where a very powerful adversary controls the memory. These schemes
address all the requirements stated in section 7.2.1. However, the overhead
introduced by the techniques proposed to address each of the requirements
is high. More efficient solutions that only address the integrity requirement
are called memory checkers [BEG+94].

Methods to address the problem of integrity of messages are called Message
Authentication Codes (MACs) [Sti95]. It is possible to construct very effi-
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cient MACs using hash functions. These techniques are suitable when the
message is not dynamic as will be discussed in the next chapter. Neverthe-
less, when the access pattern of modifications is simple, as in the case of
stacks and queues, very efficient solutions for memory checkers exist as
described in [DS98]. These solutions rely on the difficulty of finding colli-
sions among the outputs of the hash function.

For the more general case of Random Access Memories (RAMs), the task
of designing a memory checker becomes harder. One solution is to use
incremental hashing [BGG94]. This technique allows for the hash of the
message to be modified when a block of the message changes without hav-
ing to recalculate the hash from scratch. The incremental hashing and sign-
ing technique was designed to withstand virus attacks on files or memory
[BGG95]. The technique requires no reliable or private memory. In order to
design a checker for RAMs, we need hash functions that are incremental
with respect to block replacement, which is simpler and very efficient using
XOR MACs [BGR95]. More complex incremental schemes were designed
to support delete, insert or even cut and paste operations [BGG95][BM97].

Nevertheless, it is possible to design more efficient checkers [Fis97]
[BEG+94], taking advantage of a limited private memory. On the other
hand, the technique of fingerprinting [KR87] can also be used as a crypto-
graphic checksum that detects modifications to the data. The fingerprint
scheme is incremental with respect to single character replacement and the
security of the scheme relies on the assumption that the fingerprint cannot
be identified. The performance of this algorithm was analyzed in [Yee94].

The solutions referred to above are suitable for off-line checking because
the verification process is cumbersome. The verification implies reading all
memory cells. However, the re-calculation of the new integrity check value
subsequent to a write operation is very efficient. Conversely, on-line check-
ers for RAMs verify the integrity each time the data is accessed. Therefore,
the integrity check mechanism must be made efficient at the expense of
increased complexity to re-calculate the integrity check values.

The main idea behind on-line checkers consists of using individual integrity
check values for each position. Then the problem is that previous valid val-
ues continue to be valid and thus they can replace more recent values. The
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solution presented in [BEG+94] builds a complete binary tree on top of the
memory. In order to authenticate a position, all the nodes on the path from
the root to the position and their children must be accessed. This is an
improvement over the off-line solutions that access all the memory posi-
tions (we have to access2 log npositions, wheren is the number of cells).
However, when one cell is modified, all the nodes on the path to the root
have to be modified.

7.2.4 Message Authentication

We develop solutions for memory protection using coding theory tech-
niques, with the objective of combining these solutions with the solutions
developed in the previous chapter. Our solutions are inspired in message
authentication techniques.

In the coding theory context, message authentication is based on the idea
that the error vector is used to transmit authentication information, instead
of being a random string. This approach has been used on coding theory
based cryptosystems in [LW91]. The authors described a secret key crypto-
system, where the ciphertextz corresponding to messagem has the follow-
ing form:

.

The functione is a secret shared between the two parties involved in the
communication. The error vector provides Message Authentication,
due to the relationship between the message and the error vector established
by functione. A messagemand an error vectorr are obtained by the decod-
ing process. The verification consists of evaluating the functione with the
decoded messagem as input and checking ifr=e(m). Nevertheless, the
scheme proposed in [LW91] was broken due to the linearity of the function
e that generated the error vectors [vT94].

This technique for message authentication may create a potential exposure
since some information about the plaintext can be recovered through the
error vector, which is not random. In order to avoid this flaw, the error func-

z mSGP e m( )+=

e m( )
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tions should belong to a family of functions satisfying the properties enu-
merated in sections 5.5.1 and 6.4.1.

Our solutions address both privacy and integrity of RAMs under computa-
tional assumptions. The off-line and on-line solutions are original tech-
niques based on the Message Authentication technique described above.
The off-line solution is efficient in the sense that the verification process
consists of simple XOR operations. Both memory managers are invasive
considering the same definition as stated in the case of memory checkers.

7.3 Off-Line Secure Memory Manager

In our solution, the SMM stores in secret memory a check valuez, that
assures the integrity of all the memory cells. This value is updated each time
the CPU requests an operation. Therefore, the SMM translates each mem-
ory operation to a set of operations, necessary to keep an updated check
value. The verification may be done any time but it is a cumbersome task
because it implies accessing all memory cells.

7.3.1 Protocol Description

Let be a generating matrix for an Goppa code andt the number

of errors the code is able to correct. Let be a random permutation
matrix and  be a  random invertible matrix.

Let be a function as defined in section 5.5.1. We assume that this

function belongs to a family of functions, therefore each function is identi-
fied by a seeds. The seeds is stored in the secret and reliable memory of the
SMM. The function satisfies the weight constraint:

.
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The untrusted memoryM is a set ofN memory cellsM[i] , wherei repre-
sents the address . Each cell has lengthn. The check valuez stored
in secret memory is initialized to 0, corresponding to an empty memory.

Write Operation

A write operation has two operands: the valuev to be stored and the address
i where the valuev should be stored.

The encryption is performed like in the McEliece scheme, however the error
vector  is generated in a special way, as follows:

.

The SMM computes the ciphertext: .

In order to write a valuev in location i, the SMM performs the following
operations:

• Read the existing value  stored in the memory locationi;

• Decrypt  as in the McEliece scheme obtaining  and ;

• Xor  to z;

• Write y to M[i] ;

• Xor  to z.

Read Operation

A read operation has only one operand, the addressi. On a read operation
the SMM performs the following operations:

• Read the value  stored at the addressi;

• Decrypt  as in the McEliece scheme obtaining  and ;

• Verify that .
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7.3.2 Off-line Verification

In order to check the integrity of the memory, the SMM performs the fol-
lowing operations for each memory location:

• Read the memory cell ;

• Decrypt , obtaining  and ;

• Verify that .

• Xor  to z.

The verification completes with success if after performing the above
operations over all the memory cells.

7.3.3 Security Evaluation

In a write operation, it is also possible to verify if . Addition-

ally, as in the memory checkers of [BEG+94] a time stamp may be

appended to the stored valuey and included in the pseudorandom function
in order to check that the timestamp read is older than the current time.
However, these additional verifications can help detect other attacks but
they do not solve the replacement of memory cells by outdated valid values.

The integrity of the memory cells is assured by the difficulty of creating a
set of cells that have the same check valuez. This value is kept in reliable
and secret memory. In addition, the patterns of errors are unknown and it is
computationally hard to get any information from them (apart from the low
Hamming weight and length). Therefore, the attack described in [BM97] on
XOR MACs does not apply to our case because the description of the func-
tion  andz are secrets.

The integrity attack that consists of substituting a current value by a
value , such that , will require that:

 with .
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The probability of the above statement is , assuming that all the error

patterns are possible outputs of the function and that it is computation-

ally unfeasible to get information about the outputs of . For example,

using a code [1024, 524, 101] this probability is negligible. This is also the
probability of an integrity attack consisting of switching positions between
two different cells.

There is the possibility of exploiting the low weight of the outputs of ,

that is performing the substitution ofM[i] by a linear combination of a sub-
set of the other positions. The success probability is equivalent to the proba-
bility of finding a subset  such that:

.

This is a hard problem because the attacker has to build a specific error pat-
tern. We showed in chapter 5 that matching a given Hamming weight of
errors is hard. In chapter 6, we proved that even with limited positions,
matching an error pattern has a low probability. Hence the success probabil-
ity of the problem considered here may be considered negligible.

The same reasoning applies for the deletion or insertion of a set of memory
cells. Then, the success probability is equal to finding a set where the sum
of the secret error vectors would be null.

The privacy of the data stored in the memory relies on the assumptions
defined in chapter 4 concerning the encryption with a secret code. The lin-
earity of the transformation raises the problems discussed in section 4.5.5.
If the same valuev is stored in two different positions, then information
about the error pattern is disclosed. The techniques already mentioned in
section 4.5.4 to withstand this attack may be used at the expense of an
increased complexity in the SMM.
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On-Line Secure Memory Manager

7.4 On-Line Secure Memory Manager

On-line SMMs for RAMs verify the integrity each time the data is accessed.
As a result, the integrity verification must be efficient. The main idea con-
sists of using individual integrity check values for each position.

Our solution for on-line SMM is a combination of the replay detection tech-
nique from [BEG+94] and the generic integrity verification technique used
with the off-line SMM. The solution from [BEG+94] constructs a binary
tree of sums of the timestamps on top of the memory to detect replay

attacks. The root of this tree is stored in the secure memory of the checker.
Along with the valuey, a timestamp is also stored inM[i] . The timestamp

can be a discrete value, like a counter incremented on each operation.

The timestamp tree should be authenticated but without a timestamp. We
can just append the value of a pseudorandom function to the timestamp in
cleartext as in [BEG+94] due to the fact that the confidentiality of the times-
tamps is not required.

7.4.1 Write Operation

The CPU asks for a valuev to be stored in positioni. The error vector is

generated as follows:

;

The SMM computes the ciphertext: .

Then, the SMM performs the following operations:

• Read the existing value  stored in the memory locationi;

• Verify that  is earlier than the current time;

• Verify that the sum of the values stored in the children leaves on the path
from thei position to the root is equivalent to the value of the root stored
in secure memory;

ti

ti
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• Decrypt  as in the McEliece scheme obtaining  and ;

• Verify if ;

• Write y and the current time  toM[i] ;

• Update the sums of the timestamp tree, on the path from the positioni to
the root.

7.4.2 Read Operation

In order to read addressi, the SMM performs the following operations:

• Read the existing value  stored in the memory locationi;

• Verify that  is earlier than the current time;

• Verify that the sum of the values stored in the children leaves on the path
from thei position to the root is equivalent to the value of the root stored
in secure memory;

• Decrypt  as in the McEliece scheme obtaining  and ;

• Verify if .

7.4.3 Security Evaluation

The integrity attacks described in the previous section are subject to the
same conclusions drawn in section 7.3.3. The main problem with on-line
SMM is that previous valid values continue to be valid and thus can replace
more recent values. This is known as a replay attack. As stated in
[BEG+94], the binary tree is immune to replay attacks due to the fact that
replay attacks can only decrease the timestamps stored in the tree. There-
fore, the value of the root that is stored in secure memory and that contains
the overall sum cannot be satisfied by using previously valid values.

7.5 Code and Data Protection

In the previous chapters, we considered untrusted computations using an
implicitly trusted memory. In the previous three sections, we considered

M' i[ ] v' e'i

e'i f s i t 'i v', ,( )=
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memory protection using a trusted processor. We used coding theory tech-
niques in order to build an efficient architecture for code and data protec-
tion.

In this section, we suggest an architecture for code and data protection as
depicted in Figure 7.2 by combining the features of the solutions for secure
computation in chapter 6 and the SMM. This section mainly presents guide-
lines and open issues concerning the architecture. To our knowledge, our
architecture is the only architecture for code and data protection using an
untrusted CPU. The existing proposals ([Bes79],[Ken80],[Yee94] and
[GO96]) rely on a trusted CPU.

7.5.1 Architecture

In chapter 6, we extended the inherent security of a limited trusted TPH to
the computations performed in a powerful execution environment. Con-
cretely, we addressed the problems of privacy and integrity of execution.

As in the case of the SMM, we model the trusted CPU as a probabilistic
Turing machine that uses two pairs of tapes to interact with an untrusted
CPU and the SMM. Each pair of tapes consists of a read-only tape and a
write-only tape. In addition, the trusted CPU uses an internal read/write
worktape of limited capacity. The code is transformed in order be executed
on the untrusted CPU, by an algorithmE as defined in chapter 6. The trusted
CPU receives the error functions over a private channel and stores them in
the internal worktape. The knowledge of the error functions allows the
trusted CPU to retrieve the cleartext result and to efficiently verify the integ-
rity of the computation performed in the untrusted CPU, as shown in chap-
ter 6.

Now, the cleartext result that may be used in subsequent computations will
be transmitted to the SMM in order to be stored in untrusted memory. The
trusted CPU must receive the execution sequence of the functions and the
memory operations from the code owner. This information must be pro-
tected against integrity attacks and is stored in the internal worktape of the
trusted CPU. The SMM translates the operations requested by the CPU in a
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way that ensures the privacy and integrity of the data stored in untrusted
memory, as defined in the previous two sections.

Up to now, we have presented the problems related to the execution on
untrusted CPUs and to the storage in untrusted memories separately. There-
fore, there is room for enhancement, as follows:

• The secret error-correcting code (matricesS, G and P) used by the
trusted CPU and SMM may be the same;

• Algorithm E can take into account the positions where the results are to
be stored. By building the error vectors according to this information, we
may avoid decryption and re-encryption in order to store a computed
value in the untrusted memory. This is not possible if the SMM uses
timestamps;

Figure 7.2 Code and Data Protection Architecture

Memory

CPU SMM

Trusted

CPU
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• The integrity verifications performed by the SMM and the trusted CPU
may be merged. The integrity of execution property may be verified
when the cleartext result is required as the input of a subsequent compu-
tation (and after being stored in untrusted memory), rather than immedi-
ately after the computation.

The precise evaluation of these enhancements is left open.

7.5.2 Characteristics

The characteristics of such an architecture are:

• Computational complexity of the trusted processor and of the secure
memory manager;

• Size of the secure and reliable memory of the trusted processor and of
the secure memory manager;

• Increase in the size of the code executed on the untrusted CPU;

• Increase in data stored in the untrusted memory;

• Communication complexity between the trusted and untrusted proces-
sors;

• Communication complexity between the secure memory manager and
the untrusted memory;

• Information leakage about the program;

• Information leakage about the data stored in untrusted memory.

7.5.3 Security

We presented efficient solutions to code protection (chapter 6) and data pro-
tection (chapter 7). However, these solutions conceal information about the
code and data stored in the memory, namely the sequence of execution and
the access pattern to the memory.

The information concealed by both code protection and data protection can
be exploited by an integrated attack. Note that cleartext data is given to the
untrusted CPU. The security analysis of the SMMs did not take into account
the fact that cleartext data is revealed. The main problem is that information
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about the secret code can be disclosed. However, this issue was already dis-
cussed in section 6.5.2, where we showed that retrieving the secret code
remains a hard problem, even with the knowledge of cleartext data.

Nevertheless, the proposed architecture conceals the access pattern to the
memory and the sequence of execution of the functions. In order to hide this
information, we must break the link between cleartext data given to the
untrusted CPU and ciphertext stored in untrusted memories (without com-
promising the efficiency of the solutions). In this thesis, we do not present
solutions for dealing with the above requirements. However, we give some
hints to address this problem, as follows:

• The program structure can be hidden by requesting several computations
of functions using bogus data, or by using bogus functions;

• Performing bogus accesses may also be applied to the memory;

• A set of cleartext values can be maintained in the secure and reliable
memory, in order to increase the combinations of cleartext data that can
be given to the untrusted CPU, without corresponding to a memory read.

These techniques break the relationship between the values and as

mentioned in chapter 6, and illustrated by Figure 6.1. The goal is not to
completely hide the sequence of execution and the memory access pattern,
but to create a large number of combinations in order to counter attacks
exploiting the correlation between ciphertext outputs, values stored in the
memory and cleartext data given to the untrusted CPU.

The implementation of these techniques may be easily included in the
already defined solutions for code protection and for the SMM. This is pos-
sible due to the fact that the protection mechanisms address each function
independently. In other words, the protection technique does not rely on a
specific sequence of execution of the several functions. In the case of the
SMM, the protection mechanisms do not impose any restrictions on the
access pattern.

mi y'i
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7.6 Conclusion

We have built efficient solutions for the problem of secure storage in
untrusted memories. The concept of Secure Memory Manager was defined
to address this problem. Our goal was to use techniques that allowed for
easy integration with the techniques developed in chapter 6 that address
code protection. Therefore, we used memory protection mechanisms based
on coding theory. We should emphasize that the secrets used for code pro-
tection and memory protection are the same.

The solutions for memory protection are very efficient from the point of
view of the required length of the secure worktape. However, we may
implement more computationally efficient SMMs using a larger secure
memory. For example, we may store the error patterns in secure memory. In
this case, the decoding operation is avoided. Such a solution still requires
less private storage than the straightforward solution based on storing all the
memory cells in secure storage.

Furthermore, we combined the solutions for code protection in chapter 6
and memory protection in order to build an efficient architecture for code
and data protection. To our knowledge, the presented architecture is origi-
nal. It should be added that there are new features such as the integrity and
the privacy of execution with the help of a “small” trusted processor.

We mainly presented guidelines and open issues concerning the architec-
ture. The problems of preventing the disclosure of the sequence of execu-
tion of the functions and the memory access pattern were not addressed. We
just proposed some guidelines to include these features in our architecture.
In addition, we showed that providing these features does not imply modifi-
cations in the protection mechanisms already developed.

Our architecture can be applied to the following scenarios:

• Software distribution. In this scenario, each copy of the software is dis-
tributed with a limited TPH. The TPH acts on behalf of the software
owner and only customers possessing a valid TPH device are able to run
the software. This solution is an alternative to the application hosting
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scenario, where a trusted centralized server runs the applications in order
to prevent disclosing information about the software;

• Security management of a network of untrusted CPUs and memories.
One trusted CPU including a limited amount of memory may perform
the security management of a network of untrusted computers and mem-
ories. The trusted CPU assures code and data protection while the com-
putations and data are distributed among a set of untrusted components
(CPUs and memories).
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CHAPTER 8 Collected Data
Protection

8.1 Introduction

In this chapter, we address a special area of mobile code protection which is
the security of the data collected by mobile agents. A typical illustration for
such a scenario is a software agent that does product and merchant broker-
ing on behalf of a customer when visiting various merchant systems at dif-
ferent locations. There are several agent-mediated electronic commerce
systems already deployed as described in [GMM98]. Secure data collection
schemes can also be used to carry out a distributed auction where the
mobile agent collects bids from several bidders. Another example is the col-
lection of data in stock markets where data are available at different loca-
tions. In these examples the emphasis on security is shifted from the mobile
program to the data that is collected from the visited hosts. The collected
data is subject to disclosure, modification, and repudiation by single hosts, a
group of colluding hosts, or network intruders.

We suggest an original integrity scheme to protect the data submitted to
mobile agents by competing hosts visited by the agent. The integrity
scheme ensures the protection of each piece of data against tampering by
parties other than those at the origin of the data (the host that previously
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submitted the data). The integrity of the entire set of data collected by the
mobile agent is assured based on an original secure cryptographic mecha-
nism using discrete exponentials. Thanks to the properties of our mecha-
nism, the data collection protocol offers three advantages:

• Each host can update the data it previously submitted without additional
memory space;

• The integrity verification mechanism is independent of the sequence of
individual data submissions by different hosts;

• The integrity verification is not computationally intensive and does not
depend on the number of updates. Moreover, the complexity of the veri-
fication does not increase significantly with the number of visited hosts.

The update facility is suitable for commercial competition as required dur-
ing an auction, and it allows for the collection of large quantities of infor-
mation that change frequently as in the case of dynamic scenarios such as
stock exchange markets. Unlike techniques that rely on appending data, in
our case there is no increase in space requirements. The second property of
the protocol allows for the collection of data from hosts without any con-
straint on the itinerary performed by the mobile agent.

The chapter is organized as follows. Section 2 and 3 present the data collec-
tion scenario and provide a model for such a scenario. Section 4 formalizes
the security requirements. Related work is presented in section 5. The
generic cryptographic technique for data integrity is presented in section 6.
The data collection protocol based on this technique is described in section
7. Finally, section 8 is devoted to the evaluation of the security properties
previously defined.

8.2 Data Collection System

The purpose of a data collection system is to allow mobile agents to travel
among hosts of a network to collect individual data segments from these
hosts and to return the set of data segments to the originator of the agent.
Each data segment collected by the agent can either be the result of some
computation by the agent, based on some local input, or simply the input of
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some data by the visited host without any processing by the agent. Our
security scheme assures the integrity of data segments against tampering
and deletion attacks that might originate from a host visited by the agent, a
set of colluding hosts or an intruder on the network. The security of the pro-
cess used to generate the data segments at each host is out of the scope of
our scheme, based on the assumption that, even though each host might
behave maliciously against other hosts, each host can be trusted with
respect to the generation of its own data.

The migration process is another important aspect of the data collection
scheme with respect to the security of the collected data. By controlling the
migration process, malicious hosts can have a significant impact on the set
of data segments collected by the agent. Our data integrity scheme does not
address the security of the agent’s itinerary. Again, this calls for techniques
focusing on the integrity of code execution in untrusted environments as
described in chapter 3.

Figure 8.1 Data collection scheme
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8.3 Model

In a typical data collection scenario, the mobile agent is generated by its
ownerH0 and visits intermediate hostsHi based on certain migration deci-
sions which are beyond the scope of this thesis. Each intermediate hostHi

submits a piece of dataDi as depicted in Figure 8.1. In addition, each host

computes an integrity proof value as part of the secure data collection

scheme. This value will be integrated on the overall integrity proof value
, included in the agent and computed by the previous hostHi-1. The

new integrity value and the set of data segments collected

from the previously visited hostsD={D0, D1,..., Di} are transmitted to the
next host.

The data collection scheme allows the agent to visit hosts that were already
visited and allows these hosts to update the data pieces they have previously
submitted. When the data collection process terminates (or the agent is
called back), the agent returns to the agent ownerH0. At this point the agent
returns to its originator the setD of data segments collected from all the vis-
ited hosts and the final integrity proof value . The agent owner can
then verify the integrity of the data segments inD using . Table 1 sum-
marizes the components involved in the secure data collection process.

H0 agent owner

Hi,
visited hosts

Di,
data collected from Hi

Pi, integrity proof associated with Di

D set of data collected, i. e. {D0, D1,..., Di}

set of integrity proofs, i. e. {P0, P1,..., Pi}

integrity proof associated with all the elements of setP

Table 8.1  Data collection components

Pi

Γ P( )
Γ P Pi{ }∪( )

Γ P( )
Γ P( )

1 i n≤ ≤

1 i n≤ ≤

1 i n≤ ≤
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8.4 Security Requirements

The data collection process is exposed to a number of attacks from network
intruders and legitimate hosts behaving maliciously with respect to compet-
ing parties as explained in [KAG98]. These attacks raise a number of secu-
rity requirements as follows:

• Data Integrity. Di cannot be modified or updated by parties other than
Hi;

• Truncation Resilience.Only the data segments , submitted

between the first malicious hostHi and another malicious hostHk can be
truncated from the set of data pieces;

• Insertion Resilience.No data segment can be inserted unless explicitly
allowed;

• Data Confidentiality. Di cannot be disclosed to parties other thanHi and
H0;

• Non-Repudiation of Origin. Hi cannot deny having submittedDi once
it was actually included in the set of collected data.

Our definition of the data integrity requirement expands the previous defini-
tions in [KAG98] and [Yee97] in the sense that a host can update the data it
previously submitted. We believe that the update facility is required in free
competition and dynamic commercial environments, like stock markets and
auctions. The insertion resilience property aims at restricting the number of
hosts that can participate thus enabling elementary access control.

Data confidentiality and non-repudiation are not mandatory in all scenarios.
In some real life scenarios like auctions, the confidentiality service might
even be conflicting with the free competition model. It is still an open
research problem how to keep a secret from the execution environment
when this secret has to be used during the agents’ trip comprising only
untrusted environments. Therefore, not being able to carry any secret keys,
agents cannot access previously encrypted data during the trip. This implies
that the collected data cannot be used as an input for the negotiation process
for example. Nevertheless, like the protocols proposed in [KAG98], our
data collection scheme can be easily enhanced with data confidentiality

D j i j k< <,
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based on public key encryption and with non-repudiation of origin based on
digital signatures.

A limitation of data collection schemes based on data integrity mechanisms
is the degree of truncation resilience that can be offered. As pointed out in
[Yee97], the collusion between two malicious hosts allows for the deletion
of the data collected on the path between them by substituting the data set
with a copy recorded prior to the beginning of the truncated path. It seems
to be an inherent limitation regardless of the way the integrity function is
computed in each scheme. Solutions based on time stamps suffer from the
probabilistic nature of the network transmission delays. One could also
think of assuring the integrity of the migration path in addition to the integ-
rity of the collected data as the solution for the truncation attack. Neverthe-
less, the integrity of the migration process does not avoid possible
collusions between hosts visited to perform a truncation attack, but this can
be alleviated by keeping the hosts anonymous. On the other hand, a possible
solution is the publication of results after the trip in order to allow visited
hosts to verify and complain if needed, as suggested in [KAG98]. This
requires hosts to maintain databases with all the data submitted to agents.
Alternatively a pre-defined list of hosts with a mandatory submission
scheme could also solve the truncation problem. This may be done with
explicit empty offers, and the mandatory signalization of the end of partici-
pation on the process.

8.5 Related Work

Prior work addressing the integrity of collected data [KAG98][Yee97] uses
a technique called hash chaining as the basic mechanism to achieve the
integrity of the data pieces submitted by visited hosts. The result of the
chained hash computations is the proof of integrity for all the collected data.
This technique is suitable to create secure audit logs [BY97] due to its effi-
ciency in terms of computational complexity and size of the integrity proof.
In the case of audit logs, it is important to keep a tamper-proof record of all
the operations performed in a resilient way for further analysis, so it is
important to keep the order of the events.
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The data collection scheme suggested by [Yee97] and [KAG98] differs
from the solution presented in this thesis regarding various aspects. One of
the objectives of the data collection schemes presented in [Yee97] and
[KAG98] is to prevent hosts from updating the data they previously submit-
ted. These schemes allow closed bids and include data confidentiality and
host anonymity as a basic requirement in order to assure fairness among
competing hosts. Host anonymity is a solution to avoid that hosts cannot
query the previously visited hosts in order to have access to the submitted
data. Our solution in contrast addresses a dynamic scenario including sev-
eral rounds of competing offers between bidders. As a result, unlike the
solutions in [Yee97] and [KAG98], our scheme allows for multiple updates
of each data piece by the submitting host. Therefore, data confidentiality
and host anonymity are not mandatory requirements for building a fair com-
petition scenario.

Furthermore, hash chaining as a basic data integrity mechanism does not
meet the requirements of our data collection scheme. Hash chaining is tied
to an implicit sequence among the various data pieces that are protected and
the knowledge of the sequence is mandatory for the verification process,
that is, the verification process has to compute the hash chain in the same
order as the data collection process. In dynamic scenarios such as auctions
and stock markets where each data piece may be updated several times, the
hash chaining mechanism would require to keep track of all the past values
for each data piece. Our scheme is thus based on a novel data integrity tech-
nique called a set authentication code that allows for the verification of the
most recent value of each data piece without keeping track of past values.
With our set authentication code, the computation of the integrity check
value and its verification can be performed in random order with respect to
the data pieces.

Our scheme aims at a scenario that fosters competition by keeping the infor-
mation from competing sources in cleartext and by authorizing frequent
updates, whereas [KAG98] and [Yee97] assume a rigid scenario based on
widespread confidentiality. While our scheme can be easily enhanced with
classical confidentiality mechanisms, confidentiality can hardly be sup-
pressed from the solutions in [KAG98] and [Yee97] because of the fairness
property between hosts.
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On the other hand, on its itinerary from host to host, the agent carries an
increasing amount of data that might be exploited by a malicious host. Their
confidentiality can be achieved at each step of the agent itinerary by a sim-
ple enciphering on the current host, before the agent moves elsewhere. With
RSA-based encryption, security will be ensured but the data carried by the
agent can be very small: the size of the data padding will then be excessive.
Sliding encryption [YY97] aims at retaining equivalent security, using a
large key, while at the same time, taking into account the limited storage
capacity of an agent. Sliding encryption is aimed at conserving space,
which might be of importance for agents that collect small amounts of data
on many different hosts. Therefore, this solution addresses a different prob-
lem.

8.6 Set Integrity

This section defines an original cryptographic mechanism at the core of the
proposed data collection algorithm. We build a “set authentication code”
using the difficulty of solving the discrete logarithm problem in a finite
field, in combination with a classical cryptographic hash function. This
mechanism provides a method to authenticate together a set of data seg-
ments in an order-independent fashion.

8.6.1 Generator sequences

Let p be a large Sophie Germain prime (also called a strong prime), that is
whereq is also prime. Defineg as a generator of the cyclic

groupGF(p). Then for allx in , is
also a generator of the cyclic group GF(p). Hence the following sequence

 is a sequence of generators in GF(p), as depicted in figure 8.2:

p 2q 1+=
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Set Integrity

where  is a sequence inX [Kob94].

Figure 8.2 Generator sequence

The advantage of this construction is that the result is always a generator,
which has the properties referred in the next section.

8.6.2 Properties

• Property 1 - Security. With the knowledge of any and , it is

computationally Unfeasible to compute . Solving for would

require an adversary to solve a discrete logarithm to the base in

GF(p) [DH76];

• Property 2 - Commutativity. If is defined by the sequence

then for any defined from a permutation of ,

we have . This second property is based on the commutativity

of the exponent field GF(p-1);

• Property 3 - Cancellation.With the knowledge of and , it is

possible to compute  as:

• Property 4 - Computational complexity. With the knowledge of the set
, the computation of requires2n multiplications,n addi-
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Gi 1+ xi 1+
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1

2xi 1+ 1+
-----------------------
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tions and only1 exponentiation since:

8.6.3 Set Integrity Function

The combination ofproperty 2and3 allows us to work on sets instead of
sequences, thus we define a set function which takes an
unordered set of elements inX and produces an element in GF(p):

•

•

•   (property 3)

where  and .

Let h be a cryptographic hash function and a set of secret keys

along with a set of data segments. Then if we apply to

, we form a set authentication code ,

with the following core properties:

•  cannot be computed without the knowledge of .

• Removing or modifying a data segment from , while maintain-

ing the integrity of the set, requires the knowledge of the secret value .

This combination of cryptographic techniques allows us to compute a "set
authentication code" that we will use to securely collect data segments from
a set of hosts.

Gi g
2x1 1+( ) 2x2 1+( )… 2xn 1+( )

mod p=

Γ:X GF p( )→

Γ ∅( ) g=

Γ P x{ }∪( ) Γ P( )( )2x 1+ mod p=

Γ P x{ }–( ) Γ P( )
1

2x 1+
---------------

mod p=

P X⊂ x X∈

Ki( )0 i< n≤

Di( )0 i n≤< Γ

P Pi h Di Ki( ) 0 i n≤<,={ }= Γ P( )

Γ P( ) Ki( )0 i< n≤

Di Γ P( )
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Data Collection Protocol

8.7 Data Collection Protocol

In this section we describe our data collection protocol using the set authen-
tication mechanism. Unless otherwise indicated, this section uses the nota-
tion of the previous section, wherebyh denotes a collision-free hash
function (for example MD5 [Riv92]),p is a public prime and “|” denotes
concatenation.

Our protocol does not rely on a public key infrastructure. However, a shared
key between the source and each of the participant hosts is needed. The gen-
eration of the individual integrity proof for each data segment by a visited
host requires the knowledge of a secret key shared between the source and
the visited host. In order to perform the verification of the global integrity
proof, the source has to know all the individual secrets shared with the hosts
visited by the agent.

8.7.1 Setup

Each hostHi>0 exchanges a secret shared key with the source

H0. For example, can be exchanged using the Diffie-Hellman protocol

[DH76].

The source sends an agent to visit a set of hosts with an

initial set authentication value  and an empty data collection listD:

•

•

8.7.2 First visit

Each host  visited by the agent for the first time, receives:

•

•

Ki i 0< n≤,

Ki

H0 H1 … Hn, ,{ }

Γ

Γ P( ) Γ= ∅( ) g mod p=

D ∅=

Hi

Γ P( ) Γ= P1 … Pi 1–, ,{ }( )

D D1 D2 … Di 1–, , ,{ }=
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It computes  and then sends:

•

•

The submission of an offer is not mandatory for each visited host.

8.7.3 Update

An offer  is updated by host  to a new value  in 3 steps:

• The old offer  is replaced by the new offer  inD;

• An intermediate set authentication value is derived from by
cancelling out ;

• The new set authentication value is computed taking into account
.

The first step is straightforward. In the second step,property 3 is used to
compute a new set authentication value that does not include

:

In the third step, we use the new value and update it with
:

Pi h Di Ki( )=
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Security Evaluation

8.7.4 Verification

Once the agent goes back to the source , the source can verify the integ-

rity of the set of offers by usingproperty 4 to check that:

where  is the integrity check value received by the source.

If this condition fails, none of the offers are considered as valid. It should be
noted that the cost of verification is much lower than the cost of generation
of . During the data collection process, the submission of

each data pieceDi requires the computation of a discrete exponentiation
whereas the verification of the integrity value for the entire set of data
requires only a single exponentiation.

8.8 Security Evaluation

This section focuses on the evaluation of the security properties defined
before for secure data collection schemes.

8.8.1 Data Integrity

Due to the shared secret, each segment of collected data can only be modi-
fied by its originator. Tampering with a data segment or unauthorized modi-
fication thereof by intruders will be detected by the source. Data
modification attempts by an intruder may consist of the update of a data
segment with a new value generated by the intruder or of the

replacement of the current data segment with an old value that was previ-
ously submitted by its legitimate origin. Both types of modification attempts
would require the intruder to first cancel out the integrity proofPi of the cur-

rent data segment from the global integrity proof . ComputingPi from

the actual data segment requires the knowledge of the secretKi shared

H0

Γ P( ) g
2P1 1+( ) 2P2 1+( )… 2Pn 1+( )

mod p=

Γ P( )

Γ Pi 0 i n≤<( ){ }( )

Di D'i

Γ P( )
Di
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between the origin of the data segment and the source. Appending a new
data segment computed by the intruder similarly would require the knowl-
edge of the shared secretKi. The intruder is thus unable to either get an old
value ofPi or to compute a new one that is valid without knowing the shared
secret. Another possible attack consists of retrieving past values ofPi com-
puted by the origin of the data segment. A possible modification attack
would consist of derivingPi from and . That would

require the computation of a discrete logarithm which is known to be as
computationally unfeasible.

8.8.2 Truncation Resilience

Truncation of one or several data segments from a valid offer by a single
intruder can be reduced to the data integrity problem. Thus truncation resil-
ience relies on the data integrity property. As already discussed in section
8.4, collusion can result in the truncation of data submitted by all the hosts
visited on the path between two colluding hosts.

8.8.3 Insertion Resilience

No data can be inserted by unauthorized parties because only hosts shar-

ing a secret key  with the source can generate a valid integrity proofPi.

8.8.4 Confidentiality and Non-Repudiation

As explained in section 8.4, data confidentiality and non-repudiation are not
considered part of mandatory requirements since the main purpose of our
security scheme is data integrity in a free competition environment. None-
theless, these missing features can easily be retrofitted in the data collection
scheme using classical data encryption and digital signature mechanisms.
For example, data confidentiality can easily be ensured, encrypting the data
with the shared key.

Γ P( ) Γ P Pi{ }∪( )

Hi

Ki
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Conclusion

8.9 Conclusion

In this chapter, we described an original protocol to protect dynamic data
collected by mobile agents when roaming through a set of hosts. We only
considered perfectly autonomous agents, i. e., without any communication
with the source or with some kind of trusted party.

Unlike prior work, our protocol allows hosts to update their own submis-
sions without keeping track of past values and to submit data in a random
order thanks to the original set authentication technique. Our protocol does
not rely on a public key infrastructure. However, a shared key between the
origin and each host is needed.

This technique also allows the source to verify the integrity of all the col-
lected data segments without knowing the sequence of data submissions by
each host. Moreover, the size of the integrity proof is small and independent
of the number of hosts or updates, and the verification is not computation-
ally intensive.
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CHAPTER 9 Conclusion

Mobile code is generally justified on the grounds of greater efficiency and
increased flexibility even if these features have not been fully exploited yet.
However, this flexibility does not come without a price: there is an increased
exposure to security threats.

Among various security concerns raised by mobile code, we addressed the
ones related to malicious interactions between mobile code and the runtime
environment. We considered two different types of protection mechanisms
to counter possible malicious behaviors:

• Host protectionaiming at preventing harmful operations caused by a
malicious mobile code on the resources of the runtime environment;

• Mobile code protectionrequired to assure the privacy and integrity of
mobile code against possible attacks from a malicious execution envi-
ronment.

Based on recent research developments, we believe that a high level of host
protection is achievable. There is currently a trend towards enabling finer
grained access control schemes. The deployment of these schemes will
probably enable widespread applications of mobile code in the near future.
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The protection of a mobile code against a malicious host is an open
research topic. The problem as a whole is considered hard and viewed as
unfeasible by some researchers.We distinguish the problems related to code
protection and those related to data protection.

The problems related to mobile code execution on an untrusted runtime
environment are quite atypical. We analyzed two aspects of this problem:
privacy of execution, treated in Chapter 2 andintegrity of executiontreated
in Chapter 3. Privacy of execution aims at preventing the disclosure of the
code semantics during the execution of the code on an untrusted run-time
environment. Integrity of execution focuses on the correctness of code exe-
cution. An exhaustive study of possible approaches to these two problems
was explored. In Chapters 2 and 3, we provided comprehensive surveys of
the above problems. These surveys are comprehensive in the sense that they
include approaches ranging from theoretical computer science to practical
solutions.

Concerningprivacy of execution, there are solutions offering strong security
in the field of secure function evaluation and multiparty computations.
However, these solutions are far from practical use due to their complexity
and their limited coverage. Additionally, the overhead imposed by these
solutions may compromise the fragile advantages of the mobile code para-
digm. Namely, the complexity of non-interactive solutions for privacy is
prohibitive for practical applications. Non-interactivity is a mandatory fea-
ture of autonomous mobile code. On the other hand, practical solutions such
as code obfuscation suffer from the lack of solid assumptions on which
security can be based.Solutions for protecting the privacy of mobile code
against the execution environment are still in their infancy.The definition of
a set of requirements for the design of solutions tackling privacy of execu-
tion was the final contribution of Chapter 2.

Integrity of executionis another crucial requirement for the affirmation of
the mobile code paradigm. Without having a way of preventing or at least
detecting the correctness of the execution of mobile code, applications
appear to be restricted to those involving only trusted parties. Once again,
the field of theoretical computer science has developed several techniques
to address this problem. The idea behind these techniques is to provide a
proof of correctness together with the result, with the objective of making
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the integrity verification easy when compared to the complexity of the com-
putation of the proof. More practical approaches provide a log of execution
with the result. In the field of result checking, we found very interesting
solutions. However, they did not take into account the malicious behavior of
the execution environment. Another approach is to perform redundant com-
putations and to elect the result on a voting basis.We proposed a different
way of expressing the requirement of integrity of executionin order to
achieve more efficient solutions.

We believe that integrity of execution is necessary but not sufficient without
privacy for certain applications. When a malicious host can re-execute the
code an unlimited number of times, even without tampering or reverse engi-
neering the code, it can choose the best result from the set of results. Appli-
cations such as bargaining motivated this reflection. In order to develop
solutions for these applicationswe need privacy and integrity of execution.

We used the class of Boolean functions as acomputational modelto design
our solutions for privacy and integrity of execution. Based on this model the
security of the solutions could be related to well known computational
assumptions. Unlike other models that are suitable for formal security eval-
uation, Boolean functions allow for the representation of realistic computa-
tional models, such as Random Access Machines.

The cryptographic toolschosen to address the code protection problem
were found in the field of coding theory. The main idea was to construct
programs that were resilient to execution errors, as data may be protected
against transmission errors using error correcting codes. On the other hand,
coding theory includes hard instances of problems that are used to build
cryptosystems. The study of the advantages and weaknesses of these sys-
tems in Chapter 4 revealed interesting properties while providing guidelines
for the design of secure solutions.

We defined the properties that a framework for mobile code protection
should satisfy.Namely, we need non-interactive and efficient solutions.We
developed original solutions to mobile code protection without TPH.These
solutions, presented in Chapter 5, addressed both privacy and integrity of
execution. Nevertheless, the solutions did not allow multi-step applications
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to be performed in a non-interactive scenario. Thus, the solution was bound
to a single function execution (without interaction with the code owner).

We extended the solution to a more powerful computational model using a
limited TPH in Chapter 6. The possibility of using a limited TPH in the
remote host acting on behalf of the function owner was considered as one
way to overcome the limitation of the solution developed in Chapter 5. Fur-
thermore,we considered the limited capacity of the TPH. The objective was
not to execute the functions on the TPH, but to perform the computations on
the untrusted host while having a "small" fragment of the computation per-
formed in the TPH in order to verify and "complete" the untrusted computa-
tion. In other words, the aim is to extend the intrinsic security of the TPH to
the overall environment. In addition, the solutions must be proved less com-
plex when compared to the case of downloading the code into the TPH and
executing the code there. In the solutions presented in Chapter 6, a small
piece of code is downloaded into the TPH that allows the integrity verifica-
tion and the calculation of the cleartext result to be performed while the
main computation remains on the untrusted environment.In the first
scheme, the TPH verifies the integrity of the result each time a computation
is done. We proposed another solution where the verification of the results is
done off-line(at the end of a number of computations) in order to enhance
efficiency. This solution is especially interesting to construct an overall ver-
ification value transmitted back to the function owner. This verification
value can be considered an efficient proof of computation.

In Chapter 6, we implicitly assumed that a secure storage medium in the
trusted TPH was available. Due to the limited storage capacity of a TPH,
such as a smartcard, we thought of achieving secure storage within the
untrusted host. In Chapter 7,we suggested a scheme based on the memory
checker concept for the protection of the data stored in untrusted memory.
Memory checkers deal with the problem of integrity of the data stored in
untrusted memories. We extended this concept by including data privacy in
the set of requirements.We defined the concept of a secure memory man-
ager, which is another contribution of this dissertation. In addition,we pro-
posed an original architecture for code and data protectionthat combined
the techniques of memory protection (Chapter 7) and of code protection
(Chapter 6). As opposed to our architecture, the existing solutions for soft-
ware protection have always considered the computation as trusted. How-
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Unanswered Questions

ever, our architecture is not fully defined, leaving some security
requirements as open research topics.

Finally in Chapter 8, we turned our attention to the problem of data protec-
tion in a specific scenario. We proposed a solution for data protection in a
scenario where mobile code gathers data among a set of hosts. The goal is
to protect collected segments against attacks carried out by competing
hosts. Our solution has the interesting feature of allowing updates of the
data segments already submitted by a given host, while preserving the integ-
rity of all the data segments with a small authentication value. Therefore,
our solution is very efficient in competitive scenarios, such as distributed
auctions and comparative shopping.This last solution shows that it is possi-
ble to address security of specific applications in an efficient way using
more traditional cryptographic tools.

Mobile code protection raises a large number of new and atypical security
issues that are far from being solved in practical terms, but we believe to
have given some interesting contributions and we are optimistic about a
bright future for the field of mobile code protection.

9.1 Unanswered Questions

In this section, we present some possible directions for further research, as
follows:

• An implementation of the error function, which outputs words of a given
weight was not presented. The construction of efficient error functions
offering strong security properties would be an important addition to our
solutions;

• We envisage using more complex function transformations in order to
achieve stronger security properties. For example, using several error
correcting codes;

• The proposed architecture for code and data protection was not fully
defined. We did not address the issue of hiding the memory access pat-
tern, and that of hiding the sequence of computations;
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• We envisage extending the proposed solutions to practical programming
languages. We are thinking about automatic tools such as obfuscators,
but where the security of the transformations applied to the code are
related to cryptographic problems, as in our schemes for code protection.

Remark: At the end of writing this thesis, the problem of giving the cleart-
ext result back to the remote host was addressed in:

J. Algesheimer, C. Cachin, J. Camenisch and G. Karjoth. Cryptographic
Security for Mobile Code. To appear in 2001 IEEE Symposium on Security
and Privacy, May 13-16, 2001.
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