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Président Dr. Walid Dabbous Directeur de Recherche, INRIA
Rapporteurs Dr. Wolfgang Effelsberg Professeur, Université de Mannheim
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Chapter 1

Introduction

1.1 Motivation

The pervasiveness of the Internet fosters the development of new distributed applications with
increasingly diverse and multi-fold communication requirements like multicast or real-time data
streaming. While the applications’ communications requirements diverge, the Internet protocol
suite still offers only two standard transport protocols: TCP [109] and UDP [110]. TCP provides
a connection oriented, fully reliable and ordered, point-to-point transmission service, whereas
UDP offers only a simple datagram service. The choice between TCP and UDP can be seen as
a choice between all or nothing, which may create a gap between what an application requires
and what it gets from its transport protocol.

Hence, developers of distributed applications are often obliged to close this gap by implement-
ing their own transport services. That means, the development of distributed applications of-
ten involves the implementation of rather sophisticated communication protocols that deal with
both application and transport semantics. Since protocol implementation is known to be difficult
and tedious, the cost in terms of time and money for implementing, deploying, and maintaining
new distributed applications may become unacceptably high.

The goal of our thesis is the development of techniques and tools to minimize the cost for imple-
menting protocols in end-systems and thus the cost of deploying new distributed applications.
We consider modern software engineering techniques and examine how they can be applied
to protocol implementation. Our work intents to bridge the two research domains of protocol
implementation and software engineering. We exploit well-known techniques – object-oriented
frameworks, design-patterns, and component-based development – to maximize code reuse and
thus to leverage the domain knowledge of communication protocol experts.

1
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1.2 Protocols

1.2.1 What is a Protocol?

Throughout the thesis, we will refer to a protocol as a set of rules and formats that govern
the interaction between communicating peers [152]. A protocol specification refers to the
documentation and description of a protocol. A protocol implementation is the coding of a
protocol using a specific programming language.

Examples for typical protocol functions on transport level are error-control, flow-control, or
congestion control. Examples for typical protocol functions on application level are data repre-
sentation, encryption, and session management.

1.2.2 General Purpose vs. Application-Tailored Protocols

Characteristics

The protocols we are concerned with in our thesis are protocols built to accommodate the needs
of a specific application in contrary to protocols that are assumed to serve a wide number of
different applications. We therefore refer to the former family of protocols as application-
tailored protocols (ATP) and the latter as general purpose protocols (GPP).

In contrary to what is called application protocols and represented by the Application Layer
of the ISO/OSI model, application-tailored protocols integrate protocol functions across all
end-to-end layers (ISO/OSI Layers 4-7) and even the Network Layer1. Application-tailored
protocols deal with application semantics as well as with transport semantics and typically
make only minimal assumptions about the underlying communications services. They can be
considered part of the application that uses it. The RTP [128] implementation in the Free-
Phone [56] tool is an example for an application-tailored protocol. FTP [16], however, is an
application protocol, since it deals only with application semantics and relies on a reliable and
ordered transport service rather than providing it.

Application-tailored protocols should not be confused with configurable transport protocols.
For example, TCP provides some configuration facilities like disabling Nagle’s data blocking
algorithm or the use of options. XTP [35] allows even to change fundamental service charac-
teristics to adapt to different applications. Nevertheless, XTP does not deal with application
semantics and remains a – though flexible and configurable – general purpose protocol.

We briefly resume the main characteristics of application-tailored protocols. They

1The Active Networking paradigm [140] can be considered as an approach to apply application-tailoring for
network layer protocols.
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� deal with application semantics

� are implemented and executed as part of the application program

� integrate protocol functions from different layers

� make only minimal assumptions about the underlying network and transport services and
rather implement these services themselves

� address typically the needs of a single application

Discussion

General purpose protocols (GPP) typically reside in the operating system kernel. This assures
on the one hand better performance, but on the other hand makes deployment of new proto-
col implementations and later modifications of existing code difficult and tedious. Installing
protocol software in the operating system kernel is therefore a serious obstacle to innovation.

GPP typically include a relatively high number of services and features to be general enough
to meet the requirements of different applications. The fact to accommodate many applications
also creates the permanent need of being back-ward compatible. Integrating a new feature in a
GPP requires testing for many different application scenarios. The delay between specification
and deployment of new features is even aggravated when the protocol is standardized.

On the other hand, step-wise and careful refinements of GPP implementations also lead to robust
and optimized code. The life-cycle of general purpose protocols is very long as the example
TCP shows, which has been around for more than two decades.

In many respects, application-tailored protocols (ATP) are the opposite to general purpose pro-
tocols. Since they are implemented within user space, implementation, de-bugging, and mainte-
nance is less cumbersome and expensive. While user space implementations can hardly achieve
the performance (in terms of execution speed) of kernel implementations, this handicap can
be compensated by the fact that application-tailored protocol implementations are rather lean
and better adapted to the application requirements. Research [7], [57], [94], [36] shows that
well adapted communication services can outperform general purpose protocols in terms of
performance experienced by the application.

Since ATP are built from scratch without the constraint of being backward-compatible, they
can easily be deployed, modified and extended. As the example RealPlayer [3] shows, ATP
software may even be down-loaded and deployed together with its application over the Internet.

From the perspective of an application developer, the overall implementation and deployment
cost and time of a new distributed application is of great importance. If the gap between services
required and provided is rather small, the application developer could rely on an existing general
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purpose transport protocol and accept minor mismatches with the desired services. That way, he
avoids implementing transport protocol functions and only needs to implement the application
protocol, which normally is a less complex task to do.

A prominent example of this approach is the deployment of HTTP [54] over TCP. Although
the stream-oriented TCP service does not match very well the request/response character of
Web-Traffic, and a number of problems has been experienced [98], [142], the use of TCP for
web-servers has allowed for immediate deployment, fits well in the existing infrastructure, and
has so become a great success.

The cost of building distributed applications that incorporate application-tailored protocols
largely depends on the size and reusability of existing protocol libraries and modules. How
to achieve reusability for protocol software is one major concern of our work. Our vision is to
implement protocols by simply putting existing pieces together without the need to write any
additional line of code.

Table 1.1 summarizes the characteristics of general purpose and application-tailored protocols.

General Purpose Application-Tailored

Protocol Implementation Cost very high medium

Time of Deployment long short

Life cycle long short

Element of Reuse whole protocol protocol modules

Service Match depends high

Execution performance very high low

Overall Performance depends high

Table 1.1: General Purpose vs. Application-Tailored Protocols

1.3 Software Engineering

Software Engineering is a disciplined approach to software development to manage the com-
plexity of large software systems. Its high-level goals are to improve productivity during the
process of software development (specification, design, implementation and maintenance) and
to improve the quality of the code produced. Productivity is measured in time, cost, and per-
sonnel resource requirements. Most cited qualities of ”good” software are

� correctness: does the software meet its requirements and specifications?

� maintainability: can the code be understood and maintained?
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� modifiability: is the software open for modifications and extensions?

� reusability: can parts of the software be reused for other applications?

� efficiency: does the software make efficient use of computer resources?

� robustness: does the software work even under unforeseen conditions?

There are of course a number of other criteria – like portability, ease-of-use, compatibility,
integrity – and business-oriented qualities that may play an important role during software de-
velopment.

1.3.1 Object-Oriented Software Engineering Concepts

In order to achieve the goals listed above, a collection of principles are applied during the
whole process of the software development process. Object-oriented (OO) software engineer-
ing refers to a SE paradigm that gives explicit support to fundamental principles such as abstrac-
tion, information hiding, decomposition, or hierarchy. Object-oriented programming languages
provide language features (like classes, encapsulation, inheritance, and polymorphism) to im-
plement these principles.

Abstraction is a fundamental principle to deal with complexity. The essence of abstraction
is to extract essential properties while omitting inessential details [117]. Objects and classes
are much better abstractions to model real-world problems than e.g. functions. The principle
of abstraction goes hand in hand with the principle of information hiding, that is hiding all
internal details of an entity that do not contribute to its essential characteristics [25]. In the
context of object-orientation, the term encapsulation is often used as a synonym to information
hiding.

Decomposition refers to the process of dividing a system into smaller parts. Booch [25] states
the following advantages of object-oriented decomposition compared to algorithmic decompo-
sition: OO decomposition leads to software systems that can be incrementally extended, are
more resilient to change, and improve reuse of existing parts.

Hierarchy refers to ranking or ordering of abstractions. Examples for hierarchical relations in
the object model are aggregation (”has-a”-relations) and generalization (”is-a”-relations). OO
languages provide the mechanism of inheritance to support generalization.

Object-Oriented Methodology

The traditional methodology in software engineering divides development into four phases:
analysis, design, implementation, and maintenance.



6 CHAPTER 1. INTRODUCTION

The main objective during the analysis phase of the software development process is to obtain
a consistent and powerful model of the problem domain (in our context communications proto-
cols). Activities include a domain analysis, the investigation of domain specific problems, and
the definition of requirements.

During the design phase, the focus shifts away from domain specific issues towards issues
and problems related to the implementation environment. The goal of design is to provide a
basis for implementation. Typical design activities are therefore the development of a software
architecture, breaking a system into sub-systems (layers, partitions), the choice of computer
and programming platform, and the solution to concrete problems like concurrency control,
user-interfaces, or data storage.

During the implementation phase, the results of analysis and design are transformed into pro-
gramming language specific code. The maintenance phase comprises all activities during
installation, test, and use of the implemented software including code modifications due to user
feedback.

Implementation

Test Analysis

Design

Figure 1.1: Spiral model (Boehm, 1986)

Normally, these phases experience several iterations. The spiral-model of Boehm [23] illustrates
this need for permanent refinement and enhancement (Figure 1.1). However, in traditional
software engineering, the phases described are clearly separated and supported by specific tools.
These disruptions between phases may lead to information loss and misunderstandings. One
indisputable benefit of an OO methodology is the possibility of using the same concepts, tools,
and notations during the whole software development process. Analysis and design activities
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have no clear boundaries any more, but rather exist on a continuum (see Figure 1.2) [89]. This
allows modeling, design, and implementation to be incrementally refined and done in parallel.
Furthermore, maintenance is largely simplified since the model of the problem domain is still
visible in the software.

Rumbaugh [118] denotes the activities during object-oriented analysis (OOA) as follows:

� object modeling, e.g. identification of objects, classes and their attributes and associ-
ations, development of a data dictionary, identification of association among objects,
grouping of classes

� dynamic modeling, e.g. preparing scenarios and use-cases, build state diagrams, identify
events

� functional modeling, e.g. building data flow diagrams, describe functions, specify opti-
mization criteria

Typical activities during object-oriented design (OOD) are the extension and refinement of the
analysis model by helper classes and associations, optimizations, the design of algorithms, or
the packaging of classes and associations into modules.

more analysis-oriented more design-oriented

-what?
-requirements
-investigation of domain

-how?
-logical solution

Figure 1.2: Analysis and design activities exist on a continuum (Larman, 1998)

1.3.2 UML – Unified Modeling Language

The Unified Modeling Language (UML) provides a standardized notation that fuses best-
practice concepts (see Booch [25] and Rumbaugh [118]) to support object-oriented software
engineering during the whole development cycle. UML is neither a programming language,
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nor a development tool. UML comprises a collection of diagrams that are used to specify, vi-
sualize and document the artifacts of software systems independently from the programming
language. Each diagram captures a different aspect and provides a specific view of the system.

In the thesis, we make use of UML notation to describe and visualize our ideas for protocol
modeling and protocol framework design. We therefore give a short overview of the most im-
portant UML diagrams used in the following chapters. For a more detailed description of UML,
we recommend the book [26] or the web-site (www.rational.com) of the original developers of
UML.

Use-case diagrams visualize the system’s use cases, i.e. a description of a set of sequences of
actions, including variants, that a system typically performs. A use-case analysis of end-to-
end protocol systems can be found at the beginning of Chapter 2. However, we preferred to
document possible use-cases in a textual style and do not apply use-case diagrams.

Class diagrams represent the static structure of a system by depicting the system’s classes and
class relationships. UML considers a class as a description of a set of objects that share the same
attributes, operations, relationships, and semantics. Objects are the concrete manifestations of
an abstraction and instances of a class. Classes can be abstract (represented in class diagrams
by using italic style for the class name), i.e. not able to be directly instantiated.

The visibility of a class attribute or method indicates from which classes this attribute or method
can be accessed. Public attributes or methods are accessible for any other class, protected
only for sub-classes, and private only for the class itself. In Figure 1.3, you find the symbols
for the different visibility levels.

The relationships between classes can be divided into the following categories.

� An association between classes represents a connection among their instances. An as-
sociation can be parameterized with a multiplicity, i.e. a specification of the range of
allowed cardinalities (see Figure 1.3 for examples), and a role, i.e. a description of the
kind of behavior of the participating instances.

� An aggregation is a special form of association that specifies a whole-part relationship
between the aggregate (the whole) and a part. Aggregation relationships are often refered
to as ”has-a”-relationship.

� A generalization relationship between classes represents a ”kind-of” hierarchy between
a generalized class and a specialized class. Instances of the generalized class may thus
be substituted by instances of the specialized class. Generalization relationships are nor-
mally realized by the inheritance mechanism of OO languages.

� A dependency is a semantic relationship between two classes in which a change to the
one may affect the semantics of the other (the dependent class). The creation of new
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instances is one example of a dependency relationship.

Class Name

attribute
attribute : data type

operation
operation(arg):result

representation of a class

Visibility:
+ public
# protected
- private

Class 1

Class 2

+rolemultiplicity

association

+rolemultiplicity

Whole
Class

Part
Class

aggregation

multiplicity

Creating
Class

Created
Class

+creates

creation

Super
Class

Sub
Class

generalisation

Multiplicity:
0..* any
1 exactly one
1..* at least one

Figure 1.3: UML Class Diagrams

Besides the structural view of a system, it is important to describe the system’s dynamic behav-
ior, i.e. the interactions between instances of the system for a certain use-case. UML provides
two kind of diagrams to describe the dynamics of a running system. While sequence dia-
grams rather emphasize the time ordering of interactions, collaboration diagrams emphasize
the structural organization of the instances involved. Figure 1.4 depicts a sequence diagram and
a collaboration diagram both representing the same use-case. In order to distinguish instances
from classes, the names of instances are underlined. The actor of a use-case represents either
the user himself or the role a user plays with respect to the system.

1.3.3 Object-Oriented Frameworks

We refer to an object-oriented framework as a collection of interacting classes that are used
to develop new applications with related requirements. By encapsulating the changing part
of an implementation behind well-defined and stable interfaces and decoupling it from the
generic part of the implementation, frameworks allow software developers to concentrate on
the specifics of the application instead of spending time to find solutions to recurring prob-
lems and design challenges. OO frameworks thus allow for rapid-prototyping and cost effec-
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(a) Sequence Diagram

1. event

2. operation

4. operation (parameter list)

script text

 5. operation
    (parameter list)

script text

1. event 2. operation

3. operation

3. operation

4. operation (parameter list)

 5. operation
    (parameter list)

(b) Collaboration Diagram

actor name:
actor class object 1:

class name object 2 object 3 object 4

object 1: class name object 2

object 3 object 4

actor name:
actor class

Figure 1.4: UML Interaction Diagrams

tive implementation as well as enhanced modularity and easier maintainability of the software.
Application developers just need to understand how to integrate application specifics in the
framework at explicit plug-in points (so called hot spots [111]), and do not need to worry about
architectural design issues.

What is the difference between a framework and a class library? First, frameworks are more
domain specific than class libraries (typical class libraries implement lists, strings, or numerical
functions). Second, frameworks provide classes that control the application, while class li-
braries are only passive (also known as the principle of inversion of control [126]). In practice,
frameworks make heavily use of class libraries.

Schmidt [52] distinguishes foundation frameworks from application frameworks. While
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foundation frameworks provide rather loosely coupled, general classes that are useful for a large
number of applications and thus rather close to class libraries, application frameworks impose
stronger structural constraints for application developers and are meant to support only a specific
class of applications. Foundation frameworks are successfully used for the development of
multimedia applications (like JMF [1], MET++ [4]), graphical user interfaces (like MFC [2]),
or middleware integration (like RMI [138] or Voyager [105]). Application frameworks have
been developed for computer integrated manufacturing (CIM) [65], financial engineering [21],
remote learning [67], and even e-business applications [69].

While the use of frameworks significantly simplifies the development of new applications, the
design and implementation of a framework itself is a complex and challenging task and re-
quires careful design. Johnson [77] compares framework design even with the design of a
programming language (whereby the syntax of a framework is determined by the rules to im-
plement applications), and considers frameworks as compilers for high-level, domain-specific
languages.

Object-oriented frameworks can be classified into black box and white box frameworks. In
black box frameworks, the application developer does not have insight in classes of the frame-
work he uses. In white box frameworks, the application developer has access to internal infor-
mation of framework classes and needs to understand the class hierarchies of the framework.
Black box frameworks are extended by inserting classes with predefined interfaces at the pro-
vided hot spots. White box frameworks are extended by deriving new classes via inheritance
and re-link them with the framework. Black box are easier to use for the application developer,
but harder to design. They also offer higher flexibility by allowing runtime extensions. White
box frameworks require less design efforts, but are harder to use.

1.3.4 Component-Based Development

D’Souza et al. [46] define component-based development (CBD) as an approach to software
development in which all artifacts – from executable code to interface specifications, architec-
tures, and business models; and scaling from complete applications and systems down to small
parts – can be built by assembling, adapting, and wiring together existing components into a
variety of configurations.

A component is usually characterized by the following attributes:

� Components are largely decoupled; they can be independently developed and delivered

� Components have explicit and well-specified interfaces for the services they provide

� Components have explicit and well-specified interfaces for services they expect from
other components
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� Components can be customized and composed with other Components without modifica-
tion of code

CBD is often confused with object-oriented development. This stems from the fact that OO
development can be seen as the technology best suited to CBD. In contrary to an object, a
component provides a richer range of intercommunication mechanisms, a higher degree of reuse
and adaptability, and usually a larger granularity. A component may comprise one or more
objects.

Java-Beans [75],[50] is the component model provided by Sun. Java Beans is written in the
Java programming language [136] and hence profits from Java’s machine-independence and
portability.

A Java Bean (or shortly bean) is the Java representation of a component, i.e. a Java class or
object characterized by three elements:

� A property is a named attribute that may affect the behaviour or appearance of a bean
(e.g. maximum packet size, time out value).

� An event stands for possibly asynchronous data that is generated by a component
(e.g. window size changed, error appeared, etc.) It is fired by an event source and de-
livered to an event listener.

� The behaviour of a bean comprises all its methods accessible for any other component
(public methods).

Any tool that is used to configure and wire the components together can identify properties,
events, and behaviour of a bean by analyzing its Java code. A Java class that intends to be
Java Beans compliant has to follow certain naming conventions, e.g. properties are identified
by method names that start with set or get. For more details see the Java Beans specification
[75].

Components can be configured and wired by either using mark-up languages (like XML [41])
or – the more popular approach – programming environments that allow visual specification,
representation, and configuration of components. Such a tool is commonly referred to as visual
builder tool. The visual builder tool we are using for visual implementation is Visual-Age for
Java [70] by IBM.

1.3.5 Design Patterns

The idea of patterns is to capture solutions to recurring problems. The architect Christoph
Alexander [5] first described patterns in the context of creating buildings, neighborhoods, and
cities. He states:
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Each pattern describes a problem that occurs over and over again in our environment and then
describes the core of the solution to that problem in such a way that you can use this solution a
million times over without ever doing it the same way twice.

Gamma et al. [59] apply the same idea to the domain of (OO) software design2. Design patterns
are a form of documenting recurring problems and solutions to software design. It is important
to note that a solution to a software design problem is considered a pattern only when it is
known to be successfully implemented in at least three different contexts (also called the Rule-
of-Three [143]). Patterns are even considered to have an ”aggressive disregard of originality”
(Brian Foote).

Patterns are documented by using a well-defined format. Each pattern gets a name, provides
a description of the problem, the context of the problems, the forces that need to be balanced,
and a description of the solution capturing static and dynamic behavior and interactions of the
design elements [114].

Patterns provide guidance during software development and allow to reuse software solutions
that a number of experts found useful. Patterns provide a common language among software
developers and thus largely improve the communication among different groups of software
engineers. The use of patterns can thus significantly improve the productivity during software
development and enhance the quality of the software. However, patterns don’t provide imple-
mentation and thus do not directly lead to code reuse. They neither disburden a programmer
from understanding the problem first before he can reason about possible solutions.

Design patterns have been proved to be useful to document frameworks and to detect the hot-
spots, i.e. the application specific plug-in points, during framework design [120]. Johnson [77]
views design patterns as the micro-architectural elements of frameworks. Examples for the use
of design patterns in the domain of communication software can be found in [121] and [9].

In addition to the rather low-level design patterns, Fowler [58] presents a number of analysis
patterns, which are more oriented towards domain modeling than design patterns and apply
during the analysis phase of the software development process. On an even higher level are the
architectural patterns presented by Buschmann [31], which are meant to support architectural
issues in building complex systems. Layering is an example for an architectural pattern.

1.3.6 Reuse

Reuse is an important concept during the whole software development process. The object-
oriented paradigm allows to reuse domain-specific abstractions during the whole development
process. Component-based development and frameworks promise the reuse even of large parts
of the implemented software. Applying design patterns allows the reuse of design solutions and

2The expressiveness of OO abstraction gave rise to the idea pattern of software design patterns.
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expertise.

The main goal of reusing code is saving cost in terms of time and money. Code reuse fosters
rapid prototyping and deployment of new applications. A side-effect of code reuse is that the ro-
bustness and efficiency of the software can be enhanced due to frequent testing and deployment
in different contexts.

A number of qualities increase the reusability of software. First of all, software must be con-
ceived to provide a useful service that meets well-defined requirements. Ease-of-use is also
important for reuse and comprises qualities like understandability, careful interface design, and
good documentation.

During our thesis, we will focus on two other key requirements to make software reusable:
software pieces must be flexible and decoupled. We refer to flexibility as degree and facility a
piece of software can be adapted to different requirements and application contexts. Software
may be highly efficient, robust, and easy to use – all these qualities are worthless when the
software can not be easily adapted to the application context to be used in. Parameterization,
configuration, and tailoring are mechanisms to make software more flexible. Parameterization
of functions is the simplest form of introducing flexibility. Templates allow to parameterize
classes and objects. Component-based development improves code reusability by providing
configuration of software components. Frameworks foster the reuse of application architectures
and infrastructures by allowing to tailor them.

The granularity of a piece of software is a very important parameter that influences the flexi-
bility and mainly determines the gain of reuse. The finer the granularity of a piece of software,
the higher its flexibility, but the smaller the gain of reuse. The coarser the granularity, the higher
the gain of reuse, but the less the flexibility.

Coupling refers to the degree of interdependence between software pieces. Object-oriented
libraries never delivered the promised level of code reuse [84], because objects are rather fine-
grained abstractions that need to cooperate with many other objects to provide an expected
service. These interdependencies lead to code that is difficult to understand and use. Hiding
interdependencies behind stable interfaces or making them explicit in the definition of the inter-
face are the most common mechanisms in good SE practice. Function-oriented programming
reduces coupling by hiding internal data needed to perform a function. Object-oriented pro-
gramming reduces coupling by bundling related functions and hiding information that would
else-wise be spread over different parts of an application. Component-based development hides
the interdependencies of classes, which would otherwise be difficult to understand and use,
behind a well-defined interface. Frameworks hide the explicit interdependencies of software
components. In all these concepts, we discover the appliance of the fundamental principles of
abstraction and information hiding.
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1.4 Dissertation Outline

This dissertation is organized as follows. Chapter 2 revises relevant work in the area of protocol
structuring and modeling, demonstrates the problems of using fine-grained layering, and makes
propositions on how protocol software should be structured to promote reusability and flexibil-
ity. Chapter 3 provides a detailed description of our Java protocol framework that implements
the concepts from Chapter 2 to allow for rapid-prototyping, testing, and tailoring of protocol
software. Chapter 4 describes how our structuring approach contributes to the implementation
of generic tools for simulating, editing, and animating protocol software. Chapter 5 contains
a number of case-studies to illustrate and discuss our concepts. Chapter 6 offers an evaluation
of our work and the software engineering techniques that have been used, and summarizes the
contributions of the dissertation.
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Chapter 2

Modeling and Structuring Protocol
Software

In this chapter, we first revise the state of the art for abstractions to structure protocol software.
We show why the traditional layering approach is badly adapted to application-tailoring. We
then present and discuss a set of principles that should be followed to make protocol software
tailorable, extensible, and parts of it reusable across different protocols. These principles are
presented in a style that is close to current formats used to describe software patterns: we first
describe the main problem to be addressed and discuss the issues to be taken into account. We
then come up with the description of an idealized solution (by leaving out certain design issues
and low level details), its essential components, and a discussion of advantages and drawbacks.
We conclude with a review of work in related or different domains that apply a similar solu-
tion. The idea behind this ”pattern-like” form of presentation is to make our ideas and concepts
reusable independently of a concrete implementation or architecture and provide a more com-
prehensive form of documentation.

2.1 Protocol Modeling

2.1.1 Tasks of Protocol Software

In order to determine the tasks of application tailored protocol software, we make a use-case
analysis, i.e. we examine prototypical behavior of protocol software based on simple examples.

The following use-case is typical for protocol processing in output direction (i.e. from the
application to the network):

1. An application passes data to a protocol instance (e.g. a string)

17
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2. The data is transformed from the application representation into a message in form of an
array of bytes.

3. The message is manipulated (e.g. encoded).

4. Internal state information is updated (e.g. message is buffered)

5. Control information is added to the message (e.g. a sequence number)

6. The message is sent (e.g. written to a UDP socket)

The following use-case is typical for protocol processing in input direction (i.e. from the net-
work to the application):

1. A message arrives at the peer host

2. The message is de-multiplexed to the right protocol instance

3. The message is parsed to determine control and payload information

4. The control information is used to update internal state (e.g. the next expected sequence
number)

5. The payload is manipulated (e.g. decoded)

6. A new message may be created (e.g. to acknowledge reception of the last message)

7. The payload is transformed from a byte array into application representation and delivered
to the application

The use-case above seem to be simple, but capture the main tasks of end-to-end protocol imple-
mentations, such as:

� Provision of interfaces for the application

� Processing of messages in output direction – message manipulation (adding control in-
formation to the header or transforming parts of the message) and updating state

� Provision of interfaces to the network – sending and receiving raw data

� De-multiplexing of incoming messages

� Processing of messages in input direction – parsing, removing header information, updat-
ing state

� Creation of new messages



2.1. PROTOCOL MODELING 19

2.1.2 Modeling Protocol Software – State of the Art

Most concepts and mechanisms used in end-to-end communication are well-explored and have
been applied many times. Most end-to-end protocol software performs roughly the same kind
of tasks. However, there are almost no solutions that allow to encapsulate the reused concepts
of communication protocols in reusable software modules.

We think that there are several explanations. First, for a long time there has been no need
for modular and reusable protocol code. The number of applications was small – ftp, e-mail,
telnet – and their requirements could all be met by the same general purpose transport protocol,
that is TCP. The implementation of application level protocols has been supported by middle-
ware (like CORBA [130]). Second, modularity had this reputation of causing overhead – doing
research in an area with a strong focus on efficiency and performance is not very motivating,
when a key concept is considered inherently inefficient. The third reason lies in the complexity
of protocol software and its difficulty to capture its different aspects – finite state machines,
data and control flow, distributed algorithms – in appropriate abstractions. Additionally, not
only correctness of the code is important, but also correctness of the messages exchanged with
the communication peers. The constraints of a fixed message format significantly limit the
possibility of extensions and modifications of protocol software.

We now examine well known abstractions for protocols and protocol software.

Layers

The oldest and still most popular abstraction of a protocol is the layer abstraction. Each protocol
layer comprises a set of related protocol functions. Protocol layers are hierarchically ordered:
each layer is built upon its lower layer (besides the lowest). A hierarchy of protocol layers is
called a protocol stack. Each layer provides certain services to its higher layer (besides the
highest), which are accessible via well-defined primitives. Each layer defines its own message
formats. One characteristic of layered architectures is that layers communicate exclusively with
their neighbour layers. The standard interface between protocol layers comprise a down-call
function – called by the higher layer to pass a message to the lower layer in output direction –
and a up-call function – called by the lower layer to pass a message to the higher layer in input
direction. In output direction, each layer adds specific information to the message header. In
input direction, this information is stripped by the corresponding layer of the peer entity and
used for state update.

Layering protocol software provides a couple of benefits. It allows to cope with the complexity
of a protocol system by decomposing it into more manageable pieces. It decouples the layer
interface from its implementation and thus allows for local changes without affecting code of
other parts of the system. Well-defined service interfaces of layers also facilitate standardiza-
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tion, compatibility, and reuse of protocol code.

The idea of layering complex systems into smaller, manageable pieces is older than the author of
this thesis [45]. For almost two decades, layering has been accepted as the modeling and design
principle for communication systems. In the Internet, work about packet switching [33] and the
transition from the network control protocol (NCP) to TCP and IP [108] mark the milestones of
the success of layering. In parallel, the ISO standardized the 7-layer model [152], [71].

However, there are a number of problems associated with layering of protocol systems. When
layers are independently designed and implemented, processing and header overhead due to
inter-layer communication [42] and replication of protocol functions [139] may be the conse-
quence. Crowcroft [43] observed unexpected side-effects and performance variations for the
use of an RPC layer on top of TCP. From the perspective of building application-tailored pro-
tocols, the lack of flexibility [144] is the most important liability of layered protocol software.
The lack of flexibility is on the one hand due to the strict hierarchy of layering [83] – layers can
access services only from neighbour layers –, and on the other hand due to the typically coarse
granularity of layers[31].

Micro-Protocols

To introduce higher flexibility into protocol implementations, O’Malley and Peterson [106]
replaced the layer by a fine-grained abstraction called micro-protocol.

O’Malley and Peterson consequently apply decomposition of a given protocol stack to factor out
atomic protocol functions and encapsulate each of them in micro-protocols. Micro-protocols are
small modules that perform an atomic protocol function. So called virtual-protocols are used
to connect micro-protocols and decide which way a message goes. The resulting organization
is supposed to allow for easier modifications compared to the original layered organization.
Decomposition also allows to detect and eliminate unneeded or redundant protocol functions.
In traditional layered architectures, the protocol graph is simple, the functionality of a layer
is complex, and the whole topology static. On the other hand, a micro-protocol architecture
promotes complex protocol graphs, a single function per layer, and flexible composition to
adapt to application requirements.

While the work on micro-protocols still leaves many questions open – especially concerning
the reusability of micro-protocols, their degree of decoupling, their flexibility, their interface
design – it demonstrated the benefits of a fine-grained protocol organization and showed that
highly modular protocol software does not necessarily suffer from performance penalties. To
the question ”What is the right number of layers?”, the micro-protocol architecture gives a
simple answer: ”It depends on the message”.
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State Machine

A common approach to model protocol layers is to consider them as finite state machines
(FSM). The big advantage of making use of such a well-understood and powerful tool as FSM
is that both protocol specification and implementation process are supported. FSM provides a
formal model and mathematical notation that allows to express protocols as a set of states and
their transitions, and allows to verify their correctness. The use of FSM has been particularly
useful to model TCP, which comprises 13 different states.

However, modeling protocol layers as finite state machines often covers only one aspect of a
protocol: the flow of control information. Data flow processing is not captured by FSM and
must be implemented either ”by hand” or using other abstractions or tools, which requires the
protocol developers to be familiar with yet another language and yet another tool. Hence, proto-
col implementation using FSM based languages normally results in semi-automatic compiling,
manual integration and optimization.

2.2 Why not just applying finer granularity to layering?

Since layering has proved to be a powerful abstraction, and fine-granularity has proved to in-
crease flexibility, why not just simply combining these two concepts for the purpose of imple-
menting application tailored protocols? Based on some simple examples, we will illustrate in
the following why fine-grained layering is not very well suited to implement application-tailored
protocols.

2.2.1 Coupling of Streams

One common protocol function in layered protocol systems is logical de-multiplexing. Feld-
meier [53] defines logical multiplexing as mapping of multiple streams of layer n into a single
stream that is passed to layer n � 1 (in contrary to physical resource de-multiplexing used to
share physical resources such as communication links). Logical multiplexing has the disadvan-
tage that lower layers can not distinguish different higher layer streams (see Figure 2.1), which
makes it very difficult to apply different quality of service (QoS) to different streams without
violating the layer principle. This problem applies to streams from different applications as well
as to different streams of the same application.
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Layer N

Layer N-1

Stream 1 Stream 2

Figure 2.1: Coupling of Streams

2.2.2 Coupling of Sender- and Receiver Functions

To illustrate another problem of layering, we consider the following stop-and-wait protocol:
the sender gives each data chunk a sequence number, copies, buffers, and sends it. The sender
also maintains a timer, which is set each time a chunk is sent (the timer-interval is pre-defined
and fixed). The receiver acknowledges each incoming packet based on its sequence-number.
When the sender receives an acknowledgement for the currently buffered chunk, it frees its
buffer, stops the timer, and proceeds with the next data chunk. When the timer expires before
an acknowledgment arrives, a loss is assumed and the currently buffered data chunk will be
resent.

This simple protocol would typically be implemented within a single layer. When the layer
is used on the sender side, application data is handled by down-calls. If no data chunk is
outstanding (unacknowledged), the data chunk is sequenced, buffered, and given to the lower
neighbour layer (in this case sent). If the last data chunk sent is not yet acknowledged, the chunk
is written to a queue. The up-call method implements either handling of acknowledgements
(sender functionality) or handling of data chunks (receiver functionality). During an up-call, the
layer must be aware if it acts in the role of sender or receiver, and then check if the corresponding
header fields of the message are correct. It then either implements acknowledgement handling
(remove outstanding data chunk from the buffer and process the next data chunk in the waiting
queue) or user data handling (strip header information and give the message to the higher layer).

We see here another problem of fine-grained layering: a layer is by default symmetrical, i.e. it
implements both sender and receiver functionality. In our example, the sender’s flow/error-
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control algorithm (stop-and-wait) is coupled with the receivers acknowledgement strategy (pos-
itive ack for each data chunk). However, the acknowledgement strategy is fairly independent
from the stop-and-wait protocol and could be used together with more sophisticated flow- or
error-control protocols, too.

The layer implemented is also hardly reusable for uni-directional communication. Modifica-
tions would be necessary to suppress functionality at each side. Additionally, many simple
sender functions in protocols (such as logging or gaining statistics) do not even have a peer
function at the receiver. The down-call interface is not implemented in these cases. Hence, for
fine-grained structuring, layering is a too inflexible abstraction (see also Figure 2.2).

upcall(message) {
   if (this is sender)
      if (message is ACK)
         handleACK()
   if (this is receiver)
     if (message is DATA)
         handleDATA()
}

receiver

sender

Figure 2.2: Layering leads to mixing receiver and sender functions

2.2.3 Coupling of Distinct Protocol Functions

A problem of the example protocol above is that its timer-interval is static, i.e. it can not be
adapted dynamically to the actual RTT. This may result in too many timeouts and retransmis-
sions when the timer interval is much shorter than the actual RTT, or in late detection of packet
loss when the timer interval is much longer than the actual RTT. In order to determine a good
timer-interval, the sender must estimate the round-trip-time to the receiver by measuring and
averaging the times between the emission of the data chunks and the reception of the corre-
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sponding acknowledgements. How would we extend our protocol above to allow for dynamic
timer-intervals? Should we implement a new layer or modify and extend the old one?

Implementing the whole protocol in a single layer definitely trades off a lot of flexibility. Error-
control and RTT-estimation would be tightly coupled and can only be reused together. However,
RTT-estimation is useful in other contexts, too, e.g. with window-based flow control schemes.

Implementing stop-and-wait and RTT-estimation in two distinct layers, however, raises other
problems. It would be extremely inefficient, if both layers would implement their algorithms
completely independently from the other, e.g. when the RTT-estimation layer would make mea-
surements based on own data requests sent from time to time, which are answered by the
RTT-estimation peer-layer. Strict boundaries would thus cause serious processing overhead and
waste of network resources. The only way to deal with this overhead, is violating the layer prin-
ciple and allow layers to share header data and exchange control messages. However, sharing
information largely compromises the big advantage of layering: its simplicity due to uniform
interfaces and minimized interaction.

2.2.4 Coupling of Header Information and Protocol Code

The example above points to another problem. Imagine that the sequence-number space in the
message header is not sufficient and we need to reserve now 4 instead of 2 bytes in the message
header. Changing the header a little bit may seem to be a marginal aspect. However, both
protocol layers are concerned by this change and require modifications possibly at different
places in the protocol code. This renders tailoring of protocols fairly error-prone.

Additionally, the question arises, which of the two layers that share header data is responsible
to add and strip the respective information from the message to make the message readable for
the adjacent layers. Layers operating on the same header fields are implicitly tangled and can
hardly be reused without modifications. Figure 2.3 illustrates this problem. The two higher
layers work as expected, the lowest layer however uses data already appended by its higher
layer. It therefore does not append header data, but assumes that the higher layer already has
done this. In input direction, the lower layer parses the message, but does not strip its data (will
be done by the middle layer). Hence, the lowest layer can not be reused without modifications
in other layered systems (or only together with the middle-layer).

2.2.5 Coupling of Protocol Processing and Thread-Model

The thread-model used in protocol software is an important design issue, which concerns both
performance aspects and ease of implementation. In the thread-per-layer model, each layer
implements its own thread, which pushes processed data to the queue of a neighbour layer. The
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Figure 2.3: Sharing Header Fields couples Layers

advantage of this model is its simplicity, but it can become rather inefficient when a protocol
stack is built out of many fine-grained layers. A lot of time is spent for communication between
threads by writing to and reading from the message queues.

A more promising approach is the thread-per-message model, where one thread guides a mes-
sage through the whole protocol stack in the same context. While thread-per-message is an
appealing approach, it also holds some pitfalls. Debugging is more difficult since it is not ob-
vious when a new thread is started or an existing one is stopped. Additionally, the programmer
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has to take care that messages are not re-ordered due to concurrent threads. The two models are
depicted in Figure 2.4.

(a) Thread-per-Layer (b) Thread-per-Message

Figure 2.4: Different Thread-Models

Since layers may throw away messages or create new messages, they need to have access to an
programming interface to control the threads that transport messages. (i.e. basically to stop a
thread or create new thread). Unfortunately, giving each layer access to the thread-pool tangles
the protocol code with code for thread handling and thus creates dependencies with the sub-
system.

In both cases, thread-per-layer and thread-per-message, the thread-model is tightly coupled with
protocol processing. In other words: implementing a layer depends on the thread-model used.
A posterior change of the thread-model implies error prone code modifications of all layers.
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2.3 Modeling Protocols: A System of Structuring Principles

2.3.1 Introduction

This section identifies a set of structuring principles for protocol software with the objective to
support application-tailoring of protocol implementations. We describe how these structuring
principles enhance decoupling, flexibility, and reuse of different protocol functions. Figure
2.5 depicts the relationships between the structuring principles we describe. The figure also
includes the use of Layers to illustrate how layering is related to our principles. Our approach
should be considered complementary to coarse-grained layering, i.e. our structuring principles
may be useful to structure layers itself. They are nevertheless intended to replace naive fine-
grained layering.

We briefly discuss the problems and forces our propositions need to deal with.

� Different applications have diversified communication service requirements and thus
need different protocols, on the other hand, they must share system and network re-
sources. The first problem to solve is therefore how applications can be decoupled from
each other while efficiently making use of the common resources. This aspect is covered
by the principle of Outsourced De-Multiplexing.

� The applications’ requirements evolve over time. Protocol software should therefore al-
low to add or remove services. It is furthermore important that each service meets in-
dividual QoS requirements. These aspects are covered by the principle of Data Path
Reification.

� Reuse, configurability, and granularity of protocol components are important issues to al-
low for rapid development and composition of new protocols. How fine-grained structur-
ing is applied to protocol software to assure easy modification, extension, and autonomy
of all protocol components is covered by the principle of Data Path Partitioning.

� From the perspective of an distributed application developer, the programming interface
to communication protocol services is of great importance. The protocol software should
make (almost) no assumptions about the application and the underlying network to be not
affected by any changes of those. These aspects are covered by the principle of Data Path
Classification.
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Figure 2.5: A System of Structuring Principles

2.3.2 Principle 1: Outsourced De-Multiplexing

Problem

De-multiplexing is a necessary protocol function when different applications share network
resources. Network resources comprise physical resources like communication links or pro-
cessors, and logical resources like protocol instances and their state (such buffers, timeouts,
windows). In layered systems, logical multiplexing refers to ”the mapping of multiple streams
of layer n into a single stream to be passed to layer n�1”[53]. While (de)-multiplexing is useful
to share logical and physical resources, it also makes it difficult to distinguish different streams
with different service requirements and thus causes ”crosstalk” between different streams. In
order to assure the different service requirements of different applications – which may result
in a variety of different application-tailored protocols – one need to introduce points in the
protocol system to perform scheduling decisions and quality of service control. Unfortunately,
introducing control and scheduling points significantly complicates protocol implementation
and even violates the principle of information hiding, since it requires to spread information
over the whole protocol code.
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Solution

The solution to the problem of how to share resources and assign QoS to streams without cou-
pling parts of the protocol code is to integrate a protocol session into a single entity and delegate
all de-multiplexing to a lower layer. In order to emphasize that de-multiplexing is performed
outside the actual protocol session and decoupled from message processing, we call the concept
Outsourced De-Multiplexing. Figure 2.6 illustrates two organizations of protocol software.
On the left, you see an implementation with de-multiplexing points within the protocol graph,
one the right you see an organization that applies Outsourced De-Multiplexing.

M1

M2 M3

Network

App 1 App 2 App 3

M1 M1 M1 M1

M3 M2 M3 M3

M2

App 1 App 2 App 3

De-Multiplexing within a protocol graph Oursourced De-Multiplexing

Figure 2.6: Outsourced De-Multiplexing vs. Traditional Organization

The Figures 2.7 and 2.8 depict the prototypical entities of Outsourced De-Multiplexing and their
interactions in UML notation. As environment we refer to a protocol session that provides a
number of services and integrates a number of protocol functions that may encompass sev-
eral layers. Environments may be structured as layers, state-machines, or whatever. The most
important characteristic of an environment is that it provides de-multiplexing information in a
well-defined, generic format without implementing de-multiplexing itself. Instead, an anchor
entity is responsible for de-multiplexing. An anchor can be considered a packet filter or a sepa-
rate protocol layer, the only task of which is de-multiplexing. Anchors are placed directly on top
of the lowest de-multiplexing point (e.g. possibly even the device drivers) from the perspective
of the application.

There are basically two ways to apply Outsourced De-Multiplexing. First, the anchor-layer
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Environment
+ demultiplexInfo

+ netData()
+ appData()
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+ register()
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+ netData()
− demultiplex()

0..*
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Figure 2.7: Outsourced De-Multiplexing: Class Diagram

Anchor Env1Sub−System

creates...

register(Env1)

netData( )

demultiplex(byte[])

netData(byte[])

Registration

New Network−Data

Figure 2.8: Outsourced De-Multiplexing: Sequence Diagram

can be run in user space and maintains references of all active environments. In that case,
each active environment must be registered with its de-multiplex information. The anchor-layer
obtains data from a transport service access point (like a UDP socket), looks in each packet and
decides to which environment entity the packet is forwarded. This variant is necessary when the
underlying transport protocol does not perform de-multiplexing or when several environments
would share one transport service access point.

The second variant is based upon kernel de-multiplexing (e.g. TCP, UDP, IP). In this case, the
complete kernel protocol stack acts as anchor that de-multiplexes incoming data to the specified
socket based on the port number. Each environment is associated with its own transport socket,
from where it gets its data directly. This variant is not only simpler since it avoids implementing
the anchor layer, but also promises better latency since kernel processing is prioritized and
highly optimized.
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Scenarios

We present the typical scenarios of Outsourced De-Multiplexing when an anchor is used as
explicit entity and one does not rely on kernel de-multiplexing (see Figure 2.8).

The first scenario describes the registration of new environments:

1. an environment is created

2. the application registers the environment at the anchor via Anchor.register()

3. the anchor stores the de-multiplex information together with a reference to the environ-
ment

The second scenario describes the arrival of data from the network:

1. the anchor is notified about the arrival of a packet via Anchor.netData()

2. the anchor applies the de-multiplex information of all registered environments to the
packet within the internal function Anchor.demultiplex()

3. when the packet matches with the de-multiplex information of a certain en-
vironment, the anchor notifies this environment about new network data via
Environment.netData()

Discussion

Outsourced De-Multiplexing allows to minimize sharing logical resources between applications.
It trades off the possibility of sharing and thus reducing the use of logical resources (i.e. session
state, buffers, queues) against the simplicity of protocol implementation and the reduction of
cross-talk between flows of different applications.

We consider Outsourced De-Multiplexing useful especially for the implementation of
application-tailored protocols, since application-tailored protocol software is executed as part
of independent applications with individual service requirements. Since de-multiplexing of net-
work data is already provided by UDP, all de-multiplexing can be delegated into the kernel,
where it is done efficiently. That way, Outsourced De-Multiplexing promotes reuse of existing
kernel de-multiplexing facilities.

Known Uses

From the perspective of a software engineer, Outsourced De-Multiplexing lies the foundation
to simplify the implementation of protocol software and is a pre-requisite for introducing a ver-
tical structure. Outsourced De-Multiplexing has already been successfully applied in various
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systems, and thus shown its usefulness. It therefore deserves to be called a pattern. Roca [116]
modified a TCP/IP stack within the STREAMS [145] protocol environment in the BSD Unix
Kernel to concentrate de-multiplexing just on top of the network drivers. He demonstrated a per-
formance speed-up, more flexibility and simplicity compared with performing de-multiplexing
in each layer. Rütsche [18] ported a kernel TCP/IP implementation into user-space that del-
egates de-multiplexing to the underlying ATM adapter to allow better control over protocol
processing to guarantee the QoS of networked data. Braun [30] implemented a user space
version of TCP, which lets de-multiplexing reside in the kernel to increase flexibility without
compromising performance.

2.3.3 Principle 2: Data Path Reification

Problem

While Outsourced De-Multiplexing reduces cross-talk between flows of different protocol ses-
sions and allows for application-specific quality of service, it does not tackle the problem how
the protocol itself should be structured to be flexible, extensible, and configurable enough to be
tailored to the applications needs.

Solutions have to take into account that applications may expect different services (e.g. reliable,
real-time, secure services) at the same time from a protocol. Since the applications’ require-
ments evolve over time, it must be easy to add new services or remove old ones without affecting
the existing ones. Additionally, the protocol code should be as independent as possible from
the runtime thread-model applied, that is changing the thread-model or optimizing the imple-
mentation of the chosen model must not affect the protocol code to avoid compromising its
reusability.

Solution

We propose to cut a protocol into vertical slices, each of which reifies a possible data path
through a protocol stack, i.e. all operations and data manipulations necessary to process a certain
piece of data. Each data path is pre-defined in dependence of events like message arrivals,
application access, or time-outs. Instead of considering data paths as something dynamic, which
are implicitly constructed at runtime, we use data paths as a structuring element and explicit
abstraction that can already be used during the specification of a protocol. We call this principle
Data Path Reification. Figure 2.9 visualizes the difference between an implicit and an explicit
data path.

Figures 2.10 and 2.11 depict the prototypical entities and dynamics of Data Path Reification.
The entity order-type represents one data path through a protocol and produces runtime repre-
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(a) Implicit Data Path (b) Explicit Data Path

Figure 2.9: Finding a data-path

sentations of the data path they define (called order). The entity order represents the runtime
representation of an order-type. While order-types define all operations, parameters, resources
and data formats, orders are responsible to execute the defined operations with concrete data.
The relation between order-type and order is similar to the relation between a piece of code and
a program executing this code.

Order

+ execute()

MappingStrategy

+ map()

Environment

+ appData()
+ netData()

11

OrderType

+ createOrder()

1..*+uses 1..*

1..*1..*

Figure 2.10: Data Path Reification: Class Diagram

In the context of Data Path Reification, the environment abstraction is considered as a container
of order-types and responsible for identifying the right order for every piece of data coming from
the application or the network. Once an order-type is identified, an order entity can be created,
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Figure 2.11: Data Path Reification: Sequence Diagram

initialized, and executed.

While for application data finding the right order-type can be done with information from the
application (see Data Path Classification below), network data must be mapped to an order-type
entity based on information carried by the message. The environment delegates this task to a
mapping-strategy entity.

Mapping strategy entities encapsulate an algorithm that allows to map a piece of data to one
order-type entity or at least determine that the data is not destined for any order-type. This
may, for example, be done by using an unique identifier for every order-type, which is written
to each packet sent after order execution. If a protocol consists of only one order type, the
mapping strategy is extremely simple.

Scenarios

The following scenario describes the arrival of data from the network. The environment

1. is notified about the arrival of data from the network via Environment.netData(),

2. determines the right order-type entity from its mapping strategy via
MappingStrategy.map(),

3. uses the obtained order-type entity to create a new order entity via
OrderType.createOrder(), and

4. triggers processing via Order.execute()
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For application data, the application can directly determine the order-type for its data via
Environment.appData(). The indirection via the mapping-strategy is thus not necessary.

Discussion

The main benefit of Data Path Reification with respect to flexibility and reusability is that new
services can be easily added and old ones removed, while the impact on existing services is
minimal.

Testing and debugging is also simplified using a vertical structure. Instead of reconstructing
possible data-paths a message may take through a protocol system to localize errors, Data Path
Reification defines all possible data-paths in advance and allows to associate different messages
directly to different data paths.

Moreover, Data Path Reification makes the dynamics of protocol software visible and allows to
easily gather statistics and measurements about each order to identify possible bottlenecks and
room for optimization. It is straight-forward to map orders to threads, to associate priorities,
and to optimize scheduling. Each order type could implement its own thread or share threads
with other order types, could use thread-pools, or delegate processing to a single system thread.
Thus different process-models are supported as an independent aspect without involving the
core protocol code.

Data Path Reification is to some regard a refinement of Outsourced De-Multiplexing. While
the latter promotes the isolation of data streams from different applications, the former assures
isolation of data streams of one application.

Known Uses

Data Path Reification emphasizes the data-path abstraction as central element to impose a ver-
tical structure to protocol software. A data path is a very fundamental and natural abstraction
used in many different contexts. Business organizations are structured along work-flows, plans
are structured along related activities, the TV program is structured in channels with different
emissions. In the context of computer systems, the idea of grouping related tasks that share
resources comes in various shapes. The concept of concurrency [11] [13], which is applied
in all modern operating systems (e.g. UNIX [90]), abstracts the execution of applications as
processes. The thread concept [113], [34], [20] allows to structure application processes along
related tasks. Modern languages like Java [136] give explicit language support for threads and
concurrency issues to enhance the productivity of development. Birman [19] points out the
importance of structuring distributed systems into threads to simplify implementation.

In the context of communication software, a number of optimization techniques are build around
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the abstraction of a path. Examples are up-calls [39], [10], Integrated Layer Processing (ILP)
[38][29], or fast-path optimization techniques like TCP header prediction [73] or packet clas-
sifiers [95]. The communication-oriented operating system SCOUT [100] exploits a vertical
structure to make execution predictable and controllable, and to exploit mechanisms to allocate
resources based on specified quality of service requirements of a particular path. The notion of
a data-path is thus very common in system engineering, especially for parallel and distributed
systems. Data Path Reification has been successfully applied in different contexts and can there-
fore considered to be a pattern. However, it has never been used before to structure protocol
specifications or protocol software.

2.3.4 Principle 3: Data Path Partitioning

Problem

While Data Path Reification vertically structures protocols and makes protocols extensible for
new services, whole orders are still hardly reusable and changing them would still require ex-
pensive modifications. Due to the inherent complexity of distributed systems, the deployment of
protocols often involves a lot of testing and debugging with various modifications and parame-
ter configurations. Modifications may concern the operations performed during order execution,
but also the associated header information of the defined messages. Protocol functions should
be decoupled from each other, but also be independent from the message syntax.

Solution

We propose to partition the data paths identified into a data representation part and a functional
part. The data representation part encompasses properties of message header information, the
functional part the operations to be executed per path. The data representation part is further
divided into entities, each of which is responsible to represent a header field. The functional
part is further divided into entities, each of which encapsulates an atomic protocol function. We
call this structuring principle Data Path Partitioning.

Figures 2.12 and 2.13 depict the resulting structure after applying Data Path Partitioning.
The entity entry-type encapsulates types of message header fields (e.g. a sequence number,
a checksum-value, or a time stamp). Entry-type entities contain information such as the num-
ber of bytes representing a header field, the range of a sequence number, or if big-endian [40]
representation is used. An entry entity represents a concrete message header field information.
Entry entities are exclusively instantiated by entry-type entities. Each entry entity can take a
message (i.e. an array of bytes) as input, parses it, and transform its information extracted into
a typed value (e.g. an integer). Each entry entity also provides functions to transform a typed
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Figure 2.12: Data Path Partitioning: Class Diagram

value back into an array of bytes. Any entry-type entity can be configured initializable and/or
visible. All entry entities created by entry-type entities configured initializable are fed with ex-
ternal data, i.e. data from either application or network. All entry entities created by entry-type
entities configured visible make their data accessible outside the protocol entity, i.e. give the
data as a typed value to the application or send it via the network after processing.

Figure 2.14 illustrates the meaning of initializable and visible based on a simple example sce-
nario (execution of an order in output and an order in input direction, each consisting of two
entries whereas the first entry represents a sequence number and the second entry represents a
string). The figure depicts the data flow (arrows), the events during the execution of an order
(numerated text fields), and the state of the entries (represented by rectangles) that are affected
by the events. The string entry is initializable (represented by bold surroundings) and visible
(represented by a colored rectangle) at both sender and receiver side since it represents appli-
cation as well as network data. The sequence number, however, represents network data and
is unknown to the application: the sequence number is thus visible only at the sender side (in
output direction) and initializable only at the receiver side (in input direction).

When the application inserts data into the protocol instance (step 1), only the initializable string
entry is concerned. The sequence number entry remains empty until a worker assigns a value to
it (step 2). In step 3, the data of all visible entries (sequence number and string) are transformed
into a byte array and sent. When the data arrives at the receiver (step 4), all initializable entries
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Figure 2.13: Data Path Partitioning: Sequence Diagram

(sequence number and string) are filled with data. Only the value of the visible string entry is
delivered to the application (step 5).

A worker entity encapsulates a single protocol operation (e.g. sequencing, checksumming,
round-trip time measuring). In contrary to a layer, a worker encapsulates either a function in
output or in input direction. Another difference with a layer is that a worker does not operate on
complete messages, but only on entry objects. Hence, it does not need to have any knowledge
about the message format and does not need to perform parsing or message header manipula-
tions.

In the context of Data Path Partitioning, order-type entities are defined by a set of entry-type
entities and worker entities, and the relations between entry-types and workers.

Scenarios

The following scenario describes the composition of a protocol environment consisting of one
order-type entity called hello. It consists of two entry-types called seqnr and blob and one
worker called count. The worker uses the entry-type seqnr as parameter to increment and assign
a sequence-number each time it is called.
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Figure 2.14: Visibility and Initializability of entries

� all workers are registered with their parameter entry-types at the respective order-type,
e.g. the worker count with its parameter entry-type seqnr is registered at the order-type
hello via OrderType.register()

� workers and entry-types can also be registered alone, e.g. the entry-type blob is registered
without being part of a parameter relation

� all order-types are registered at the environment via Environment.register(),
e.g. the order-type hello

The following scenario describes how a new order is initialized with data. We assume that the
entry-type seqnr is configured visible and the entry-type blob is configured visible and initializ-
able.

1. the application gives data to the environment and specifies the respective order-type via
Environment.appData(), e.g. for f1,2,3,4,5g as data appData(f1,2,3,4,5g,
hello)

2. the environment creates a new order using the order-type hello via
OrderType.createOrder()

3. the order-type gives the obtained data, e.g. f1,2,3,4,5g, to the created order via
Order.initialize()
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4. during initialization, the order creates new entry objects via EntryType.create()
(applied to seqnr and blob), and delegates initialization to all entry entities that are ini-
tializable (e.g. to the entry created by blob) via Entry.fill()

The following scenario describes the execution of the order created by the order-type hello.

� the protocol environment executes the order created and initialized by order-type hello
via Order.execute()

� the order calls all its workers with their corresponding entries via Worker.call(),
e.g. the worker count with the entry created by entry-type seqnr

� the workers obtain and manipulate the entry objects via Entry.getValue() and
Entry.setValue()

� the order serializes all visible entries via Entry.serialize(), e.g. seqnr and blob,
and sends the obtained byte array

To illustrate parsing, we depict the collaboration diagram of a more sophisticated example
in Figure 2.15. Here, we have three initializable entries (Integer, Sequence Number, String),
whereby the string entry performs parsing in dependence of the value of the integer entry.
The diagram leaves out creation of order and entries and starts with the invocation of the
initialize() method of order O1 where parsing starts. O1 gives the parameter array
f4; 18; 2; 65; 66; 67; 68; 69g to the integer entry E1, which takes the first byte (since size = 1)
and represents it as an integer (value= 4). O1 now gives the byte array to the sequence number
entry E2 and indicates that the first byte has already be taken. E2 thus starts with byte number
2, takes the next two successive bytes (since size = 2), and represents them (value = 624). O1
now gives the byte array to E3 and indicates that three bytes have already be taken. E3, which
is configured to extract a number of bytes that correspond to the value represented by entry E1

(size = E1:value = 4), takes the next 4 bytes out of the byte array and represents them as a
string (value= "abcd").

Discussion

In contrary to the principles explained before, Data Path Partitioning trades off performance
against good structure. Fine-grain modularity introduces an overhead due to indirections for
calling functions. However, it also provides a lot of benefits with regard to flexibility and
reusability. It decouples distinct protocol functions, input- from output-operations, and message
parsing from processing and state maintenance. It also inherently provides support to share
header fields (as entries) among different protocol functions (workers) without compromising
information hiding.
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Figure 2.15: Parsing

One might argue that Data Path Partitioning is just a form of fine-grained layering. However,
layers structure a system only in a horizontal manner, while Data Path Partitioning is based on
a vertical structure. In contrary to layers, workers don’t deal with message formats or parse a
message, but operate simply on arguments that may represent header fields. That way, global
aspects of a protocol system like the message formats and the thread-model are separated from
reusable algorithms and functions.

Known Uses

Data Path Partitioning as a refinement of Data Path Reification is also a well-known and widely
applied concept. In the context of a business processes (e.g. a client orders an article by tele-
phone), a worker corresponds to a certain task (e.g. talking with the client, fetching the article
from the store, pack the article, preparing the bill, sending the article) and entries correspond
to information needed during execution of the tasks (e.g. client number, name, address, article
number, etc.). In the context of operating systems, a worker entity corresponds to a task, an en-
try corresponds to a resource. The relation between worker and entry-type also corresponds to
the relation between the fundamental abstractions of function oriented languages function and
parameter type. Both use parameterization to provide reuse and to separate state from operation.
In the context of protocol implementation, Renesse [147] proposed a way to let different layers
share header information that resembles our approach to sharing entries between workers.
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How to model the control flow between workers?

The principles presented structure the data flow of protocol software by organizing the code in
data-paths each of which contains a set of linear functional units (workers). However, they don’t
model the exchange of control information between workers, which is an important aspect of
protocol software. The separation into input- and output functionality yet amplifies this need of
interaction between workers.

While a uniform interface like the Worker.call() function is sufficient to model data flow,
the exchange of control information requires much more flexibility. Ideally, a worker should be
able to access any method of any other worker. However, to avoid the coupling of workers, a
worker should not make any assumptions about the specific interface or even the concrete type
of another worker. When one worker would depend on another worker to effect its functions,
both flexibility and reusability of the worker would be seriously compromised. Our problem
is therefore how entities communicate without having any knowledge about each other and the
context they are used in.

A very common technique to model interactions between entities is the use of events. There is a
design pattern called Publisher/Subscriber that allows a subscriber entity to register for events
fired by a publisher entity. The interaction protocol between both is the type of the event. This
model reduces the coupling of two entities to the common knowledge of a certain event type.
The publisher entity does not know anything about the subscriber entity besides the fact that
it is interested to be notified about a certain event. Coupling is shifted to an abstracter level.
However, both entities are still – though more loosely – coupled.

A simple way to circumvent this coupling is the construction of so called event adapters. Event
adapters know both, the event type expected by the subscriber entity and the event type provided
by the publisher entity. Instead of registering a subscriber entity at the publisher, the subscriber
is registered at an event adapter entity and the event adapter is registered at the publisher. When
the publisher fires an event, the event adapter is notified, maps the event received to an event
of the type known by the subscriber, and finally notifies the subscriber. While this model in-
troduces a level of indirection, it provides full flexibility in the sense that arbitrary entities that
follow the publisher/subscriber model can interact without loosing their independence. Event
adapters can be generated automatically – this is what visual builder tools for component-based
development are doing. The difference between Event Adapters and Publish/Subscribe is illus-
trated in Figure 2.16.

In the next chapter, we will address the design problem of connecting arbitrary components in
more detail and propose a concrete solution.
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Figure 2.16: Publish/Subscribe vs. Event Adapter

2.3.5 Principle 4: Data Path Classification

Problem

Our solutions presented above deal with the extensibility, reusability, and flexibility of protocol
entities. However, they are not concerned about how the protocol part interacts with the un-
derlying network and the application that uses it. The overall goal is to completely decouple
the protocol part from any application or network specifics. On the one hand, the interfaces to
application and network should be as general as possible. On the other hand, there are many
different ways applications may like to communicate with a protocol entity. Additionally, net-
work interfaces are typically complicated to use and platform dependent. How can generic and
flexible interfaces be provided without compromising the independence of the protocol entity.

Solution

We follow the vertical structure imposed by Data Path Reification and propose to classify the
data paths identified (i.e. the order-type entities) according to their interactions with entities
outside the protocol entity. We call our concept Data Path Classification. Interactions are
limited to getting information or providing information. The entities outside the protocol entity
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belong either to the application or the network service. After classification according to this
two dimensions – application/network, get/provide – we obtain four major types of data paths
given in Table 2.1.

Data Path Type Direction Interface Attributes

Acceptance Output From Application Write Access Point for the application

Delivery Input To Application Read Access Point for the application

Emission Output To Network Output Port Number

Reception Input From Network Mapping Information, Input Port Number

Table 2.1: Classified Data Paths

Data paths that are initialized with data from the application are classified as accepting. Data
paths that are initialized with data from the network are classified as receiving. Data paths that
deliver data to the application after processing are classified as delivering. Data paths that end
up emitting data over the network are classified as emitting. Frequently, a data path abstraction
may belong to more than one classification: accepting and emitting data paths (passing the pro-
tocol entity in output direction from application to network) as well as receiving and delivering
data paths (passing the protocol entity in input direction from network to application) are very
common. A data path that does not belong to any class, is refered to as internal data path.

When we apply the classification to the order/order-type abstraction, we obtain the entities
depicted in Figure 2.17. Accepting data paths are mapped to acceptance and acceptance-
type entity classes, which are specializations of, i.e. inherited from, order and order-type entity
classes. Receiving data paths are represented as reception and reception-type, respectively.
Delivering data paths map to delivery and delivery-type, emitting data paths to emission and
emission-type.

Read-API entities are proxies of the application to be notified about data delivery. Every
delivery-type is associated with only one read-API entity, which may be shared by different
delivery types. SAP entities are wrappers for network services. Each emission-type entity is
associated with one SAP entity used by the created emission entities to emit data. SAP entities
are also used to receive data. Write-API entities are proxies of the application to give data to
the protocol environment. Write-API entities are associated with acceptance-types.

Scenarios

The first scenario describes how an environment accepts data from the application.

1. the application gives information to a write-API entity via WriteAPI.accept()
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Figure 2.17: Class diagram of Data Path Classification

2. the write-API forwards it to the environment via Environment.appData() specify-
ing data and acceptance-type

3. the environment uses the acceptance-type to create and initialize a new acceptance and
execute it

The second scenario describes how an environment delivers data to the application.

1. within Delivery.execute(), when all workers have been called, the values of
all visible entries are collected and given to the associated read-API entity calling
ReadAPI.deliver(), where the information is consumed by the application

The third scenario describes how an environment receives data from the network.

1. the environment receives network data via Environment.netData() and maps the
data to an reception-type entity via MappingStrategy.map()

2. the environment creates a new reception via ReceptionType.createOrder()

3. the environment executes the reception via Reception.execute()

The fourth scenario describes how an environment emits data to the network.
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1. within Emission.execute(), when all workers have been called, the values of all
visible entries are serialized into bytes and sent via SAP.emit()

Discussion

Data Path Classification extends Data Path Reification by carrying over the vertical structure
from protocol structuring to interface modeling. An application can access each service pro-
vided individually in a straight-forward manner, since each service is represented by its own
entity. The application is notified about the arrival of new information without the need of fur-
ther identifying the information. The information is directly usable by the notifying thread, the
application does not need to poll a queue to obtain it. Each application developer can implement
the interfaces as it is needed for the application.

The classification into different order-type categories also enhances the structure of the protocol
code and makes the interaction of protocol with application code predictable. For example,
knowing the number of reception order-types in advance facilitates and improves mapping from
network data to order-types.

Open Questions

Data Path Classification is only concerned about the interface to application and network from
the perspective of the protocol implementation. It does not prescribe how incoming data is read
from the SAP entities and given to the environment entity. Choosing the right thread-model, the
appropriate programming style (e.g. reactive versus concurrent), and exploiting the operating
system facilities is rather a design issue during application development and not subject to
protocol modeling.

There exist a number of design patterns successfully applied in the ACE [127] framework that
exactly address these issues: the Reactor [122] pattern describes how operating system events
like connection requests or data arrival that are delivered concurrently can be handled without
coupling application specific and system specific mechanisms. How to adapt the Reactor to
the specifics of the Java language can be found in [44]. The Active Object pattern [123] al-
lows to introduce concurrency and simplify synchronization of different threads. The Acceptor-
Connector pattern [124] decouples connection establishment from processing.

Known Uses

Most stackable protocol systems provide uniform interfaces to protocol entities. Data Path
Classification makes interfaces first class abstractions that vary depending on the structure of
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protocols. However, the notion of input (towards the application) and output (towards the net-
work) is common to all existing systems and reflected in all protocol systems we know.

Some systems use even a similar terminology and allow a direct mapping to the four main
data-path categories we identified: x-kernel [68] layers provide the functions xPushTo (emit),
xPushFrom (receive), xPopTo (deliver), and xPopFrom (accept). STREAMS [145] uses
the terms user write (accept), user read (deliver), device out (emit), device in (receive).

Since the Data Path Classification principle depends on Data Path Reification, we don’t con-
sider it as a pattern, but rather as a natural refinement of the Data Path Reification pattern.

2.4 Summary

In this chapter, we first showed why the traditional layered structure – even when applied as
fine-grained layers – is not able to meet the requirements of application-tailoring with regard to
flexibility, decoupling, and reusability. We then presented an alternative structuring approach
that consists of a set of structuring principles. These structuring principles can be considered ar-
chitectural or structural patterns. The common goal of these structuring principles is to make all
parts of the protocol software reusable by assuring decoupling, fine-granularity, and flexibility.

The main abstractions introduced are:

� worker: encapsulates a single protocol operations during processing

� entry: encapsulates representation and manipulation facilities on message header fields

� order: represents one uni-directional data path built of workers, entries, and the relations
between workers and entries

Figure 2.18 presents the dynamics of a system that implements all structuring principles. The
arrows symbolize the data flow between applications.

In our model, reusability and flexibility are achieved as follows.

� The streams of different protocol sessions are decoupled (Outsourced De-Multiplexing)

� A protocol can be extended by new services without interfering with existing services
(Data Path Reification)

� A functional unit does not need to know about what need to be done next (Data Path
Reification and Outsourced De-multiplexing)

� A functional unit does not need any information about where in the message its relevant
header information can be found (Data Path Partitioning)
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Figure 2.18: Architecture following our Structuring Approach

� Header representation units can be reused across different protocol implementations
(Data Path Partitioning)

� A functional unit does not need to know where input information comes from, where
output information goes to, who is handling the events he fires, who fired the events he
is notified of, and which kind of order he creates and what is happening with this order
(Data Path Partitioning)

� The protocol does not need to know anything about the underlying network or the appli-
cation that uses it (Data Path Classification)

While the principles described focus on the modeling of application-tailored protocols, they
may also be considered as a way to structure a multi-functional protocol layer itself. Hence, the
vertical structure should be seen rather as a complementary than exclusive concept to traditional
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layering.
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Chapter 3

The PITOU Protocol Development
Environment

In this chapter, we present the PITOU1 framework that aims to support composition, rapid proto-
typing, and testing of application tailored protocol software. PITOU is based on the structuring
principles introduced in Chapter 2 and implemented in the Java [137] programming language.

After a discussion of the principal goals and design issues of PITOU, we sketch PITOU’s overall
architecture and show how the structuring principles of Chapter 2 have been realized, adapted,
and refined with regard to design issues and implementation details. We then describe how
PITOU is used to i) implement new components and to ii) assemble implemented components
into application-tailored protocol software. Concerning the assembly of components, we first
examine the Java Beans [75] component model, and then present an own approach that aims to
overcome the drawbacks of Java Beans. Finally, we give an overview of the patterns we used
during the design of PITOU and review related work.

3.1 Related Work

There exist a number of frameworks to support the implementation of distributed applications
and protocols. Why do we propose another one? The reason is simple: we don’t know of
any framework that supports flexible and easy composition of protocol software out of reusable
components. Most frameworks apply coarse-grained layering. Few frameworks apply fine-
grained layering. The only one (Coyote [15]) that applies fine granularity without layering is
neither portable, nor easy to use, nor does it support plug-and-play reusability.

Pioneering work in the area of protocol frameworks is the x-kernel environment [68] of Hutchin-

1PITOU = Protocol Implementation, Tailoring and Organization Utilities
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son and Peterson. The x-kernel framework resides in the operating system kernel and allows
protocol systems to be stacked by imposing strict layer boundaries and providing a uniform
interface for each layer. A similar approach is followed by the STREAMS [145] environment.
Besides the goals to ease protocol implementation and to improve the flexibility of constructing
protocol systems, x-kernel and STREAMS have not a lot in common with the PITOU frame-
work. They reside in the operating system kernel, follow a strictly layered architecture, and
provide no support for fine-grained composition of application-tailored protocols.

A bit more related to the PITOU framework are a number of user-space frameworks that partly
use object-oriented techniques. iBus [93] is a Java framework specialized to group communi-
cation protocols. Horus [148] and its successor Ensemble [63] implement fine-grained layering
to improve the flexibility of group communication protocols. Channels [22] is implemented in
C++ and promotes modularity while it breaks with strict layering. Modules can be connected
via de-multiplexing modules and form complicated protocol graphs. However, the reusability
of the modules is largely compromised since message information is tightly tangled with the
code of each module. Conduits [64] follows a similar approach as Channels and is the first to
emphasize the importance of using design patterns to improve the internal structure of coarse-
grained abstractions. BAST [60] is an object-oriented framework to support the development
of fault-tolerant distributed applications. BAST protocols also follow a hierarchical organiza-
tion, but instead of stacking layers, existing protocol classes are extended by new functionality.
Hence, BAST promotes reuse by inheritance, and can be classified a white-box framework.
While BAST allows for fine-grained improvements of services, it is not possible to compose
new protocols by putting existing objects together.

The work closest to PITOU is the Coyote [15] framework, an extension of the x-kernel to
overcome problems with regard to flexibility and configurability. Coyote structures x-kernel
protocol layers into a set of fine-grained modules called micro-protocols that can concurrently
read and process messages from message bags. To avoid direct knowledge between modules,
modules communicate via events. The overall goal of Coyote is to simplify development and to
increase the configurability of the network subsystem [14]. Coyote has similar goals as PITOU
and encapsulates atomic operations in fine-grained modules. There are, nevertheless, a number
of differences with regard to architecture and implementation. Coyote protocols reside in the
kernel, PITOU protocols are integrated in the application. Coyote structures protocol layers as a
set of loosely coupled fine-grained modules, PITOU as a set of data paths. Coyote uses a simple
event mechanism to decouple protocol functions, PITOU applies a rigid structure in combina-
tion with explicit reification of interaction to achieve decoupling. Coyote is not supported by
component-based development techniques and tools, since it does not provide the degree of
reusability to construct new protocols from existing components without code modifications.

The use of protocol languages is another approach to implement protocols. Formal description
languages like LOTOS [24], Estelle [102], Esterel [32], or SDL [27] focus on the specifica-
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tion and verification of communication protocols, and provide the automatic derivation of code
skeletons from specifications. However, the generated implementation skeleton still needs to be
filled with hand-written code. Furthermore, the specification code is not easier to write, under-
stand, or maintain than the code of modern general purpose programming languages. We belief
that frameworks are a more promising approach to protocol implementation since they allow
rather easily for structural extensions and modifications compared to languages. Due to their
inflexibility, most language based approaches fail in covering all aspects of a protocol, and thus
require the use of different tools and manual intervention.

The use of SE techniques in software system research is not as new as it is for protocol sys-
tems. The 2K operating system [85] is based on software components that can be configured
and customized at runtime. The Quarterware [131] system allows to configure and customize
middle-ware components. ACE [127] supports the implementation of communication systems
rather than composing protocol software.

3.2 PITOU Design Issues

3.2.1 Terminology

In order to avoid misunderstandings, we shortly introduce the most important terms we use.

The Java [137], [61], [55] programming language we used for the implementation of PITOU is
an object-oriented language. Hence, our principal programming abstraction is an object. We
refer to a class as the description of a group of objects with similar properties, common behavior,
common relationships, and common semantics [118]. Objects are also refered to as instances
of a class. Classes are often called the type of an object. However, there is an important
difference between a class and a type: a class can directly be instantiated as an object, a type
not. Every class has a type, but not every type is a class (see also below for abstract class
and interface). A method is the object-oriented term to refer to a function.

Java provides support to separate definition and implementation of classes and methods. Meth-
ods that are defined, but not implemented are called abstract methods. A data type that defines
abstract methods is called abstract class and specified by the abstract keyword. A data type
that does not provide an implementation at all, but solely the definition of accessible methods
(which are implicitly abstract) is called a Java interface. To avoid confusion with what we com-
monly call an interface (i.e. shared boundaries between components, devices, or whatever enti-
ties), we use code font to refer to a Java interface. Abstract classes and interfaces
are data types, but not classes, since they can not be instantiated as runtime objects. They serve
as an instrument of typing (interface) and as a code skeleton (abstract class) to be
used to implement new classes.
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Inheritance relations in Java are expressed by the keyword extends. We therefore use the
term extends to say inherits.

A protocol environment object in the PITOU protocol framework passes through three different
phases during its life-cycle:

1. During the construction phase, all objects defining the structure of the protocol environ-
ment are instantiated, configured, and registered.

2. During the initialization phase, which is triggered by callingEnvironment.init(),
the internal structure is built.

3. During the execution phase, a protocol environment is able to accept and receive in-
formation and to execute orders. When the execution phase terminates, an environment
object will be deactivated and cannot be used anymore.

Note that these phases do not refer to the process of implementing a protocol. Construction,
initialization, and execution phase happen all at runtime.

During the execution phase of a protocol, we distinguish three different operations with regard
to orders.

� We say an order is requested, when any component or framework class wants a new
order to be executed. A request is made to the corresponding order-type object.

� We say an order is initialized, when the order obtains all its relevant data to be executed.
During initialization of an order, messages may be parsed and all entries are filled with
concrete information.

� We say an order is executed, when all workers are called.

3.2.2 Framework Tasks and Goals

The development of PITOU is motivated by the following goals:

� Prove of concept: the primary goal of the PITOU framework is to show that the struc-
turing principles presented in Chapter 2 hold their promises with regard to flexibility and
reusability of protocol components.

� Protocol library: tightly coupled with the first goal is the second goal of building up a
library of reusable and flexible protocol components.
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� Ease-of-Use: a major concern in the design of PITOU is that it should be easy to use for
any developer, especially for those who do not have experiences in the area of protocol
implementation. Once the basic concepts are understood, it should be straightforward to
extend the protocol library and plug existing components together.

� Rapid prototyping and testing: rapid prototyping and flexibility are considered more
important than performance oriented issues.

� Evaluation of SE concepts: the PITOU framework also intends to allow for an evalua-
tion of usefulness and power of SE concepts like OO frameworks and component-based
development for implementing communications protocols.

3.2.3 Overall Organization – State of the Art

An important issue in implementing protocol systems is how to partition protocol stacks be-
tween kernel and user-space. Kernel implementations provide automatically good security and
performance, while user-space implementations are easier to write, debug, and modify.

In most Unix [90] and Windows like operating systems, only the highest layer (application) is in
user space, while all other layers are in the operating system kernel. This organization is often
refered to as monolithic kernel implementation [83] and follows rather the craftsmen-principle
than modern software engineering principles. Implementation costs are very high, since writing,
debugging, and porting kernel-code is very difficult. Extensibility and potential for tailoring are
extremely poor.

Moving the complete protocol stack (besides the device drivers) into user-space can mitigate
the implementation costs. One approach dedicates a separate user-level server for each protocol
stack [99], [91]. While this organization makes implementation and debugging of the protocol
code easier compared to the monolithic kernel implementation, it neither contributes to a better
structure of the code, nor allows it to tailor protocols to the needs of the application. This
organization is often refered to as monolithic user-space implementation.

A more radical approach organizes protocol code as libraries that can be linked into the appli-
cation code [141], [47], [30]. Besides the goal of easing programming, debugging, and mainte-
nance, this approach claims to improve protocol performance by exploiting application-specific
knowledge.

The concept of Application Level Framing (ALF) by Clark and Tennenhouse [38] proposes to
involve the application in the data transmission process and exploit application knowledge in the
whole communication system. In particular, the application determines the boundaries of the
data units to be processed (refered to as application data unit – ADU), which must be preserved
at all levels of the system. The ADU is at the same time unit of transmission, unit of control, and
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unit of processing. ALF thus contradicts the layering principle. Although its original definition
is more restricted, the term ALF has been reduced to be a synonym for any kind of application-
tailoring of protocols. RTP [128] is a protocol (or better a definition of message headers) that
claims to follow application level framing (although it is located on top of a traditional UDP/IP
stack). While very few systems are based on application level framing (see [36]), the ALF
paper has brought application-tailoring to prominence and motivated a number of systems that
promote adaptable and flexible communication systems.

PITOU is implemented in user-space, and PITOU protocols are incorporated into the applica-
tion. An overview of the overall organization of our approach is depicted in Figure 3.1.

Application

Environment
Object

SAP
Object

User Space

Kernel Space

Communication Services
Socket Layer

UDP Layer

IP Layer

ETH Layer

Figure 3.1: The Overall Organization
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3.2.4 Programming Language

While Java has become very popular in the last years, there has been little work using Java
to implement communications protocols. Krupczak [88] implemented the AppleTalk [129]
protocol suite to determine the trade-off between the speed of deploying new protocols and
the performance penalty payed for portability. He found that the performance costs of using
Java-based protocols is equivalent to four years of hardware performance gains.

Apvrille et al. [8] used Java to implement a protocol to support video on demand applications,
and made detailed performance comparisons with a corresponding C implementation in user-
space. They find that the Java implementation is not only capable to cope with the applications’
requirements, but nearly achieves the same performance as the C implementation.

The JChannels [79], [81], [80] project at Eurecom in cooperation with Siemens had the objec-
tives to experiment with fine-grained protocol implementation and to obtain insights about Java
as programming language for network protocols. Despite the difficulties to access the LLC layer
(DLP interface for Solaris) using Java and the performance penalty experienced for a modular
implementation of TCP [62] that roughly confirmed the results of [88], we decided to use Java
for a number of reasons.

� object-orientation: first of all, Java is object-oriented and thus allows us to easily map
our abstractions to classes and objects.

� library: Java comes along with a comfortable library, which facilitates a number of oper-
ations needed for protocol implementation, e.g. efficient manipulation of byte-arrays, or
parsing.

� portability: Java source code is compiled into a specific byte code, which is interpreted
during execution by the Java Virtual Machine (JVM). The JVM thus hides operating-
system dependent calls, and makes Java programs highly portable.

� reflection: Java provides a set of classes that support to analyze code and reflect about
program structures at runtime, and allows to dynamically load new applications into the
JVM.

� concurrency: concurrency support is crucial to simplify implementation of communica-
tion systems. Java provides classes and language support for multi-threading and syn-
chronization.

� garbage collection: the JVM comprises a garbage collector, which automatically re-
claims memory of objects that are no longer referenced to avoid memory leaks, one of
the most frequent and hardest to eliminate bug of system software.
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� component model: another argument for Java is its component model called Java-Beans
[75], which is supported by an increasing number of tools and programming environ-
ments.

3.3 The Core Framework Design

3.3.1 Principal Design Elements

Based on the structuring principles introduced in the last chapter, we shortly review the elements
that will play the principal role in the framework design.

� A protocol environment replaces the notion of a protocol stack. Instead of being or-
ganized in different layers, a protocol environment provides all protocol services that a
particular application requires, and integrates all the corresponding functions. Protocol
environments are implemented in the class Environment.

� An order defines a data path through a protocol. To separate the static characteristics of
a data-path (like message formats and defined functional steps) from the dynamic char-
acteristics (like concrete message and execution of the functional steps), a data-path is
represented by two kinds of types: the interface OrderType and the interface
Order.

� An entry encapsulates a message header field. An entry is represented by the two ab-
stract classes EntryType (encapsulating static information) and Entry (encapsulating
dynamic information, i.e. concrete data)

� A worker encapsulates an atomic functional step in protocol processing. A worker is
represented by the abstract class Worker.

EntryType, Entry, and Worker are so called hot-spot classes since they represent the
plug-in points, the interface between framework and application. Classes that implement
EntryType, Entry and Worker are part of the framework library. However, the classes
that implement OrderType/Order are needed to make the framework work, and are thus
called core framework classes.

3.3.2 Applying the Structuring Principles

Since Chapter 2 already talked in detail about the various abstractions and their interactions, we
will sketch only briefly how our structuring principles are applied during design and implemen-
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tation, and point out the differences between the idealized solutions presented in Chapter 2 and
design specific modifications.

Outsourced De-Multiplexing

The protocols we intend to implement are user-space implementations on top of UDP. Since
UDP already provides multiplexing and de-multiplexing, applying Outsourced De-Multiplexing
for this family of protocols requires no additional efforts: the Internet protocol stack in the OS
kernel acts as anchor layer and de-multiplexes data to the right UDP socket, from where the
data is read and given to the associated environment.

For applications that want to run different protocols over the same UDP socket, we provide
a class Anchor. However, we have not built an application yet, where the anchor class was
needed.

Data Path Reification

Each time new data needs to be processed, Data Path Reification proposes to create a new or-
der object, fill it with the data, and execute it. However, object creation is a major cause of
overhead in all object-oriented languages. We therefore decided to slightly modify the inter-
actions between order-type and order objects, and apply the concept of object pools: instead
of creating and throwing away objects with a short life cycle, a fixed number of objects of the
respective class are created when the application is initialized, and reused with different infor-
mation during the whole life-time of the application. The core class InternalOrderType
implements the interface OrderType, and realizes the object-pool by maintaining a sin-
gle reference to an order object (”one-object-pool”). This order object is created when the
protocol environment is initialized. Instead of creating a new order object for each request
via Order.createOrder(), a method OrderType.requestOrder() is used to re-
initialize its order object with the new data and executes it. When the request for another order
is made during the execution of the order, the request is written to a queue. After execution the
oldest request is taken from the queue to re-initialize and execute the order object again. The
class InternalOrder implements the Order interface to provide the functionality de-
scribed above. Figure 3.2 illustrates the modified design.

Besides avoiding the creation of a lot of objects during the life-time of a protocol, the use of
an one-object-pool has another advantage. It assures that two orders of the same type are never
executed in parallel and thus avoid race conditions.

It may be useful that data of different data-path types are sent within a single packet. We call
packets that carry information of different data paths collection packets. PITOU allows each
data-path that ends up in sending data to be configured for collection. Sending will be delayed
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Figure 3.2: Use of an order pool

for a configurable time-interval to wait if some other data can be sent in the same packet. The
most important benefit of sending collection packets is that network load can be reduced. RTP
[128] compound messages or TCP [109] picky-backing are examples for sending data collected
from different data-paths. Campbell [119] describes collecting packets as a general design
pattern.

Data Path Partitioning

The use of a ”one-object-pool” is also applied to reduce the creation of entry objects during
protocol processing. Each entry-type object maintains a reference to one entry object, which is
given during initialization of the environment to the respective order object. Each time the order
object obtains new data to process, it delegates parsing to its entry objects instead of creating
new ones every time.

Another important design issue concerning Data Path Partitioning is the use of one worker
object in different orders. We decided to allow to share workers among objects (in contrary
to entry-type objects), because it is an easy way of sharing resources and state among orders,
and it reduces the memory footprint. For example, imagine a protocol with a dozen of orders,
which all perform checksumming: it is more efficient to use the same checksumming worker
object for all orders than creating one for each order. Since different orders may be executed
in different threads, all workers should foresee the case of concurrent access. The easiest way
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to synchronize access is to specify the call() method of a worker with the Java specifier
synchronized.

We discourage to use one entry-type object across different order-types. Of course, all methods
of entry-type and entry-objects could be specified synchronized to avoid side-effects due
to concurrency. Maybe one could even find examples where two different order-types require
entry-types with exactly the same properties. However, we think it is more proper to avoid
sharing entry-type objects, since each entry-type represents some specific – physically different
fields within different messages.

Data Path Classification

Applying Data Path Classification means to map the different data-path categories to
interfaces and combine them with the types OrderType and Order. The number
of combinations lead to a rather complex type hierarchy. Figure 3.3 depicts the combined
interface types, and the classes that implement these interfaces. The hatched area contains
all the interfaces needed to represent the different types of data-paths. The other types are
the classes implemented in the PITOU framework. The core functionality is implemented in
the classes InternalOrder and InternalOrderType.

The respective interfaces are implemented by the classes AcceptanceType and
Acceptance, DeliveryType and Delivery, EmissionType and Emission,
ReceptionType and Reception. All these classes are extensions of the classes
InternalOrderType and InternalOrder, respectively. For example, Delivery ex-
tends InternalOrder by a method that allows to specify a ReadAPI object, and overwrites
the method execute() to assure that the data is delivered to the read-API after calling all the
workers.

3.3.3 Mapping Classes to Packages

Java allows to group related classes in so called packages. We give a short overview of the
packages that make up PITOU and which kind of classes these packages contain.

� The package pitou.core.structure defines all interfaces and abstract
classes needed to implement protocol components (so called hot spots) and to implement
the core classes like environment or order.

� The package pitou.core contains all core classes that implement the framework (like
environment and orders) and that are needed to run protocol software.
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Figure 3.3: Classes for Data-Path Classification

� The package pitou.core.mapping defines all interfaces and classes that con-
cern the mapping strategy, e.g. a standard mapping strategy that uses order identifiers to
perform mapping.

� The package pitou.core.register defines all classes used to register the various
protocol objects. The concept behind these registration classes will be explained later.

� The package pitou.net contains all wrapper classes for network access (e.g. TCP,
UDP, IP-Multicast wrappers)
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� The package pitou.util contains utility classes, e.g. byte array manipulation meth-
ods.

� The package use.pitou.workers contains implementations of workers (part of the
component library).

� The package use.pitou.entries contains all classes implementing entries and en-
try types (part of the component library).

Figure 3.4 shows the different categories of classes and how they contribute to build and run
protocol software within the PITOU framework.
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3.4 Implementation of Reusable Components

The very first step to build a new protocol is the implementation of components with the be-
havior required. This step is of course not needed when respective classes with the required
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services already exist. In fact, the long term goal of using this framework is being able to no
longer write code, but reuse, configure, and assemble existing components. In this section,
we describe all abstract classes and interfaces that may be implemented when to add new
reusable components to the framework library.

3.4.1 Implementing Workers

In order to implement a new worker, the abstract class Worker must be extended, i.e. the
following abstract methods need to be implemented.

� The core protocol function of a worker is implemented in the method boolean

call(Entry[]). This method is called every time when an order is executed, and
provides a worker with the entry objects containing the respective header information of
the actual message. Each worker can decide to immediately stop the execution of an or-
der by returning false (e.g. when a worker detects a wrong checksum); however, the
possibility of determining order-execution should be used with attention and carefully
documented in the specification of a worker.

� A worker is initialized when its method void init(Entry[]) is called. During
initialization of a worker, a timer may be started or an initial value for internal variables
may be set.

� The method deactivate() is called when the protocol session has definitively deter-
mined, and gives the worker the possibility to free allocated resources (stop timers, close
files, etc.)

3.4.2 Implementing Entries

Implementing entries requires the extension of two abstract classes: EntryType defines the
static properties of an entry and is used for building the structure of a protocol. Entry defines
the dynamics of an entry and is used internally in the framework. Entry-types are components,
while entries are simple objects.

The abstract class EntryType defines only one abstract method.

� The method Entry create() returns an entry object of the type related with the
entry-type object that creates it (e.g. an object of type SeqNrEntryType creates an
object of type SeqNrEntry). During the creation, the static information defined by the
entry-type object should be given to the created entry object (e.g. the initializable flag, the
visible flag, the byte-length, etc.).
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EntryType defines a number of other methods, which are already implemented, and hence in-
herited by every new entry-type and entry sub-class.

� The methods void setInitFlag(boolean) and boolean getInitFlag()

allow to configure entry-types initializable. An initializable entry object obtains its re-
spective header by parsing an initial byte-array before order execution.

� The methods void setVisibleFlag(boolean) and boolean

getVisibleFlag() allow to configure entry-types visible. A visible entry ob-
ject transforms the header information it represents into an byte-array after order
execution.

� The methods void setSize() and int getSize() allow to configure the number
of bytes the corresponding header field represents.

The abstract class Entry defines the following abstract methods:

� The method void fill(byte[],int) provides an entry with a byte-array and a
start point within this array, and so allows an entry to extract its information and represent
it as an internal value. This method is called only for entries configured initializable.

� The method void fill() initializes an entry with a standard value and is called for
non-initializable entries every time a new order is initialized.

� The method byte[] getBytes() returns a byte-array representing the header field
encapsulated by an entry object. If the header field representation is not yet serialized,
serialization will be done in this method.

� The method void setValue(Object) allows to assign a value to an entry object.
The entry itself is responsible to check if the value has the correct type he expects.

� The method Object getValue() returns the value of an entry. The worker that uses
the value must know its concrete type (e.g. Integer).

In addition to ”simple” entry-types, PITOU also supports array entry-types (similar to arrays in
almost all programming languages) and composite entry-types (similar to the struct concept
in C).

Array entry-types are implemented as classes named ArrayEntryType and ArrayEntry
that extend Entry and EntryType, respectively. Each array-entry type allows to specify
an entry-type, which the array will consist of, and a size property indicating the number of
elements, which may be changed dynamically from order to order. Each array-entry object
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will manage a set of entry-objects (depending on the size of the array-entry-type), to which he
delegates parsing and serialization.

In order to allow the grouping of different entry-type objects, we define the abstract classes
CompositeEntryType and CompositeEntry, which extend EntryType and Entry,
respectively. Each composite-entry-type allows to register list of entry-types that form the
composite-entry-type. The classes BlockEntryType and BlockEntry are implementa-
tions of CompositeEntryType and CompositeEntry, respectively. A BlockEntry

delegates parsing and serialization of data to its sub-components. Figure 3.5 depicts the class
diagram for composite entry-types.

The collaboration diagram in Figure 3.6 shows how composite entries work. The example is
similar to the one in Figure 2.15: an order O1 specifies two entries E1 and E2, whereas E1 is
an composite entry. E1 does not represent a value itself but consists of three entries (refered to
as sub-entries SE1; SE2 and SE3) that represent a value, respectively. E3 delegates parsing
to its sub-entries.

IntegerEntryType StringEntryType
CompositeEntryType

+ register()

EntryType

1..*1..*

BlockEntryType BitBlockEntryType

Figure 3.5: Composite Entry-Types

Another composite-entry-type is implemented by BitBlockEntryType/
BitBlockEntry. Bit-blocks allow to register entry-type objects together with a bit
size. During parsing and serialization, the BitBlockEntry object assures that values are
mapped to bits and not to bytes.

Array-entry-types and composite-array-types can be combined, i.e. we can build arrays of
blocks or blocks containing arrays. Blocks can also consist of blocks, and arrays may be arrays
of arrays. That way, we provide the typing power and flexibility of most modern programming
languages.
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3.4.3 Out-of-Band Modules

There may be reusable functions for protocol implementation that are not part of a data-path,
i.e. which do not operate directly on message header fields, but nevertheless provide a gen-
eral service useful for worker objects. A good example for an out-of-band module are TCP’s
congestion-avoidance and control algorithms [72].

PITOU provides the interface OutOfBandModule for these kind of modules. The
interface does not define any methods, it just gives a type to out-of-band modules and
thus helps to distinguish it from other protocol components.

3.4.4 Network Interface

PITOU provides a couple of abstract classes and interfaces to implement wrapper classes
for network service access. The most important classes are SAP and Address. Their goal
is to hide protocol and system specifics behind a stable and simple interface. PITOU already
provides implementations of SAP for TCP, UDP, and IP-Multicast.
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The abstract class Address encapsulates a network address. It defines no abstract methods to
be implemented. We implemented the class InternetAddress, which extends Address
and encapsulates a 4-byte IP address and a 2-byte port number.

The class Packet encapsulates a piece of data – a byte-array – and the source address (of type
Address) of the sender of this data.

The class SAP provides access to a communication service access point by encapsulating a
resource-handle (like a socket endpoint). SAP classes provide the following methods:

� The methods void open() and void close() are used to open and release system
resources (e.g. a socket).

� The methods void setPacketSize(int) and int getPacketSize() allow
to configure the maximum packet size in bytes that can be handled. All data exceeding
this size is cut.

� The method Packet read() performs a non-blocking read-operation to the resource-
handle. If data has arrived, the data is returned together with the source address as an
object of type Packet. If no data has arrived, the method simply returns null.

� The method Packet readUntil() performs a blocking read-operation to the re-
source handle, i.e. the method blocks until data arrives or it is explicitly interrupted.

� The method void send(Packet) performs a send-operation to the resource-handle

� Each SAP object has a default-destination address, which is used when
no address is specified for the send-method. Default-destination addresses
are configured via Address getDefaultDestination() and void

setDefaultDestination(Address).

� Each SAP object allows to specify its own address via Address

getOwnAddress(Address) and void setOwnAddress().

3.4.5 Mapping Strategy

A mapping strategy is an object that maps a piece of data to a reception order-type. Mapping
strategies are represented by the abstract class MappingStrategy, and strongly cooperate
with an environment object.

The following abstract methods must be implemented for mapping strategies:

� The method void map(Packet) uses the byte-array of the packet
to determine matching reception-type object(s). It then calls the
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receive(Packet,ReceptionType) method of the associated environment
object.

� The method void outgoing(EmissionType) is called by the environment to al-
low mapping strategies to append mapping information to outgoing data, which is needed
by the mapping strategy on the remote side to identify the matching reception-type object.

Besides defining these abstract methods, mapping strategy classes implement methods to assign
an environment object and a list of reception-type objects.

PITOU already provides implementations of various mapping strategies. The
DefaultMappingStrategy class uses the identifier of each reception-type and
emission-type to perform mapping. The method outgoing() obtains the identifier via
Order.getID() and appends it to the byte-array. The method map() looks into the
byte-array to obtain the identifier, strips the information from the byte-array, and identifies the
right reception-type object.

Other mapping strategies provided are:

� BroadcastMappingStrategy: all reception-type objects are initialized with the
incoming byte-array

� ByteTupleBasedMappingStrategy: each reception-type is registered together
with a set of tuples each specifying a position in the byte-array and a required value. An
incoming byte-array is checked for all tuples using a multi-hashing strategy to determine
the correct reception-type.

� CallMappingStrategy: each reception-type is registered together with an object
of type Callable, which implements a method boolean isForMe(). For each
incoming byte-array, all callable objects are asked if they want the byte-array. The related
reception-type object of the first callable object returning a true is the one who gets the
data.

� MetaMappingStrategy: consists of a list of different mapping strategy objects. Dur-
ing map() all mapping strategies are tried until one matched.

Due to pre-defined message formats, the implementation of existing protocols (e.g. RTP) may
pose constraints to the developer that require the implementation of protocol-specific mapping
strategies. In all other cases, it is useful to fall back on the DefaultMappingStrategy or
one of the other provided mapping strategies.
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3.4.6 Interfaces to Application

Since the way applications communicate via a protocol object may also be encapsulated in
reusable objects, we encourage the implementation of separate classes to encapsulate interac-
tion between application and environments, instead of letting the application part communicate
directly with the environment.

PITOU provides two interfaces that can be implemented to adapt interaction to the appli-
cations need. The first interface is called ReadAPI and allows the application to obtain
data from an environment object. The second interface is called WriteAPI and allows
the application to feed the protocol environment with information.

ReadAPI defines the following abstract method:

� The method void deliver(Object[], DeliveryType)must be implemented
by an application that wants to be notified about the delivery of data. Data is represented
as an array of objects, i.e. in a representation directly understandable for the applica-
tion (in contrary to e.g. a byte-array delivered by a TCP socket). The argument of type
DeliveryType allows to distinguish deliveries from different orders.

PITOU comes along with a class QueuingReadAPI, which implements the ReadAPI

interface by just appending delivered data to a queue, where it can be read by the ap-
plication later. The use of the class QueueingReadAPI can simplify the implementation of
applications, since the application does not need to implement ReadAPI itself. On the other
hand, that way a context switch is introduced between processing data in the protocol part and
using it by the application part.

WriteAPI defines the following abstract methods:

� The methods void setAcceptanceType(AcceptanceType) and void

setEnvironment(Environment) need to be implemented to give a write-API
access to environment, and to specify which acceptance-type is concerned.

� The method void accept(Object[]) is meant to feed the environment with new
data. The specification of a destination address is necessary when the underlying SAP ob-
ject is not connection-oriented or has no default destination address. Destination address
can be specified by using the method void accept(Object[],Address).

Again, PITOU provides an implementation of WriteAPI: the class StandardWriteAPI
simply calls the accept() method of the related environment.
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3.4.7 Using Timers

Each environment object has a reference to an object of type TimerPool. The idea of a
timerpool is to centralize all timer handling within an environment object to reduce the number
of objects and threads used. A timer-pool may also be shared by several environment objects.

Each class that wants to use timers (in our context, those are normally workers or out-of-band
modules) must implement the interface TimerCompatible, which declares the following
methods:

� The method void setTimerPool(TimerPool) makes the global timer-pool ob-
ject accessible for each object of type TimerCompatible. This method is called dur-
ing the initialization of the environment object.

� The method void timerCall(Timer t) allows the timer-pool to notify a
TimerCompatible object about the expiry of a timer.

The class TimerPool provides the methodTimer getNewTimer(TimerCompatible)

to return an object of type Timer to an object of type TimerCompatible.

The class Timer provides a couple of methods to start, reset, and change time-outs. A timer ob-
ject can be in three states: the state unused means that the timer has not been given to any object.
The state used means that a timer has been given to an object that has called getNewTimer().
The state activated means that a timer has started to run. The following methods are imple-
mented for timers.

� The method reset(long) resets an activated timer with a new value or activates a
timer that has not yet been activated.

� The method cancel() deactivates a running timer.

� The method getAbsTimeout() returns the absolute time of expiry.

� The methodendUse() assures that the timer is no longer usable until it is returned again
by the timer-pool’s getNewTimer() method.

A timerpool works as follows. A worker, who implements the TimerCompatible interface,
obtains a timer object from the timer-pool’s list of unused timers by calling getNewTimer().
For each timer object, the timer-pool reserves an own thread. The timerpool adds the worker to
a table that associates each timer-compatible worker with its timer object. Each time the worker
operates on the timer object, the timer-pool is notified. The timerpool maintains a list of all
activated timers sorted according to there expiration time. The timerpool implements a thread
that sleeps until the first timer in the list is canceled or expires. Upon expiry, the timerpool
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activates the thread of the respective timer, and calls the related timer-compatible object via the
method timerCall(), which handles the time-out.

3.5 Assembling Components using Java-Beans

Once all necessary components are implemented, a protocol can be built by just assembling
existing components together and configuring them. In this section we show how the Java-
Beans component model can be used to build PITOU protocols in a visual manner, and discuss
benefits and drawbacks.

3.5.1 Naming Conventions and Composition Process

Now that we know the main components of our framework, we want to show how a tool like
Visual-Age for Java (VAJ) [70] can be used to build protocols. VAJ provides a user interface
called visual composition window (VCWin), which is used to build an application (or another
component) visually. The VAJ allows to place bean objects in the VCWin, to configure them,
and to connect them.

In order to be Java-Beans compliant, a component implementation must respect certain naming
conventions:

1. all classes to be interpreted as beans must provide a standard constructor without param-
eters

2. configurable attributes (”properties”) are identified via methods that start with set or
get

3. communication between beans is modeled via events; beans that fire an event
of type ABC must implement two methods named addABCListener() and
removeABCListener()

The Java-Beans compliant visual builder tools use the Java reflection mechanism to identify
properties, events, and behavior. The reflection classes allow to reason about the internal struc-
ture (class, method, and field declarations) of programs at runtime.

While a parameter-less standard constructor and the implementation of set/get methods are
common programming practice rather than a constraint on flexibility, the event-model forces us
to implement methods that are very specific to the Java Beans component model. Changing the
component-model may thus require changing many classes.

The composition process with VAJ looks like follows.
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1. VAJ provides a palette of icons, each of which represents a Java-Bean (see Figure 3.7.
The programmer selects a bean and puts it on the VCWin. Internally, VAJ instantiates an
object of this bean class by using the standard constructor.

OrderType(Internal)

AcceptanceType

EmissionType

OutputOrderType

ReceptionType

DeliveryType Worker

Data Entry

Environment

Figure 3.7: Design Elements as Java-Beans Icons

2. For each bean instantiated, VAJ allows to open a window called property editor (see
Figure 3.8). This little window provides the possibility to configure all properties of the
bean. Internally, VAJ uses the get method of the bean object to obtain the current value,
and the set method to write a user-defined value to the object. It is important to note
that all beans are instantiated, i.e. configuration happens at runtime on real objects.

Figure 3.8: Property configuration (screen-shot using Visual Age)

3. For each bean instantiated, VAJ allows to open a window that identifies all events the bean
fires, and a window that allows to identify all accessible methods a bean provides. Con-
necting two beans means choosing an event of one bean (the event source) and specifying
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the method of another bean (the event destination) that is supposed to be called when the
event source bean fires. Since it can not be expected that an event destination implements
an event handler for any possible event fired by any other bean, the two beans can not
be directly connected. Instead, VAJ internally represents the connection between two
beans. When composition has terminated, VAJ produces code (so called event-adapters
described in Chapter 2 ) that maps fired events to the specified method. Connecting beans
via events is depicted by Figure 3.9.

Fragmentation

EmissionOrder

Figure 3.9: Building event connections (screen-shot using Visual Age)

4. When the composition process is terminated, VAJ generates the code of the application
composed visually. That is, VAJ represents the chosen values of the properties and the
specified connections between beans as Java code. The generated code may be used itself
as a bean.

VAJ provides one default event called init()-event, which is in fact a pseudo-event supposed to
be fired once when the application composed is instantiated. The init-event allows to realize
static connection between beans, e.g. giving one bean the reference of another bean. For com-
posing PITOU protocols, the init-event is an indispensable mechanism, since the biggest part of
the composition process consists of specifying static relations between components.
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3.5.2 Composition of PITOU protocols

Using VAJ to compose a complete protocol within the PITOU framework basically consists of
the following steps.

1. Instantiate all beans needed, at least

� one Environment bean,

� all OrderType beans,

� for each order-type the respective EntryType and Worker beans

2. Configure the beans, that is

� the priority for order-types,

� the order-IDs for emission-types and reception-types,

� the init-flag and the visible-flag for entry-types,

� worker specific properties (e.g. window size, time-out values, etc.).

3. Define the structure. The init-event is used to

� connect the environment with its order-types,

� connect the order-types with its entry-types and workers.

4. Define the communication during execution time among workers. That is, worker specific
events are used to

� establish communication among workers to exchange information or for notifica-
tion,

� establish communication between a worker and an order-type to create new orders
during execution.

Figure 3.10 depicts a screen-shot from VAJ to give the reader an idea how a protocol looks
like that has been composed visually. The protocol depicted implements an ARQ-based error
control mechanism without assuring ordered delivery, a window-based flow control mechanism,
and fragmentation. Although the example protocol is rather simple, its visual representation is
already rather complex and difficult to grasp.
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Figure 3.10: An example protocol (screen-shot using Visual Age)

3.5.3 Discussion

Our experiments using VAJ and Java-Beans to compose protocols lead us to a number of obser-
vations. Among the benefits of this approach are:

� rapid-prototyping: the time to compose new protocols is extremely reduced. Instead
writing code for configuration and structure specification, we can use a comfortable
graphical user interface.

� robustness: since we are guided through the composition process, the probability of
e.g. overseeing an important property, is reduced. Additionally, it is much easier to cap-
ture a structure and detect flaws when the structure is presented visually – however, de-
pending on the complexity of the structure.

� ubiquity: since the approach is based on the Java-Beans model, which has become a
quasi standard for component-based software engineering, PITOU protocols can be built
by any other tool supporting Java-Beans.

However, we also discovered a number of limits:

� complexity: experiments with implementing TCP visually (see also Chapter 5) showed
that a protocol may comprise many connections among its components. Composing a
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complex protocol like TCP leads to a visual complexity that is no longer manageable for
human beings. Especially, later modifications are very cumbersome.

� builder-tool: not only the human eye, but also VAJ had problems with complex protocols.
When a large number of connections are specified, VAJ sometimes changed the order of
the connections during the code-generation phase. Since the right order of registration of
workers and entry-types is crucial, the misordering of connections can introduce serious
flaws into a protocol.

� code generation: another problem with this approach is that we have no control over code
that has been generated for the event adapters. Sometimes (for debugging, simulation, or
logging) it is useful to modify the event-adapter code that implements the communication
between components. However, each time the code is modified, these modifications are
overridden.

While the use of Java-Beans was an interesting experience, we consider the approach – at least
given the todays tools – not yet mature enough. If VAJ would provide different views onto
different composition levels, a better support to allow step-wise definition of sub-components,
and a better handling of complex interaction between components, the use of Java-Beans would
be much more attractive. Until this happens, we help ourselves with a proprietary design for
component interactions, which is tailored to the needs of protocols.

3.6 Assembling Components – Our Own Approach

We propose two concepts to overcome the problems with the Java-Beans approach. We first
propose to encapsulate the structure of a protocol in special objects called registrars to decouple
structural and dynamic behavior of a protocol. Second, we propose to encapsulate interaction
between workers (or any other component) into explicit objects to allow the specification of the
interaction at runtime without a-priori component knowledge.

3.6.1 The concept of Registrars

In order to decouple the static (definition of the protocol structure) from the dynamic aspects
(protocol processing at runtime) of a protocol implementation, we encapsulate the static aspects
in separate components called registrars that are used for the registration of the various pro-
tocol components and their relations. Instead of registering e.g. order-types directly with the
environment object, we register them with an object of class OrderRegistrar and give this
registrar object to the environment. The same concept applies also for the registration of work-
ers and entries, mapping strategies, or SAPs. The advantage of using registrar objects is that the
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structure of a protocol is explicitly defined, accessible in a compact manner, and thus usable for
reasons of modification or validation. Registration using registrar objects works as follows.

Registration of Order-Types

The class OrderRegistrar is used to register all order-type objects for an environment.
Order-registrars provide the method void addOrder(OrderType) to register order-type
objects. Internally, all order-types are sorted according to their class (acceptance, delivery, etc.).

Once all order-types are registered, the order-registrar object can be given to the environment
via Environment.setOrderRegistrar().

Registration of Workers and Entries

The class StructureRegistrar is used to register all workers, entry-types, and their pa-
rameter relations for a certain order-type. The class StructureRegistrar provides the
following methods:

� The method void addEntry(EntryType) registers an entry-type object.

� The method void addWorker(Worker) registers a worker.

� The method void addWorkerParameter(EntryType, Worker) specifies a
parameter relation between a worker and an entry-type object. Entry-type or worker
object are registered via the other two methods, if not yet done.

Note that the order of registration for workers define the order in which the workers are called.
The order registration for the entry-type objects define the format of the messages sent. It is
therefore very important to pay attention to the right order of registration.

Once all workers and entry-types are registered, the structure-registrar object can be given to its
order-type via OrderType.setStructureRegistrar().

Registration of Out-Of-Band Modules

The class OutOfBandRegistrar is used to register all out-of-band modules for an envi-
ronment. Out-of-band-registrars provide the method addOutOfBandModule(). Once all
out-of-band modules are registered, the out-of-band registrar object can be given to the envi-
ronment via Environment.setOutOfBandRegistrar().
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3.6.2 A Design Approach for Component Interaction

Java-Beans uses an event-mechanism and requires certain naming conventions to let arbitrary
components interact without compromising their independence. Interactions are thus not an
explicit part of the protocol structure and are generated at implementation time. The goal of
our design approach is to encapsulate interactions in explicit objects that can be established at
runtime.

During our experiments with composing protocols using Java-Beans, we discovered that inter-
actions between our components can be classified into two categories:

� shared-resource relations: the characteristic of shared-resource relations is that a cer-
tain resource (e.g. a buffer) is provided (i.e. instantiated) by one component and may
be used by one or more other components. We call the component that provides the
resource a resource-publisher, and the components using it a resource-subscriber.
Resource-publishers must provide an interface to make the resource accessible, resource-
subscribers must provide an interface to obtain the resource.

� notification relations: the characteristic of notification-relations is that a certain compo-
nent notifies one or more other components about a certain event (but without specifying
an event type or passing parameters). We call the notifying component a notifier and
the notified component a notifiee. Notifiers and notifiees must provide an interface that
allows to connect them: notifiers define an interface that indicates notification sources,
notifiees an interface that indicates a notification sink.

Any connection between Java-Beans – which are nothing more than parameterized method calls
– can be composed out of these two relations. Method calls are mapped to notification relations,
parameters to shared resource relations.

Figure 3.11 depicts the class-diagram for notification relations, and Figure 3.12 the class-
diagram for shared resource relations.

Since the creation of orders is fundamental to implement protocols using PITOU, we decided to
explicitly support a third category of relation called new-order-relations. New-order-relations
describe the case that one component (normally a worker) fires an event that should lead to the
creation/execution of a new order. New-order relations are thus strongly related to notification
relations.

Interaction between Workers using Explicit Relation Objects

The idea of our approach is to encapsulate interaction in explicit objects. We therefore de-
fine an interface Relation, which declares the method void init(). This inter-
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NotificationRelation
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+ setCaller()
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Figure 3.11: Notification Relation (Class Diagram)

Object (Subscriber)Object (Provider)

Resource

+ write()
+ read()

11

TypedResource

+ write()
+ read()

ResourceAccessor

# assignResource()
+ read()

11

1..*1..*

SharedResourceRelation

+ setResource()
+ setAccessor()
+ init()

11

11

Figure 3.12: Shared Resource Relation (Class Diagram)

face is implemented for each category of relation, hence SharedResourceRelation,
NotificationRelation, and NewOrderRelation.

Every component that wants to be identified as a resource publisher, must provide a method
that allows to obtain an object of type Resource. Every component that wants to be iden-
tified as a resource subscriber, must provide a method that allows to obtain an object of type
ResourceAccessor. Establishing a shared-resource relation then means to assign the ob-
tained Resource and ResourceAccessor objects in a SharedResourceRelation
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object. Note that the resource-publisher and -subscriber components do not need to implement
an interface or be of a certain type, they just provide a kind of place-holder object (depending
on their role in the relation) that allows to interact without making any assumption (besides the
type of the resource that is exchanged) about the interaction partner component.

The following scenario illustrates how shared-resource relations are established and used.

1. The components A and B are given. Component A is a resource-publisher
and provides the method Resource defineOutput seq(). Component
B is a resource-subscriber and provides the method ResourceAccessor

defineInput nextSeq().

2. The protocol developer instantiate an object of type SharedResourceRelation.

3. He assigns the resource object obtained from A to the relation via setResource() and
the resource-accessor obtained from B via setAccessor()

4. The method SharedResourceRelation.init() gives the resource to the acces-
sor.

5. The subscriber component B can now access the resource object by calling the accessor’s
Object read() method.

For notification relations, each notifier components provides a method that returns an object
of type EventRaiser. Each notifiee component provides a method that returns an ob-
ject of type Caller. Establishing a notification relation thus means to assign the obtained
EventRaiser object with the obtained Caller object. While EventRaiser is a reusable
class (as Resource and ResourceAccessor), Caller is only an interface declaring
the method void redirectNotification() that must be implemented for each kind of
notification a notifiee is waiting for. Within redirectNotification() a caller should
call the component specific method that reacts to the notification.

The following scenario illustrates how notification relations are established and used.

1. The components A and B are given. Component A is a notifier and provides the method
EventRaiser defineEvent timeout(). Component B is a notifiee and pro-
vides a method void lossHappened(), which should be called every time packet
is detected. B therefore provides the method Caller defineCaller loss(),
which returns an object of the class Caller loss, which implements the method
redirectNotification(). Within redirectNotification a simple call to
B.lossHappened() is implemented.

2. The protocol developer instantiates an object of type NotificationRelation.
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3. He assigns the event-raiser object from A to the notification relation object via
setEventRaiser() and the caller object via setCaller().

4. The method NotificationRelation.init() registers the caller at the event-
raiser.

5. Each time component A calls the method EventRaiser.raise(), all registered
caller objects are notified via Caller.redirectNotification()

Figure 3.13 illustrates the method sequence to execute a notification call.

Notifier Notifiee

CallerEvent
Raiser

NotificationRelation

2. redirectNotify()1. raise() 3. method()

A Notification Call:
1. the notifying component calls the event-raiser to indicate an event via raise()
2. the event-raiser calls all registered listeners via redirectNotify()
3. the caller invokes the notified component’s method that handles the notification

Figure 3.13: Notification Relation (Method Call)

New-order relations are composed by assigning an event-raiser object with an order-type object.
That is, any event-raiser provided by notifier components can be used either to notify another
component or to create a new order.

We apply the following naming conventions to objects that want to participate in one of the
three relations described above. Any component that wants to notify another component about
a certain event must implement a method starting with defineEvent that returns an object
of type EventRaiser. A component triggering more than one event must implement the
corresponding number of defineEvent methods. Any component that wants to be notified
about a certain event must implement for each event a method starting with defineCaller
that return an object of type Caller.

For each resource that a resource-publisher component provides, it must implement a method
starting with defineOutput that returns an object of type Resource. For each resource
that a resource-subscriber component needs to perform his tasks, it must implement a method
starting with defineInput that returns an object of type ResourceAccessor.

Table 3.1 lists the PITOU naming conventions for explicit interaction between components.
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Role Relation Type Method Name Return Type

Notifier Notification defineEvent ...() EventRaiser

Notifiee Notification defineCaller ...() Caller

Resource Publisher Shared Resource defineOutput ...() Resource

Resource Subscriber Shared Resource defineInput ...() ResourceAccessor

Table 3.1: Naming Conventions for Component Interaction

Some core PITOU classes are by default notifiers or notifiees, shared resource publishers or
subscribers.

� All classes of type OrderType provide a method defineEvent execDone() to
provide an event-raiser that is called every time order execution has terminated.

� The class Environment provides a method defineCaller terminate() to be
notified about the fact that a protocol session is considered to be terminated.

� Emittable and receptable order-types provide address and order-ID as shared resources
defined by defineOutput add(), and defineOutput id().

Figure 3.14 illustrates the difference between our approach and the Java-Beans approach that
uses event adapters. While a Java-Beans tool must create a new adapter class for each relation,
we force every component to provide its interface as an object that can be used to be connected
with the interface object of another component via a standard object (of class Relation).

Relation Registrars

Similar to the registrars already described above, we introduce a class RelationRegistrar,
which has the objective of storing all relation objects of a protocol environment. Relation
registrars provide the method void addRelation(Relation) to register relations and to
sort them internally into the three categories (notify, shared-resource, new-order). The method
void init() initializes all relation objects by calling Relation.init().

Once all relation objects are registered, the relation-registrar object can be given to the environ-
ment via Environment.setRelationRegistrar().

3.6.3 Discussion

One might say that encapsulating interaction in objects heavily complicates communication
between components. New helper classes (Caller) must be implemented, the memory foot-
print of the protocol software is larger, and the overhead for notify relations is increased by



84 CHAPTER 3. THE PITOU PROTOCOL DEVELOPMENT ENVIRONMENT

Event-Adapter: A new
class maps between the
components

control flow

Interaction Reification:
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reusable relation object

component specific adapter

interface object

control flow

Figure 3.14: Interaction Reification vs. Event Adapter

an additional method call indirection. However, we have a number of reasons to believe that
encapsulating interaction in objects is very useful.

First of all, we ensure complete independence of components while providing full flexibility of
interaction. Components can interact without knowing anything about the peer component, the
services it implements, or its interface. Components do not even need to agree on an event type.
Notification relations are not parameterized, shared-resource relations are based solely on the
type of the resource.2

Besides the reusability aspects, encapsulating interaction in objects makes an important as-
pect of the protocol structure – the interactions between its components – explicit and visible.
Explicit interactions allow us to reason about correctness and complexity of a protocol: in com-
bination with the naming conventions, the reflection classes of Java can be used to check if

2It is up to the protocol developer to understand the semantics of the components to let them cooperate in a
useful way. For example, a component triggering a notification upon a packet loss, should not be connected with a
notifiee that expects a notification about the termination of a connection.
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all notification components are plugged with a corresponding notifiee component, and if all
resource-subscribers are provided with the resources they need to work. We think that the price
we pay for reusability and correctness is not too high.

3.7 Other Aspects of Composition

This section shows how to compose finite state machines in PITOU, how to choose the under-
lying network services, and how to specify different thread-models.

3.7.1 Defining Finite State Machines

Finite State Machines (FSM) are a well-explored structuring concept used for many protocol
specifications and implementations (the best known example is TCP [109]). We therefore de-
cided to integrate the concept of FSM into our framework and make it cooperate with the vertical
structuring approach.

Classes involved

The following classes and interfaces are involved in defining and using a FSM. A FSM
is represented by the class SessionStateManager, which manages and coordinates all
states. States are represented by the class SessionState. Each state has a name, a set of
filters, and a set of transitions. A transition is defined by an object that triggers the transition
(EventRaiser) and a target state. A filter is an object that defines two states activated and
deactivated. Associating filters with states allows to inhibit operations (in our context execution
of orders) given a certain state.

The class StateManager provides the following methods:

� The method void signal(EventRaiser) informs the current state object about an
event.

� The method void init() initializes all states.

� The method void addSessionState(SessionState) adds a state to the FSM.

� The method void setStart(SessionState) sets the initial state of the FSM.

The class SessionState provides the following methods:
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� The methods void setName(String) and String getName() allow to config-
ure the name of the state.

� The method void addTransition(EventRaiser,SessionState) defines a
transition from this state to a target state; the transition is executed when an event is fired
from the specified event-raiser object.

� The method void addFilter() registers a filter object at a state. Filters are activated
when the state is the current one, and deactivated when the current state changes.

� The method enter() makes the state active, i.e. makes it the current state in the FSM.
The state now activates all filters and expects events for a transition.

� The method void init(StateManager) performs optimizations of the internal
structure of a state machine and provides all event-raisers with a reference of the state-
manager (used to allow the event-raisers to signal events).

� The method SessionState transit(EventRaiser) is called by the state-
manager to signal an event to the current state. This method then determines and returns
the new current state and deactivates all filters.

The interface Filter provides the following methods:

� the method letNotPass() activates, and

� the method void letPass() deactivates a filter.

Integrating Orders and FSM

Our FSM implementation uses the class EventRaiser to trigger transitions between states
(which we already explained in the context of defining relations between components). That is,
every order-type object (via defineEvent execDone() ) as well as any worker specified
as notifier can trigger a state change.

Additionally, OrderType also implements the Filterinterface. This allows us to avoid
the execution of order-types that are not valid in a given state.

Scenario

The following scenario shows how a FSM interacts with the principal PITOU protocol compo-
nents. Imagine we have an environment consisting of two order-types named question (emis-
sion) and answer (reception). We define a FSM consisting of two states named idle and waiting.
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The initial state is idle. Each time a question is executed, the FSM changes to waiting. Each
time a answer is executed, the FSM changes to idle. In the idle state, no answer is allowed to
be executed. In the waiting state, no question is allowed to be executed.

The FSM for this simple protocol environment is specified as follows:

1. Create a session state registrar object:

� stateReg=new SessionStateRegistrar().

2. Create two state objects.

� IDLE=new SessionState()

� WAITING=new SessionState()

3. Give names to the states.

� IDLE.setName("idle")

� WAITING.setName("waiting")

4. Specify the transitions between the states.

� IDLE.addTransition(question.defineEvent execDone(),

WAITING)

� WAITING.addTransition(answer.defineEvent execDone(),

IDLE)

5. Specify the filters for each state.

� IDLE.addFilter(answer)

� WAITING.addFilter(question)

6. Register states with the registrar object.

� stateReg.addState(IDLE)

� stateReg.addState(WAITING)

7. Register the state-registrar object with the environment object:
environment.setStateRegistrar(stateReg).

During initialization, the reference to a StateManager object is given to all objects of type
EventRaiser. The following scenario shows how the state of the environment changes when
the first question order is executed.
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1. After execution of the question order, the method EventRaiser.raise() is called
on the respective event-raiser object

2. The event-raiser object calls StateManager.signal(EventRaiser).

3. Within the signal() method, the state-manager calls the method State

State.transit(EventRaiser) on the object representing the current state,
i.e. the IDLE state.

4. Within the IDLE.transit() method, all filters are deactivated (i.e. in our scenario,
the answer order-type is no longer blocked) and the new state, i.e. WAITING, returned.

5. The state-manager now knows the new current state and applies the
WAITING.enter() method on it. Within enter() all filters are activated
(i.e. the question order-type blocked)

The transition between states is also illustrated in Figure 3.15.

EventRaiser

State 1 State 2 State 3

1. signal()

2. transit() 3. enter()

State Manager

State Transition:
1. an event is signaled to the state manager (e.g. by a worker)
2. the state manager determines the new state by asking the current state
3. the state manager activates the new state

Figure 3.15: State Transition
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3.7.2 Specifying Thread Strategies

Classes involved

To allow for a maximum of flexibility for associating threads with order-types, we delegate the
responsibility of executing an order to a special object of type Executor, which defines an
interface with the following methods:

� The method void executeOrder(Order,int) takes the request for execution of
an order and handles it.

� The method isWorking() indicates if an order is executed at the moment.

Order execution is now modified as follows. Upon the arrival of data, the method
OrderType.requestOrder() is called as before to initialize an order object with poten-
tial data. Instead of calling the method Order.execute() directly as before, the order-type
calls the method Executor.executeOrder(). The executor object of the corresponding
order-type decides when and how to call the method Order.execute().

The advantage of this design is that the initialization and execution of orders is decoupled.
Executor objects are associated with order-types in many different ways. When each order-type
has its own active executor object, it is automatically associated with its own thread. When all
order-types share one active executor object, a single thread is responsible for all order-types.
When all order-types share a passive executor object, orders are executed by the system thread
(similar to a reactive model). Figure 3.16 shows the differences of the object relations when an
executor is used.

PITOU provides two implementations of Executor. The class ActiveExecutor imple-
ment its own thread. The method executeOrder() puts the order object in a queue, from
where the order object is read and executed by a thread. The class PassiveExecutor im-
mediately executes an order in the executeOrder()method. The two execution models are
depicted in Figure 3.17.

Associating Order-Types with Executors

The classes ExecutorRegistrar and ExecutionGroup are used to define the thread-
model for a protocol environment object. Execution groups allow to register a set of order-
type objects and associate them with an executor object. Executor registrars allow to register
execution groups.

ExecutionGroup provides the following methods:

� The method void addOrder(OrderType) allows to register an order type object.
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Environment OrderType1 Order1

requestOrder()
initialize()

execute()

requestOrder()
initialize()

execute()

Without Decoupling Execution

Execution is performed by the Order-Type

Executor1Environment OrderType1 Order1

requestOrder()
initialize()

requestOrder()
initialize()

Decoupling Execution

Execution is performed by the Executor

executeOrder()

execute()

executeOrder()

execute()

* This scenario is
strictly synchronous

Figure 3.16: Decoupling Execution

OrderType

OrderType

PassiveExecutor
requestOrder

requestOrder

executeOrder

executeOrder

ActiveExecutor

order.execute()

queue(order)

order=queue.next()
order.execute()

Figure 3.17: Passive vs. Active Executor

� The method void setExecutor(Executor) allows to set the executor object re-
sponsible for all order-types.

� The method void init() gives the executor object to all order-type objects.
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ExecutorRegistrar provides the following methods:

� The method void addExecutionGroup(ExecutionGroup) registers another
execution group.

� The method void init() calls the init() method of all registered execution
groups.

Once all execution groups are defined and registered, the executor-registrar object can be given
to the environment via Environment.setExecutorRegistrar().

3.7.3 Registration of SAPs

The class SAPRegistrar is used to register all kind of SAPs for an environment. SAP-
registrars provide the method addSAP() for registration.

The order of registration is important, because the SAP objects are referenced by an index that
corresponds to the position of the respective SAP object in the registration list of the SAP-
registrar. Each reception- and emission-type and each mapping strategy object specify a SAP
number that corresponds to the position of the SAP in the order-registrar. Figure 3.18 shows
how an emission-type object specifies a SAP via an index, and obtains the corresponding object
after initialization of the environment.

Once all SAPs are registered, the SAP-registrar object can be given to the environment via
Environment.setSAPRegistrar().

3.7.4 Specifying Mapping Strategies

The class MappingRegistrar is used to register all mapping-strategies for an envi-
ronment. Each mapping strategy must specify the number of the SAP it belongs to.
Mapping-registrars provide the method addMappingStrategy(). Once all mapping-
strategies are registered, the mapping-registrar object can be given to the environment via
Environment.setMappingRegistrar().

3.7.5 Exception Handling

An exception is a signal that indicates that some sort of exceptional condition (such as an
error) has occurred [55]. The Java keyword throw is used to signal an exception. The Java
keyword catch is used to handle it. Exceptions signaled are objects that propagate up in the
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OrderRegistrar

SAPRegistrar
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During the initialization of the environment, the registered SAP objects are given to the emis-
sion-type and reception-type objects that specify the corresponding index (which refers to the
order of registration) and to the created emission/reception order objects.

Figure 3.18: Associating SAP objects

hierarchy of method calls until they are handled. The advantage of this language feature is that
it allows to group related errors and centralize their handling.

In PITOU, we have two categories of exceptions. The first category comprises exceptions that
are signaled during the construction and initialization phase. They are represented by the class
ProtocolConstructionException and signal a serious flaw of the protocol structure
when the following problems occur.

� The type of the parameters of the specified entries are not the ones a worker expects. The
exception is thrown in the Worker.init() method.

� A session-state defines a target state that is not known by the session-state registrar. The
exception is thrown by SessionStateRegistrar.init().

� Objects are registered more than once at the same registrar. This exception is signaled in
the registration methods of all registrars (e.g. OrderRegistrar.addOrder()).
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� Order-types or mapping strategies reference SAP numbers that are not valid, e.g. an
reception-type specifies SAP No. 3 as output, but only 2 SAP objects are registered at the
SAPRegistrar. This exception is signaled in the Environment.init()method.

� The identifiers of emission-types or reception-types are either not defined or not unique.
This exception is signaled in the OrderRegistrar.init()method.

Exceptions concerning flaws of the protocol structure should not be handled, but directly lead
to termination of the program. They are such serious that a protocol environment should not
enter the execution phase.

The second categories of exceptions comprises those that are signaled during the execution
phase of a protocol represented by the class ProtocolExecutionException. The fol-
lowing exceptions are specializations of ProtocolExecutionException.

� Any problem experienced during initialization (e.g. the input byte-array is too long or too
short), execution (e.g. a worker stops execution), or serialization of an order (e.g. an entry
is empty) will result in signaling an OrderException. This exception is handled by
the respecting order-type object and avoids that an order is further executed, delivered, or
sent.

� Any problem that occurs during the operation of an entry (e.g. initialization, serialization,
manipulation) will cause an EntryException. This exception is handled either by
workers (which may transform them into a WorkerException) or by orders (which
will transform them into a OrderException).

� Any problem that occurs during the operation of a worker (either in call() or any other
method of a worker), will result in signaling a WorkerException. This exception is
handled by the executing order object in the Order.execute() method and causes
the immediate termination of the corresponding order.

� When network data can not be mapped to a reception-type object, a
MappingException is fired by the mapping strategy in the map() method.
Handling is done by the environment, which just ignores the data.

The handling of execution exceptions described above is done internally, i.e. inside the protocol
classes without notifying the application. Since it would be useful for the application to know
about the exceptions that occur, we integrated the following simple mechanism.

We define an interface ExceptionHandler, which declares the method void

exceptionOccured(Exception). The Environment provides a method void

setExceptionHandler(ExceptionHandler), which allows an application to give
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the environment an application-specific implementation of the ExceptionHandler

interface. During initialization, the environment gives the exception handler object to all
order-type objects. Every time an order exception occurs (and an exception handler is set by
the application), the order-type calls the method exceptionOccured() and thus allows the
application to intervene.

There are two more exceptions that must be handled by the application itself:

� When an environment has not yet entered the execution phase, it is not ready to accept
or receive data. Every attempt to call the methods accept() or netData() lead to
a EnvironmentNotActiveException. The same exception type is used when the
environment is accessed after its deactivation.

� Every problem during reading from or writing to a SAP object results in signaling a
SAPException.

3.7.6 Incorporating Environments in the Application

In this section, we shortly sketch the issues to integrate a PITOU protocol into a distributed
application.

Creation of Environment Instances

During the construction phase, an environment object is instantiated and supplied with all nec-
essary objects. However, an application normally wants to use more than just one instance of a
certain environment. One solution to create new environment instances would be the use of the
Prototype[59] pattern. That means, the environment class and all other classes that make up the
environment (order-type, worker, entry, state, etc.) would need to provide a clone() method
to reproduce exactly the same structure and configuration.

We propose a simpler way to create new environment instances. We define an abstract
class called ProtocolBuilder that defines the abstract method Environment

construct() and throws a ProtocolConstructionException. The
construct() method encapsulates the code executed during the construction phase,
and returns an environment object. Applications then use a protocol builder object to create
new environment objects.

The application may decide if the construct() method also defines the SAPRegistrar.
If the application wants to be able to change the SAPs during execution (e.g. to cope with
SAPException), it may use the SAPRegistrar SAPRegistrar.create() method to
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create clones of the registered SAP types, and assign them at any time to the environment via
void changeSAPs(SAPRegistrar).

Communication Subsystem

The application is responsible to implement reading packets from the SAP objects, and give the
data to the Environment.netData(Packet)method. The application may read packets
in a non-blocking way within a single thread for all SAPs (e.g. in the main() of the applica-
tion) to minimize the number of threads. It may alternatively implement one thread for each
environment or even for each SAP object and perform blocking reads to better utilize CPU re-
sources. The design of the environment is hence independent from application design issues.
Since treating all application issues are out of the scope of this dissertation, we don’t make
propositions how the communication sub-system of an application can be designed for reuse
and flexible change. The interested reader is referenced to work of Douglas Schmidt [126].

Closing Environments

In order to be notified about the fact that an environment considers itself closed and is
ready to be deactivated, an application must implement the interface CloseListener,
which declares the abstract method void envClosed(Environment). An environ-
ment considers itself to be closed if any component triggers the execution of the method
Environment.notifyTerminate().

Note that a closed environment is not yet deactivated. In order to give the application full control
over the environment, we decided to make the application responsible to call the method void
deactivate(), which then closes all allocated resources.

3.8 Design Patterns Used

In this section, we review the design patterns we used for our framework.

3.8.1 Layers

The principle of layering is also known as an architectural design pattern called Layers pattern
[31].

At the one hand, we seek to overcome layering in the organization of protocol software, since
layering hardly allows flexible composition of fine-grained, reusable components. At the other
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hand, we apply Layers by building the protocol of a distributed application on top of the pro-
tocol stack of the operating system, since we can thus reuse standardized, efficient, and robust
services. This examples shows the interesting case where a design pattern can both enable and
obstruct reusability in the same system.

3.8.2 Configurable Architecture

The intent of Configurable Architecture [132] is to provide a way to influence system behavior
and capabilities, not only by programming or run-time input, but by giving a configuration
mechanism. This allows the system to vary its behavior from installation to installation without
re-compilation.

Configurable Architecture consists of the following participants:

� Configurable System: initializes itself via the configuration values, processes input ac-
cording to configuration. The Configurable System is the generic implementation of the
system using the Configuration Storage to retrieve its Configuration during its start up.
In PITOU, the Environment class represents a Configurable System.

� Configuration Storage: represents configuration data, allows editing of configuration by
authorized entity. The Configuration Storage is the mechanism that keeps the configura-
tion values persistent and provides them during startup. In PITOU, the various registrar
objects act as Configuration Storage (in contrary to e.g. configuration files, or data bases).

� Installation: is the combination of the system with a concrete set of configuration values,
serves as a unit of system operation. In PITOU, an environment becomes an installation
when all the registrar objects are assigned and initialized.

� Configuration: represents the data values controlling the system operation. The Config-
uration is the concrete set of values stored in the Configuration Storage. It represents the
concrete behavior of the Configurable System. In PITOU, all order-type objects with their
combination of workers and entry-type objects, states, out-of-band modules, etc. as well
as their configured properties form the Configuration.

The PITOU framework is an extreme form of a Configurable System since it offers a high
degree of flexibility. This pattern is a very general and abstract one that lets the designer many
degrees of freedom. We found the pattern very interesting since it helped us to weight forces
(e.g. flexibility against performance) and identify crucial design issues (e.g. the importance of
a good structure).



3.8. DESIGN PATTERNS USED 97

3.8.3 Manager

The intent of Manager [133] is to put functionality that concerns all objects of a class into a
separate managing object. This separation allows the independent variation of manager func-
tionality and its reuse for different object classes.

� Manager: treats the collection of managed objects as a whole, deals with issues related
to accessing, creating, or destroying managed objects.

� Subject: represent a managed object, which perform a certain task on behalf of a Client

� Client: retrieve a specific managed object from the Manager.

In PITOU, OrderType serves as a Manager for the Environment object (Client) by man-
aging objects of type Order. Execution of orders (as well as creating, initialization, and de-
activation) is possible only by accessing the Manager. We used the Manager pattern to hide
the implementation of thread-management and object pool management behind a stable in-
terface. The class Environment is also a Manager that controls access to objects of type
OrderType from the application (Client).

3.8.4 Type Object

The intent of Type Object [76] is to decouple dynamic from static information of an object.
Type Object allows new ”types” to be created dynamically at runtime, lets a system provide its
own type-checking rules, and can lead to simpler, smaller systems. Type Object consists of two
participants: one that represents objects, one that represents the type of an object.

In the PITOU framework, Type Object is applied to orders (Order – OrderType) and entries
(Entry – EntryType). In both cases, the goal is to separate static and dynamic aspects of a
protocol. The type objects (order-type, entry-type) are used to define the structure of a protocol,
while the dynamic objects (order, entry) are internal framework classes and implement the
behaviour of their ”types”.

The use of Type Object allows us to decouple protocol composition from execution.

3.8.5 Adapter

The intent of Adapter [59] (also known as Wrapper) is to convert the interface of a class into
another interface clients expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.
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In the PITOU framework, we apply the Adapter pattern to SAPs. The adapter consists of the
following participants:

� Target: defines the domain-specific interface a client uses. In PITOU, the SAP interface
represents the target of the Adapter pattern

� Client: collaborates with objects conforming to the Target interface. In PITOU, any class
accessing SAPs are clients (e.g. Environment sending, application sub-system classes
reading)

� Adaptee: defines an existing interface that needs adapting. In PITOU, all socket inter-
faces that are encapsulated behind SAPs are adaptees (e.g. the Java Socket and Datagram-
Socket)

� Adapter: adapts the interface of Adaptee to the Target interface. In PITOU, all classes in
pitou.net, i.e. TCPSAP, UDPSAP, MCSAP, which implement the SAP interface, are
adapter classes.

The use of Adapter allows us to decouple specifics of underlying network service interfaces
from the protocol. We can thus change the underlying network or transport protocol without
affecting the application-tailored protocol.

3.8.6 Strategy

The intent of Strategy [59] is to define a family of algorithms, encapsulate each one, and make
them interchangeable. Strategy lets the algorithm vary independently from clients that use it.

In PITOU, we apply Strategy for mapping, and thread-handling.

Strategy consists of the following participants:

� Strategy: declares an interface common to all supported algorithms. In PITOU,
MappingStrategy defines the interface for mapping algorithms, Executor the in-
terface for execution algorithms with regard to the specified threads.

� ConcreteStrategy: implements the algorithm using the Strategy interface.
DefaultMappingStrategy is an example for ConcreteStrategy in the context
of mapping, PassiveExecutor in the context of execution.

� Context: is configured with a ConcreteStrategy object, maintains a reference to a Strat-
egy object, may define an interface that lets Strategy access its data. In PITOU, the
Environment serves as Context for mapping strategies, Order-Type as Context for
execution strategies, and Order-Type as Context for worker strategies.
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3.8.7 Observer

The intent of Observer [59] (also known as Publish-Subscribe) is to define a one-to-many de-
pendency between objects so that when one object changes state, all its dependents are notified
and updated automatically.

In PITOU, we apply Observer to allow interaction between application and environ-
ment (Environment�!CloseListener), and for notification among components
(EventRaiser�!Caller).

Observer consists of the following participants:

� Subject: knows its observers, provides an interface for attaching and de-
taching observer objects. In PITOU, EventRaiser and Environment

are examples for a Subject. EventRaiser provides the methods
addListener(ProtocolEventListener), Environment the method
addCloseListener(CloseListener).

� Observer: defines an updating interface for objects that should be notified of changes in a
subject. In PITOU, ProtocolEventListener and CloseListener are examples
for Observers.

� ConcreteSubject: stores state of interest to ConcreteObserver objects, sends a notifica-
tion to its observers when its state changes. EventRaiser and Environment are
examples for ConcreteSubject. In our design, Subject and ConcreteSubject are one and
the same object.

� ConcreteObserver: maintains a reference to a ConcreteSubject object, stores state that
should stay consistent with the subject’s, implements the Observer updating interface to
keep its state consistent with the subjects. In PITOU, all classes implementing Caller
are examples for ConcreteObserver that implement ProtocolEventListener.
Since no call-back is needed in this case, caller classes do not need to maintain a ref-
erence to an event-raiser. Applications implementing the CloseListener interface
are another example of ConcreteObserver.

While Observer decouples the implementations of information sources and sinks, it nevertheless
creates a dependency on interface level – a Subject must know the type of its Observer. This is
the reason why we use interaction reification instead letting components interact via Observer.

3.8.8 Composite

The intent of Composite [59] is to compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions of objects uni-
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formly.

Composite consists of the following participants:

� Component: declares the interface for objects in the composition, implements default
behavior for the interface common to all classes, declares an interface for accessing and
managing its child components, defines an interface for accessing a component’s parent
in the recursive structure (optional). In PITOU, CompositeEntryType is an example
for a Component.

� Leaf: represents leaf objects in the composition, a Leaf has no children. In PITOU,
classes like SeqNrEntryType, IntegerEntryType, or LongEntryType are ex-
amples for Leafs.

� Composite: defines behavior for Components having children, stores child Compo-
nents, and implements child-related operations in the Component interface. In PITOU,
BlockEntryType, BitBlockEntryType, and ArrayEntryType are examples
for a Composite.

The Composite pattern allows us to introduce a high flexibility and generality in composing new
entry-types. This reduces the need for implementing protocol specific entry-type objects and
simplifies the workers that use composite entries.

3.8.9 Active Object

The intent of ActiveObject [123] is to decouple method execution from method invocation to en-
hance concurrency and simplify synchronized access to objects that reside in their own threads
of control.

Active Object consists of the following main3 participants:

� Servant: provides a method

� Client: wants to invoke a method of a Servant

� Proxy: provides a similar interface as the Servant, but transform method invocations into
method request objects and enqueues those at a Scheduler

� Scheduler: implements a thread that reads method requests from the queue, calls the
Servant, and writes the result to a so called future object, where the client can obtain the
result from

3The original description consists of some more participants that we consider rather unimportant to understand
the idea of this pattern
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Active Object works as follows: a client that intents to asynchronously invoke the method of a
Servant, invokes the method of the Proxy. The Proxy creates a method request object (including
a future object) and queues it at the Scheduler. The Scheduler runs in its own thread an reads the
method request objects from its queue, and triggers the invocation of a method of the Servant.

ActiveExcutor is an example for the use of ActiveObject in the PITOU framework.
InternalOrderType is a Client (who wants an order to be executed). ActiveExecutor
is both Proxy (since it provides the execute(Order) method), and Scheduler (since it im-
plements its own thread and maintains a queue). InternalOrder acts as Servant (since it
implements the execute() method).

3.9 Summary

In this chapter, we presented the PITOU framework (Protocol Implementation,Tailoring, and
Organization Utilities). The principal goal of PITOU is to provide a framework for rapid pro-
totyping of protocol software that is easy to use, helps to build a library of protocol compo-
nents, and provides an evaluation platform for our structuring approach from Chapter 2 and
the software concepts used. PITOU protocols are implemented in Java and are supposed to be
incorporated in the application that uses them.

Working with PITOU can be divided in two principal tasks: first, the implementation of com-
ponents for the library, and second, the assembly and configuration of components into a new
application. PITOU supports the implementation of components by providing abstract classes
or interfaces that must be implemented. Assembly is guided by following a rigid structure and
by the emphasis of classes that allow to plug the components implemented into the framework
(Hot Spots).

In a first step, we used the Java-Beans component model and the Visual-Age (VAJ) builder tool
to compose protocols. However, VAJ has problems to cope with a large number of connections
between components. We therefore proposed a design approach that reifies interaction between
components in own objects and we separated structure information in so called registrar ob-
jects from information used at execution time. We finally explained how to specify finite state
machines, different thread strategies, and the organization of exception handling in our frame-
work. A description of the design patterns used in the implementation of PITOU completed this
chapter.

The design presented in this chapter extends our main model of Chapter 2 by the following
concepts:

� the concept of using object pools for orders and entries,

� the concept of using executors to decouple execution from the thread-model used,
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� the concept of using registrars to decouple the definition of a protocols structure from its
runtime behavior, and

� the concept of using interaction reification to allow for interaction between arbitrary com-
ponents.



Chapter 4

Tools to Support Protocol Implementation

This chapter gives an overview of several tools within the PITOU framework that assist in the
implementation of protocols. The PITOU simulator allows to run protocol code without any
modification in a virtual time environment over a simulated network. The PITOU protocol
editor allows to combine structures of different protocol objects. The PITOU code generator is
able to analyze the structure of a protocol object, and to transform it into Java code. The PITOU
protocol animator allows to visualize the behavior of protocols.

4.1 Protocol Simulation

4.1.1 Objectives

Protocol software is difficult to test since the conditions of communication change frequently
(especially in a best-effort network as the Internet), and it is therefore difficult to reproduce
an experienced problem and to locate its origin. Instead of running communication software
at different machines, it would be easier to run a protocol session in a single application on a
single machine over a virtual network.

The PITOU protocol simulator addresses exactly these issues. However, there are a number of
other important objectives we want to realize.

� no modification of protocol code: any protocol implemented within PITOU must be
able to run in simulation mode as well as for transmissions over a real network without
any modification.

� fine-grain simulation: instead of assigning a virtual time to a complete protocol instance,
our simulator should allow to flexibly assign virtual times to each data path. While most
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network simulators do not consider protocol processing as significant, our simulator has
the objective to gain insights about the efficiency of an implemented protocol, and to
identify bottlenecks and room for optimization.

� virtual parallelism: we want to be able to run simulations as a single program, i.e. a
single operating system process. Since communication sessions involve at least two in-
dependent communication entities (communicating applications) it is important that the
simulator provides means to distinguish activities that can happen in parallel (simulated as
more than one process) from activities that can not take place at the same time (simulated
as a single process).

After reviewing related work, we will give an overview of the simulation model and the classes
involved in simulation. We then show how the simulator cooperates with the PITOU framework
and how to use it.

4.1.2 Related Work

Most communication simulation tools are rather specialized to network simulation than to pro-
tocol simulation. There exist a number of network simulators like NS [104], Entrapid [66], or
NetSim [17] with a broad scope and different goals. None of them allows for generic, fine-
grained simulation of protocol software.

The PITOU simulator provides a class library for discrete event simulation [97] similar to Sim-
ula [107], which can be used to build any kind of process simulation. In contrary to protocol
simulators for a certain protocol (e.g. [37]), protocol simulation in PITOU is completely generic.
Due to the clear structure and the proper decoupling of protocol and framework code, our sim-
ulation tool is capable to simulate very fine-grained virtual processes within a protocol. Any
protocol implemented in PITOU can be simulated without changing any line of code.

4.1.3 Simulation Model

Our simulator follows the discrete event [97] based simulation model. In contrary to a contin-
uous simulation model where the state of the simulation system varies continuously with time,
in discrete event based models the state changes upon events.

Applied to PITOU, an event can be the arrival of data, the request for executing an order, the
request for a transmission of data over a link, or a timeout. Each of these events indicates that a
certain activity needs to be executed: arrival of data results in mapping data to an order-type, a
request for a new order results in its execution, a transmission request in moving data to another
communication entity, a timeout in calling a method that handles the timeout. A scheduler is
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the central entity to handle events, to execute activities, and to maintain the virtual time that
advances by virtual duration values associated with each activity.

A scheduler maintains different processors. Activities that are executed on the same processor
can not be scheduled at overlapping virtual time intervals, but must be scheduled one after the
other. Activities that are executed on different processors can be scheduled virtually in parallel,
i.e. in overlapping virtual time intervals. We say that a processor is sleeping when he has
no activity scheduled. As soon as an activity is scheduled the respective processor becomes
waiting. A processor is active during execution of an activity. Once an activity is executed it
can not be un-done, i.e. there is no rollback mechanism integrated.

4.1.4 Classes Involved

All classes concerning the simulator are grouped in the package pitou.simulator.

Activities are represented by an interface called Activity, which declares the following
methods to be implemented:

� The method void perform() must implement the code to be executed.

� The method void setScheduler(Scheduler) provides activities with a refer-
ence to the scheduler, which allows them to schedule other activities or to be notified
about the virtual time.

� The methods int getPriority() and void setPriority(int) allow to con-
figure the priority of activity objects, which is relevant for scheduling.

Processors contain the scheduling information for all their activities scheduled in form of ob-
jects of type ScheduleInfo, which contain a reference to a scheduled activity, its duration,
its execution time, and its priority. Processors are represented by the class Processor, which
implements the following methods.

� The method void scheduleAt(Activity,long,long) produces a schedule-
information object with the specified parameters (activity, execution time, duration), and
sorts it in the information queue (sorted by the execution time).

� The method void scheduleAtEnd(Activity,long) produces a schedule-
information object and adds it at the end of the information queue.

� The method void cancel(Activity) removes the schedule-information object
that refers to the specified activity from the information list.
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� The method Activity getNextProc() is called by the scheduler to obtain the next
scheduled activity to be executed.

� The method int getNrScheduled() returns the number of activities scheduled for
this processor, i.e. the number of information objects in the queue.

� The method long getNextExecTime() returns the execution time of the next ac-
tivity of this processor to be executed.

� The method long getNextDuration() returns the duration of the next activity of
this processor to be executed.

� The method void passivateFirst() is called by the scheduler to remove the first
information object from the list and update internal variables (like the execution time of
the next activity).

� Processor also implements the Sortable interface, which allows the sched-
uler to manage an ordered list of processors (ordered by the execution time of the
first scheduled activity for all waiting processors) by using the methods boolean

equals(Sortable) and boolean greater(Sortable).

The scheduler is implemented by the class Scheduler. A scheduler runs in its own thread
and implements the interface TimerCompatible to detect via a timeout (based on real time)
that the virtual time has not advanced.

The scheduler provides an interface to register activities together with their processor in ad-
vance. During execution, the scheduler will only accept to schedule activity objects that have
been registered before.

The scheduler maintains a virtual time and a queue containing references to the processors that
have at least one scheduled activity (called waiting processors). The queue of waiting processors
is sorted by the virtual execution time of the next activity to be executed for each processor.
Within its thread, the scheduler takes the first element from the queue of waiting processors,
obtains the first scheduled activity from this processor, and executes it. When the processor has
still other scheduled activities, it is re-sorted in the queue. Otherwise it is left out. The scheduler
then sets the virtual time to the execution time of the last executed activity, and keeps in mind
the termination time of the last executed activity (=execution time + duration). When no other
processor is waiting, the virtual time is set to the termination time of the last activity executed.
Otherwise, the scheduler thread continues to read its queue of waiting processors.

The class Scheduler provides the following methods.

� The method void register(Activity,Processor) registers an activity to-
gether with its processor. Only registered activities can be scheduled during execution



4.1. PROTOCOL SIMULATION 107

time of the scheduler.

� The method void register(Activity) registers an activity with a processor. In-
ternally, the scheduler will create and assign an own processor to this activity.

� The method void deregister(Activity) deregisters an activity.

� The method void addVirtualTimeListener(VirtualTimeListener) al-
lows to register objects that are interested in being notified every time the virtual time
changes.

� The methodvoid removeVirtualTimeListener(VirtualTimeListener)

deregisters objects that have been notified about the virtual time.

� The method void scheduleAt(Activity,long,long) schedules an activity
by specifying the time when execution should start (execution time) and the duration
of the execution.

� The method void scheduleNow(Activity,long) schedules the activity as soon
as possible (with respect to priorities). The parameter of type long specifies the duration.

� The method void scheduleAfterRest(Activity,long) schedules the activ-
ity as the last one for its processor. The parameter of type long specifies the duration.

� The method void cancel(Activity) cancels an activity before execution. The
scheduler identifies the corresponding processor, and calls Processor.cancel().

Waiting processors are ordered by the scheduler with regard to the execution time of their first
activity scheduled. When two activities are registered with the same processor, the following
rules apply.

1. an activity is scheduled before another activity of the same processor, if its execution time
is earlier

2. if the execution time is the same, the activity with the higher priority is scheduled first

3. if execution time and priority are the same, the activities are scheduled in the order of
request

Our scheduling rules correspond to a non-preemptive model.

For a detailed example of the operation of the simulator, see Appendix B.
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4.1.5 Integrating the Simulator in PITOU

The most important goal of our simulator is to allow for the simulation of protocol software
without changing any protocol code. That is, the protocols build with PITOU should run both
in real mode and in simulation mode.

In the following, we list the differences between real mode and simulation mode, and shortly
sketch what modifications are necessary to allow our framework to support both modes.

� No real network: we need a simulated transmission channel, and a service access point
that makes access to the channel transparent for the protocol code. The virtual trans-
mission channel is represented by an object of class Link, the service access point is
represented by the class SAPvS, which is an implementation of the SAP interface and
integrates simulation functionality.

� Time is virtual: all timer handling must be based on the notion of virtual instead of real
time. In order to assure that workers are not concerned by the different notion of time,
we simply replace our timer-pool by another timer-pool, which manages virtual time and
virtual timers transparently to other parts of the framework.

� Control is centralized: instead of assigning Java threads to order-types, all control is
shifted to the scheduler’s thread. We mapped the various tasks of the PITOU framework
to the following simulation activities:

– order execution: the initialization (delegating parsing to the entries) and execution
(calling the workers) of an order, is scheduled and executed as one activity with a
configurable virtual duration. Hence, each order-type obtains its own activity object.

– sending: sending data over a virtual network is scheduled and executed as one ac-
tivity with a virtual duration that depends on a configurable data rate.

– transmission: the transmission process is represented by an activity with a virtual
duration that depends on a configurable transmission delay.

– timeout: each evocation of the timerCall() method is performed within an ac-
tivity scheduled by the timer-pool (the virtual duration is equal to zero).

� Initialization: we must respect the interfaces and definitions imposed by the simulator.
Where is initialization done, which objects need a reference to a scheduler object, where
do we need to introduce wrapper classes?

For a detailed description of our solutions to all these design issues see Appendix C.
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4.2 Protocol Edition, Validation, and Generation

In this section, we present two tools that aim to further ease the programming of protocols
within the PITOU framework. The first tool is a protocol editor (PE), which allows to modify
and validate the structure of protocols. The second tool is a code generator (CG), which allows
to produce Java code given an environment object. Both tools are especially useful when applied
together. The corresponding classes are grouped in the Java package pitou.tools.

4.2.1 Motivation

After experiencing with protocol software built with PITOU, we realized that it is difficult to
combine different protocols or to reuse complete orders across different protocols. We some-
times want to take a part of one protocol implementation and integrate it into another one, build
one protocol on top of another, or remove a certain order-type with all its relations from an
implementation. All these issues are addressed by the PITOU protocol editor. Furthermore, the
editor also allows to validate protocol implementations. The modified protocol structure can be
transformed into a Java implementation by using our code generator.

4.2.2 Overview

As we saw in Chapter 3, a PITOU protocol is represented by a set of structured objects in reg-
istrar objects. All static protocol information, i.e. all information concerning structure and con-
figuration of a protocol, is encapsulated in environment instances (i.e. in the respective registrar
objects) accessible during runtime. Accessing the structure of a protocol at runtime allows us
also to modify it at runtime. Designing our protocol editor was thus a rather easy task: we could
simply operate on objects and dynamic lists instead of e.g. defining a representation language,
writing a parser to identify the structure, and mapping it back to Java.

Using the protocol editor usually comes in four steps:

1. Instantiate a protocol editor object with an environment object.

2. Manipulate the structure of the environment object by using the various features of the
protocol editor.

3. Validate the correctness of the protocol structure.

4. Export the environment object with the new structure.

5. Generate Java code for the protocol environment.
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The protocol editor is implemented in the class ProtocolEditor. A protocol editor object
is instantiated together with an object of type Environment. After instantiation, the protocol
editor analyses the environment structure by looking into all related registrar objects, and builds
up an internal information structure that allows him to access information during modification
in a faster way.

Once the internal information structure is built, the protocol editor is ready to accept modifi-
cations. After the modifications, the method Environment produceEnvironment() is
used to return the environment object with the new structure.

4.2.3 Main Operations on Protocols

Simple modifications like inserting and removing worker, entry-type, out-of-band module, or
relation objects can be done within the various registrar objects. The idea of the protocol editor
is rather to provide advanced operations on larger parts of the protocol software rather than on
objects, up to merging and layering complete protocols. In the following, we describe only the
most important features of the protocol editor. We leave out some other useful features like the
merging of mapping strategies or the merging of finite state machines.

Identifying Clusters

All order-types with workers that maintain relations to workers of other order-type objects
somehow depend on each other. A notifying worker needs a worker to be notified. A resource
subscriber needs a worker that provides him with the resource required. For example, removing
an order-type without considering the relations of its workers will lead in most cases to flaws.
We therefore introduce the notion of a cluster of order-types. A cluster is a set of all order-
types within an environment that are directly or transitively connected via relations between
their workers (similar to the transitive closure of mathematical relations or graphs). Figure 4.1
depicts an example protocol environment that consists of two clusters. A cluster may consist of
only a single order-type, when this order-type has no relations with another order-type (i.e. no
shared resource or notification relations of its workers) and is not created by a worker of another
order-type.

Our protocol editor maintains all dependencies between the order-type objects (also those cre-
ated by out-of-band modules), and allows to identify, export, and remove for each order-type
the corresponding cluster of order-types.



4.2. PROTOCOL EDITION, VALIDATION, AND GENERATION 111
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Cluster 1: O1,O4,O5
Cluster 2: O2, O3

Worker EntryType

OrderType

Figure 4.1: Cluster of Order-Types

Merging and Layering Order-Types

Merging order-types allows to reuse complete order-types across different protocol environ-
ments. One just needs to take the respective order-type object from another protocol environ-
ment, insert it into the protocol editor, and merge the order-type with another one. Merging
order-types means simply appending worker lists, entry-type lists, and parameter relation lists
of two order-types. Thereby, the first order-type will continue to exist while the second one will
be removed from the environment.

Imagine now that you have one order that calculates a checksum out of all entries of an order.
When you would merge another order-type with this order-type, you would need to adapt the
parameter relations of the resulting order-type since a worker of one order-type needs to operate
on entries of the other order-type. To support this case generally, our protocol environment
provides layering of order-types. The difference between merging and layering two order-
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types is that layering hides the information of a higher layer to the lower layer. All entry-types
of the order-type representing the higher layer are mapped to one entry-type of the lower layer
order-type specified as payload-entry. During the layering operation, the payload-entry-type
will be replaced by a composite entry-type that comprises all the entry-types of the higher layer
order-type. All parameter relations (of the lower layer part) that involve the payload-entry are
replaced by parameter relations between workers of the lower layer order and the set of entries
belonging to the higher layer order. Figure 4.2 illustrate the difference between merging and
layering.
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• All higher layer entries (E1 and E2) are mapped to E3.
• The parameter relations of W3 with E3 are mapped to E1 and E2

Figure 4.2: Merging vs. Layering of Order-Types
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Cloning

When the functionality of an order-type should be merged or layered with more than one order-
type of an environment, we need to create a clone of that order-type (otherwise the order-type
becomes a part of the order-type it is merged with and is not any longer accessible for another
merge operation). The protocol editor provides three different types of cloning order-types.

� Flat cloning produces a new order-type object with an order-registrar that contains the
same worker objects as the original order type. The entry-type objects are cloned and the
parameter relations are established between the workers and the new entry-type objects.
The interaction relations between workers remain unchanged.

Flat clones are useful when two orders want to share the same worker instances (e.g. for
reasons of efficiency or to share state).

� Deep cloning produces a new order-type object with an order-registrar that contains not
only clones of the entry-type objects, but also clones the worker objects. The parameter
relations are established between the new worker and entry-type objects. The interaction
relations are cloned and registered only if they make sense. Since two notifiers for one
notifiee or two publishers for one subscriber would make no sense, the programmer must
establish interactions between the concerned worker by himself.

Deep clones are useful used when worker instances should not be shared among different
orders.

� Cluster cloning produces deep clones of all order-type objects that are part of a clus-
ter. That is, the complete structure including order-types, workers, entry-types, and all
interaction relations is completely rebuild.

When the cloned order-type maintains a rather complicated relation structure to other
order-types, it is easier and safer (with regard to the correctness of the protocol developed)
to clone the whole cluster of order-types instead of creating some deep clones and adapt
relations by hand.

The different types of cloning order-types are illustrated in Figure 4.3 for a simple example
(always cloning order-type O2). The shaded parts represent the new objects that result from the
clone operations.

4.2.4 Protocol Validation

Before the edited PITOU protocol environment is transformed into code, it is possible to vali-
date the correctness of the environment structure. A hand full of simple checks are sufficient to
identify serious design flaws.
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Figure 4.3: Cloning Order-Types

� has each worker been associated with the right number of entry-types of the correct type?

� has each notifier been connected with a notifiee?

� has each resource-subscriber been associated with a shared resource?

� are the identifiers of receptions and emissions unique and corresponding?

� is the FSM correct, i.e. is each state reachable, are all transitions unambiguous?
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Of course, all entry-types, entry, worker, and out-of-band module objects must operate correctly.
Additionally, in order to compose a reasonable protocol, the protocol composer must respect the
semantics of the components he connects. Semantical correctness is not assured by PITOU.

4.2.5 Code Generator

Any protocol environment object can be transformed into Java code using our protocol generator
(PG). The code generator reads all objects specified in the various registrar objects and gives
them unique names. It identifies configurable properties of all protocol components by looking
for methods that start with get and set (using the Java reflection classes similar to how Java-
Beans tools do it). It finally produces code to rebuild all worker-entry relations for order-types,
notification, shared-resource, and creation relations, the FSM, the defined mapping strategy,
and the executor groups. The code generator is implemented in the class CodeGenerator of
the pitou.tools package.

4.2.6 Outlook

There are still a number of open questions with regard to the protocol editor. First of all, the
protocol editor should have a graphical interface to make it easy to use for anybody. Though
the protocol editor lays the ground for a specialized tool to support the visual composition of
protocols, the important part for the end-user – the graphical interface – is missing.

The protocol editor only supports merging and layering of order-types. We could also think
of an operation to merge or layer whole clusters or even complete protocol environments. For
that case, we would need to define rules that determine under which conditions which kind of
order-types can be merged or layered.

The validation of protocol environments could be further developed. For example, a sender
protocol could be validated against its receiver protocol to check if the order-types with the
same identifier specify the same entry-types with corresponding properties.

Our structuring approach seems to hold a large potential for theoretical investigation since it can
be formalized using sets with the corresponding operations such as union or intersection. We
believe that important characteristics and structural patterns of protocols may be derived that
allow insights about how to combine protocols and how to determine coarse-grain abstractions
of protocol software.
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4.3 Protocol Animator

The PITOU Protocol Animator (PA) is a tool that allows to visualize the behavior of any
protocol that has been implemented with PITOU. The idea behind the PITOU-PA is to write
information incurring during a protocol session into a log-file. After the session has finished,
the file can be analyzed and the information visually represented.

The step-wise animation of protocols is not only useful for debugging purposes and better un-
derstanding the characteristics of a protocol. It may also be a valuable instrument for teaching
and documenting protocol services and functions.

We have one overall requirement to be met: every protocol implemented within PITOU should
be able to be visually animated without any modification. Modification should only concern
the framework, never the workers and entry-type/entry classes. Hence, we want to animate
protocols in a completely generic way.

4.3.1 Related Work

There have been a number of projects to visualize algorithms [49] and network dynamics [66].
Only few projects are concerned about the visualization of the internal structure of protocol
software. The Technical University of Berlin had a project to extend the CHANNELS [22] pro-
tocol framework to allow for visualization. However, the animation of CHANNELS protocols
is on a very coarse-grained level, and is not supported in a generic way without modification
of the involved protocol modules. Both Estelle [6] and LOTOS [151] had been extended with
features that allow to specify protocols that can be visualized. However, none of them is generic
(the specifications are only meant for visualization, not for real execution). Additionally, visu-
alization is restricted to the visualization of FSMs. The ProVis project [96] has the goal of
visualizing protocols for teaching purposes using Java applets. It provides a toolkit to construct
animation rather than visualizing real protocols.

4.3.2 Architecture

Our protocol animation tool performs three major tasks:

� writing protocol information into a log-file

� lexically analyzing and parsing the log-file and transform it into event objects readable
by the part of the program that provides the graphical user interface

� visually representing possible events
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Each of this tasks is performed by a seperate module. The architecture of the animation tool is
depicted in Figure 4.4.

Framework

Environment

read and parse

Parser

create and writesignal information
Animation

Writer

signal events
Animation

Tool

Log-File

Figure 4.4: Architecture of the Animation Tool

Events

First of all, we must answer the question what information produced within the PITOU frame-
work is worth of being represented visually. We thereby distinguish structural information (what
are the components of an implemented protocol) from dynamic information (what happens dur-
ing execution). Since we already talked exhaustively about the structure of PITOU protocols,
we concentrate on the dynamics.

The principal events that can happen during a protocol session in PITOU are listed below.

� acceptance event: data from the application is accepted for a certain order-type

� reception event: data from the network is received and mapped to a certain order-type

� new-order event: a new internal order is requested to be created

� delivery event: an order is delivered

� emission event: an order is emitted

� order parsing event: an order is parsing (or better: delegates parsing to its entries)

� entry parsing event: an entry is parsing information
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� order executing event: an order is executed

� worker executing event: a worker is called during execution

� notification event: one component notifies another one

� resource changed event: one component changes a resource

� state change event: the current state of the FSM changes

Exception handling adds the following events:

� received data could not be mapped to an order

� initialization of an order didn’t work

� execution is interrupted

Besides those events, it is also useful to have some information always accessible like the value
of a current entry after parsing and during execution or internal variables of workers during
execution.

Producing a log-file

At various points of the framework, we must modify code to allow for producing a log-file.
For example, acceptance events and emission events can be produced in the accept() and
emit() methods, respectively, of Environment. To log order/entry parsing events the
method InternalOrder.fill()must be modified. To log order/worker execution events,
the method InternalOrder.execute()must be modified.

Ideally, we should re-implement the whole framework for the purpose of animation. That way,
execution of real protocols is completely separated from execution of protocols for the purpose
of animation. However, since the modifications needed are negligible and we are more inter-
ested in a multi-purpose running prototype than to have two different, but optimized tools with
industrial strength, we decided to integrate log-file production into the code and allow a flag to
be set that indicates, if the log-file code is used or ignored.

We define a class AnimationWriter, which has no public constructor, and provides a
staticmethodAnimationWriter giveGlobalWriter(). There exists only a single
object of AnimationWriter, which is created when the giveGlobalWriter()method
is called the first time (all further calls return the same object). That way, the object is made
globally accessible from anywhere. This solution corresponds with the Singleton design pattern
[59]. An example for changing code to produce a log-file is shown in Figure 4.5.
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public void execute() throws OrderException {

...

for (int i = 0; i < nrWorkers; i++) {

//start of ANIMATION code

if (AnimationSpec.anim_switchedOn) {
AnimationSpec.getAnimationWrite().executedWorker(myWorkList[i], myOrderType.giveEnvironme

}

//end of ANIMATION code

if (!myWorkList[i].call(myWorkParam[i])) {

// start of ANIMATION code

if (AnimationSpec.anim_switchedOn) {
AnimationSpec.getAnimationWrite().orderException(this +" stopped at worker " + i,

}

// end of ANIMATION code

throw new OrderException(this +" stopped at worker " + i);
}

}

...
}

Figure 4.5: Example Code to Write Animation Information

Once a protocol session is finished and a log-file is produced, the PITOU framework is no longer
involved. We run a lexical analyzer and parser, which reads the information from the log-file,
transforms it into event-objects, and notifies the animator. The language that represents the
events is very simple. Each event is mapped to one keyword followed by additional information,
which are separated by line-feeds. The parser just needs to read line by line, check for the
syntax, and produce event objects that are used to notify the animation tool.

The Animation Windows

The animation tool provides different views on an animated protocol. Each view is represented
by an own window.

� The initial window opens when the animator tools starts. It allows to load a log-file, and
is supposed to support features like printing or showing statistics (not yet implemented).

� The environment window shows environments comprising all order-types and out-of-
band modules, and the current state of an environment. Different categories of order-types
have slightly different symbols: triangles are used to indicate output or input direction,
and application or network interface. It is possible to represent more than one environ-
ment in this window at the same time. The environment window is depicted in Figure
4.6.
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Figure 4.6: Animation Tool: Environment Window

� The order window opens when the user clicks on an order-type symbol of the environ-
ment window. It shows all workers, their entry-types, and static information about an
order-type (the environment it belongs to, its name and type, its priority). The order
window is depicted in Figure 4.7.

� The worker window opens when the user clicks on a worker symbol in the order window.
It shows additional information about a worker (its name, the environment and order-type
it belongs to, the resources they publish or subscribe, and internal variables). The worker
window is depicted in Figure 4.8.

� The entry window opens when the user clicks on an entry-type symbol in the order
window. It shows additional information about an entry-type (environment and order-
type it belongs to, its type and name, visibility and initializability, etc.) and the current
value of the corresponding dynamic entry object. The entry window is depicted in Figure
4.9.
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Figure 4.7: Animation Tool: Order Window

Figure 4.8: Animation Tool: Worker Window

How the Events are animated

Environment window: the triggering of an acceptance event is represented by giving the trian-
gle of the related acceptance-type a red color. Additionally, a little message pops up. Reception
events are treated similarly. The creation of a new order (new-order event) is represented by
a labeled arrow (see Figure 4.10). The arrow starts from the order-type containing the worker
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Figure 4.9: Animation Tool: Entry Window

from which the creation was requested, and ends at the order-type supposed to create a new
order.

Figure 4.10: Animation Tool: Order Creation



4.4. SUMMARY 123

When an order parses data (parsing order event), the color of the concerned order-type changes
to grey and a message pops up. During execution of an order (executing order event), the
concerned order-type changes to yellow. When emission or delivery orders terminate execution,
their triangle changes to red to indicate that the data is delivered. Clicks to red triangles allows
to pop up a little window that shows the value of the data to be accepted, received, delivered,
or emitted. Notification events and resource changed events are represented in the environment
window by a labeled arrow between the order-type symbols that are involved. State changed
events simply lead to a change of the name of the current state.

For all kind of exceptions, the environment window shows a little message indicating the prob-
lem.

Order window: During the parsing of an order, the order window highlights the entry-type that
is currently parsing (entry parsing event). During the execution of an order, the order window
highlights the worker that is currently executed (worker executing event). Furthermore, it pops
up a little message when workers are involved in notification or order creation, or when a worker
accesses a shared resource.

4.3.3 Discussion and Outlook

The implementation of the PITOU-PA has been done in a master thesis project [146]. We pre-
sented a rather high-level overview of the tool to avoid details like the language representation,
the involved classes, and implementation issues of parser and animator. The PITOU-PA is just
a prototype and much less robust and mature than the other parts of PITOU. However, the im-
plementation shows that the structure of PITOU protocols is powerful and general enough to
allow for generic and fine-grained visualization of real protocols.

We can think of a number of animator features that would be useful to be integrated. Animation
could be explicitly supported by integrating a mechanism that allows to add worker specific
events. The timer-pool could provide information to animate timeouts. Instead of taking the
detour of writing information in a file, analyzing, and sending it to the animator, the informa-
tion could directly be sent to the animator and visually represented (which would not be a big
problem, since all tools are independent from each other).

4.4 Summary

In this chapter, we presented a number of tools to support the implementation, debugging and
testing of protocols within the PITOU framework. The first tool is the PITOU protocol sim-
ulator. We presented the main classes and showed how to integrate simulation facilities into
the framework to run any PITOU protocol software in a virtual environment. Our simula-



124 CHAPTER 4. TOOLS TO SUPPORT PROTOCOL IMPLEMENTATION

tor makes it possible to simulate different thread models and to associate virtual durations to
order-execution. It operates on a much finer granularity than common network simulators. One
important feature is that simulation is possible without any support or code modification of the
protocol component code.

The protocol editor and code generator are tools for support and modification of protocol im-
plementations on a coarser level of structure. The editor allows to clone, layer, and merge
order-types, to identify and modify coherent parts of protocols (cluster), and thus reuse com-
plete order-types and clusters across different protocols. We also described how the composed
protocols can be easily validated for correctness. The protocol code generator is able to gener-
ate Java code out of the specified composition.

The last tool presented is a tool to animate the structure of a protocol and its behavior during
runtime. In contrary to teaching tools, which allow to build animations of network or protocol
behavior, our tool is completely generic and allows to animate any protocol developed with
PITOU without any modification.

It is important to note that our structuring approach, and the decoupling of framework core
classes and protocol code are the key to provide the flexibility to use real protocols also within
simulations or even animations. The simulation and animation facilities are thus a spin-off of
the flexible model and design.
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Case Studies

This chapter studies concrete examples of using PITOU for protocol implementation. The goal
of this section is to evaluate the expressiveness of our proposed structure with regard to the
potentially ugly details of real protocols. We decided to implement RTP/RTCP (Real-Time
Transport Protocol/Real-Time Control Protocol) [128], since it defines sophisticated message
syntaxes. We choose TCP (Transmission Control Protocol) [109] as implementation target,
since it provides a number of sophisticated mechanisms, which make TCP an honest benchmark
for any protocol architecture.

5.1 RTP/RTCP

We shortly summarize RTP/RTCP and then show how a simple RTP snoop application (an ap-
plication that reads all messages exchanged during a session) for the MBone has been structured
and built within PITOU.

5.1.1 RTP/RTCP Overview

RTP/RTCP are defined as end-to-end transport and control protocols for real-time applications,
e.g. applications transmitting audio, video, or simulation data. Real-time data and transmission
specific information like sequence numbers, time-stamps, or source identifiers are transmitted
in RTP messages. The RTCP message headers define information to monitor and control the
quality of service within an on-going session (e.g. loss, jitter). There are four different message
types used in RTCP:

� Sender Reports (SR) carry statistics from participants that are active senders

� Receiver Reports (RR) carry feedback from receiving participants

125
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� Source Description (SDES) carry information about a participant

� Bye Messages (BYE) indicates the end of a participation

RTP/RTCP are meant to be built on top of either uni-cast or multi-cast network services. While
RTP/RTCP are designed to work independently of the underlying transport and network layers,
they are typically used on top of UDP [110] to make use of UDP de-multiplexing and check-
summing services.

RTP and RTCP only specify header formats, they do not specify concrete services or algo-
rithms. An application profile specification allows to define payload formats and how to map
the payload types to payload formats. In the MBone [51], RTP/RTCP are assigned with two
consecutive UDP ports, one for RTP messages, one for RTCP messages.

All RTCP packets can be sent within one single packet called compound packet, which defines
its own syntax.

5.1.2 Applying Data Path Reification and Classification

Applying Data Path Reification is trivial for RTP/RTCP since we can map each message to one
data path. Since the environment we compose is only meant to snoop RTP/RTCP sessions on
the MBone, all order-types are of type input, i.e. all orders interface both with network and
application. We have hence the following order-types:

� RTP-in for processing incoming RTP messages

� SDES-in for processing incoming SDES messages

� SR-in for processing incoming SR messages

� RR-in for processing incoming RR messages

� BYE-in for processing incoming BYE messages

During the instantiation of a RTP/RTCP environment obtains two SAP objects (refered to as
SAP 0 and SAP 1) of type MC SAP. RTP-in is configured to use SAP 0, while all other order-
types are configured to use SAP 1.1.

Since on SAP 0 only RTP messages can arrive, we register a mapping-strategy object of type
TakeFirst to be used for SAP 0, which maps data to the first (and only) reception order of
the environment. For SAP 1, things are more complicated, since four different message types

1A RTP/RTCP session is associated with two UDP ports. One is used for RTP messages, the other for RTCP
messages.
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can arrive. We therefore implement a class RTCPMappingStrategy, which looks into the
header to identify the packet type (Packet Type: SR=200, RR=201, SDES=202, BYE=203),
and register it with SAP 1.

5.1.3 Applying Data Path Partitioning

Since our protocol is only for snooping purpose, no functionality needs to be implemented,
hence no workers are used. Our order-types only comprise a set of entry-type objects.

The RTP message format consists of the following header fields to be represented by entry-type
objects (see also Figure 5.1).

� The version field consists of 2 bits.

� The padding field consists of 1 bit to indicate if the packet contains padding bytes
(e.g. used for encryption algorithms that require fixed block sizes).

� The extension field consists of 1 bit to indicate if the header extended by a user defined
format.

� The CSRC (contributing source) count field consists of 4 bits and contains the number
of CSRC identifiers in this message.

� The marker field consists of 1 bit to indicate significant events defined by a profile.

� The payload type field consists of 7 bits and specifies the format of the payload (either
default or user defined types are possible).

� The sequence number field consists of 2 bytes and should be incremented for each RTP
message sent.

� The time-stamp field consists of 4 bytes and reflects the sampling instant of the first byte
in a RTP message.

� The SSRC (synchronization source) identifier field consists of 4 bytes and is destined
to identify the source that synchronized all contributing sources specified in this message.

� The CSRC (contributing source) list consists of 0 to 15 items (4 bytes each) representing
contributing sources.

The first six header fields (version, padding, extension, CSRC count, marker, payload type) are
represented by a bit-block entry-type composed of an integer for version, booleans for padding
and extension, an integer for CSRC count, a boolean for marker, and an integer for payload type.
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Timestamp

Sequence Number

Synchronizing Source Identifier (SSRC)

(first) Contributing Source Identifier

(last) Contributing Source Identifier

Application Data

Payload Type

Padding Contributor
Count

Extension

Version

Marker

...

Figure 5.1: RTP Header Format

The sequence number field is represented by a sequence number entry type, the time-stamp by
an integer, and the SSRC identifier by another integer. The CSRC list field is represented by an
array of integers. In Table 5.1 you can find the exact class types.

RTP Header Field PITOU Entry-Type

flags block (version, .., payload type) BitBlockEntryType

version IntegerEntryType

padding BooleanEntryType

extension BooleanEntryType

CSRC count IntegerEntryType

marker BooleanEntryType

payload type IntegerEntryType

sequence number SeqNrEntryType

time stamp IntegerEntryType

SSRC IntegerEntryType

CSRC block ArrayEntryType

CSRC field IntegerEntryType

Table 5.1: Mapping from RTP Header Formats to PITOU Entry Types

Since the types of RTCP message fields are very similar to those of RTP, we don’t show the
mapping from header fields to entry-types for each RTCP message (see Figure 5.2). Sender and
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receiver reports consist of a variable number of information blocks. These are mapped to an
ArrayEntryType object, which maintains an BlockEntryType object, which consists of
a number of simple EntryType objects. These report blocks are examples for the combination
of arrays and composites to compose sophisticated structures out of entry-types.

Length (in 32bit words)

NTP Timestamp

RTP Timestamp

Sender’s byte count

Packet Type
(RR:201)

Padding

# report
blocks

Version

Synchronizing Source Identifier (SSRC)

Sender’s packet count

SSRC of First Source

% Lost Cumulative Packets Lost

Extended Highest Sequence Number Received

Interarrival Jitter

Time of Last Sender Report

Time Since Last Sender Report

{
...

Application Specific Information

Report Block

Figure 5.2: RTCP Receiver Report Header Format

5.1.4 Conclusion

The implementation of our RTP snoop protocol showed us three things. First, the various header
fields can be mapped to few entry-types like IntegerEntryType, BooleanEntryType,
SeqNrEntryType. Configuring the byte-size of an entry-type is in most cases the only form
of adaption needed. Second, the composite and array entry-types play an important role in
composing RTP/RTCP headers. Without composite and array-entry-types, the implementation
would have been extremely cumbersome and expensive (as a first implementation showed us
when composite and array entry-types had not been supported yet). Third, we need a RTP
specific mapping strategy, which not only identifies packet types and maps them to order-types,
but also implements the mechanism to de-construct compound packets.
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5.2 TCP

We will first give an overview of TCP’s functionality, before we show how we map TCP services
to data-paths and how we divide the data-paths in workers and entries. We will report on the
problems encountered, and finally discuss benefits and drawbacks of applying our structuring
approach to TCP. Our implementation is limited to the data transfer phase of TCP.

5.2.1 TCP Overview

TCP is a transport protocol that supports the bi-directional exchange of a contiguous stream
of bytes between two hosts. The stream is fragmented and sent in TCP segments. A TCP
implementation is free to packetize the data streams to optimize performance.

TCP implements a three-way hand-shake protocol to establish a connection between two hosts
before the data transfer can start. When the data transfer phase is completed, the connection is
closed.

TCP ensures reliability by protecting the byte stream against corruption, loss, duplication, and
misordering. A checksum allows to detect corruption due to bit-errors on the transmission
medium. A sequence number allows the receiver to filter duplicates and to re-order segments.
The sender buffers all data before sending and waits until the receiver has acknowledged (ACK)
the reception. If an acknowledgment is not received within a time-out interval, the data is
retransmitted.

The timer-interval is based on measurements and estimations of the round-trip-time and has ex-
ponential back-off in case of retransmission. The algorithm implemented today [72] is not the
same as proposed in the original specification. A measurement captures the time between send-
ing data and receiving an acknowledgment for that data. The result of a measurement is thrown
away when a retransmission is required, since it is not possible to know if the ACK received
is for the original or for the retransmitted packet. This problem is known as retransmission
ambiguity problem [82].

TCP follows an cumulative acknowledgement strategy. The acknowledgment number repre-
sents an acknowledgment for all data assigned a sequence number smaller than this value. In
order to reduce the number of segments sent, acknowledgments are not sent immediately, but
delayed for a short time interval (normally 200ms). During this time the application process
can read data from the receive buffer to avoid changing of the advertised window (see below),
and –in case that communication is bi-directional– application data can be sent together with
the acknowledgment (piggy-backing).

TCP features window-based flow control. The receiver signals the sender the remaining space
in the receive buffer called advertised window. The receive buffer contains the bytes that are
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already acknowledged and delivered to the application, but not yet read by the application pro-
cess. The sender is not allowed to send more bytes than the receiver advertised (up from the last
byte that has been acknowledged).

When the advertised window shrinks to zero, the sender is not allowed to send anything and
stops. It may happen that the next segment of the receiver containing the new non-zero window-
value is lost. In that case, the sender stops and the receiver waits. To break this deadlock, the
sender should set a timer called persist-timer when the advertised window value is zero. When
the timer expires he sends a packet containing one byte of data to provoke the receiver to send
a segment (probe-packet) that may contain a non-zero window value.

Another phenomena with regard to window-based flow control is the silly-window syndrome,
which leads to small amounts of data exchanged instead of full segments and hence inefficient
usage of bandwidth. It happens when the receiver advertises small windows and the sender
immediately sends data upon receiving the permission of sending small data. Following the
philosophy of TCP ”be liberal in what you accept, be conservative in what you do” sender and
receiver as well should avoid this situation. The receiver should not advertise small windows
by waiting until the window can be increased by the size of a full segment or by the half of the
total receiver buffer space. The sender should send data only when he can send a full segment
or half of the maximum window size ever advertised by the receiver (only needed for older
primitive hosts), or when the send buffer contains no further data and no data is outstanding,
i.e. no acknowledgements are expected.

Due to severe Internet congestion collapses in the 1980s, the implementation of TCP was mod-
ified to include the slow-start and congestion-avoidance algorithms by Van Jacobson [72]. This
mechanism introduces a congestion window representing the assumed number of packets the
network can accept and takes lost packets as an indication for congestion. The flow-control
is restricted to send the minimum of congestion window and advertised window. The fast-
retransmit and fast-recovery algorithms [74] are optimizations of this idea and are implemented
in any standard TCP software.

In order to avoid sending packets with very little data and high header overhead, Nagle proposed
to block data until a segment with maximum data payload can be sent, or all data already sent is
acknowledged [103]. This algorithm is useful especially for interactive transfer of small data.
Since this algorithm may cause performance problems for certain scenarios, it can be disabled.

5.2.2 Applying Data Path Reification and Classification

The first step towards a vertically structured TCP implementation is to identify and isolate the
various data paths in TCP. We decided to leave out connection establishing and termination in
our description (including the different states a TCP session passes through), and concentrate
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on the data transfer part of our implementation, which we belief is the more interesting and
challenging part and better illustrates the main difficulties and benefits of a vertical structure
than the rather simple connection part.

Any piece of data obtained by the application process is packed in a segment, gets a sequence
number, is buffered in the retransmission buffer, is checksummed and then sent. Additionally,
each new segment triggers a measurement of the round-trip-time. All this can be done within
one thread and will be packed into one order that we call data-output-order. This order is of
type emission since it finishes by emitting a packet to the network.

Data-Output-Order

Workers
Sequencing(SeqNr,Data)
RetransmissionBuffer(Data)
RTTMeasuring(SeqNr,Data)
CalcLength(Length,Data)
Checksum(All)
Emission(All)

Entries
SeqNr (visible)
Checksum (visible)
Length (init/visible)
DataPayload (init/visible)

concurrent access

creates new order

WinUpdate-Input-Order

Workers
ChecksumVerification(All)
AckUpdate(AckNr)
StoreWinInfo(WinSize)

Entries
AckNr (init)
WinSize (init)
Checksum (init)

Retransmission-Order

Workers
PayloadSetter(Data)
SeqNrSetting(SeqNr)
RTTMeasureAbort(SeqNr)
CalcLength(Length,Data)
Checksum(All)
Emission(All)

Entries
AckNr (visible)
Checksum (visible)
Length (init/visible)
DataPayload (init/visible)

WindowProbe-Output-Order

Workers
none

Entries
none

Ack-Input-Order

Workers
ChecksumVerification(All)
DuplicateDetection(AckNr)
AckUpdate(AckNr)

Entry
AckNr (init)
Checksum (init)

Data-Shaping-Order

Workers
DataBlocking (Data)
FlowControl(Data)

Entries
Data (init/visible)

Figure 5.3: Orders of the sender entity in a Thread-Oriented TCP
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Nevertheless, before preparing a TCP segment, the advertised window and the congestion win-
dow must be checked if sending of data is allowed. Additionally, the sender silly-window
avoidance must be performed, small data segments should be blocked, and large data blocks
must be fragmented to make it fit into a segment of limited size. All these functions result in
producing a piece of data that is ready to be processed by the data-output-order. We collect
these functions – data blocking/fragmenting and flow-control – in one order that we refer to as
data-shaping-order. This order is of type acceptance since it is triggered by the application
process.

The data-out-order produces a packet, which triggers an order in input direction at the receiver
side. At the receiver the incoming data is first de-multiplexed and then triggers the execution of
an order called data-input-order. First, the checksum is verified and the data possibly dropped
if the checksum fails. When the checksum is correct, the sequence number is checked to know
if duplicate data must be dropped or data must be re-ordered. The valid data is delivered to the
receive buffer of the receiver application process.

The reception of data must be acknowledged by the receiver. Acknowledging is represented in
our architecture by one order for each direction called ack-output-order and ack-input-order.
The ack-output-order is created by the data-input-order and just adds the actual acknowledge-
ment number (sequence number of last correctly received byte + 1) to the outgoing segment
and calculates a checksum. The ack-input-order verifies the checksum, checks for duplicates,
and calculates the number of bytes that are newly acknowledged. Depending on this value, the
Nagle algorithm is asked to free possibly blocked data, a round-trip-time measurement is com-
pleted, the retransmission buffer freed, the congestion window increased, and the information
about the first non-acknowledged data is updated.

When an acknowledgement packet is lost on the network, the retransmission timer expires.
This causes the retransmission of buffered data. A retransmission is also modeled as an own
order referred to as retransmission-order. Data of a retransmission-order will get a sequence
number (using the value of the first non-acknowledged sequence number), is checksummed,
and sent.

Still missing is the flow-control handling of the advertised window. The advertised-window
value changes only when a receiver process does not read data fast enough from the receive
buffer. In TCP the advertised window is sent along with the data acknowledgements. Since
we want to separate error-control handling from flow-control handling, we define an own order
for window-handling. In the window-update-output-order, the flow-control information is
written to a TCP segment (consisting of the sequence-number of the last delivered byte+1 and
the space in the receive buffer), a checksum is calculated, and the data is sent. In the window-
update-input-order, the flow-control information is used to update the sliding-window when
the checksum verification on the received data was positive.
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Data-Input-Order

Workers
ChecksumVerification(All)
ByteStreamReconstruction
(SeqNr,Payload)
ReceiveBuffer(Payload)
NextSeqNrManager(SeqNr)
Acknowledging(SeqNr)
Delivery(Payload)

Entries
SeqNr (init)
Checksum (init)
Length (init)
Payload (visible)

concurrent access

creates new order

WinUpdate-Output-Order

Workers
AdvWinSetting(AckNr,Win)
Checksumming(All)
Emission(All)

Entries
AckNr (visible)
WinSize (visible)
Checksum (visible)

Ack-Output-Order

Workers
AckFieldSetting(AckNr)
Checksumming(All)
Emission(All)

Entries
AckNr (visible)
Checksum (visible)

WindowProbe-Input-Order

Workers
Notification

Entries
none

Figure 5.4: Orders of the receiver entity in a Thread-Oriented TCP

In the case that the flow-control information is lost and the persist timer expired, TCP creates
a window-probe segment. The corresponding orders are the window-probe-output-order and
window-probe-input-order. An outgoing window-probe order contains no functionality. It is
only sent to provoke the emission of a window-update-output-order at the receiver’s side.

In Figures 5.3 and 5.4, we can see an overview of the orders we used to structure TCP and
the relations between these orders. We also see what information is used as parameters to be
processed by the various functions. New-order-relations are marked by the bold arrows. Notifi-
cation relations and shared resource relations are represented by the thin double-sided arrows).
A more detailed description of the various relations can be found in Table 5.2 (notification re-
lations of the sender side2), in Table 5.3 (shared-resource relations of the sender), and Table 5.4
(shared-resource relations of the receiver).

2There are no notification relations on the receiver side.
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Notifier Notifiee Description

win-update input order (execution done) FlowControl worker sliding window is updated

ack input order (execution done) DataBlocking worker blocked data can be freed

ack input order (execution done) RTTMeasuring worker start new measurement

ack input order (execution done) ByteRetransmission worker buffered data can be freed

ack input order (execution done) FlowControl/CC worker update congestion window

ByteRetransmission worker (timeout) FlowControl/CC worker loss indication

StopMeasuring worker (data passed) RTTMeasuring worker abort measuring

DuplicateDetection worker (duplicate) ByteRetransmission worker retransmission request

Table 5.2: TCP Notification Relations (Sender)

5.2.3 Applying Data Path Partitioning

Data-Shaping Order: The DataBlocking worker implements Nagle’s algorithm to avoid
sending packets with very little data. It takes a byte array from the application and buffers
it when the data that can be sent (buffered plus new data) is smaller than the maximum seg-
ment size. As soon as an acknowledgment arrives or a full segment can be sent, the buffered
data is freed for further processing. The FlowControl worker is responsible that no more
data is sent than the receiver application and the network can handle. It gets its informa-
tion from two sources. The first information is the advertised receiver window obtained from
the AdvWinUpdate worker, which is used to calculate the usable window of a sliding win-
dow. The second information comes from the CongestionControlmodule3, which imple-
ments the slow-start, congestion-avoidance, fast-retransmit and fast-recovery [134] algorithms
to adapt a congestion window in response to detected loss of packets and duplicate acknowl-
edgments. The flow-control worker sends only the minimum number of packets allowed by
congestion and sliding window. It performs sender silly-window avoidance by sending only
full segments and managing a timer, which may trigger window-probe packets to ask the re-
ceiver for a window-update.

Data-Output Order: The Sequencing worker assigns a sequence number to the first byte
of each byte array processed. It starts with a random sequence number generated when the con-
nection was established. The RetransmissionBuffer worker buffers each byte until an
acknowledgment arrives. It implements a timer with a time-out interval that is set to the value
calculated by the RTTMeasuring worker. When the timer expires, the first segment (i.e. a
configurable number of bytes) is re-sent to the receiver. The RTTMeasuring worker mea-
sures the time between sending a data packet and arrival of its acknowledgment. Measuring is
aborted by retransmission-orders (see below) to avoid ACK ambiguity (Karn’s algorithm [82]).

3The congestion-control-module is an out-of-band module; it is not listed in Figure 5.3
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The measures are used to estimate variance and average of the round-trip-time, which are used
to determine the time-out value for retransmission timer and persist timer. The CalcLength
worker writes the length of the payload to the segment. The Checksum worker uses the com-
plete header and the data payload to calculate the Internet checksum (see [28]).

Retransmission Order: Retransmitted data must get a new sequence number since the seg-
ment borders may be changed within message processing in TCP. Therefore the sequence num-
ber information about the first not yet acknowledged data byte is kept in a shared resource
maintained by the AckUpdate worker (see ack-input order). This resource is accessed by
the SeqNrSetting worker, which just writes this information into the outgoing message. A
RTTMeasureAbort worker notifies the RTTMeasuring worker to abort RTT measuring
for the concerned sequence numbers. Finally, a Checksum worker protects against corruption.

Acknowledge-Output Order: The AckFieldSetting worker just writes the sequence
number of the next data byte expected (which equals the last successfully received data plus
one) into the outgoing message. It gets this information by reading from a shared resource,
which is maintained by the NextSeqNrStateManager worker (see data-input order). A
Checksum worker protects against corruption.

Window-Update-OutputOrder: The AdvWinSettingworker just writes the advertisement
information obtained from the ReceiveBuffer worker into the outgoing message. This in-
formation comprises the sequence number of the start byte of the sliding window (next ex-
pected) and the space of the receive buffer of the application. A Checksum worker protects
against corruption.

Shared Resource Provider Subscriber

advertised window/ack AdvWinUpdate worker FlowControl worker

last ack AckUpdate worker RTTMeasuring, SeqNrSetting worker

estimated RTT RTTMeasuring worker ByteRetransmission, FlowControl worker

length of retransmitted packet Length entry RTTMeasuring worker

Table 5.3: TCP Shared Resource Relations between Workers (Sender)

Data-Input Order: A ChecksumVerification worker compares the value of the
checksum field calculated by the peer-TCP with an own calculation, and throws the data
away, i.e. stops the execution of this order immediately, when the result is negative. A
ByteStreamReconstruction worker brings incoming segments into the right order and
drops data already delivered by managing a buffer that contains out-of-order data temporarily. A
ReceiveBuffer worker maintains information about the receive buffer, i.e. the buffer from
which the application reads delivered data, used by the AdvWindSetting worker. Receiver
silly-window avoidance and delaying window-updates by using a timer is also performed by the
ReceiverBuffer worker. A NextSeqNrManagerworker keeps the sequence number of
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the last byte delivered (written to the receive buffer) used by the AckFieldSetting worker
as acknowledgment number. An Acknowledging worker triggers ack-output-orders. ACKs
for duplicate data are requested immediately, other acknowledgments are delayed to cumulate
ACKs.

Acknowledgment-Input Order: A ChecksumVerification worker drops corrupted
data. A DuplicateDetection worker checks if the acknowledgment number is dupli-
cate and notifies the CongestionControl module to perform the fast-retransmit algorithm
when a configurable number of subsequent duplicate ACKs have occurred. A AckUpdate

worker calculates the number of acknowledged bytes and use it to free bytes of the buffer in the
RetransmissionBufferworker. AckUpdate also notifies the DataBlockingworker,
the CongestionModule, and the RTTMeasuring worker about the arrival of an acknowl-
edgment.

Window-Update-Input Order: A ChecksumVerificationworker drops corrupted data.
A AdvWinUpdate worker calls the FlowControl worker to update its state with the new
information gathered from the window-update (start of sliding-window, advertised window).

Window-Probes: The window-probe-input order consists of a worker, which triggers the send-
ing of a window-update each time a window-probe input order is executed (Notification
worker). In input direction, no functionality is defined.

Shared Resource Provider Subscriber

next expected sequence number NextSeqNrManager worker AckFieldSetting worker,
ByteStreamReconstruction
worker, and Acknowledging
worker

window size/ack advertisement ReceiveBuffer worker AdvWinSetting worker

Table 5.4: TCP Shared Resource Relations between Workers (Receiver)

5.2.4 Mapping

In order to make our implementation compatible, we must implement a TCP specific mapping
strategy, which i) transforms all messages produced by the various emission orders into packets
that respect the TCP format, and ii) maps incoming TCP segments to one or more order-types.

Due to the need for backward compatibility, new mechanisms have been integrated in TCP
implementations over the years, while the message format remained the same. As a conse-
quence, there exist now dependencies among header fields, which make it impossible to map
a TCP message to a data-path without accessing internal information from various modules
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and thus violating the principle of information hiding. To illustrate this problem, we have a
look at the code of a standard TCP implementation described by Stevens [135] (see Figure 5.5)
that concerns the identification of a pure acknowledgement (in contrary to a duplicate ack).
The identification of a pure acknowledgement involves variables like the flow-control window,
the congestion-control window, and the payload field of a message. All these variables must
be checked to identify pure acknowledgments (the identification of duplicate ACKs requires
another couple of checks) although their relation to error-control is not obvious.

The goal of our TCP service implementation was to demonstrate that a sophisticated protocol
like TCP can be structured and implemented in a modular fashion. We therefore did not imple-
ment a TCP specific mapping strategy to make our implementation compatible, which would at
the same time violate modularity. Instead we decided to emphasize the beauty of a structured
TCP equivalent protocol, which allows to be tailored to application requirements by removing,
adding, and configuring order-types and workers.

001 if (ti->ti_len == 0) {
002 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&

003 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
004 tp->snd_cwnd >= tp->snd_wnd {

005 ... //process pure ACK

A TCP segment is a pure ACK [135] if

1. the segment contains no data,i.e. ti len is 0 (001), and

2. the acknowledgement field in the segment ti ack is greater than the largest unacknowledged sequence numbersnd una (002), and

3. the acknowledgement field in the segment ti ack is less or equal to the maximum sequence number sent snd max (003), and

4. the congestion windowsnd cwnd is greater than or equal to the current send window (snd wnd). This test is true only if the window
is fully open, that is, the connection is not in the middle of slow start or congestion avoidance (004).

Figure 5.5: Identification of a pure ACK (Stevens, 1995)

5.2.5 Conclusion

The structuring and implementation of a TCP like transport protocol within PITOU gave us a
number of valuable insights. First of all, the implementation was successful. The fact that our
approach allows to implement all services of such a complex general purpose protocol as TCP
confirms its expressiveness and usefulness. When PITOU is able to cope with the complexity
of TCP, it should more than that be able to facilitate the implementation of application-tailored
protocols that are supposed to be much simpler than TCP.

Second, the syntax of the header-format has a decisive impact on the possibility to modularize
and automate protocol implementation. TCP has been extended over years to integrate mecha-



5.3. SUMMARY 139

nisms without adapting the header format. Due to the force of staying compatible, information
for which no header field exists must be derived from other fields and local state. These depen-
dencies among header fields lead consequently to dependencies among functions that otherwise
could be encapsulated in own modules.

5.3 Summary

The goal of this chapter was to validate our claims of flexibility and reusability against imple-
mentations of real protocols. We implemented RTP/RTCP to see if our concept of separating
parsing (entry) and processing (worker) works also for more sophisticated header formats. We
decided to re-structure and modularize a TCP like protocol implementation to see if our model
can cope with sophisticated services and complex interactions among many components. From
our experiences, we can state that our model is expressive enough to capture all aspects of
even complex protocols. However, we also saw that the compatibility constraints during the
implementation of existing protocols can complicate or even contradict the objectives of mod-
ular implementation. The definition of the header formats has thus an important impact on the
implementation.

In Appendix D, we present another case study that shows how the flexibility of our approach
allows to integrate different QoS requirements into distributed object systems by generating
tailored protocol and middleware code based on Java interface definitions.
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Chapter 6

Conclusions

In this chapter, we give an overall assessment of our work with regard to the requirements of
network protocol software in general (like compatibility, performance, quality of service), and
particularly with regard to our claims stated in Chapter 1 (like rapid prototyping, ease-of-use,
flexibility). We further evaluate the software engineering techniques used during modeling,
design, and implementation, and discuss possible improvements and future work.

6.1 Introduction

The overall goal of our research is to provide support for the implementation of application-
tailored protocol software. The foundation of our work is a set of structuring principles, which
allow to decouple protocol functions and encapsulate them in independent components that
can be configured and composed to application-tailored protocol code. The PITOU framework
serves as a prove of concept implementation of our structuring approach, and provides sup-
port for visual composition and configuration, rapid-prototyping and validation of application-
tailored protocols. PITOU comes along with a number of tools for protocol edition, simulation,
and animation. Any PITOU protocol can be used without any modification in a simulation
environment or even graphically animated. We implemented TCP and RTP/RTCP within our
framework to get insights about the expressiveness of our approach, and demonstrated the ap-
plicability of application-tailored protocols for the development of QoS aware middleware sys-
tems.

A second goal of this thesis is to examine how modern software engineering techniques can con-
tribute to our goals of implementation productivity and cost minimization due to flexibility and
reusability of protocol code. Special focus was put on component-based development (CBD)
using the Java-Beans component model, the composition based on a black-box framework, and
the identification of design patterns.
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6.2 Evaluation of our Approach

The merit of our work lies in the applicability and expressiveness of our structuring approach,
the ease and comfort to compose protocol software under the PITOU framework, and the quality
of the code that is produced using the PITOU framework and its tools. Due to the nature of
our work, it is difficult to evaluate our contributions in terms of quantitative measures. The
evaluation is rather qualitative and based on our experience.

6.2.1 Productivity

The developer of a new protocol does not need to worry about designing a system architecture
or to deal with concurrency issues since these problems are already solved by the PITOU frame-
work. He can concentrate on the implementation of the workers and entry-types he needs. Since
worker and entry are fine-grained components with a well-defined and simple task, they can be
implemented rapidly, and tested independently from the context they will be used in. Confirm-
ing Dijkstra’s ”divide and conquer”, the fine granularity of our approach greatly reduces the
implementation time for new components.

Once all necessary worker and entry components are available, they can be easily plugged
together to compose a complete protocol implementation. The process of composition and con-
figuration is explicitly supported by our framework and its accompanying tools. Even visual
guidance is possible using Java-Beans tools. In contrary to common object-oriented approaches,
which suffer from implicit dependencies among objects, our approach makes dependencies ex-
plicit. Experiences showed that the process of building a new protocol based on existing com-
ponents is a question of some minutes. The composition of such a complex protocol as the TCP
like protocol presented in Chapter 5 took not even half an hour. The separation of component
implementation and component assembling allows even people without many experiences in
protocol engineering to compose new protocol implementations rapidly.

Our design philosophy of considering a protocol as part of the application gives the application
developer full control over protocol design and offloads him from developing a message syntax
to be respected: he just chooses and configures the workers that are needed, while the message
format is just a by-product of the workers parameter requirements. Modifications, experimen-
tation, and optimization of a distributed application are greatly simplified when there are no
constraints concerning message formats.

We believe that our framework is very easy to use. Due to the Java Virtual Machine concept
it can run on any operating system and runs everywhere Java is installed. Due to its clear
structure, the necessary implementation steps are limited to a few classes, and new protocols
can be composed and configured visually from existing components even by people who do not
know Java. The time to get used to PITOU is very short as the experiences with two student
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projects have shown.

The maintenance phase of the software life cycle can be very expensive when the software
does not anticipate changes due to bugs detected or the integration of new features in response
to user feedback. Our framework is designed for changes on all levels ranging from simple
changes of parameters (like time-out values) or the size of header fields, the modification of
the operations of a data path (adding and removing workers), until the addition or removal of
complete services (adding and removing order-types). Design for change is perhaps the most
important contribution of our work.

Finally, the number of tools that come along with the core execution framework, significantly
improve the productivity for protocol implementation. Simulation and animation reduce the
testing and debugging efforts, the protocol editor is useful to combine existing protocols to new
ones.

We briefly resume how our approach contributes to improve productivity for protocol imple-
mentation:

� fast implementation due to fine-grained modularity

� rapid-prototyping due to reusability, flexibility, configurability

� ease-of use of framework due to visualization

� easy maintenance due to design for change

� testing phase shorter due to visual animation and simulation

6.2.2 Code Quality

In the first chapter we gave a number of properties that characterize ”good” code. Most of those
are already mentioned in the context of productivity above. We therefore only sketch why we
believe that our approach contributes to the quality of the resulting software.

� Correctness: fine-granular, independent components – as promoted by the PITOU frame-
work – facilitate testing and debugging compared to large software blocks. Moreover, the
strict structure imposed on the use and interaction of our protocol components allows to
detect errors within a few validation steps before testing and executing the software: have
all workers the right entry-types as parameter types? does each reception order-type has
a corresponding emission order-type on the peer that supports the same message format?
are all notifiees connected with a notifier? are all resource-subscribers connected with a
resource-publisher? Easy validation greatly contributes to the correctness and robustness
of the produced code.
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� Maintainability: the fine-granularity of the protocol components and the design for
change make PITOU protocol code easy to maintain.

� Modifiability: the structure of the PITOU framework allows to add and remove protocol
components and to configure them while minimizing the impact on other parts of the
system.

� Reusability: PITOU fulfills the technical prerequisites for reusability. It decouples all
components in the hot-spots and makes the remaining dependencies explicit. Using the
reflective mechanism of the Java-Beans model, components are highly adaptable and
support the visual configuration of their properties. However, assessing the reusability
of the workers and entries we implemented for our example protocols is not easy since
reuse is a long term concept and requires empirical validation. From our experiences,
we are convinced that almost all entry-types are highly reusable. For example, the class
IntegerEntryType appears in almost all protocol implementations we experienced
with. The reusability of a worker component is certainly lower than the reusability of an
entry-type since there are more different and specific algorithms in communication proto-
cols than different header field types. The protocol editor provides also reuse of complete
order-types and even clusters of order-types. However, a lot of protocol development
projects would be necessary to reliably assess the reusability of larger abstractions (like
clusters).

� Efficiency: though it would be interesting to see how our approach would compete with
other structuring approaches if it would have been realized in a high-performance imple-
mentation (possibly in the kernel), the focus of our research was modeling and designing
protocol software for flexibility, reusability, and rapid-prototyping.

We wanted to show the benefits when protocol software is structured beyond layering, and
therefore left out performance issues within our framework. Additionally, since the use
of Java suggests already a performance penalty of about an order of magnitude compared
to C, we considered comparisons with protocol software in other programming languages
as not particularly useful.

It is clear that our framework is not meant to re-implement a bulk data transport protocol
as FTP/TCP. It would even contradict the concept of reuse to ignore the existence of
a well-explored and highly optimized protocol as TCP. General purpose protocols are
meant to be implemented only once as efficient as possible. We address application-
tailored protocol implementation where flexibility and modifiability are more important
than optimization of performance.

� Robustness: due to the modular structure, which allows independent testing, and the
fact that PITOU protocol software is composed out of existing and tested modules, the
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robustness of PITOU protocols is achieved much faster than in coarse-grained layered
protocol software modules.

6.3 Software Engineering Techniques for Protocol Imple-
mentation

Component-based development technologies, design patterns, and (especially object-oriented)
frameworks are recent concepts and important research topics in the domain of software engi-
neering. Our experiences applying these concepts for protocol development allow us to reach
several conclusions about the usefulness, applicability, and limitations of these software engi-
neering technologies in the area of communications protocol implementation.

6.3.1 OO Frameworks

The concept of using frameworks to support the implementation of a family of related ap-
plications has become very popular with the advent of object-oriented languages. Although
frameworks have been already implemented and used without the OO paradigm – and as we
saw in the related work section of Chapter 4, have a long tradition especially in the area of
protocol implementation – they gained special attention and stimulated research only when the
OO paradigm won recognition. OO modeling and programming are simply more appropriate
than function-oriented languages to design the boundaries between what is abstract and what
is concrete, what is application specific and what is framework specific, since OO development
provides explicit support for modeling and designing the hot-spots of a framework (abstract
classes, Java interfaces, C++ virtual methods). OO frameworks are thus generally eas-
ier to document, to understand, and to use than frameworks in function oriented languages.

Evolving OO Frameworks

In order to evaluate the concept of OO frameworks for protocol implementation, we interre-
late our experiences during the implementation of PITOU with an article of Ralph Johnson
[115], which defines a language of patterns for the development and evolution of object-oriented
frameworks. This article describes a common path during the development of a framework,
which is depicted in Figure 6.1.

The pattern Three Examples proposes to develop three applications one believes that the frame-
work should help to build.

After implementing the first example application, the pattern White-Box Framework proposes to
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Three Examples

White Box Framework

Language Tools

Black Box Framework

Component Library

Hot Spots

Pluggable Objects

Fine-grained Objects

Visual Builder

Time

Figure 6.1: Evolving Framework (Johnson 1998)

generalize from the classes in the individual applications by using the inheritance feature. Since
probably not enough information is available that allows to identify immutable code, White-Box
Framework is a way to reuse existing code and provide a base for later transformation into a
system that allows for composition.

During development of the subsequent example applications, Component Library proposes
to start building a simple library of obvious objects, add additional objects every time when
needed, and remove them when they are not frequently used. Component Library thus helps
to identify reusable parts of an application and distinguish changing from static parts of an
application.

During the development of a component library, Hot Spots proposes to separate code that
changes from the code that doesn’t. The varying code should then be encapsulated within
objects that can be used for composition.

At the same time Pluggable Objects proposes to make objects adaptable by parameterizing
them. Complementary to Hot Spots, Pluggable Objects wants to avoid encapsulation when the
variation of code is minimal and can be captured by configuration.

Fine-Grained Objects proposes to break the objects of the library into finer granularity (until it
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makes no sense any further) to make them more reusable.

At that point, we have a white-box framework that heavily relies on inheritance. Inheritance
means a strong coupling between components and requires code modification to adapt a com-
ponent. It requires a good knowledge about the internal details of a component, but gives the
programmer full control to change whatever he needs and the original designer never thought
of. In order to improve reusability and flexibility in application development, Black-Box Frame-
work proposes to restrict inheritance only to organize the component library and use composi-
tion to combine the components into applications. The application developer then does not need
to worry how components accomplish their tasks, and simply needs to plug them together.

Once a black-box framework is established, Visual Builder proposes to make a tool that lets the
developer specify the objects that will be in the application and how they are interconnected in
a visual manner. The tool should generate the code for an application from its specification.

Once a builder is created, Language Tools proposes to create specialized inspecting and debug-
ging tools to deal with the specialized composition relationships of the framework.

The Evolution of PITOU

Good knowledge in the area of communication protocols and personal experiences with the
implementation of transport and application protocol software helped us to start the modeling
on a rather high level of abstraction. We therefore did not need to rely on the Three Examples
pattern, and instead constructed several scenarios with different kinds of protocols that served
as a base for our model.

In contrary to the development of a framework for a new family of applications, communication
protocol frameworks have a more than 10 years history that allowed us to build upon the ex-
periences of predecessors frameworks like Conduits [64], X-Kernel [68], or BAST [60]. From
the beginning, our design goals flexibility and reusability lead our research in the direction of
a black-box framework. The question of how to decompose protocol software into decoupled,
reusable, and configurable entities was the most important question during the whole devel-
opment process. We therefore did not take the detour of White-Box Framework, and directly
modeled and designed for composition proposed in Black-Box.

The development of a class library as proposed in Component Library is a by-product of every
new protocol we implement in PITOU. While for Johnson building a class library is an trial-
and-error like instrument to gain insights about the later design of the framework, for us it is
rather an instrument of reuse for workers and entries, and started later in the evolution process of
our framework compared to Figure 6.1. Again, the existing research and personal experiences
made it possible to save some iterations of changing model and design.

Hot Spots is one of the major evolution steps in PITOU. Our goal was to minimize the number
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of hot-spots to ease using our framework. Finally, any beginner can build a simple protocol
by understanding the interfaces of Worker, EntryType/Entry and SAP classes, which
are the most important varying classes (hot-spots) in our design. The advanced program-
mer may also change MappingStrategy or Executor. Classes like Environment,
AcceptanceType, Emission, etc. represent the fixed parts and what we called core frame-
work classes.

Pluggable Objects is applied every time a new protocol is implemented. Normally, the determi-
nation of configuration parameters (in Java-Beans terminology ”property”) is a very natural and
intuitive process. Examples are time-out values, packet-size, and forward-error-correction code
parameters. We use the same idea as the Java-Beans component model to define configurable
parameters, i.e. naming conventions (set and get methods) together with reflection.

Applying Fine-Grained Objects for PITOU is partly done during defining the structure and the
hot-spots. On the other hand, it is the task of the programmer of a protocol to assure the fine-
granularity of the components he implements. Theoretically, the implementation of a worker
could be done in a way that the worker contains e.g. the complete output functionality of a
TCP layer. There may be also possibilities to structure workers into finer-grained objects using
e.g. the State or Strategy pattern.

Visual Builder has been realized partly within PITOU. Instead of building a specialized visual
builder tool, we first used a general visual builder tool (Visual Age for Java) that supports
the implementation of any kind of component-based development that conforms with the Java-
Beans mode. Due to the experienced deficiencies, we modified the component-model (registrars
and reification of interactions) and implemented a protocol editor that allows to edit protocol
software – but not supported by a graphical interface.

Language Tools deal with the complexity of compositions and provide inspection and debug-
ging support. The PITOU tools for validation, simulation, and animation fall can be considered
as implementation of the Language Tool pattern.

In general, we can say that the evolution of the PITOU framework matches well with the pro-
posed pattern language. There are however some specifics of the application family we address
(application-tailored protocol software), which rendered the implementation of PITOU easier
than expected:

� Use of Java: Java itself can be considered as a framework, since it provides a.o. auto-
mated garbage collection, comfortable thread support, and reflection classes (to introspect
the properties of classes and their methods). Some important and possible tricky design
issues have such been solved before they appeared for us.

� Research on protocol software: we could tap into a pool of rich experience in the domain
of protocol structuring, implementation, and frameworks. That way, we could avoid a
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number of mistakes and thus iterations during the design of our framework.

� Nature of protocol software: protocol software does not consist of large and complex
components as e.g. accounting software, and is rather easy to survey.

All these points allowed us to concentrate from the beginning on the key issue of finding good
abstractions and an expressive structure for protocol software, which could then be implemented
straight-forward in our framework.

We can clearly state that the development of a OO framework to compose protocol software is
an extremely powerful and successful mean to achieve all goals stated above. We don’t see a
viable alternative to developing a framework. However, we do not want to hide the problems
we experienced with regard to using frameworks.

� Stability of the hot-spots: the framework design largely depends on the stability of the
hot-spot classes. If e.g. the abstract class Worker changes one of its abstract methods, all
concrete worker implementations (our framework currently consists of around 50) must
be adapted to conform with the modified interface of the worker class. We made this
unpleasant experience once when we changed a method name of EntryType.

� Stability of the core-classes: a similar argument as for the hot-spot classes applies when
classes are modified that concern the fundamental structure of the framework. When the
animation tool design started, PITOU still relied on the Java-Beans connection model.
The modification to RelationRegistrars required the modification of large parts of
the animation tool.

� Static interfaces: method declarations are tightly coupled with the class they are im-
plemented for and not accessible as dynamic entities. This coupling of interface and
implementation can be circumvented by reifying methods in first type classes as we have
done this to allow for interaction of arbitrary workers at the price of having potentially
more ”helper” classes than ”full” classes. It would be nice to have flexible and dynamic
interfaces as OO language feature to make frameworks more flexible and easy to use.

� Documentation: we found it rather difficult to document the PITOU framework. Should
we first explain how to use the framework and risk that the reader has not enough infor-
mation to understand our explanations? Should we first give a detailed documentation
of classes and system details and risk that the reader gets tired and spends a lot of time
before he can start working with the framework?
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6.3.2 Component-Based Development

Component-based development is a key concept to provide code reusability. The focus on well-
defined interfaces and configurability provides the technical requirements for reusability. In the
context of protocol implementation, we found the following benefits of using component-based
technologies.

� Team-development: components can be plugged together even when they are developed
by different people and teams (as long as they conform with the interface specification
of the component technology used). The user of a component just needs to know about
the component’s interface and its tasks (in contrary to inheritance based reuse). Different
people contributed to the worker library. Even a module that was not designed to be used
within PITOU, could be integrated by being encapsulated in a worker wrapper class.

� Standardization: the example Java-Beans showed that one visual builder tool can be
used for different applications. The use of VAJ allowed us to experiment with visually
composing and configuring protocol software without the need of taking the expensive
efforts of implementing a specialized tool.

� Localization of change: when interface definition and concrete implementation are de-
coupled (as done for e.g. workers), changing the implementation does not affect any other
part of the software. CBD thus allowed to make changes transparently for the application.

� Dynamic character: CBD supports black-box composition, and thus allows to perform
changes even at runtime. In PITOU, we do not allow to change the protocol structure or
configuration during the execution of the protocol. However, our protocol editor and the
validation tool work with runtime instances instead of formal specifications.

Although the benefits of CBD are indisputable and contributed to a large degree to the success
of PITOU, we still present a list of problems and possible improvements that are partly related
to the character of protocol implementation.

� Components are just a part: components can not capture global aspects of an appli-
cation. This makes optimization rather difficult if not even impossible. Additionally,
building components does not free the designer from developing an appropriate archi-
tecture for his application. We believe that CBD is useful only in the context of a good
design or better a OO framework.

� Complexity: to be flexible, our components are very fine-grained. On the other hand,
fine granularity shifts complexity from the components itself to the interactions of the
components. It is not easy to keep a clear view of all interactions, especially when the
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builder tool used has limitations. Most errors we encountered using a builder tool were
due to forgotten or flawed specification of interaction.

� Separation of domain and implementation knowledge: in the domain of protocol im-
plementation, the domain knowledge (understanding communications protocols) is very
close to the implementation knowledge. Most protocol experts have already implemented
a protocol. This is why we believe that one key benefit of CBD – separating domain and
implementation knowledge – is not very relevant to protocol implementation.

� Dependencies on the component model: each component model imposes certain con-
ventions to be respected. In order to connect workers via Java-Beans tools, we must
implement the methods indicating an event source (addABCListener etc.). When we
replaced Java-Beans by our own connection mechanism using explicit interactions, we
had to change a lot of classes. These dependencies on the component model is a large
obstacle to evolution and reuse.

� Visual builders: using common Java-Beans visual builder tools is easy, but their capac-
ities are limited and most tools are not mature enough. Building an own tool is very
expensive and should be done only when no fundamental changes are expected any more
– but when are we sure about that?

6.3.3 Use of Patterns

Patterns are considered a useful instrument to document successful solutions to recurring prob-
lems. In this section, we discuss our experiences in identifying, documenting, and using patterns
during analysis, design, and implementation of PITOU.

There are not many solutions or patterns to structure protocol software. The Layers pattern is
an architectural pattern, but does not provide design and implementation support. The work
of Hüni [64] is the first one that proposes to exploit the design patterns of Gamma [59] to
improve the quality of protocol code. However, although the design patterns of Gamma are
useful during design and implementation, they are very general and do not indicate how to
structure protocol software. We do not know of any work that identifies domain (”analysis”)
patterns for communication software. Maybe this is due to the fact that the idea of flexible,
application-tailored protocols is rather new and not yet explored.

We appreciated the use of domain patterns especially as a documentation tool. After several
attempts to describe our structuring approach of Chapter 2, we tried it in a pattern style by
defining problem and context, weighting the forces, and proposing a solution. We found that
using a pattern format was the easiest and clearest way to describe a solution, since a pattern
offers a more general and abstract perspective to a solution and focuses on the main elements
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while leaving out details. That way, our domain patterns from Chapter 2 also facilitated the
description of the final framework, since they provided a vocabulary and permanent guidance
through structure and architecture of this dissertation.

Domain patterns are not only useful to document our framework, they are also directly appli-
cable for applications with similar requirements. Their structure is valid and useful, even when
no framework exists. For example, one could imagine to apply Data Path Reification also for
high-performance network and kernel protocol implementation.

The use of design patterns (particularly those of Gamma et al. [59]) have been useful as an
instrument to justify design decisions and to establish a culture of design to improve the map-
ping from design to implementation. They give guidance on a rather low level once the overall
structure and architecture has been finalized. It was interesting to see that design patterns can
also bring issues into mind, one would not have thought about originally.

However, the use of patterns does not replace the need for a careful analysis and design, neither
do patterns lead to direct reuse of code. Naively used, they may even narrow the perspective
of developers that look for solutions instead of understanding the problem. The number of
existing patterns, their heterogeneity with regard to the level of abstraction, the fluent boundaries
between domain, design, and architectural patterns, the naming ambiguities of existing patterns,
and the lack of structured design in the domain of protocol implementation made it difficult for
us to find, study and apply relevant patterns. We therefore used patterns as an instrument to
justify and confirm design decisions rather than as a cook-book to build software.

6.4 Outlook

Besides framework refinements and optimizations, the implementation of more protocols with
different requirements would be the next logical step to do. The size of the PITOU component
library is important to reach conclusions about the degree of reusability achievable, to identify
communication patterns within protocols, to identify classes of workers, and to get insights
about what kind of optimizations are necessary.

Although PITOU allows to visualize protocol implementation based on the general Java-Beans
component model, it would be appealing to have a graphical tool that guides the complete pro-
cess of composing and configuring protocols in a comfortable manner adapted to the specifics
of protocol implementation.

It would also be interesting to see how our structuring approach or at least some of the struc-
turing principles proposed can cope with the needs of high-performance networking. In the
context of kernel-protocols, our idea may serve as a playground for prototyping and experi-
menting with new network and transport protocols. Possible applications might also be small
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devices (Java-Cards, PDAs, Mobile Phones).

Our structure Order-Worker-Entry seems generic and suggests that it could be applicable also
for applications other than protocols. Generalizing and using the PITOU framework as a generic
framework for other frameworks or application families would surely be an interesting research
direction.

Finally, we believe that building a QoS aware middle-ware system (as we sketched in Ap-
pendix D) would be an interesting follow-up project. The question of how to express quality of
service requirements as structures of workers and entries is thereby of particular importance.

6.5 Summary of our Contributions

The thesis addresses the implementation of application-tailored protocols, i.e. protocols that
deal with application and transport semantics and that are part of the application code. We make
several contributions to improve software productivity and quality for this class of applications.

Protocol structuring: We demonstrate the problems of applying the traditional layered ap-
proach to protocol software structuring, and propose a set of structuring principles that allow
to tailor protocol software to the needs of its application. The common idea behind all our
principles is a vertical structure based on the notion of a data-path. Our structure reduces cross-
talk between different streams to allow for application-specific and service-specific quality of
service control, provides high flexibility in applying different thread-strategies, and divides pro-
tocol software into independent, fine-grained, and configurable components.

Protocol implementation support: Based on our structuring approach and recent advances in
software engineering, we make another significant contribution by realizing a Java framework
that supports the composition, configuration, and rapid-prototyping of application-tailored pro-
tocols. We demonstrate that it is possible to generate new protocols by assembling and con-
figuring existing components using (Java-Beans compliant) visual builder tools without writing
any line of code. In order to overcome the problem of the Java-Beans approach to cope with the
complexity of component interactions, we propose to reify interactions into first class objects.
We showed how this solution increases the robustness of protocol code (since it facilitates the
validation of the correctness), and how it contributes to seamless simulation and animation of
assembled protocol software.

Another contribution of this thesis is the design and implementation of a protocol simulator that
can operate on the same components used to compose ”real” protocol software and that allows
to attribute virtual time to fine-grained, internal tasks of implementations. Another tool allows
to represent protocol sessions in a graphical manner, and – similar to the simulation tool – does
not require any modifications of the original protocol code.
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Evaluation: We demonstrated the expressiveness and applicability of our structuring approach
by implementing existing protocols. Our structuring approach can deal with the complex
header structure of the RTP/RTCP protocol and with the sophisticated functions of TCP. We
further sketched how our approach can contribute to integrate quality of service management
for middle-ware systems.

Finally, we contribute to software engineering research by reporting on our experiences with the
software engineering concepts we have used, and by evaluating OO frameworks, component-
based development, and patterns in the context of protocol implementation.
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Signatures of the Main PITOU Interfaces
and Classes

A.1 Hot Spot Classes

public abstract class Worker {

public boolean call(Entry[]);

public void init(Entry[]);

public void deactivate();

}

public abstract class EntryType {

public Entry create();

public void setInitFlag(boolean);

public void getInitFlag(boolean);

public void setVisibleFlag(boolean);

public void getVisibleFlag(boolean);

public void setSize();

public void getSize();

}

public abstract class Entry {

public void fill(Packet,int);

public void fill();

public byte[] serialize();

public void setValue(Object);
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public Object getValue();

}

public interface OutOfBandModule {

}

public abstract class Address {

}

public abstract class SAP {

public void open();

public void close();

public void setPacketSize(int);

public int getPacketSize();

public Packet read();

public Packet readUntil();

public void send(Packet);

public Address getDefaultDestination();

public void setDefaultDestination();

public Address getOwnAddress();

public void setOwnAddress(Address);

}

public abstract class MappingStrategy {

public void map(Packet);

public void outgoing(EmissionType);

}

public interface ReadAPI {

public void deliver(Object[],DeliveryType);

}

public interface WriteAPI {

public void setAcceptanceType(AcceptanceType);

public void accept(Object[]);

public void accept(Object[],Address);

}
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A.2 Utility Classes

public class Timer {

public void reset(long);

public void cancel();

public long getAbsTimeout();

public void endUse();

}

public class TimerPool {

public Timer getNewTimer();

protected void reset(Timer,long);

protected void cancel(Timer);

protected void endUse(Timer);

}

public class StateManager {

public void signal(EventRaiser);

public void init();

public void addSessionState(SessionState);

public void setStart(SessionState);

}

public class SessionState {

public void setName(String);

public String getName();

public void addTransition(EventRaiser,SessionState);

public void addFilter();

public void enter();

public void init(StateManager);

public void transit(EventRaiser);

}

public interface Filter {

public void letNotPass();

public void letPass();

}
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A.3 Classes for Registration and Assembly

public class OrderRegistrar {

public void addOrder(OrderType);

public void init();

}

public class StructureRegistrar {

public void addEntry(EntryType);

public void addWorker(Worker);

public void addWorkerParameter(EntryType,Worker);

public void init();

}

public class OutOfBandRegistrar {

public void addOutOfBandModule(OutOfBandModule);

public void init();

}

public class MappingStrategyRegistrar {

public void addMappingStrategy(MappingStrategy);

public void init();

}

public class SAPRegistrar {

public void addSAP(SAP);

public SAPRegistrar create();

public void init();

}

public class RelationRegistrar {

public void addRelation(Relation);

public void init();

}

public class ExecutorRegistrar {

public void addExecutionGroup(ExecutionGroup);

public void init();

}
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public class EventRaiser {

public void addProtocolEventListener(ProtocolEventListener);

public void removeProtocolEventListener(ProtocolEventListener);

public void raise(ProtocolEventObject);

}

public interface Caller implements ProtocolEventListener {

public void call();

public void init();

public void setNotifiee(Object);

}

public interface Relation {

}

public class NotificationRelation implements Relation {

public NotificationRelation(EventRaiser,Caller);

public void setEventRaiser(EventRaiser);

public void setCaller(Caller);

public void init();

}

public class NewOrderRelation implements Relation {

public NewOrderRelation(EventRaiser,Order);

public void setOrder(Order);

public void setEventRaiser(EventRaiser);

public void init();

}

public interface Resource {

public Object read();

public void write(Object);

}

public class ResourceAccessor {

public Object read();

protected void assignResource(Resource);

}
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public class SharedResourceRelation implements Relation {

public SharedResourceRelation(Resource,ResourceAccessor);

public void setResource(Resource);

public void setAccessor(ResourceAccessor);

public void init();

}

A.4 Framework Core Classes

public class Packet {

public Packet(Address,byte[]);

public Address getAddress();

public byte[] getBytes();

}

public interface Acceptable {

public void setWriteAPI(WriteAPI);

public WriteAPI getWriteAPI();

}

public interface Deliverable {

public void setReadAPI(ReadAPI);

public ReadAPI getReadAPI();

}

public interface Emittable {

public Address getAddress();

public int getSAPNr();

public void setSAPNr(int);

public int getOrderID();

public void setOrderID();

}

public interface Receptable {

public Address getAddress();

public int getSAPNr();
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public void setSAPNr();

public int getOrderID();

public void setOrderID();

}

public interface Order {

public boolean execute();

public boolean initialize(Packet);

protected byte[]

protected byte[] serialize();

protected Object[] objectivate();

}

public interface OrderType implements Filter {

protected void setOrderTypeManager(OrderTypeManager);

public Order createOrder();

public void setStructureRegistrar(StructureRegistrar);

public void activate();

public void deactivate();

public void requestOrder(Packet);

public void executionTerminated();

public void setPriority(int);

public int getPriority();

public EventRaiser defineEvent_execDone();

}

public interface AcceptanceType extends Acceptable, OrderType {

}

public interface EmissionType extends Emittable, OrderType {

public Resource defineOutput_add();

public Resource defineOutput_id();

}

public interface DeliveryType extends Deliverable, OrderType {

}

public interface ReceptionType extends Receptable, OrderType {

public Resource defineOutput_add();
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public Resource defineOutput_id();

}

public interface Acceptance extends Acceptable, Order {

}

public interface Emission extends Emittable, Order {

}

public interface Delivery extends Deliverable, Order {

}

public interface Reception extends Receptable, Order {

}

public abstract class OrderTypeManager {

protected assignExecutor(Executor);

protected assignEnvironment(Environment);

protected assignOrderType(OrderType);

public void requestOrder(Packet);

}

public interface Environment {

protected appData(Object[],Address,Acceptable);

protected netData(Packet,int);

public void setOrderRegistrar(OrderRegistrar);

public void setExecutorRegistrar(ExecutorRegistrar);

public void setOutOfBandRegistrar(OrderRegistrar);

public void setRelationRegistrar(RelationRegistrar);

public void setMappingStrategyRegistrar(MappingStrategyRegistrar);

public void setSessionStateRegistrar(SessionStateRegistrar);

public void changeSAPs(SAPRegistrar);

public void notifyTerminate();

public void deactivate();

public void init(InitManagerImpl);

protected void exceptionOccured(Exception);

public void setExceptionHandler(ExceptionHandler);

public void addCloseListener(CloseListener);

public Caller defineCaller_terminate();
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}

public interface CloseListener {

public void envClosed(Environment);

}

public interface ExceptionHandler {

public void exceptionOccured(Exception);

}

public interface Executor {

public void init();

public void deactivate();

public void execute(Order,int);

public boolean isWorking();

}

public class ExecutionGroup {

public void addExecutionGroup(ExecutionGroup);

public void init();

}

public interface InitManagerImpl {

public void init(Environment,OrderType[],ExecutorRegistrar);

}

public abstract class ProtocolBuilder {

public Environment construct();

}

A.5 Simulation Classes

public class Activity {

public void perform();

public void setScheduler(Scheduler);

public int getPriority();

public void setPriority(int);

}
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public class Processor implements Sortable {

public void scheduleAt(Activity,long,long);

public void scheduleAtEnd(Activity,long);

public void cancel(Activity);

public Activity getNextProc();

public int getNrScheduled();

public long getNextExecTime();

public long getNextDuration();

public void passivateFirst();

public boolean equals(Sortable);

public boolean greater(Sortable);

}

public class Scheduler {

public void register(Activity,Processor);

public void register(Activity);

public void deregister(Activity);

public void addVirtualTimeListener(VirtualTimeListener);

public void removeVirtualTimeListener(VirtualTimeListener);

public void scheduleAt(Activity,long,long);

public scheduleNow(Activity, long);

public void scheduleAfterRest(Activity,long);

public void cancel(Activity);

}

public interface VirtualTimeListener {

public void newVirtualTime(long);

}

public class Link implements Activity {

public void addTarget(SAPvS);

public long getOneTripTime();

public void setOneTripTime(long);

public void put(byte[],Address,Address);

}

public class SAPvS implements SAP {

public void arrive(Packet);
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public long getDataRate();

public void setDataRate(long);

}
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Appendix B

Simulation Scenario

To illustrate how the simulator works that we described in Chapter 4, we have a look at the
following scenario. We assume that all activities involved have been registered at the scheduler
using the register() methods.

Imagine, we have four activities A1::A4 registered with two processors P1; P2. The activities
are distributed as follows over the processors: P1 = fA1; A2g, P2 = fA3; A4g. A1::A3 have
a priority of 1, A4 has a priority of 2. At the beginning, no activities are scheduled, i.e. all
processors are sleeping.

Step 1: A1 is scheduled as soon as possible with a duration of d1 = 100ms.

� The user schedules A1 via Scheduler.scheduleNow(A1,100).

� The scheduler identifies the processor P1 as responsible, and schedules A1 at the current
virtual time vt = 0 via P1.scheduleAt(A1,0,100).

� The processor produces an information object I1 = (A1; 0; 100), and adds it to its queue
QP1 = f(A1; 0; 100)g.

� The scheduler inserts the processor P1 in its queue: QS = fP1g, and resumes its thread
(which has been sleeping until now, because there has been no activity).

Step 2: A2 is scheduled as soon as possible with a duration of d2 = 150ms. No activities have
been executed yet.

� The user schedules A2 via Scheduler.scheduleNow(A2,150).

� The scheduler identifies the processor P1 as responsible, and schedules A2 at the current
virtual time vt = 0 via P1.scheduleAt(A2,0,150).

167
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� Since A2 overlaps with A1, it must be scheduled after A1, hence at vt = 100.

� The processor produces an information object I2 = (A2; 100; 250), and adds it to its
queue QP1 = f(A1; 0; 100); (A2; 100; 150)g.

� Since P1 is already present in the schedulers queue, the queue remains unmodified: QS =

fP1g.

Step 3: A3 is scheduled at virtual execution time e3 = 50 and duration d3 = 70. Still no
activities have been executed yet.

� The user schedules A3 via Scheduler.scheduleAt(A3,50,70).

� The scheduler identifies the processor P2 as responsible, and schedules A3 at virtual time
vt = 50 via P2.scheduleAt(A3,50,70).

� The processor produces an information object I3 = (A3; 50; 70), and adds it to its queue
QP2 = f(A3; 50; 70)g.

� The scheduler sorts P2 in his queue of waiting processors. Since the first activity sched-
uled for P2 is executed later than the first activity scheduled of P1, P2 is inserted after
P1 in the queue: QS = fP1; P2g.

Step 4: A4 is scheduled at virtual execution time e4 = 60 and duration d4 = 30.

� The user schedules A4 via Scheduler.scheduleAt(A4,60,30).

� The scheduler identifies the processor P2, and schedules A4 via
P2.scheduleAt(A4,60,30).

� The processor produces an information object I4 = (P5; 60; 30), and inserts it in its queue
QP2 = f(A3; 50; 70); (A4; 60; 30)g – attention: there is an overlapping between the two
activities. P2 modifies its queue by adapting the execution times such that A4 starts only
when A3 has terminated: QP2 = f(A3; 50; 70); (A4; 120; 30)g.

� Since P2 is already present in the schedulers queue, the queue remains unmodified: QS =

fP1; P2g.

An graphical view on the scheduled activities can be seen in Figure B.1.

Step 5: Execution of the next activity scheduled.

� The scheduler thread takes the first processor from its queue: P1 is now active processor.
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Figure B.1: Scheduling Scenario after Step 4

� The scheduler obtains the activity to be executed via P1.getNextProc(),
its execution time via P1.getNextExecTime(), its duration via
P1.getNextDuration().

� The scheduler sets the virtual time to the execution time, hence the time does not change:
vt = 0. The scheduler sets the maximum termination time to tt = 100.

� The scheduler notifies P1 that it can update its lists via P1.passivateFirst(). P1
updates it queue to QP1 = f(A2; 100; 150)g

� The scheduler removes P1 from its queue. But since P1 has still another activity sched-
uled it will be re-inserted after P2: QS = fP2; P1g.

� The scheduler executes A1 via A1.perform().

Step 6: Execution of the next activity scheduled.

� The scheduler thread takes the first waiting processor from its queue: P2 is now active
processor.

� The next activity to be executed is A3, its execution time 50, and its duration 70ms.

� The scheduler sets the virtual time to the execution time, hence the virtual time is vt = 50.
The scheduler sets the maximum termination time to tt = 120(50 + 70).

� The scheduler notifies all its listeners that the virtual time has changed.

� The scheduler notifies P2 that it can update its lists via P2.passivateFirst(). P2
updates it queue to QP2 = f(A4; 120; 30)g.
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� The scheduler updates its queue: QS = fP1; P2g.

� The scheduler executes A3 via A3.perform().

Step 7: Execution of the next activity scheduled.

� The scheduler thread takes the first processor P1 from its queue.

� The next activity to be executed is A2, its execution time 100, and its duration 150ms.

� The scheduler sets the virtual time to the execution time, hence vt = 100. The maximum
termination time is set to tt = 250 (since 100 + 150 = 250).

� The scheduler notifies all virtual-time listeners about a change of time.

� The scheduler notifies P1 that it can update its list: QP1 = fg.

� The scheduler removes P1 from its queue.

� The scheduler executes A2.

Step 8: Execution of the next activity scheduled.

� The scheduler thread takes the first processor P2 from its queue.

� The next activity to be executed is A4, its execution time 120, and its duration 30ms.

� The scheduler sets the virtual time to the execution time, hence vt = 120. The maximum
termination time remains tt = 250 (since 120 + 30 < 250).

� The scheduler notifies all virtual-time listeners about a change of time.

� The scheduler notifies P2 that it can update its list: QP2 = fg.

� The scheduler removes P2 from its queue: QS = fg.

� The scheduler executes A4.

� The scheduler sets the virtual time to the maximum termination time: vt = 250, since no
processors are waiting, notifies all virtual-time listeners, and brings its thread to sleep.

The internal states of scheduler and processors after each step is depicted in Figure B.2.
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Figure B.2: The Scheduling Scenario during Execution



172 APPENDIX B. SIMULATION SCENARIO



Appendix C

Integrating Simulation in PITOU

This chapter describes the design that allows us to extend the PITOU framework by a simulation
mode.

C.1 Simulating a Network

From Chapter 3, we already know the types that PITOU defines to encapsulate network access:
the abstract class SAP and the interface Address. Both are implemented with regard to
simulation support. The class SimpleAddressS represents a virtual address that consists
simply of a long value. The class SAPvS works as follows. Besides being of type SAP,
a SAPvS object is also of type Activity, i.e. an activity that simulates sending data. It
therefore implements the method setScheduler() to have access to a scheduler object, and
perform() to execute sending data.

� The method void arrive(Packet) serves to receive data from a virtual network.
The incoming data is written into a read queue.

� The methods setOwnAddress() and getOwnAddress() allow to assign a virtual
address to a SAPvs object. This address is used by the virtual network to demultiplex
data to the right SAP.

� The methodPacket read() returns and removes the first element from the read queue
(if there is one, otherwise it returns null).

� The methods long getDataRate() and void setDataRate() allow to specify
the data rate, the SAPvs is able to send.

173



174 APPENDIX C. INTEGRATING SIMULATION IN PITOU

� The method void send(Packet) puts the data into a write queue, and schedules an
activity specifying itself as activity for immediate execution, and a duration depending on
data-rate and packet size.

� The method void perform() takes and removes the first element from the write
queue, and sends it, i.e. gives it to a virtual network for transport. This method is called
by the scheduler in response to the scheduling operation done in the SAPvs.send()
method.

We already refered to a virtual network component. What classes are hidden behind this notion
of a virtual network? In fact, our solution is extremely simple. We allow SAPvS objects
to be connected with objects of type Link. Each SAPvS object provides a method void

setLink(Link), to which it hands out the data during the perform() method. The class
Link implements the Activity interface, i.e. it acts as an activity that transmits data. It
declares the following methods:

� The method void addTarget(SAPvS) allows to add SAPvS objects to a link.

� The methods long getOneTripTime() and void setOneTripTime() are
used to configure the virtual time a message takes until it arrives at the other end.

� The method void put(byte[], Address, Address) is used by a SAPvS ob-
ject to write data to the link. The other parameters specify source and destination address
of the data. The link object puts the information in a queue, and schedules itself as activity
for immediate execution and a duration corresponding to the specified one-trip-time.

� The method void perform() identifies the right SAPvS object using the specified
destination address, and delivers the information.

Links may also be configured to simulate any kind of transmission errors (fading channels, lin-
ear bit errors, bursty bit errors, etc.). SAPvS may also be used to simulate overloaded machines
or congested routers.

The following scenario illustrates how two environments E1 and E2 communicate via a simu-
lated network L, which connects the simulated SAPs SAPvS1 and SAPvS2 (see also Figure
C.1).

1. E1 calls the method SAPvS1.send() after execution of an emission order.

2. SAPvS1 appends the information to its queue and calls the method
Scheduler.scheduleNow(this,duration), whereas duration =

packetSize=dataRate.
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3. The information remains in the queue unless the scheduler thread calls
SAPvS1.perform(). Within the perform() method, the information is given to
the link L via L.put().

4. In the put() method, the information is written to the queue of the link. The link then
schedules itself via Scheduler.scheduleNow(this,oneTripTime).

5. The information remains in the link queue until the scheduler thread call L.perform().
Here, the destination address is matched with all destination SAPs (in our scenario there
is only one), and given to SAPvS2 via SAPvS2.arrive().

6. In the arrive() method, the information is stored in a queue, where it remains until
the read() method is called.

Environment1

SAPvS1 SAPvS2

LinkS

Scheduler

1. send()

2. schedule()

3. perform()

4. put()

5. schedule()

6. perform()

7. arrive()

Environment2

8. read()

9. netData()

Figure C.1: Simulation of Sending Data
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C.2 Simulating Time

The virtual time calculated by the scheduler replaces the real system time during normal op-
eration. Since protocols often use timers, a careful design of how to realize timeouts within a
virtual environment is of particular importance. We saw in Chapter 3 that every environment
object is initialized with a global timer-pool, which manages all timers used by worker compo-
nents of the environment. This centralized design facilitates the task of replacing system time
by virtual time transparently for the protocol components.

We implement a class TimerPoolS – a timer-pool for simulated timers – which extends the
class TimerPool presented in the last chapter. A simulated timer-pool manages simulated
timers implemented as TimerS, which extends the class Timer.

A simulated timer-pool works very similar to the timer-pool described in the last chapter.
But instead of implementing an own thread, which sleeps until the next time-out, a sim-
ulated timer-pool implements the interface VirtualTimeListener to be informed
every time the virtual time changes (via the method newVirtualTime(long)). In
newVirtualTime(), the virtual timer-pool checks if the next timeout is due, and eventu-
ally schedules a timeout via Scheduler.scheduleNow(TimerS,0)1.

The class TimerS implements the interface Activity to be able to be scheduled as an
activity. In the method perform(), it calls the timer-compatible object that requested the
timer via timerCall().

The following scenario illustrates how a simulated timer-pool works.

1. A timer-compatible worker obtains an object of type TimerPoolS during initialization
time. For the worker, this object is of type TimerPool.

2. The worker demands for a timer object via TimerPool.getNewTimer(). The
worker obtains a simulated timer object – for the worker, however, this object is of type
Timer.

3. The worker activates a timeout after 100ms by calling Timer.reset(100).

4. The simulated timer-pool calculates the timeout by adding actual time and expiry time,
and adds the timer-information to his expiry list.

5. The scheduler notifies the timer-pool about a change of time via
newVirtualTime(long). The timer-pool realizes that the expiry time of the
first timer in the list is higher than the current virtual time.

1The duration of a timer call is considered to be 0 and thus does not advance the virtual time. This is not
realistic, but extremely simplifies timer-handling.
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6. The timer-pool immediately schedules the corresponding timer-object via
Scheduler.scheduleNow(TimerS,0).

7. As soon as the timer object is the next to be executed, the scheduler thread calls the
method TimerS.perform().

8. In TimerS.perform() the worker’s timerCall() method is called.

The scenario shows that the use of virtual time-outs instead of time-out based on the system
time is completely transparent for the worker or any other component that uses timers.

C.3 Simulating Threads

We now treat the most complicated part in transforming PITOU into a simulation environ-
ment. How to simulate the threads (implemented by the Executor sub-classes) that execute
orders? Instead of giving orders to executor objects, orders must be scheduled directly and ex-
ecuted by the scheduler. That is, modifications of at least one of the core framework classes –
InternalOrderType – are necessary.

One option would be to re-implement the OrderType interface in a class
InternalOrderTypeS with the functionality required for simulation. This approach has
a number of disadvantages:

� The modification needed concerns only the way how to execute an order (and not how to
manage the order pool). We would therefore need to re-implement most of the function-
ality already implemented in InternalOrderType a second time.

� Moreover, we must re-implement all the sub-classes of InternalOrderType to as-
sure that they have the right type – although they do not comprise any method that must
be changed.

� Besides the high number of classes to be implemented, there is another prob-
lem with this approach: the protocols already built use InternalOrderType,
AcceptanceType, etc. to define its structure. We would thus need to re-build all pro-
tocols for the simulation mode.

We solved the problems above by introducing a class called OrderTypeManager, which
takes on the following responsibilities from the class InternalOrderType: managing the
order pool, handling order requests, and executing orders. OrderTypeManager implements
the following methods:
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� The methods assignExecutor(), assignEnvironment(),
assignOrderType() (and some others) are used to provide the order-type
manager with all information he needs to perform his task.

� The method void requestOrder(Packet) either fills the order object with data
and asks an executor object to execute it, or puts the information into a queue, where it is
processed later (when the order object is in execution or other requests are waiting).

The class InternalOrderType is modified as follows:

� It obtains a new method assignOrderTypeManager(), which allows to assign
order-type manager objects.

� The method requestOrder() directly forwards the request for a new order to the
corresponding method of its manager object.

� The method init() provides the order-type manager with all the information it needs.

This design now allows us to introduce simulation support into the InternalOrderType
class by doing the following steps:

1. Extend the class OrderTypeManager by a class OrderTypeManagerS, which sup-
ports the simulation mode.

2. Implement the Activity interface for OrderTypeManagerS.

3. During initialization, give an object of type OrderTypeManagerS to the order-type
objects to replace the original order type manager.

The object of type OrderTypeManagerS works as follows. When it obtains the request for
a new order from its order-type object via requestOrder(), it adds the information to an
internal queue and schedules itself as an activity. Each time the perform() method is called
by the scheduler, it takes an element from the list, initializes the order object with the data, and
calls the Order.execute() method to execute the order.

Hence, by simply assigning a different manager object, we are able to let objects of type
InternalOrderType work in both real mode and simulation mode. No other classes need
to be modified or re-implemented, and – most important – all protocols built can be reused
unmodified. Figure C.2 shows the modifications made to support simulation of protocols.

Our solution is based on a design pattern called Visitor [59]. Gamma et al. define the intent
of the visitor pattern as follows: Represent an operation to be performed on the elements of
an object structure. Visitor lets you define a new operation without changing the classes of the
elements on which it operates.
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Figure C.2: Simulation specific modifications of PITOU core classes

C.4 Initialization

One thing is still missing: how and when is an order-type manager given to its respective order-
type? The most natural thing to do this is during initialization of the environment, i.e. within the
method Environment.init(). However, how should we tell an environment if it should
work in simulation mode or in normal mode?

We decided to choose a solution similar to the use of different order-type man-
agers. We define an interface InitManagerImpl, which defines the method
init(Environment,OrderType[],ExecutorRegistrar) supposed to be imple-
mented to perform initialization of order-types. The class Environmentmodifies itsinit()
method by taking a parameter of type InitManagerImpl.

The class InitManager implements InitManagerImpl for the real mode. Dur-
ing init(), it assigns OrderTypeManager objects and executor objects to all orders,
and a TimerPool object to the environment. The class InitManagerS implements
InitManager for the simulation mode. During init(), it assigns OrderTypeManagerS
objects to all order-types, and a TimerPoolS object to the environment. Additionally, it regis-
ters all order-types at the scheduler. It thereby uses the information about the execution-groups
to decide, which order-types obtain an own processor Processor.
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The application can assign a virtual execution time to each order by speci-
fying a long[] array, and assigning it to an EnvInitS object via void

setOrderVirtualExecTime(long[]). During initialization each value of the ar-
ray is used to specify the OrderTypeManagerS of the corresponding order-type (the array
indices must correspond to the order of registration of the order-type objects).

The assigned virtual times for each order execution should be based on real measurements
to reach useful conclusions. Assigning a virtual execution time to each order-type allows to
examine the behavior of a protocol with a very fine granularity. Most network simulators assign
simply a data-rate to a protocol session, and ignore the processing time and other events than
transmitting data. The PITOU simulator allows to count the time for the simulation of the
protocol’s internal operations, and thus to better identify implementation bottlenecks and design
flaws.

It is up to the application now to initialize an environment either with an init-manager for real
mode (InitManager) or for simulation mode InitManagerS).

C.5 Simulating a protocol – what need to be done?

The following scenario illustrates how to build an application that simulates the communication
between two protocol sessions. These principal components of this application can be combined
and configured visually.

The following beans are put on the screen and configured.

� two SAPRegistrar objects to register SAPs,

� two SAPvS objects,

� two ProtocolBuilder objects that define the desired structure of the environment,

� two Link objects to connect the SAPs (one for each direction of communication),

� a Scheduler object that controls the simulation

For the SAPvS objects, data-rate and address, for the Link objects the one-trip time is config-
ured.

Now the beans are connected.

� All SAPvS beans are registered with the SAPRegistrar bean.

� The SAPRegistrar beans are assigned to the Environment object accessible from
the ProtocolBuilder bean.
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� The first Link bean is registered with the first SAPvS bean (and vice versa).

� The second SAPvS beans is registered with the first Link bean (and vice versa).

Before the application can start, code must be written in the main method that starts the sched-
uler thread, create an EnvInitS object to initialize the environment, and to obtain the inter-
faces of the environments to read and write data.
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Appendix D

A Lightweight Distributed Object System

D.1 The Problem of Integrating QoS in Distributed Object
Systems

Distributed object systems (DOS) (also refered to as middleware systems) like DCOM [87],
CORBA [130], or RMI [138]) allow to simplify the implementation of distributed systems by
hiding distribution concerns and allowing the programmer to concentrate on the application
logic. However, todays DOS provide almost no support to accommodate the quality of service
requirements of distributed applications. Developers thus either must accept service mismatches
or make large efforts to integrate possibly complex communications related functions into the
application, which clearly contradicts the objectives of middleware systems.

Integrating QoS management into DOS is a challenging research topic that concerns different
components of the system. One research direction proposes to integrate QoS management into
the middleware system by modifying and extending it. TAO [125] extends a CORBA Object
Request Broker by real-time facilities. The Object Management Group (OMG) published spec-
ifications for real-time and fault-tolerant services. Other examples for specialized middleware
systems are Electra [92], Eternal [101], or DOORS [150]. A second approach proposes to
extend the programming model to make QoS concerns explicit. Examples for this approach
are QualityObjects (QuO) [153], MAQS [12], and the Squirrel project [86]. Another approach
proposed by [112] introduces interceptor layers between the middleware infrastructure and the
application to avoid changing neither the middleware system nor the application logic.

We believe that one reason for the inflexibility of common DOS is due to the fact that dis-
tributed object services are generally built on top of TCP. The stream based nature of TCP does
not match very well the request/response character of distributed object calls and does not pro-
vide any QoS differentiation. Consider a distributed game in the Internet: multicast, real-time
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services, and security functions are required in one distributed application, even expected from
a single distributed object. None of these services are supported by TCP and are impossible to
be realized efficiently on top of TCP.

D.2 Generating Software for Distributed Objects

Our goal is to exploit the flexible structure imposed by the PITOU framework to generate pro-
tocol software adapted to the needs of a distributed application (see also [78]).

The architecture we propose consists of two components: 1) a set of tools to support the devel-
opment of distributed objects, and 2) a distribution infrastructure that allows clients to look-up
and access distributed services. The Jini [48],[149] technology would be a good candidate for
such an infrastructure. Jini provides a dynamic registration service, a distributed object look-up
service, and a set of other useful services to support distributed applications. Amongst others,
Jini allows clients to down-load and execute Java code.

Our work focuses on the tools to support automatic generation of software. We first present
a tool that allows to map methods including parameters and return-type as protocol environ-
ments. We then show how to generate code to allow an application to transparently access these
protocol environments via proxy objects.

Figure D.1 gives an overview of all the tools we use and how they are applied.

D.3 Generating Protocol Code

The first tool we provide is a tool to generate protocol code based on the specification of a
Java interface – one for the client and one for the server. We call these kind of protocols
generated representation protocols, since its only goal is to provide a structure that represents
all elements of the interface specification. Representation protocols do not specify any
protocol function.

A Java interface specification consists of a set of method declarations. A method decla-
ration in Java basically consists of a method name, a set of parameter types and names, and
a return value. They look like this: <return type> <method name>(<parameter

type 1> <parameter name 1>,<parameter type 2> <parameter name

2>, ...). An example for a method declaration is int add(int a, int b).

For the client representation protocol, a Java interface is mapped to a PITOU protocol
configuration by applying the following rules:

� each method declared is represented by one output-order-type object and one input-order-
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Figure D.1: Generation tools

type object,

– the order-type object gets the name of the method via OrderType.setName(),

– the order-type objects are numbered consecutively (setID()); this numbering is
important since we use the DefaultMappingStrategy, which uses the ID for
mapping to order-type objects,

� each parameter type of a method is represented by an entry-type object of the corre-
sponding type (e.g. int is mapped to IntegerEntryType), which is registered with
the respective output-order-type object,

– all entry-types are configured visible (since the information is sent) and initializable
(since the information is obtained from the application),

– all entry-types get the name of the parameter type via EntryType.setName(),
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– the byte length (setSize()) corresponds to the type of the parameter (i.e. for
integer types int, the size in bytes is set to 4),

� the return type of each method is represented by an entry-type object, which is registered
with the respective input-order-type object.

Figure D.2 shows the client protocol code generated based on a Java interface. The figure
depicts the code for a method declared as int add(int a, int b).

For the server representation protocol, the rules above are applied in a reciprocal manner, i.e.

� the parameter types are mapped to entry-types registered with an input-order-type,

� the return parameter type is mapped to an entry-type registered with an output-order-type,

� the ID of an output-order-protocol corresponds to the ID of the respective input-order-
type of the client protocol.

Once the representation protocol is generated, the PITOU protocol editor can be used to com-
bine the representation protocol with specific service protocols. Since each method has its own
data-path independent from the other methods it is possible to associate each method with work-
ers that assure different QoS characteristics. One method could be based on reliable transfer,
another one based on real-time semantics, a third one based on multicast transmission.

The application developer is responsible to choose the appropriate workers to be added for each
method, and to connect them manually. However, it is also imaginable to define QoS categories
(reliability, latency, security constraints), and allow to specify the needed QoS category for each
method by a language extension. Each QoS category would then be represented by a predefined
set of workers and relations that are plugged with the representation protocol by a special tool.

D.4 Generating Proxies

Now that the representation protocol is generated and integrated with the service protocol com-
ponents, the access to the protocol must be done in a transparent manner for the application

On the client side, the application should invoke methods on an object without being concerned
if this object resides on the local or on a remote host. On the server side, a remote object should
be able to operate as a local object as well, and thus should not be involved in distribution
aspects. On both sides, so called proxy objects act as place-holders for the object, which is
remotely accessible. According to wide-spread terminology in middleware systems, we call the
client proxy a stub and the server proxy a skeleton. In contrary to stub and skeletons e.g. in
CORBA, our stub and skeleton do not perform parameter marshalling (this is already done by
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public void init() throws ProtocolConstructionException {

Environment env=getEnvironment();
//ORDER DEFINITIONS

OrderRegistrar orderReg=new OrderRegistrar();
env.setOrderRegistrar(orderReg);
.....

// Definition of the order-type add_callOut
OutputOrderType O7_addc=new OutputOrderType();
orderReg.addOrder(O7_addc);

StructureRegistrar r_O7_addc=new StructureRegistrar();
O7_addc.setStructureRegistrar(r_O7_addc);

O7_addc.setName("add_callOut");
O7_addc.setPriority(5);
O7_addc.setNrOutputSAP(0);

O7_addc.setOrderID(4);
//Define all ENTRYs
probeans.entries.IntegerEntryType O7_addc_E6_____=new probeans.entries.IntegerEntryType();

r_O7_addc.addEntry(O7_addc_E6_____);
O7_addc_E6_____.setVisibleFlag(true);

O7_addc_E6_____.setInitFlag(true);
O7_addc_E6_____.setSize(4);
probeans.entries.IntegerEntryType O7_addc_E7_____=new probeans.entries.IntegerEntryType();

r_O7_addc.addEntry(O7_addc_E7_____);
O7_addc_E7_____.setVisibleFlag(true);

O7_addc_E7_____.setInitFlag(true);
O7_addc_E7_____.setSize(4);
//Define all PARAMETER-relations

// Definition of the order-type add_respIn
InputOrderType O8_addr=new InputOrderType();

orderReg.addOrder(O8_addr);
StructureRegistrar r_O8_addr=new StructureRegistrar();

O8_addr.setStructureRegistrar(r_O8_addr);
O8_addr.setName("add_respIn");
O8_addr.setPriority(5);

O8_addr.setNrInputSAP(0);
O8_addr.setOrderID(11);
//Define all ENTRYs

probeans.entries.IntegerEntryType O8_addr_E8_____=new probeans.entries.IntegerEntryType();
r_O8_addr.addEntry(O8_addr_E8_____);

O8_addr_E8_____.setVisibleFlag(true);
O8_addr_E8_____.setInitFlag(true);
O8_addr_E8_____.setSize(4);

.....
return env;

}

Figure D.2: Generated Client Protocol Code

the representation protocol), but only manage access to the protocol environment and method
invocation.

The client stub must implement the Java interface that defines the type of the remotely
accessible object. But instead of implementing functionality, the stub obtains a reference to an
environment and uses the WriteAPI interface of the corresponding output-order-type to give
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the parameter information to the environment, which finally sends it to the server. The stub
method also blocks until it receives an answer from the server, i.e. until the input-order with
the corresponding return type has been executed and delivered the return type value. The client
stub implements the ReadAPI interface to be notified about the delivery of return type values.
In the ReadAPI.delivery() method the according method is unlocked and provided with
the return type value. The method then casts the return type value from Object representation
into a concrete type and returns it to the client application.

CLIENT-STUB:

public int add(int p1, int p2) {
int methodNr=4;
try {

Object[] param={new Integer(p1), new Integer(p2)};
allWriteAPIs[methodNr-1].accept(param);

try {
synchronized(blocking[methodNr-1]) {
blocking[methodNr-1].wait();

}
}
catch(Exception e) {

throw new RuntimeException("remote error calling add(int p1, int p2)");
}

return ((Integer)results[methodNr-1]).intValue();
}
catch(Exception e) {

throw new RuntimeException("local system error in add(int p1, int p2)");
}

}

public void deliver(Object[] o, Deliverable d) {

try {
int i=((InputOrder)d).getOrderID()-numberOfMethods;
if (o.length!=0)

results[i-1]=o[0]; //set return value
synchronized(blocking[i-1]) {
blocking[i-1].notify();

}
}

catch(Exception e) {
throw new RuntimeException("incoming information is unusable");
}

}

Figure D.3: Generated Code of Client Stub

The server skeleton also implements the ReadAPI interface to be notified about the arrival of
method invocation requests and their parameters. A skeleton is instantiated with a reference
to the remotely accessible object. In the ReadAPI.delivery() method, it identifies the
method to be called, casts the parameters from Object representation into the concrete type,
and invokes the method. It then transforms the return type value of the method call into an
Object and gives it to the environment, which sends it back to the client.
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Client stub and server skeleton are generated automatically using the PITOU proxy generator.
Instead of explaining in detail how the proxy generator works, we show the code generated
based on the example interface given above in Figure D.3 for the client and in Figure D.4 for
the server.

public void deliver(Object[] o, Deliverable d) {

try {
int i=((InputOrder)d).getOrderID();

Address a=((InputOrder)d).getAddress();
switch (i) {

case 1: {

callMethod1(o,a);
break;

}

case 2: {
callMethod2(o,a);

break;
}
case 3: {

callMethod3(o,a);
break;

}

case 4: {
callMethod4(o,a);

break;
}

}

}
catch(Exception e) {

throw new RuntimeException("incoming information is unusable");
}

}

private void callMethod4(Object[] o, Address a) {
//code for add

int methodNr=4;
try {

int p1=((Integer)o[0]).intValue();
int p2=((Integer)o[1]).intValue();
Object[] ret={ new Integer(myObj.add(p1, p2)) };

allWriteAPIs[methodNr-1].accept(ret,a);
}
catch(Exception e) {

throw new RuntimeException("local system error in add(p1, p2)");
}

}

Figure D.4: Generated Code of Server Skeleton
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D.5 Scenario

Based on the example of Figure D.3, we show how a client application can call the add()
method of a remote object. We assume that the client is already connected with the client
(e.g. via UDP sockets), and that no congestion or corruption disturb the communication.

1. the client invokes the add() method on the stub

2. within add(int,int) the stub transforms the parameters from integer type into
Object type, activates a blocking metaphor, and gives the two parameters as an array of
two Objects to the WriteAPI object that stands for the order-type object representing
the add() method

3. the data is processed within the environment and sent to the server

4. the server environment processes the incoming data and delivers the information (i.e. the
parameter values) via deliver() to the server skeleton object

5. the skeleton identifies the method add() to be called using the order-ID of the delivery,
casts the Objects to values of type integer, and calls the method add() of the server
object

6. the server object performs add(), i.e. he adds the two parameter values and returns the
result

7. the skeleton object casts the result into an Object object and gives it to the WriteAPI
object responsible to create an output-order of the type supposed to transport return values
for the add() method

8. the data is processed within the environment and send to the client

9. the client environment processes the incoming data and delivers the information (i.e. the
return type value) via deliver() to the client stub

10. the client stub casts the result and writes it into a special variable; it then unlocks the
metaphor, which allows the stub’s add() method to return

11. the client application obtains the result without knowing the entity that calculated it

An illustration of how the various parts interact is given in Figure D.5.
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D.6 How to build a distributed application

Now we can put all pieces together. Building a distributed application comprises the following
steps:

1. the application developer writes a Java interface, which declares all methods that a
distributed object is supposed to implement

2. the application developer implements a class considered to be remotely accessible (based
on the defined interface)

3. a tool called representation-protocol-generator uses a Java interface as input to
produce code that constructs a protocol environment for the PITOU framework, i.e. all de-
clared methods are represented as order-type objects, and all parameter types of a method
are represented as entry-type objects.

4. a tool called proxy generator generates code that serves as proxy between application
(server or client) and the protocol code

5. the application developer uses the PITOU protocol-editor to combine the produced repre-
sentation protocol with protocol components required by the application (e.g. real-time,
multicast-management, admission control)
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6. by using the generated proxies, a distributed object can easily and transparently be inte-
grated in the client application

D.7 Conclusions

This section demonstrates the flexibility of our structuring approach and its implementation
in the PITOU framework. We make it possible to generate protocol software based on Java
interface specifications. Our approach – QoS for middleware by generating tailored proto-
cols [78] – contributes to an important research area by offering a new solution. The tools we
provide are the first step into the direction of a QoS aware middleware systems.
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Abstract

Résumé

Développer des applications distribuées implique souvent l’implémentation de nouveaux proto-
coles qui concernent les sémantiques de l’application ainsi que de la couche transport. Cepen-
dant, l’implémentation de nouveaux protocoles à partir de zéro est une tâche lourde et coûteuse.
L’objectif de notre thèse est le développement des techniques et des outils qui nous aident à mi-
nimiser les coûts d’implémentation et de maintenance des protocoles de communication dans
les systèmes finaux. Nous nous concentrons sur des techniques modernes du génie logiciel –
charpentes orienté objet, motifs de conception et développement par assemblage de composants
– qui ont montré récemment leur applicabilité dans différents domaines.

La fondation de notre travail est un ensemble d’abstractions et de principes de structuration
qui promeuvent la réutilisation et la flexibilité des logiciels de protocole. L’idée principale
derrière ces principes suit une structure verticale au lieu d’une structure en couches. Notre
approche intègre tous les services dont l’application a besoin dans une seule entité alors que
tout démultiplexage est concentré en dehors de cette entité dans une couche plus basse. Par
ailleurs, nous proposons de structurer les protocoles par chemin de données et de diviser chaque
chemin de données identifié en modules à grain fin, réutilisables et configurables. Basée sur
notre approche de structuration, nous présentons une charpente en Java dénommée PITOU qui
permet de construire des nouveaux protocoles en assemblant et configurant des composants
existants. De plus, nous avons mis en oeuvre quelques outils de support, tels que des outil de
simulation et de visualisation, ainsi qu’un générateur de code. L’applicabilité et la flexibilité de
notre approche sont démontrées par l’implémentation des services de transport de TCP et par
une application qui analyse des données d’une séance de RTP/RTCP.
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Abstract

Distributed application developers are often forced to implement with application-specific pro-
tocols also transport layer semantics that are incorporated in and delivered with the application
code. However, implementing new protocols from scratch is tedious and expensive. The goal of
our thesis is the development of techniques and tools that minimize the cost to implement and
maintain protocols in end-systems. Our focus is on modern software engineering techniques –
like OO frameworks, design-patterns, and component-based development – that have recently
shown their applicability in various application domains.

The foundation of our work is a set of structuring principles and abstractions that promote
reusability and flexibility of protocol software. The main idea behind these principles is to fol-
low a vertical instead of a horizontal structure (such as layering). Our approach suggests to
integrate all application-specific services into one entity and to decouple demultiplexing func-
tionality from protocol processing. We further propose to structure protocol software along all
its types of data paths and to partition the identified data paths into fine-grained, reusable, and
configurable modules. Based on our structuring approach, we present a Java framework called
PITOU that allows to construct new protocols by assembling existing components and config-
uring them to the specific application requirements. We further implement a number of tools
to assist protocol development, such as a tool to simulate protocol sessions, a tool to animate
protocol software, and a tool to generate protocol code based on specified structures and config-
urations. The applicability and expressiveness of our structuring approach is demonstrated by a
modular implementation of the TCP data transfer services and a RTP/RTCP snoop application.


