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Abstract

The localization of a subscriber in a radio cellular network has attracted con-

siderable interest since the American Federal Communication Committee (FCC)

mandated all operators in the United States to localize their subscribers within

125 meters in 67 per cent of the cases by October 2001. This concerns essentially

emergency calls (E 911 calls). In addition to that, the localization technology has

several attractive applications such as navigation, home zone billing, fraud detec-

tion, and frequency planning enhancement. The North American standardization

committee has worked hard towards solving this issue for the various cellular stan-

dards. Many proposals have been presented by manufacturers. Their work shows

that the natural solution for the GSM standard should be based on the time of

arrival technology.

The main obstacle in time of arrival estimation is multipath. The goal is to

be able to estimate the time delay of the �rst path. A class of estimators based

on the extraction of the signal or the noise subspace is introduced. These estima-

tors o�er almost the same performances as the maximum likelihood with lower

complexities. An extension of these algorithms under model errors is introduced.

With at least three time of arrival measurements corresponding to three dif-

ferent base stations, it is possible to locate the handset under some conditions

on network synchronization. The maximum likelihood estimator leads to a non

linear maximization problem known as hyperbolic trilateration. Suboptimal algo-

rithms are presented o�ering good results at high signal-to-noise ratios. Complete

simulations are conducted in several typical environments such as urban or rural

areas incorporating synchronization errors. They show that a root mean square

error lower than one hundred meters is achievable in most cases.
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R�esum�e

La localisation de mobiles dans un r�eseau radio cellulaire a re�cu un int�erêt con-

sid�erable depuis que le comit�e f�ed�eral am�ericain de communication a demand�e

aux op�erateurs nord-am�ericains de localiser leurs abonn�es avec une pr�ecision de

125 m�etres dans 67 pour cent des cas. Ceci concerne essentiellement les appels

d'urgence. Outre les appels d'urgence, il existe d'autres applications comme la

navigation, la gestion de la taxation, la d�etection de fraudes et la plani�cation

cellulaire. Les travaux conduits par les comit�es am�ericains de normalisation ont

privil�egi�e les solutions bas�ees sur l'estimation du temps d'arriv�ee.

L'obstacle principal �a l'estimation du temps d'arriv�ee est le trajet multi-

ple. Il faut pouvoir estimer le retard temporel du premier trajet. Une classe

d'estimateurs bas�ee sur l'extraction des sous-espaces signal ou bruit est intro-

duite. Ces estimateurs o�rent quasiment les même performances que l'estimateur

du maximum de vraisemblance tout en ayant une complexit�e moindre. Une ex-

tension de ces estimateurs en pr�esence d'erreurs de mod�ele est pr�esent�ee.

Avec un minimumde trois mesures de temps d'arriv�ee relatives �a trois di��erentes

stations de base, il est possible de localiser le mobile sous certaines conditions

de synchronisation du r�eseau. L'estimateur du maximum de vraisemblance con-

duit alors �a un probl�eme de maximisation non lin�eaire connu sous le nom de

triangulation hyperbolique. Des algorithmes sous-optimaux sont pr�esent�es mon-

trant d'excellents r�esultats lorsque le rapport signal sur bruit est su�samment

�elev�e. Des simulations exhaustives sont pr�esent�ees dans di��erents environnements

typiques comme les zones urbaines ou rurales en incluant des erreurs de synchro-

nisation. Elles montrent qu'une erreur quadratique moyenne inf�erieure �a cent

m�etres est possible dans la plupart des cas.
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Chapter 1

Introduction

Since the cellular concept was introduced in the 60's, wireless technologies have

known a fast development. The main enhancement was the introduction of digital

communications instead of the classical analog communications. This is mainly

due to Shannon's work on information theory. Many digital standards exist nowa-

days. They represent the second generation standards, mainly DAMPS, GSM,

and IS-95 CDMA.

The digital technology has permitted a rapid increase in the performances of

cellular systems. We can distinguish now between two kinds of standards: the

�rst is based on Time Division Multiple Access (TDMA) and the second is based

on the Code Division Multiple Access (CDMA). The GSM system is the most

widely used system nowadays and it is most likely that it has several years left

before the third generation emerges.

A public land mobile network (PLMN) is made up of a large number of relay

stations called base stations (BS). These relays have the role of covering the ter-

ritory with radio resources. The territory is divided into small areas called cells.

One relay may cover more than one cell depending on its con�guration. It can

be omnidirectional (one cell), bisectorized (two cells), trisectorized (three cells)

or even more. Base stations are gathered in groups, so that all base stations

that are in one group communicate with one Base Station Controller (BSC). One

BSC and its base stations constitute one Base Station Subsystem (BSS). Mo-

bile services Switching Centers (MSC) similar to the ones of a Public Switched

Telephone Network (PSTN) are connected to all the BSCs. They centralize all

the tra�c coming from the BSCs and insure the interconnection with the PSTN.

These MSCs constitute the network subsystem (NSS). MSCs are usually con-

nected to a huge database called Home Location Register (HLR). This database

contains information concerning subscribers. One or more MSCs are gateway

MSCs (GMSC): they are connected to the PSTN (see Figure 1.1).

1
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Figure 1.1: PLMN architecture

Two sets of frequencies are allocated in a Frequency Division Duplex (FDD)

cellular radio system such as GSM: one for uplink transmissions (mobile to base

station) and the other for downlink transmissions (base station to mobile).

There are three versions of the GSM standard according to the allocated

frequency bandwidth:

� GSM 900: 890-915 MHz (uplink), 935-960 MHz (downlink).

� DCS 1800: 1710-1785 MHz (uplink), 1805-1880 MHz (downlink).

� PCS 1900: 1850-1910 MHz (uplink), 1930-1990 MHz (downlink).

Transmission in GSM is made by Time Division Multiple Access (TDMA).

Several mobiles can communicate simultaneously in the same area. Each one oc-

cupies a time division allocated to it in one TDMA cycle. In addition to TDMA,

there is also Frequency Division Multiple Access (FDMA). Each cell is assigned

a set of frequencies.

As described in the speci�cations [1], the GSM system o�ers speech, data,

and short messages transmission services. A subscriber must be able to call and

to be called. In addition, the mobile must be able to communicate while moving.
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1.1 Locating a handset

In June 1996, the American Federal Communication Committee (FCC) requested

all North American mobile cellular networks to meet some requirements on the

location of emergency calls by October 2001. These operators must be able to

locate an emergency call made by one of their subscribers within 125 meters in

67 per cent of cases.

The localization technology has several additional applications. These appli-

cations are mainly accident reports, navigation, home zone billing, fraud detec-

tion, and statistical measurements (handover failure, tra�c location).

Locating a handset is often associated to GPS, which is a well-known satellite-

based technology for locating a compatible handset everywhere on the Earth in

three dimensions. However, this attractive system has several drawbacks. Al-

though it has a quite complete coverage of the Earth, it cannot work in general

in some di�cult environments such as urban environments or indoor environ-

ments since it requires the visibility of at least four satellites. It is possible to

o�er location services by using the already installed infra-structures of cellular

networks whenever the mobile handset is in a covered area. The accuracy of the

estimated position can be signi�cantly better than with GPS. The aim of this

dissertation is to show that it is possible to locate a mobile handset using the

network's own capability.

The location computation itself is done in a entity called Mobile Location

Center (MLC). This entity can be implemented in the mobile, in the network,

or even somewhere else. The Mobile Location Center (MLC) needs all collected

measurements performed at the handset or in the network and some other data

related to the network architecture. There exist many possible techniques to

locate a handset:

� Geometric approaches based on measurements of time of arrival, distance,

angle of arrival, or signal level strength.

� Pattern matching approaches based on the analysis of some control param-

eters by matching them on prediction maps previously computed.

Synchronization is also a topic related to location. It is fully required in all

methods based on time of arrival measurements.

1.2 Dissertation overview

This work addresses the problem of estimating a mobile handset position in a

GSM radio network using time of arrival estimation.
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Chapter 2 is a description of the physical layer of the GSM standard. Di�erent

logical channels are described. The di�erent kinds of bursts used are presented

too. The GMSK modulation used in GSM is depicted; it is shown to be almost

linear though it is a phase modulation.

Chapter 3 discusses the di�erent ways of locating a handset. Time of arrival,

angle of arrival, signal strength, and pattern matching approaches are discussed.

The time of arrival approach will be retained as being acceptable in terms of

accuracy and complexity.

Chapter 4 discusses the problem of time of arrival estimation. The environ-

ment is assumed to exhibit discrete (specular) multipath components. No di�use

paths are present. The maximum likelihood estimator is used and shown to be

more accurate than the classical estimator known as the matched �lter (cross-

correlator). Two sets of algorithms are presented in the time and the frequency

domain. A link with array processing techniques is established. An extension to

the case of an unknown modulation pulse is discussed.

Chapter 5 is a study of the hyperbolic trilateration procedure that is used to

estimate the mobile position with at least three time of arrival measurements.

It is shown that the lack of knowledge of a time reference leads to a hyperbolic

trilateration made from di�erences of times of arrival so that the time reference

contribution disappears.

Chapter 6 is a brief discussion on the synchronization issue: the problems of

pseudo-synchronization and absolute synchronization are discussed separately.

Chapter 7 is the chapter of simulations. The channel model of the American

normalization committee is used in order to perform simulations of both the time

of arrival estimation and the hyperbolic trilateration on realistic environments.

Chapter 8 is a conclusion. It discusses also some possible future directions.

1.3 Contributions

This dissertation treats the important aspects of a cellular localization system:

� Basic principles: this localization system is based on time of arrival esti-

mation followed by a hyperbolic trilateration in a synchronized or pseudo-

synchronized network.
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� Time of arrival estimation: an analogy with array processing is presented.

A rigorous development shows the possibility of substituting the signal

samples with the least squares estimate of the channel impulse response

(achieved by means of the training sequence) without any loss in perfor-

mances. Many algorithms are adapted to the particular problem of time of

arrival estimation. Extension to the case of unknown modulation pulse is

analyzed: an original ESPRIT-like algorithm is presented.

� Hyperbolic trilateration: Cramer-Rao computation with and without knowl-

edge of the timing advance. Several algorithms are simulated and compared.

The Taylor expansion algorithm shows ideal results at low signal-to-noise

ratios.

� Synchronization: description of a general algorithm for the estimation of

the di�erence of transmission times between base stations by exploiting

noisy measurements performed on the radio side of the network.

In addition to these theoretical studies, several contributions have been presented

to the American standardization committee T1P1.5 on the elaboration of a com-

mon channel model. Simulations have been conducted based on this model. A

standard has since been adopted.
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Chapter 2

Wireless communications

In the following, we describe the problems caused by the radio propagation envi-

ronment and the techniques used for protecting communications. We describe the

GSM system as a typical radio cellular network and discuss its radio modulation

in details. We detail the equalization procedure or more precisely the channel

impulse response estimation when a given training sequence is available.

2.1 Radio propagation model

The radio interface is the most di�cult part in the cellular concept. This is mainly

due to the channel propagation characteristics that corrupt the communications.

For this purpose, a permanent signaling dialog exists between the mobile and the

network whether the mobile is in communication or not.

2.1.1 Path loss

As the radio signal propagates, its intensity decreases. Indeed, the signal energy

is distributed on a spherical front. In free space, the path loss is proportional to

d�2 where d refers to the distance of propagation between the transmitter and

the receiver. In typical environments such as urban or rural areas, there exist

many empirical models that compute the path loss according to some parameters

such as the distance or the height of the antenna. It is common to state that the

path loss is proportional to d�


10 where  2 [20; 40].

The Okumura-Hata formula [2] is perhaps the best known empirical formula

used to compute the received power:

Pr = Pt + ga � Lp �  log(d) (2.1)

where Pt is the transmitted power, ga is the antenna gain in the signal di-

rection, Lp is the path loss at one km. This equation is expressed in dB. The

7
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received power Pr represents a mean value, it is subject to variations around its

mean value due to slow fading.

2.1.2 Slow and fast fading, coherence time

As the radio signal propagates, it is subject to some uctuations. Slow fading

is a uctuation of the local mean power of the signal due to shadowing; as the

mobile moves, it is subject to obstruction from many objects such as buildings

or trees. This fading is usually modeled by a log-normal variable that is added

to the mean received power (2.1). Its variance �2
f
depends on the environment.

Fast fading is caused by the reection of the signal on an object. Indeed,

the reected signal is made up of a large number of partial waves with random

phases and amplitudes. It results in quick uctuations around the local mean

power. Fast fading is widely related to the coherence time �c which is de�ned by

taking the auto-correlation function of the channel impulse response R(t) as:

R(�c)

R(0)
= 0:5 (2.2)

This de�nition is valid for narrow band signal where the auto-correlation

function is supposed to be constant on the signal bandwidth. The coherence

time decreases when the mobile handset speed increases. At 900 Mhz, typical

values of the coherence time vary from 1 ms at high speed to 100 ms for non

moving handsets.

2.1.3 Multipath and delay spread

This is our main concern as we are interested in estimating the time of arrival. As

described in the previous section, the signal is subject to some reections. These

reections spread the signal in time. Each reection is a copy of the transmitted

signal and is subject to fading.

The amplitude x of a reected path is usually modeled by a complex Gaus-

sian variable with zero mean. The signal envelope, r = jxj, follows a Rayleigh

distribution:

p(r) =
r

�2
e�

r
2

2�2 (2.3)

where �2 = E [jxj2]. On the contrary, if the path is the direct line of sight (LOS)

path, then its amplitude is not zero mean. Its envelope is modeled by a Ricean

distribution given by:

p(r) =
r

�2
e�

r
2
+m

2

2�2 I0

�
rm

�2

�
(2.4)
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Where m2 = jE[x]j2, �2 = E [jx� E[x]j2], and I0 is the modi�ed Bessel function

of �rst kind.

The delay spread is an important characteristic of the channel impulse re-

sponse. Supposing that the i-th path arrives at �i and has a power attenuation

of ai, and de�ning the p-th moment of the signal by:

mp =

P
i ai�

p

iP
i ai

the delay spread is given by:

�1 =
q
m2 �m2

1 (2.5)

Another possible de�nition of the delay spread is given by:

�2 = max
i
�i �min

i
�i (2.6)

It is important here to mention the dependency of the delay spread on the

distance d between the mobile and the base station the mobile is connected to.

Yuanking has shown in [3] that the delay spread given by the second de�nition

does not depend on d. On the contrary, Greenstein et. al. have shown in [4] that

the delay spread given by the �rst de�nition depends on d. They proposed the

following density distribution which we will refer to as the Greenstein model:

�1 � T1d
�y (2.7)

where, y is a log-normal variable, (y = 10
x

10 where x is Gaussian zero mean

and variance �2
y
). �2

y
, T1 and � are environment dependent constants. This model

states that the delay spread rises in general when the mobile moves away from

the base station.

2.1.4 Interferences

In any cellular system like GSM, the resource which is extremely scarce is the

radio spectrum. It must be shared by all base stations and mobiles. This induces

a lot of interferences that must be minimized while doing the network frequency

planning.

We will make the assumption that the interferences are Gaussian, uncorrelated

with the signal of interest (AWGN approximation). This assumption is true if

there is a large number of interferers. It gives results that are optimistic but

simpli�es drastically the amount of computations needed for simulations; the

interferers will not be generated individually but will be generated as one single

Gaussian variable.
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2.1.5 Doppler spread

As the mobile moves, the signal is subject to the Doppler e�ect that shifts it

in frequency. This shift becomes more and more important as speed increases.

The Doppler shift is given by v

�
cos(�), where � is the angle between the signal

direction of arrival and the mobile direction. At 900 MHz, the maximum shift,

fd =
v

�
, is about one Hertz per km/h.

2.2 Protection techniques

� Channel coding and interleaving: channel coding is a powerful technique to

secure the transmitted bits against fading. It consists in adding redundant

information to the source data. The codes used in GSM are some convolu-

tional codes and one Fire code. Depending on the transmitted information,

some bits are protected more than others. Interleaving consists in shu�ing

the bits before putting them in bursts. The consequence is better protection

against block fading.

� Discontinuous transmission (DTX) consists in transmitting at a reduced

rate during a voice communication when nothing is said and silence remains.

In GSM, the reduced rate is about 12 % of the normal rate. The main

advantage of DTX is that it reduces the average interference and increases

the handset battery life.

� Power control: like DTX, power control is a technique that limits the av-

erage interference and saves the handset battery life. When the communi-

cation quality is good enough, it is worthless to transmit at a high signal

level. In this case, the mobile is requested to transmit at a lower level.

� Slow frequency hopping: Slow frequency hopping used in TDMA systems

consists in changing the frequency carrier at regular intervals. Since the

fading is frequency selective, the signals sent are independent even at low

speed. This property is sometimes called frequency diversity. Fast fre-

quency hopping, where the frequency changes at the modulation rate, is

not used in GSM.

� Space diversity: this technique is used nowadays for uplink receivers only,

but it could be used for downlink receivers in the near future. At the

reception end, the base station has several antennae. The base station thus

receives several copies of the same signal. The gain obtained from diversity

is proportional to the number of antennae. Usually, two antennae are used

providing a gain greater than 3 dB.

� Training sequences: this technique consists in sending a known data se-

quence for the receiver to be able to estimate the channel impulse response.
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2.3 GSM system overview

The GSM standard is a Frequency Division Duplex (FDD) system that uses a

combination of two techniques: Frequency Division Multiple Access (FDMA)

and Time Division Multiple Access (TDMA). A set of frequencies is allocated for

each cell. The same frequencies are used by several geographically spaced cells

according to a previously de�ned reuse pattern. The time domain is divided into

small windows called slots. These slots are organized in cycles of 8 slots called

TDMA frames. The slot duration is 156.25 bit periods which represents about

577 �s. Since the coherence time is longer than that (see Section 2.1.2), we can

make the assumption that the channel impulse response is constant within a slot

of one TDMA frame.

2.3.1 The duplex physical channel

A tra�c channel occupies simultaneously two links; uplink (from the mobile to

the base station) and downlink (from the base station to the mobile). These two

links are separated in time and frequency:

� Three slots in time: the mobile cannot send and receive at the same time.

� The duplex shift in frequency �W : a duplex physical channel is composed

of two simple physical channels (downlink and uplink). A pair of frequencies

is associated to every duplex physical channel; fu for the uplink channel and

fd for the downlink channel, so that:

fu = fd ��W

This physical channel in GSM is divided into eight subchannels, each one

occupying one eighth of the time. A tra�c communication uses one of these

subchannels. All mobiles transmit only during the length of their respective sub-

channel. Frequency hopping may be used in GSM so that one given mobile can

use slots on di�erent frequencies according to a previously de�ned hopping se-

quence. Power control is used in GSM on tra�c channels.

A slot hosts a sequence of modulated bits that represents the information to

be sent. This sequence is called burst. There are four kinds of burst in GSM, their

durations are smaller than the slot duration in all cases, the duration di�erence

is a guard time at the beginning and at the end of the burst. Normal bursts

contain 116 information bits. Eight di�erent training sequences are de�ned for

normal bursts.
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Normal bursts

The normal burst is the most common burst. It is used for tra�c channels. It

contains 148 bits as shown in Figure 2.1.

Tail

3 26

Information

58

Tail

3

Information

58

Training
sequence

Figure 2.1: Normal burst format

Access bursts

The access burst is the �rst burst sent by a mobile when it wants to communicate

with the network. It is used on the uplink channel for establishing a dialog with

the base station. This burst is short compared to a normal burst but has a longer

training sequence (41 bits) to enhance the receiver detection. An access burst

contains 87 bits as shown in Figure 2.2.

Tail

7

Tail

3

Training
sequence

Information

3641

Figure 2.2: Access burst format

Synchronization bursts

The synchronization burst is the �rst burst decoded by the mobile. It is used

in the downlink direction only. This burst gives the information needed by the

mobile to communicate in the current cell. It contains 148 bits and has the largest

training sequence (64 bits) as shown in Figure 2.3.

Tail

3

Tail

3

Training
sequence

64

Information

39

Information

39

Figure 2.3: Synchronization burst format
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Frequency correction bursts

This burst is used on the downlink channel for correcting the local oscillator of

the mobile so that it can easily decode the synchronization burst. All its 148 bits

are null, the modulated signal is just a pure sine wave at 1=4T = 1625=24 � 67:71

kHz higher than the carrier central frequency.

2.3.2 Logical channels

The slots are organized in cycles of 26 frames for tra�c channels or 51 frames for

signaling channels. A superframe represents 26 � 51 frames, it is a common cycle

for both tra�c and signaling channels. A hyperframe has a length of 3 h 28 min

53 s 760 ms and corresponds to 2048 superframes. An index called FN (Frame

Number) characterizes every frame in the hyperframe.

The slots belong to di�erent logical channels. Each logical channel has speci�c

functions to accomplish. There are two groups of logical channels:

� Common channels: these channels are used in one link, up or down. The

main channels here are: BCCH, SCH, and FCCH on the downlink; RACH

on the uplink. No power control or frequency hopping is applied on these

channels: they transmit the information at full power so that the mobile or

the base station can detect them more easily. They are multiplexed in the

51-multiframe.

� Dedicated channels: these are duplex channels that occupy two simultane-

ous slots in both up and down links. The main channels here are: TCH

and SACCH. They are multiplexed in the 26-multiframe.

Here is a quick description of these channels:

BCCH

For a mobile to be able to detect the nearest base station, each base station in

the network broadcasts permanently information on its identity on the BCCH

channel. The transmitted data are for example the cell identity, the set of used

carriers, the frame number, and the carriers of the neighboring cells. The BCCH

channel of one cell is always sent on the same frequency called BCCH frequency.

It occupies the �rst slot of the TDMA frame and is not allowed to hop.

SCH and FCCH

These channels host respectively the synchronization and frequency correction

bursts described above.
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RACH and the Timing Advance parameter (TA)

This channel hosts the access burst. An access burst is sent whenever the mobile

requests a connection. As access to this channel is random by de�nition, it is

subject to collision when two mobiles use the same slot. In this case, the mobile

reiterates its request after a random delay. The protocol used for re-transmission

is inspired from the Aloha protocol.

The propagation delay of one burst is not negligible compared to the bit period

(48=13 � 3:69�s). One bit period corresponds to 1108 meters of propagation. In

normal bursts, the 8.25 guard bit periods (156.25 - 148 ) may not be enough and

the burst could overlap next slot. Bursts in GSM are transmitted in advance so

that they arrive inside the corresponding slot. The advance in time, also called

timing advance (TA), is computed using access bursts. These burst are short

enough so that they cannot overlap the next slot. The time of arrival of this

burst at the base station corresponds to twice the propagation time between the

base station and the mobile. The TA parameter is sent to the mobile so that it

anticipates its transmission. It is coded in 6 bits and has 64 possible values that

correspond to how many half bit periods of propagation separate the base station

from the mobile. The precision of this value is therefore equal to one quarter of a

bit period. This corresponds to 277 meters of wave propagation. Although this

precision is low, it is quite enough to avoid any problem of overlapping between

two consecutive bursts of di�erent users. This parameter can also be used to

enhance the location procedure since it provides a distance information; this will

be discussed later.

TCH and SACCH

The TCH channel is the channel that transmits the tra�c data on both links at

13.6 kb/s. The SACCH channel is the signaling channel that is associated to one

TCH channel.

2.3.3 Location Area Code (LAC)

When the mobile is requested by the network, a search procedure is operated on

a set of cells called location area. At any time, the network knows in which LAC

the mobile is. Indeed, the mobile sends this information to the network at regular

intervals and every time it enters a new LAC. This procedure is called location

update. The LAC informations of all subscribers are stored in huge databases

called Home Location Register (HLR) and Visitor Location Register (VLR).
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2.3.4 Handover

Handover is the main feature in cellular systems. Its goal is to allow the mobile

to keep its communication while moving from one cell to another. A handover

is anticipated by the network after analyzing the measurements reports sent by

the mobile. These reports contain each at most the best six BCCH signal levels

from neighboring cells. A measurements report is sent every 104 bursts (480

ms). When a handover is decided, the old base station sends to the mobile the

information that concerns the new base station (frequency carrier, slot number,

. . . ).

A handover can be intra BS, intra BSC, intra MSC, or inter MSC depending

on the con�guration of the two base stations that are involved in the handover

procedure.

Network synchronization can enhance the handover procedure. In a synchro-

nized network, the mobile can be informed in advance of the new timing advance

to apply; this is not possible in a non synchronized network where the mobile

has to send an access burst to get this information. Thus there are two kinds of

handover: synchronous handover and asynchronous handover.

It is important to note that access bursts do not hop during an initial access,

but can hop in case of a handover since they are sent on a tra�c channel. This fact

will be used later to justify the uncorrelation between successive access bursts.

2.3.5 The BSIC

In some cases, the mobile is able to listen to two base stations that use the same

BCCH frequency. The BSIC (Base Station Identity Code) is a parameter that

di�erentiates cells that use the same BCCH frequency.

The BSIC determines also the training sequence used in normal bursts.

2.3.6 The GMSK modulation

The modulation used in GSM is a constant envelope phase modulation called

Gaussian Minimum Shift Keying (GMSK). It can be described as a modi�ed

Minimum Shift Keying (MSK) modulation. Each bit introduces a phase shift of

��

2
.

The modulated signal can be written in the following way:
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s(t) =

s
2Eb

T
ej[2�f0t+�(t)] (2.8)

where Eb is the bit energy, T the bit period, and f0 the carrier frequency. The

phase variation �(t) can be written as:

�(t) = �0 +
X
i

bi�(t� iT )

bi are the transmitted bits after di�erential coding:

bi = didi�1

and �(t) the modulation function:

�(t) =
�

2

Z
t

�1
se(�)d�

In the MSK, the function se(t) is a rectangular window. The phase variation

is continuous but not smooth enough. In the GMSK modulation, to reduce the

spectrum occupancy, this window is �ltered by a Gaussian function:

se(t) = rect

�
t

T

�
?

1p
2��T

e�
t
2

2�2T2 (2.9)

with � =

p
ln 2

2�BT
and BT = 0:3.

�(t) can be written more simply with one integral by noticing that [5]:

d�(x)

dx
=
�

2

Z
x+T=2

x�T=2

1p
2��

e�
t
2

2�2 dt

We obtain therefore:8>>><
>>>:
�(x) = �

2
[ (x+ T=2)�  (x� T=2)]

 (x) = �p
2�
e�

x
2

2�2 + x
Z

x

�1

1p
2��

e�
t
2

2�2 dt
(2.10)

The drawback of the GMSK modulation compared to the MSK is that it

introduces more inter symbol interference (ISI): the equalization is then a little

more complex.

All phase modulations with di�erential coding can be approximated to am-

plitude modulated pulses (AMP) [6]. This approximation is very good in the

GMSK modulation case. For more details see Appendix A.
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The transmitted burst can be written in the following way:

s(t) � ej�0
X
k

jkdkf(t� kT ) (2.11)

with �0 is an initial phase and f(t) the main pulse in the decomposition. It

is a decomposition in amplitude modulated pulse (AMP) by the transmitted bits

with no di�erential coding.
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Figure 2.4: GMSK main pulse

By doing a demodulation at 1
4T
, we can get rid of the term jk:

s(t)e�j
�t

2T � ej�0
X
k

dka(t� kT ) (2.12)

with

a(t) = f(t)e�j
�t

2T

From now on, we will assume a demodulation at 1
4T
, and a null initial phase

so that the received signal will be written in the following way:

s(t) =
X
k

dka(t� kT ) (2.13)
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2.4 Channel equalization

The goal of equalization is to reduce the inter symbol interference (ISI) in order

to estimate the transmitted bit. Indeed, since the GMSK main pulse duration is

four times the bit period, inter symbol interference is unavoidable.

At the reception, the received signal is the convolution of the transmitted

signals with a cascade of �lters which are:

� the modulation pulse shape a(t),

� the transmission �lter Fe(t) that �ts the signal to the desired bandwidth,

� the �lter C(t) that corresponds to the propagation over the air,

� The reception �lter Fr(t) that translates the signal to its base-band version.

The channel impulse response is de�ned as the cascade of these �lters. The

transmission scheme can then be written in the following way:

8>>><
>>>:
y(t) = s(t) ? h(t) + b(t)

s(t) =
P

k dk�(t� kT )

h(t) = a(t) ? Fe(t) ? C(t) ? Fr(t)

(2.14)

where y(t) is the received signal, s(t) is the transmitted signal, �(t) the Dirac

function, and b(t) an additive complex noise that is usually assumed to be zero

mean and uncorrelated with s(t):

E[s(t)b(�)] = 0

h(t) is the channel impulse response. For convenience, h(t) is assumed to

have a �nite duration of p bit periods. p is the memory of the channel. One

consequence of Shannon's work is the sampling theorem which states that it is

possible to reconstruct any �nite bandwidth signal from its samples at a rate that

is greater or equal to twice its highest frequency.

In the GSM case, the bandwidth of each carrier is 200 kHz, so that the complex

envelope is limited to 100 kHz. The bit rate, that is approximately equal to 271

kHz is then enough to satisfy the Shannon's criterion. From now on, all signals

are sampled at the bit rate. The sampled signal is:

y(jT ) =
p�1X
k=0

h(kT )dj�k + b(jT ) p � j � N (2.15)
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The last equation can then be written in a more compact formula using ma-

trices:

Y = D(d)H+B (2.16)

where d = [d1 � � �dq]T refers to the bits of the training sequence,

H = [h(0) � � �h((p� 1)T )]T

Y = [y(pT ) � � �y(qT )]T

B = [b(pT ) � � � b(qT )]T p < q

and:

D(d) =

0
BBBB@

dp dp�2 � � � d1
dp+1 dp � � � d2
...

...
...

dq dq�1 � � � dm

1
CCCCA (2.17)

The noise samples are assumed to be uncorrelated between each other, i.e.

E[BB�] = �2I.

One way of estimating the bits is the maximum likelihood (ML) detector. This

detector is obtained by maximizing the likelihood of the observation with respect

to the parameter to be estimated or equivalently by maximizing the log-likelihood

of the observation:

�̂ = argmax ln p(yj�)

In our case, � is a vector that contains the channel impulse response coe�cients

and the unknown bits. In the context of Gaussian noise, the log-likelihood can

be written in the following way:

ln p(YjH;d) = � 1

�2
kY �D(d)Hk2 (2.18)

Several approaches are possible to solve the equation. The channel impulse

response is unknown. It is possible to estimate it directly without any prior

knowledge of the bits: this is called blind equalization. We will focus on the

GSM case where a training sequence consisting of known bits is available in all

bursts.

We will solve the system (2.18) in two steps: in the �rst step, we assume

that d refers to the training sequence and estimate the channel impulse response

accordingly. In the second step, d refers to the unknown bits and the channel

impulse response estimated from the �rst step is used.
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It should be noted that this scenario is not optimal since the estimations of

the unknown bits and the channel impulse response are not performed jointly.

However, the low gain in performances given by the joint estimation does not

justify its huge complexity increase.

We suppose that the channel impulse response is constant within one burst.

This approximation is usually veri�ed at normal mobile speed. The estimation

of the channel impulse response is straightforward using the training sequence:

Ĥ = Dy(d)Y (2.19)

where Dy = (D�D)�1D� refers to the Moore-Penrose pseudo-inverse of D.

Note that the matrix Dy(d) can be precomputed and stored as it only depends

on the training sequence.

The error covariance of this estimator is:

E
h�
Ĥ�H

� �
Ĥ�H

��i
= �2 [D�(d)D(d)]

�1

The training sequences are chosen for their good auto and inter correlation

properties, i.e. they are almost uncorrelated with theirs own shifted versions:

D�(d)D(d) � mI

This shows that the variance error is reduced by a factor m = q � p+ 1.

�2
r
=
�2

m

In the case we have some a priori information on the parameter to be es-

timated, the Maximum A Posteriori (MAP) estimator can be used successfully

to minimize the covariance error E
h�
Ĥ�H

� �
Ĥ�H

��i
. Supposing that the

channel impulse response is Gaussian zero mean with covariance matrix Kh =

E[HH�], the MAP estimator is (see [7] for example):

Ĥ =
h
D�(d)D(d) + �2K�1

h

i�1
D�(d)Y

= KhD
�(d)

h
D(d)KhD

�(d) + �2I
i�1

Y (2.20)

The second equation is obtained using the inverse matrix lemma. It avoids

the inversion of the covariance matrix Kh. Note that equation (2.19) is a special

case of this equation when no information a priori is available, i.e. Kh =1.

If the noise is not white, its covariance Kb = E[BB�] can be incorporated:

Ĥ =
h
D�(d)K�1

b
D(d) +K�1

h

i�1
D�(d)K�1

b
Y

= KhD
�(d) [D(d)KhD

�(d) +Kb]
�1
Y (2.21)
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Once the channel impulse response is estimated, we estimate the unknown

bits by minimizing:

ln p(Yjd) � kY �D(d)Ĥk2

where d represents in this case the unknown bits. The well known Viterbi

algorithm [8] is usually used here to recursively estimate the unknown bits. This

algorithm can also provide soft con�dence values for each bit enabling soft de-

coding.
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Chapter 3

Technologies for location

This chapter presents a description of possible technologies that might be used

for locating a mobile handset in a radio cellular network. It explains why the

best technology in the actual context is based on time of arrival.

In general, the idea is to gather as many measurements as possible and to

exploit a large number of relevant observations. Each observation contributes to

add some more information and enhances therefore the estimation accuracy. The

set of relevant measurements can be obtained at the handset from signals coming

from di�erent base stations or can be measured from the signal coming from the

mobile and impinging on several base stations. Accumulating both measurements

(i.e. on downlink and uplink channels) enhances the �nal estimation accuracy.

3.1 Distance estimation from signal strength

This is the most intuitive technique to locate a handset. The mobile measures the

signal strength from several base stations. A good candidate is the BCCH channel

since it is transmitted at full power. The mobile can compute the distance that

separates it from the base station by means of an appropriate path loss empirical

model. In general, the path loss is proportional to the distance between the

mobile and the base station :

Pr

Pt
= cd� (3.1)

Two distances are required for locating a handset by a simple circular trilateration1.

This methodology has been analyzed in [9]. The main advantage of this method

is that it can easily be implemented in GSM2. Indeed, the mobile sends a mea-

1The ambiguity can be solved by selecting the intersection that is inside the area of interest.
2Some operators have already implemented this technology for some commercial applications

such as home zone billing.

23
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surements report every 0.48 s that includes the downlink signal levels of the best

six base stations. The signal power level is expressed on a discrete scale running

from 0 to 63.

The main drawback of this method is its low precision due mainly to shad-

owing. However it may be assisted by a prediction map in order to correct the

estimation resulting from the trilateration alone. Such prediction maps are avail-

able in the database of an operator. They are generally obtained by simulation.

Another way of assisting the method is to provide collected �eld measurements

as training data; this is subject of next section.

3.2 Pattern matching based on training data

This technique can be compared to pattern recognition in the sense that the mo-

bile position is assigned to a small area (smaller than a cell). This assignment

decision is made by matching some observations to some prediction maps. The

area of interest is divided into a large number of small areas of location. This

methodology requires a large amount of collected data, which are used to build a

decision model based on some information criterion. This technique is in contrast

with the others in the sense that the location computation is not performed by

trilateration; it is purely statistical. The handset is assigned an area where its

probability of presence is high enough.

Many methods exist to build the decision model based on which the location

area is decided. Decision trees [10] represent one powerful tool for this purpose.

3.3 Angle of Arrival (AoA) estimation

It is perhaps one of the most famous techniques for source localization. This topic

received a lot of interest in the last two decades [11]. The research led to some

well-known algorithms. The problem of interest is to locate multiple coherent or

non coherent sources that impinge on an array consisting of multiple sensors.

Estimating the angle of arrival of a signal requires antenna array. This equip-

ment is expensive and current GSM operators are generally not willing to use

such installations. For this reason, this technique will be omitted for further

considerations.
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3.4 Time of Arrival (ToA) estimation

The estimation of the time of arrival (ToA) parameter is an old technique used in

various applications such as radar and sonar data processing, geological acoustic

sounding, and medical imaging processing. In the GSM context, the ToA esti-

mation can be achieved by means of the training sequence. Two scenarios are

possible, uplink or downlink:

� The mobile estimates the ToA of the training sequence from bursts coming

from di�erent base stations. Synchronization bursts are good candidates

since they have the longest training sequence (64 bits) and are sent at

full power. Moreover, consecutive synchronization bursts are spaced by

10 TDMA frames o�ering better uncorrelation between bursts. The time

needed to observe 20 synchronization is 0.96 s. This method requires mod-

i�cations to actual mobile handsets so that they are able to estimate the

ToA parameter with a better accuracy.

� Several base stations measure the same signal coming from the mobile hand-

set. Since tra�c bursts are subject to power control, access bursts are the

best candidates in this approach. They are always transmitted at full power

and have a long training sequence (41 bits). However, access bursts are sent

only at the beginning of a communication or whenever a handover occurs3.

A scenario suggested by Ericsson is to force the mobile to perform an in-

tra cell handover so that the mobile send an access burst to retrieve the

new link information such as power control and timing advance. The base

station does not respond to this handover and the mobile reiterates its de-

mand. Overall, the mobile sends a high number of access bursts (exactly

70 bursts within 0.32 s) that are measured at several base stations. This

method does not require any modi�cation to the mobile handset4. It makes

use of diversity to increase the number of samples according to the diversity

order. The main drawback is its huge complexity on the network side and

that it cannot work in idle mode. Note that in this special case, access

bursts are allowed to hop since they are sent on a tra�c channel. They are

then assumed to be uncorrelated between each other.

In both scenarios, the main source of error is multipath. The goal of time of

arrival estimation is to detect a path that is as close as possible to the direct line

of sight path. It is however impossible to avoid bias in a time of arrival estimation

when the direct line of sight path is not present.

At least three times of arrival are required if the location is done in two di-

mensions. The unknown variables are x, y, and tr which is an unknown reference

3In the case of asynchronous handover only.
4This is not really true since some handsets does not support intra cell handover.
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time that will be discussed in Chapter 5. The trilateration is called hyperbolic

because it is based on Di�erence Times of Arrival (DToA) which corresponds to

the equation of a hyperbola. The DToA technology has the advantage of elimi-

nating constant biases that may be present in the ToA estimation.

Base station synchronization is always required for the location to be possible.

The di�erences in transmission times between al base stations (also called RTD

for Real Time Di�erence) involved in the procedure are required. This will be

discussed in Chapter 6.

As the main source of problems in the ToA estimation is multipath, the perfor-

mances are slightly sensitive to the signal-to-noise ratio. A ToA can be measured

even at low signal-to-noise ratios once the training sequence is located. In the

downlink scenario, the detection probability can be enhanced by communicating

the handset prior information on the synchronization state of the neighboring

base stations. This can give some compensation to the limitation of the handset

compared to the base station sensibility and the advantage that it avoids for the

handset the BSIC decoding (see Section 2.3.5) that is required to identify the

base station the handset is measuring.

3.5 Hybrid methods - Joint Angle and Delay

Estimation (JADE)

The method is a combination of both ToA and AoA estimation. The estimation

is performed jointly. The joint estimation enhances signi�cantly the delays esti-

mation. Indeed, two closely spaced (in time) paths may have two di�erent angles

and therefore be easily resolved [12{14].

3.6 Conclusion

The discussed approaches are shown briey in Table 3.1. The discussion on

accuracy might be subjective since the approaches have not been tested at all

until now (except the signal level approach). Our preference goes to the ToA

approaches (downlink or uplink) since it seems to give an acceptable accuracy

with some few modi�cations to the mobile handsets and the network.

From now on, we will not distinguish between the downlink or the uplink

time of arrival technologies since these two approaches are strictly identical from

a calculation point of view. Three base stations at least must be involved in the

location procedure in order to obtain three independent times of arrival. Assum-

ing that the di�erences of transmission times of the base stations are known, the
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Method Link Mode Synchronization Accuracy

Signal level Down Idle Not required Poor

Uplink ToA Up Dedicated Required Good

Downlink ToA Down Idle Required Good

AoA Up Dedicated Not required Good

JADE Up Dedicated Required Excellent

Pattern Matching Up or/and down - Not required Excellent

Table 3.1: Summary of the di�erent technologies

system becomes identi�able and the handset can be located.
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Chapter 4

Time of arrival estimation

In this chapter, array processing techniques are applied to the general problem

of temporal analysis of a received narrow band signal consisting of replicas of a

known shape. This signal is received on one single sensor. We are in particular

interested in the estimation of the time of arrival (ToA), which is by de�nition the

time delay of the �rst path. For this purpose, we apply high resolution methods

for estimating all delays and then decide to retain the �rst one as the time of

arrival. We will apply the results to GSM.

The goal is to determine the time delay that is as close as possible to the line

of sight (LOS) path. The main obstacle to time of arrival estimation is multipath.

When the paths are closely spaced, it is hard to resolve them with a wide pulse

shape such as the GMSK pulse. Moreover the line of sight path may not exist

and it is impossible in this case to avoid a bias in the estimation. In [15], it has

been noticed that allowing biases in the estimator can reduce consequently the

variance error.

4.1 Notations and assumptions

In wireless communications, the channel impulse response varies in time due to

mobility. In a Time Division Multiple Access (TDMA) system with short bursts

such as GSM, we can assume that the channel impulse response is constant within

one burst for normal mobile speed since the coherence time is longer than the

burst duration (in GSM 577 �s). In addition, the bursts are uncorrelated from

one burst to another. This is due to frequency hopping1 and, for high mobile

speed, to the coherence time that is shorter than the length of one TDMA frame

(4.615 ms in GSM).

1On tra�c channels only.

29
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The channel impulse response is estimated by means of the known training

sequence (TSC). In GSM, such training sequences are composed of 26 bits in

normal bursts, 64 bits for synchronization bursts, and 41 bits for access bursts

(see Section 2.3.1). They are located in the middle of the burst.

We use the following constants:

� q refers to the length of the training sequence,

� p refers to the channel impulse response length,

� L refers to the number of successive observations2.

Supposing d discrete specular paths exist, the channel �lter that corresponds

to the propagation of the j-th burst is:

Cj(t) =
dX

i=1

sij�(t� �i) 1 � j � L (4.1)

f�ig1�i�d are the delays to be estimated, and fsijg1�i�d the gains (fading) of
all paths. The channel impulse response corresponding to one given burst j can

be written by:

hj(t) =
dX

i=1

sija(t� �i) 1 � j � L (4.2)

with a(t) the known modulation pulse function. Our goal is to estimate the

times of arrival of the di�erent delays, or at least the dominant ones and then

de�ne the �rst one as the time of arrival (ToA). For this purpose, we receive L

consecutive bursts. The part of the j-th burst that corresponds to the TSC is:

yj(t) =
qX

i=1

dihj(t� iT ) + nj(t) 1 � j � L (4.3)

where fdig1�i�q is the training sequence, T the bit period, and nj a white

complex Gaussian noise with variance �2. The pulse a(t) is supposed to be con-

tinuous and has a �nite duration Sa. We suppose that the delays are constant

during the observations of the L bursts. This is true at usual mobile speeds, i.e.

less than 150 km/h. The complex gains are not constant as they vary from one

burst to another; they are however constant within one burst.

2In case of diversity, this number increases according to the diversity order (number of

antennae) if we assumed that the delays are identical on the antennae and that the antennae

are spaced enough from each other so that they are uncorrelated.
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All signals are sampled at the bit rate which satis�es the Nyquist/Shannon

criterion3.

In general, the number of delays is unknown but it can be estimated by several

techniques as shown in [16{22]. These techniques are mainly the AIC and MDL

criteria.

We will use the following notations:

a(�i) = [a(��i) � � �a((p� 1)T � �i)]
T sampled pulse shifted by �i,

� = (�1 � � � �d) delays to be estimated,

A(�) = [a(�1) � � �a(�d)] rectangular p� d matrix,

Yj = [yj(pT ) � � �yj(qT )]T observations in one burst,

Hj = [hj(0) � � �hj((p� 1)T )]T channel impulse response,

Sj = [s1j � � � sdj]T gains in burst j,

Nj = [nj(pT ) � � �nj(qT )]T noise vector,

Ky = E
h
YjY

�
j

i
signal covariance matrix,

Ks = E
h
SjS

�
j

i
gain covariance matrix,

Kh = E
h
HjH

�
j

i
channel covariance matrix.

We note m = q � p + 1 the number of signal samples of yj(t). The pulse

is normalized, i.e. a�(�)a(�) = 1. The gains are assumed to be Gaussian with

zero mean and uncorrelated in time (from one burst to another), but might be

correlated in space (between the gains of various delays in the same observation).

That is to say:

E [SjS
�
k
] = �jkKs (4.4)

Consequently, the envelope of each gain follows a Rayleigh distribution4. The

uncorrelation in time is well justi�ed if slow frequency hopping is used. The noise

is Gaussian with zero mean, uncorrelated in time and space:

E [NjN
�
k
] = �jk�

2I (4.5)

Let D(d) be the matrix de�ned in (2.17) where d refers to the set of bits

belonging to the training sequence. The observations can be rewritten as:

(
Yj = D(d)H

j
+Nj

Hj = A(�)Sj
1 � j � L (4.6)

3In GSM the bit rate is 270 kHz which is greater than 2� 100 = 200 kHz.
4If the line of sight path follows a Ricean distribution then the time of arrival estimation

accuracy is greatly enhanced. We are therefore considering the worst case.
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We can rewrite the observations in a more compact formula:

Yj = D(d)A(�)Sj +Nj 1 � j � L (4.7)

The problem of estimating the delays is then equivalent to the joint estimation

of the angles of arrival of d unknown sources impinging on an array of m sensors

[11, 23, 24]:

�Yj = �A(�)�Sj + �Nj 1 � j � L (4.8)

where �A(�) = [�a(�1) � � � �a(�d)], � denotes the set of the d angles of arrival to

be estimated. The m dimension vector �a(�) is the array spatial signature for a

source coming from direction �. It is also called steering vector. In our case the

steering vector is D(d)a(�).

The di�erences between (4.7) and (4.8) are:

� m is the number of samples instead of the number of sensors,

� the observations Yj are the consecutive samples on one single antenna in-

stead of the array output �Yj,

� the matrix D(d)A(�) depends on the time delays while �A(�) depends on

the angles of arrival. Note that the rank of �A(�) is d and the rank of

D(d)A(�) is equal to min(d; p; q� p). However, this minimum is in general

equal to the number of delays d.

� the random gains �Sj play the role of the sources instead of the gains Sj.

The following de�nitions are useful to evaluate an estimator:

Consistency

An estimator is consistent when it is asymptotically unbiased, i.e. the estimator

tends to the true value when the number of observations tends to in�nity.

E�ciency

An estimator is e�cient if it reaches the Cramer-Rao bound that provides a lower

bound on the variance error of any unbiased estimator. An estimator may not be

e�cient but asymptotically e�cient, i.e. when the number of observations tends

to in�nity, the variance error tends to the asymptotic Cramer-Rao bound.
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4.2 Temporal approach

This approach deals directly with the samples in the time domain while the sec-

ond approach developed in section 4.3 deals with the Fourier transform of the

observations. All results obtained in this section are valid in the frequency do-

main too. As we will see, the frequency approach o�ers new perspectives.

We analyze the general case where the gain covariance matrix Ks is assumed

to be de�nite positive. It is possible to suppose that this matrix is diagonal, i.e.

uncorrelated gains, as done in [25].

It is common to distinguish two maximum likelihood estimators [26]:

4.2.1 The Deterministic Maximum Likelihood (DML)

In this approach, the unknown gains Sj are estimated in addition to the d delays.

We must then perform a joint estimation of the gains in each observation and

the common delays. This approach is interesting if, for some reason, we are not

sure that the gains are Gaussian.

The likelihood to be maximized is:

LY
j=1

p(Yjj�;Sj; �2) =
1

�L�2Lm
e
� 1

�2

P
L

j=1
kYj�D(d)A(�)Sjk2 (4.9)

We then have to solve the following problem:

(�̂ ; Ŝ1; � � � ; ŜL; �̂2) = argmin
�

1

�2

LX
j=1

kYj �D(d)A(�)Sjk2 + Lm ln�2 (4.10)

A derivation with respect to �2 gives:

�̂2(�) =
1

Lm

LX
j=1

kYj �D(d)A(�)Sjk2

Hence, the estimator is given by:

(�̂ ; Ŝ1; � � � ; ŜL) = argmin
�

LX
j=1

kYj �D(d)A(�)Sjk2 (4.11)

We then have the well-known solution:

Ŝj(�) = [D(d)A(�)]
y
Yj (4.12)
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�̂2(�) =
Tr(�?

D(d)A(�)K̂y)

m
(4.13)

�?
A

refers to the projection matrix onto the null space of A. K̂y is the

estimated covariance matrix by averaging the data:

K̂y =
1

L

LX
j=1

YjY
�
j

(4.14)

The next step is to maximize with respect to � :

LX
j=1

kYj �D(d)A(�) [D(d)A(�)]
y
Yjk2 =

LX
j=1

k�?
D(d)A(�)Yjk2

=
LX
j=1

Tr
�
Y�

j
�?
D(d)A(�)Yj

�

= L Tr
h
�?
D(d)A(�)K̂y

i

We have used the fact that �?
A
�?
A
= �?

A
and that Tr(AB) = Tr(BA).

K̂y is a su�cient statistic for the estimation of the delays. The maximum

likelihood estimate of � is obtained by minimizing the following concentrated

function:

VDML(�) = Tr
h
�?
D(d)A(�)K̂y

i
(4.15)

This estimator is known to be ine�cient [27], in the sense that it does not reach

the Cramer-Rao bound. This is not surprising since the number of parameters to

be estimated increases with the number of realizations. For L observations, we

have to estimate L(d + 1) parameters. It is straightforward to see, for example,

that �̂2(�) in (4.13) is biased since:

E[�̂2(�)] =
m� d

m
�2

4.2.2 The Stochastic Maximum Likelihood (SML)

In this approach, we estimate � without estimating the gains. Yj is Gaussian as

it is a linear sum of Gaussian variables. The quantity to be maximized is:

LY
j=1

p(Yjj�;Ks; �
2) =

exp
h
�LTr(K̂yK

�1
y
)
i

�Lm jKyjL
(4.16)

with:

Ky = A(�)KsA
�(�) + �2I (4.17)
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In this case, K̂y is a su�cient statistic for the estimation of both � and Ks.

The stochastic maximum likelihood estimator is given by:

(�̂ ; K̂s; �̂
2) = arg max

�;Ks;�
2
Tr
h
K̂yK

�1
y

i
+ ln jKyj (4.18)

Ks and �
2 can be eliminated and � is obtained by minimizing the following

cost function [28]:

VSML(�) = ln
���D(d)A(�)K̂s(�) [D(d)A(�)]

�
+ �̂2(�)I

��� (4.19)

with,

K̂s(�) = [D(d)A(�)]
y
(K̂y � �̂2(�)I) [D(d)A(�)]

y�
(4.20)

�̂2(�) =
Tr
�
�?
D(d)A(�)K̂y

�
m� d

(4.21)

Unlike DML, SML is known to be consistent and asymptotically e�cient [26].

It is usually called unconstrainted maximum likelihood because the estimation of

Ks has been performed without the constraint that it must be positive de�nite.

In some cases K̂s(�) given by (4.20) may be inde�nite. Taking into account such

constraint is complex [29]. Moreover, the estimator that takes this constraint

into account gives asymptotically (i.e. L ! 1) the same performances. Again,

this is due to the e�ciency of SML.

4.2.3 Channel impulse response estimation

According to (4.6), the least squares estimate of Hj is straightforward and given

by:

Ĥj = Dy(d)Yj (4.22)

The training sequences were designed to have very good autocorrelation prop-

erties, i.e:

D�(d)D(d) � mI (4.23)

If we assume (4.23) to hold with equality5, the least squares estimation of the

channel impulse response has a simple formula:

Ĥj =
D�(d)Yj

m
(4.24)

We then have a noisy version of the j-th channel impulse response hj(t):

ĥj(t) =
dX

i=1

sija(t� �i) + wj(t) 1 � j � L (4.25)

5In fact, this is impossible for a �nite sequence length, however we will accept this approxi-

mation for the training sequences of access and synchronization bursts.



CHAPTER 4. TIME OF ARRIVAL ESTIMATION 36

We note �2
r
= �2

m
the reduced variance of the noise w. Obviously, Ĥj is

Gaussian complex with zero mean and covariance given by:

K
ĥ
= Kh + �2

r
I = A(�)KsA

�(�) + �2
r
I (4.26)

If we note K̂
ĥ
= 1

L

P
L

j=1 ĤjĤ
�
j
, then it is possible to rewrite the deterministic

and stochastic ML with respect to K̂
ĥ
instead of K̂y by:

VDML(�) = Tr
h
�?
A
(�)K̂

ĥ

i
(4.27)

VSML(�) = ln
���A(�)K̂s(�)A

�(�) + �̂2
r
(�)I

��� (4.28)

with,

K̂s(�) = Ay(�)
�
K̂

ĥ
� �̂2

r
(�)I

�
Ay�(�)

�̂2
r
(�) =

Tr
�
�?
D(d)A(�)K̂y

�
m(m� d)

(4.29)

=
Tr
�
�?
A
(�)K̂

ĥ

�
p� d

+O(1=
p
L)

=
Tr
�
�?
D
(d)K̂y

�
m(m� p)

+O(1=
p
L)

For the proof of (4.29) see Appendix B. The interpretation of this result is that

the signal samples can be replaced with the least squares estimate of the channel

impulse response without any loss, if and only if (4.23) holds with equality. K̂
ĥ

is a su�cient statistic for the estimation of � . It is of course not su�cient for the

estimation of the gains as we need all the individual observations for this purpose

(4.12). K̂
ĥ
appears to be a more compact statistic than K̂y under the following

conditions:

� Channel impulse response duration maxi �i�mini �i < (p�Sa)T , (Sa is the
pulse duration).

� The training sequence must be located: this implies that the propagation

conditions are good enough so that it can be detected.

� p > d. This condition is required to pseudo-inverse A, in other words A

must be full column rank.

� D�(d)D(d) = mI
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From now on, we will use K̂
ĥ
instead of K̂y as a more compact su�cient

statistic. We call the column vector a(�) the steering vector by analogy with the

steering vector of an antenna array �a(�) (4.8).

The conclusion is that the variance error of the channel impulse response is

reduced by the factor m compared to the noise variance. The gain is 10 logm.

For an estimation of p = 10 coe�cients it represents (m = q � p+ 1):

� 17.40 dB for synchronization bursts,

� 15.05 dB for access bursts,

� 12.30 dB for tra�c bursts.

For this reason we will not worry about noise properties. For instance, the as-

sumption of white noise may be not satis�ed if it is due to one strong interferer.

4.2.4 Cramer-Rao Bound (CRB)

The Cramer-Rao bound provides a lower bound on the variance error of any

unbiased estimator [30]. Therefore it is interesting to compare an estimator with

its Cramer-Rao bound. It should be noted that this bound is not reachable in all

cases. This bound can be written in the following way:

E[(� � �̂)(� � �̂)�] � CRB(�) (4.30)

The Cramer-Rao bound is given by the inverse of the Fisher information

matrix de�ned by:

FIM(�) = E

"
@p(yj�)
@�

@p(yj�)
@�T

#
(4.31)

where p(yj�) refers to the conditional probability density with the knowledge

of �. In our case � = � , relation (4.30) shows in particular that the diagonal

elements of the Cramer-Rao bound represent the minimum variance error of the

estimated delays respectively.

The asymptotic, i.e. when L!1, deterministic Cramer-Rao bound on � is

given by [27]:

CRBDET(�) =
�2
r

2L

h
Re
�
R(�)�KT

s

�i�1
(4.32)

� refers to the Schur product matrix (the element by element product) and:

R(�) =
dA�(�)

d�
�?
A
(�)

dA(�)

d�
(4.33)
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This bound cannot be reached. This is a direct consequence of the ine�ciency

of DML as discussed in section 4.2.1.

The asymptotic stochastic Cramer-Rao bound on � is [26]:

CRBSTO(�) =
�2
r

2L

h
Re
�
R(�)�UT (�)

�i�1
(4.34)

with R(�) de�ned in (4.33) and,

U(�) = KsA
�(�)K�1

ĥ
A(�)Ks

=
h
K�1

s
+ �2

r
K�1

s
(A�(�)A(�))�1K�1

s

i�1
Unlike the deterministic Cramer-Rao bound, the stochastic Cramer-Rao bound

is reachable, which is a direct consequence of the e�ciency of the SML.

4.2.5 Some well-known estimators

Maximum likelihood estimators require a multi-dimensional search that is di�-

cult to achieve. In general, local extrema may appear if a descent type method

is used. Newton iterative algorithms have been studied in [31]. There are also

some other iterative algorithms that maximize the likelihood function such as

the alternating projection approach [32] and the estimation-maximization algo-

rithm [33{35].

The best well-known suboptimal estimator is obtained by matched �ltering

the received signal. In other words, cross-correlating the channel impulse response

with the GMSK pulse. With our notations, that corresponds to:

�̂ = argmax
�

1

L

LX
j=1

ja�(�)Ĥjj2 = argmax
�
aT (�)K̂

ĥ
a(�) (4.35)

For two closely spaced delays with variance a1 and a2, it is straightforward to

show that this function produces only one maximum at:

�̂ =
a1�1 + a2�2

a1 + a2

Another classical estimator is the Capon's beamformer [36] that can be written

as:

�̂ = argmax
�

1

a�(�)K̂�1
ĥ
a(�)

(4.36)

These estimators (matched �lter and Capon's beamformer) are equivalent to

the maximum likelihood estimator when the delays are su�ciently spaced and at
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high signal-to-noise ratios. In other cases, i.e. when the delays are closely spaced

or the signal-to-noise ratio is low, they are strongly biased and fail to resolve the

delays. Moreover, the Capon's beamformer requires a matrix inversion that may

be ill conditioned.

This is the main reason why we prefer the algorithms described in the fol-

lowing. They are approximations of the maximum likelihood estimator under

some conditions. They are computationally simple and have good asymptotic

properties.

An eigenvalue decomposition (EVD) of K
ĥ
will be useful:

K
ĥ
= Es�sE

�
s
+ �2

r
EnE

�
n
= Es(�s � �2

r
I)E�

s
+ �2

r
I (4.37)

with �s = diag(�1; � � � ; �d) the strongest d eigenvalues, Es the rectangular

matrix composed from the corresponding d normalized eigenvectors, and En the

rectangular matrix composed from the other p� d normalized eigenvectors. It is

common to say that Es spans the signal subspace and En the noise subspace. Es

and En are orthogonal.

Note that the noise estimated by the equations (4.21) or (4.29) is just the

mean value of the last eigenvalues that correspond to the noise subspace.

Multiple SIgnal Classi�cation (MUSIC)

In large samples approximation, i.e L ! 1, another way of writing the deter-

ministic maximum likelihood is the following (proof in [27]):

�̂ = argmin
�

Tr
�
A�(�)Ê

n
Ê�
n
A(�)Ks

�
(4.38)

Thus, if Ks is diagonal, i.e. the gains are uncorrelated, the trace is minimized

by minimizing each term of the sum (represented by the trace) separately. We

obtain the well-known MUSIC estimator. MUSIC is thus asymptotically equiva-

lent to the deterministic maximum likelihood when the delays are uncorrelated.

The d dimensional search is reduced to a one dimensional search of d minimum

values that are the d lowest values of kÊ�
n
a(�)k2.

Note that the computation of the eigenvectors associated to the d strongest

eigenvalues is easier as the corresponding eigenvalues are in general very di�erent6.

Moreover if 2d < p, it is more convenient to compute Es. EnE
�
n
is obtained by

6The convergence speed of an iterative algorithm for eigenvalues decomposition is in general

proportional to the ratios between consecutive eigenvalues.
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I� EsE
�
s
. It is common to search for the d peaks of the following function, also

called MUSIC spectrum:

�(�) =
1

a�(�)(I� ÊsÊ�
s
)a(�)

(4.39)

MUSIC has been widely studied in the literature, see [27, 37, 38].

Weight Subspace Fitting (WSF)

This estimator is based on the fact that the range space ofA(�) is the same as Es.

This implies that there is one unique full rank matrix T so that: Es = A(�)T. In

other words, � is the unique vector that satis�es this relation. As Ês is corrupted

by noise, �nding the estimate can be formulated in the following way [39{41]:

[�̂ ; T̂] = argmin
�;T

kÊsW
1

2 �A(�)Tk2 (4.40)

where W is a weighting matrix for the signal subspace.

T can be eliminated easily and the WSF estimator becomes:

�̂ = argmin
�

Tr
�
�?
A
(�)ÊsWÊ�

s

�
(4.41)

There exists an optimum weighting matrix in the sense that it minimizes the

asymptotic covariance error [39]:

�̂ = argmin
�

Tr
�
�?
A
(�)ÊsWOPTÊ

�
s

�
(4.42)

with,

WOPT = (�s � �2
r
I)2��1

s
(4.43)

This matrix can be replaced in practice with a consistent estimate without

a�ecting the asymptotic properties of the estimator. The corresponding estimator

is a large samples approximation of the stochastic maximum likelihood estimation

[26]. It is e�cient in the sense that its asymptotic covariance corresponds to the

stochastic Cramer-Rao bound (4.34). Note that at high signal-to-noise ratios and

large samples, the deterministic and stochastic maximum likelihood estimators

coincide.

4.3 Frequency approach

4.3.1 Formulation

In this case, we perform exactly the same computations as before but on the

Fourier transform of the observations. We then have from (4.25):

�̂
hj(f) = ~hj(f) = �a(f)

nX
i=1

sije
�j2��if + �wj(f) 1 � j � L (4.44)
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�(:) denotes the Fourier transform of (:), w is a complex Gaussian noise with

reduced variance �2
r
= �2

m
.

We take the same number of samples as in the temporal domain, i.e. p

samples. Let the set of frequencies of these samples be f = (f1; � � � ; fp) on the

nonzero support of �a(f). We can then express the observations in the following

way:

�̂
Hj = ~Hj = �() ~A(�)Sj + �Wj 1 � j � L (4.45)

with �() = diag(),  = [�a(f1) � � � �a(fp)]T and:

~A(�) =

0
BB@
e�2�jf1�1 � � � e�2�jf1�d

...
...

e�2�jfp�1 � � � e�2�jfp�d

1
CCA

The advantage of this new representation is that it corresponds exactly to

the estimation of the angles of arrival of d sources impinging on a uniform linear

array (ULA) of p sensors (4.8) with di�erent sensor gains [42, 43].

Assuming that the Nyquist/Shannon criterion is satis�ed at the bit rate, the

Fourier transform can be written in the following way:

�̂
Hj = ~Hj = FĤj (4.46)

with F being the following p� p matrix:

F = T

0
BB@
e�2�jf1T � � � e�2�jpf1T

...
...

e�2�jfpT � � � e�2�jpfpT

1
CCA

T is the bit period. Equation (4.45) is similar to (4.7). The noise remains

Gaussian. It is white if F is orthonormal, which is the case if an FFT is used. It

is worth noting here that there are no edge e�ects while performing the FFT on

Ĥj since in practice p = 10 and pT is about 37 �s which is longer than typical

durations (< 15�s).

The new covariance is:

K~h = FK
ĥ
F� (4.47)

which gives directly the new covariance K~h from the latter one K
ĥ
.

The noise covariance becomes:

K �w = �2
r
FF� (4.48)
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If the sample frequencies are chosen uniformly, i.e. fi = f1 + (i � 1)�, the

matrix ~A(�) has a Vandermonde structure. For practical reasons, we choose

� = 1
pT

so that F becomes an FFT matrix and the noise �Wj remains white. f1
is chosen so that the samples are centered, we then have:

� f1 = �fp = �p�1
2pT

.

� fi =
i� p+1

2

pT

� FF� = F�F = I

In this case, the steering vector is �()~a(�) with:

~a(�) = [e�2�jf1� ; � � � ; e�2�jfp� ]T = e�2�jf1� [1; e�2�j�� ; � � � ; e�2�jp�� ]T (4.49)

It should be noted here that there is no ambiguity on the possible value of �

if and only if the phase range does not exceed 2�, in other words:

0 � 2��� � 2� =) 0 � � � 1

�
= pT

This condition is supposed to be veri�ed by the assumptions shown in Sec-

tion 4.2.3.

All algorithms depicted in section 4.2.5 can be applied here too. We can also

use some elegant algorithms taking advantage of the Vandermonde structure of

the matrix ~A(�):

� Root MUSIC: the estimates are obtained by mean of roots of a polynomial

that is related to the noise subspace,

� IQML: an iterative algorithm of successive least squares estimations without

eigen-decomposition,

� Root WSF: the estimates are obtained by means of roots of a polynomial

that will be estimated,

� ESPRIT: this estimator reduces the computations in the sense that it avoids

the search for the maximum of a function (like the MUSIC spectrum func-

tion); the delays are obtained explicitly without search.

These methods are known as parametric methods. They are computationally

attractive because they exploit the Vandermonde structure of ~A(�). In statisti-

cal array processing, this corresponds to the case of uniform linear arrays (ULA)

with known calibration given by the elements of the diagonal matrix �().

We note in the following ~Es and ~En the new signal and noise subspace:

K~h =
~Es

~�s
~E�
s
+ ~En

~�n
~E�
n



43 4.3. FREQUENCY APPROACH

4.3.2 Some well-known estimators

Root MUSIC

This algorithm is a variant of MUSIC and can be seen as an extension to the

Pisarenko's approach [44].

MUSIC is de�ned by the d values of � that minimizes the following cost

function:

k ~̂E
�

n
�()~a(�)k2 = k ~̂E

�

n
�()[1; z; � � � ; zp]Tk2 (4.50)

with z = z(�) = e�j2���, the right side following from (4.49). It is clear that in a

noise free model these values are the d roots of this function that lie on the unit

circle:

zi = e�j2��i� 1 � i � d

The delays are then obtained by means of the argument of these roots:

�i =
�1
2��

arg zi

Since only the values of z on the unit circle are of interest, we can substitute

z� with 1
z
. The resulting function is a polynomial that can be written in the

following way using the estimated noise subspace:

H(z) =
2(p�1)X
k=0

Trk�p

�
��() ~̂En

~̂E
�

n
�()

�
zk (4.51)

where Trk(:) denotes the trace of the k-th diagonal of (:), in particular Tr0(:) is

the trace of (:). In this case the matrix is hermitian and we have Trk(:) = Tr��k(:).

The Root MUSIC estimator is given by taking the argument of the n closest

roots to the unit circle of H(z) that are inside or on the unit circle. Note that

MUSIC is given by the minimum of (4.50) on the unit circle and is therefore

not equivalent to Root MUSIC. It has been shown in [45] that Root MUSIC is

asymptotically equivalent to MUSIC but as all parametric methods, it has a bet-

ter threshold at low signal-to-noise ratios.

Iterative Quadratic Maximum likelihood (IQML) and Root WSF

These two algorithms are based on a di�erent parameterization. Let B(b) be the

following p� (p� d) matrix [46, 47]:

B�(b) =

0
BBBBB@

bd � � � b0 0 � � � 0

0 bd � � � b0
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 bd � � � b0

1
CCCCCA (4.52)
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where b = [b0 � � � bd]T are the set of coe�cients of the following polynomial:

dX
i=0

biz
d�i = b0

dY
i=1

(z � e�j2��i�) (4.53)

From the de�nition of B(b), B�(b) ~A(�) = 0, and since the rank of B(b) is

by construction p� d, it follows that its columns span the null subspace of ~A(�):

�B(b) = �?
~A
(�) (4.54)

and,

����B(b) = �?
�~A

(�) (4.55)

It is equivalent to estimate b or � as they are directly related. It is however

easier to estimate b if an iterative approach is used. From de�nition (4.52), the

DML criterion (4.27) can be written as:

VDML(b) = Tr
h
����B(b)K̂~h

i
(4.56)

The IQML algorithm is an iterative algorithm that tries to minimize this cost

function iteratively by minimizing the following linear problem at iteration k:

bk = argmin
b

Tr

�
B(b)

h
B�(bk�1)�

�1���B(bk�1)
i�1

B�(b)��1K̂~h�
��
�

(4.57)

b can be initialized so that B�(b0)�
�1���B(b0) = I. Each iteration is a

simple least squares estimation. To avoid the trivial solution b = 0, one can add

the constraint that kbk = 1 by normalizing bk at each iteration. One can also

use the fact that the roots lie on the unit circle so that the elements of b must

satisfy the conjugate symmetry constraint:

bi = b�
d�i 0 � i � d () Jb = bc (4.58)

This reduces the number of parameters to be estimated. Moreover b should be

constrainted to ensure that the corresponding polynomials has all its zeroes on

the unit circle. However, the gain in performances obtained by taking into ac-

count this constraint is negligible [47].

The advantage of IQML is that it does not require any eigenvalue decompo-

sition. However, it is known to be ine�cient and leads to biased estimates [48].

Recently a modi�ed IQML approach has been proposed [49] which overcomes the

bias of the basic version and is asymptotically e�cient.

Root WSF is a derivation of the WSF estimator. Introducing the matrix

B(b), the WSF criterion becomes:
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b̂ = argmin
b

Tr

�
����B(b) ~̂Es

~WOPT
~̂E
�

s

�
(4.59)

with ~WOPT de�ned as in (4.43) by:

~WOPT = (~�s � �̂2
r
I)2~��1

s

The same algorithm as for IQML is used. However, in this special case, two it-

erations are enough [11]. This is due to the fact that in this case [B�(b)��1���B(b)]
�1

can be replaced with a consistent estimate without a�ecting the asymptotic per-

formances [48].

For minimizing each step, one can use the following formula:

Tr(ABCD) = Vec�(B�)(AT 
C)Vec(D)

Thus the step described by (4.57) reduces to the minimization of b�Lb with a

constraint on b. The solution is the eigenvector of L associated to the smallest

eigenvalue.

Estimation of Signal Parameters via Rotational Invariance Techniques

(ESPRIT)

The algorithm exploits the Vandermonde structure of ~A(�). ~A(�) satis�es the

following invariance properties [50]:

J1 ~A(�) = J2 ~A(�)�(�) �(�) = diag(e2�j��1 ; � � � ; e2�j��d) (4.60)

where J1 and J2 are selection matrices of the �rst and the last p�1 rows, i.e.:

J1 = [Ip�1 0] J2 = [0 Ip�1]

Our goal is to determine the matrix �(�) which gives explicitly the di�erent

delays. Using the fact that the range space of ~Es is the same as the range space

of �() ~A(�), there exists one unique full rank matrix T so that:

J1 ~Es = J1�() ~A(�)T J2 ~Es = J2�() ~A(�)T

Noting �1 the matrix � after deleting its last row and last column, and �2

the matrix � after deleting its �rst row and �rst column, one can write:

J1 ~Es = �1J1 ~A(�)T J2Es = �2J2 ~A(�)T

Using the invariance properties shown by (4.60), we get:

J1 ~Es = �1J2 ~A(�)�(�)T J2 ~Es = �2J2 ~A(�)T



CHAPTER 4. TIME OF ARRIVAL ESTIMATION 46

It follows that:

�2�
�1
1 J1 ~Es = J2 ~Es	(t) (4.61)

With 	(t) = T�1�(�)T. The eigenvalues of 	(t) directly yield the desired

delays. We have to estimate this matrix. One way of doing that is by least

squares estimation:

	̂(�) =

�
J2 ~̂Es

�y
�2�

�1
1 J1 ~̂Es

Some algorithms may perform better than least squares: total least squares ES-

PRIT [51], weighted ESPRIT [52], and multiple invariance ESPRIT [53].

4.3.3 Forward-Backward averaging

Forward-Backward averaging is a technique used to virtually double the available

samples. It is based on the following equation which is a direct consequence of

the Vandermonde structure of A(�):

J ~Ac(�) = ~A(�)�

with � = diag(e2�(m�1)�1 ; � � � ; e2�(m�1)�d) and J the anti-identity matrix. We can

de�ne a modi�ed covariance matrix in the following way:

1

2
(K~h + JKc

~h
J) =

1

2
( ~A(K~h + �Kc

~h
��) ~A�) (4.62)

The reason for the appellation "forward-backward" is that while the indices of
~Hj run forward (1; 2; � � � ; m) those of J ~Hj run backward (m;m� 1; � � � ; 1). The
consequence is that the extraction of the signal subspace from this new matrix

correspond to the space spanned by ~A(�).

While Forward-Backward averaging is known to enhance the performance of

some algorithms such as Root MUSIC or ESPRIT [54], it is however shown that

it must not be used for a statistically e�cient method such as Root WSF [55].

4.4 Simulations

In the following, simulations are presented for the simple case of a channel im-

pulse response consisting of two delays equally powered. Synchronization bursts

are used (downlink scenario). The GMSK pulse is �ltered so that it �ts the 200

kHz bandwidth around its carrier. We �ltered it at 1=T , i.e. between �1=2T
and +1=2T � 135 kHz. In Figure 4.1 the GMSK pulse and two �ltered versions

are displayed at 1=T and at 0:8=T . It is shown that while the perfect GMSK

pulse has a duration of 4 bit periods, the �ltered versions duration is longer (8

bit periods at 1=T ). From now on, we will assume in simulations that the pulse



47 4.4. SIMULATIONS

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bit period

A
m

pl
itu

de

GMSK pulse
Filtered at 1/T
Filtered at 0.8/T

Figure 4.1: The GMSK main pulse and its �ltered versions at 0:8=T and 1=T .

�ltered at 1=T is the transmitted one.

Both delays are assumed to be correlated. In the general case, the covariance

matrix of the fading can be written as:

Ks = 10
SNR

10

 
1 �

�� 1

!
(4.63)

with � being the correlation factor between the two paths, and SNR the signal-

to-noise ratio expressed in dB.

In Figure 4.2, simulations are done with temporal MUSIC (4.39) and the

matched �lter (4.35) assuming no correlation and a signal-to-noise ratio of 10

dB. There is one bit period separation between both delays. It is clearly shown

that while the temporal MUSIC algorithm resolves the two delays (the two clear

peaks), the matched �lter has only one peak and is therefore unable to deduce

any relevant information.

The following simulations are performed with the GMSK pulse function �l-

tered at 1=T , i.e. between �1=2T and +1=2T (see Figure 4.1). Since the duration

of this pulse is about 8 bit periods, p = 10 coe�cients are used for the channel

impulse response estimation. The normalized Root Mean Square error (RMS) is

drawn for the �rst delay (results for the second delay are similar):

� In Figure 4.3, simulations with respect to the SNR assuming uncorrelation
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Figure 4.2: Temporal MUSIC and matched �ltering (cross-correlation) at 10 dB, 5

independent trials are run: the matched �lter is unable to resolve two delays equally

powered spaced by one bit period.

(� = 0).

� In Figure 4.4, simulations with respect to the SNR assuming a correlation

factor of � =0.99.

� In Figure 4.5, simulations with respect to the number of bursts assuming

uncorrelation (� = 0).

� In Figure 4.6, simulations with respect to the delay separation assuming no

correlation (� = 0).

� In Figure 4.7, simulations on the Forward-Backward averaging e�ect on

ESPRIT.

Note that a RMS error higher than 1 bit period indicates a failure in resolving

both delays. As expected, simulations show that the best candidate is Root

WSF since it is e�cient even when the delays are correlated. Forward-Backward

averaging is shown to be useful for suboptimal methods especially in critical

conditions (when few observations are available). However it should not be used

for statistically e�cient methods such as Root WSF [55].
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Figure 4.3: Algorithm performance with respect to the SNR, L = 100 synch. bursts

are used, �� = T , and � = 0: MUSIC and Root WSF are e�cient.
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Figure 4.4: Algorithm performance with respect to the SNR, L = 100 synch. bursts

are used, �� = T , � = 0:99: only Root WSF is e�cient.

4.5 Extension to an unknown modulation pulse

The subspace �tting algorithms described in previous sections assume perfect

knowledge of the modulation pulse shape. However, these algorithms are very
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Figure 4.5: Algorithm performance with respect to the number of bursts at 8 dB,

�� = T , � = 0.
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Figure 4.6: Algorithm performance with respect to the delays separation at 8 dB,

L = 100 synch. bursts used, � = 0.

sensitive to the lack of information in the modulation pulse function. In Fig-

ure 4.8, simulations are done using the pulse �ltered at 1=T and the delays esti-

mator assumes a wrong pulse (the one �ltered at 0:8=T , see Figure 4.1). It results
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Figure 4.7: The E�ect of forward-backward averaging: �� = 1T, � = 0. (a) with

ESPRIT using 10 synch bursts, (b) with ESPRIT using 100 synch. bursts, (c) with

Root WSF using 50 bursts. Forward-Backward averaging is useful for suboptimal

methods especially if few number of bursts are available. However, it should not be

used for optimal methods such as Root WSF, Figure (c) shows no improvement in

performance when using forward-backward averaging.

in biases in the estimation. In practice, it is hard to have a perfect knowledge

of the pulse shape since it is modi�ed by the transmission and reception �lters

which may di�er between manufacturers. Depending on the degree to which the

wrong pulse deviates from the true one, serious degradations may result.

In [56,57], the performances in presence of model errors are analyzed. In [58],

such errors are assumed to be random and a new corrected version of the sub-

space �tting approach is derived. A new weighting matrix W (4.41) is found to

include the uncertainty on the model. Such approach is not valid in our case



CHAPTER 4. TIME OF ARRIVAL ESTIMATION 52

since the pulse shape is purely deterministic and does not vary in time.

We show in this section that under some conditions, the delays can be es-

timated without knowledge of the pulse shape. We perform a joint estimation

of the pulse shape and the delays making use of the uncorrelation of successive

observations.
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Figure 4.8: Temporal MUSIC and matched �ltering (cross-correlation): 5 independent

trials are run at 10 dB and using 100 synch. bursts showing that a bias appears when

a wrong pulse is assumed. The wrong pulse here is the GMSK main pulse �ltered at

0.8/T.

The problem to be solved is the one shown in (4.45) assuming an unknown

pulse shape, in other words  is unknown. In fact, this problem is equivalent to

the problem of the estimation of d Gaussian sources that impinge on m antennae

with unknown calibration. It is shown in [59] that the problem is identi�able

under some conditions. For the particular case of Uniform Linear Array (ULA),

the problem is not identi�able in the sense that the sources can be located to

within an unknown initial phase. In other words, it is possible to estimate only

the di�erence of angles of arrival of two given paths.

In our case, adding some assumptions on the pulse shape removes this uncer-

tainty. The assumptions we take are the facts that the pulse is real and symmetric.

For the particular case of Di�erence Times of Arrival (DToA) computation, this

uncertainty is not an issue since it results in an unknown common time refer-
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ence for all times of arrival. This reference will be removed when computing the

di�erences.

4.5.1 Iterative approach

Iterative algorithms have been proposed in the literature, see [42, 43]. These

algorithms jointly estimate the diagonal elements of the matrix �() and the

delays � (see equation 4.45). They proposed a general procedure that uses any

algorithm that works assuming known matrix �. It is based on the following

equation that stems from the fact that �()~A(�) lies in the signal subspace

represented by ~Es, i.e:

[̂ �̂ ]
T
= argmax

;�

dX
i=1

k ~̂E
�

s
�()~a(�i)k2 (4.64)

This is equivalent to:

[̂ �̂ ]
T
= argmax

;�
�

dX
i=1

D�
i
~̂Es
~̂E
�

s
Di (4.65)

where Di = diag [~a(�i)]. In other words,  is the eigenvector associated to the

maximum eigenvalue of the matrix
P

d

i=1D
�
i
~̂Es

~̂E
�

s
Di. The proposed algorithm is

similar to the one in [43].

Once this eigenvector is computed, we eliminate the uncertainty on  by

incorporating the constraint that the pulse is symmetric and real (i.e. its Fourier

transform is real and symmetrical):

� First of all, the delays are estimated with a standard algorithm assuming

that �() is the identity, or using �() that corresponds to the original

GMSK pulse.

�  is then computed using (4.65) by taking the elements of the eigenvector

associated to the highest eigenvalue VMAX = [v1 � � � vm]:

i =
q
jvijjvm+1�ij 1 � i � m

� The delays are computed again using  found in previous step and so on

until some convergence criterion is achieved.

Note that to obtain an estimation of the pulse shape,  should be normalized

so that � = 1.
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4.5.2 A modi�ed ESPRIT algorithm

In the following, a non-iterative ESPRIT-like algorithm is derived in contrast to

the iterative approach described in previous section where the standard ESPRIT

can be used to compute the delays at each iteration. We note D(�) = diag(�)

the diagonal matrix �2�
�1
1 , and 	(�) = T�1�(�)T. Note that � is function of 

and represents some unknown vector related to the pulse shape. From equation

(4.61) it appears that the problem to be solved is the following:

[�̂ 	̂(�)]T = argmin
� 	

kD(�)J1 ~̂Es � J2 ~̂Es	(�)k2 (4.66)

with the following constraints:

8<
:

Im(�) = 0

JD(�)JD(�) = I
(4.67)

These constraints are direct consequences of the assumptions we made on the

pulse shape. In particular, we have:

det[D(�)] = 1 (4.68)

The delays to be estimated are obtained from the phases of the eigenvalues

of 	 since � is diagonal. Ês is obtained from the estimated covariance matrix

K̂~h =
1
L

P
L

j=1
~Hj

~H�
j
.

The solution to the problem shown in (4.66) without incorporation of the

constraints (4.67) is given by [60]:

	̂(�) =

�
J2 ~̂Es

�y
D(�̂)J1 ~̂Es

Substituting this expression in 4.66, we get:

�̂ = argmin
�

Tr

�
D(�)J1 ~̂Es

~̂E
�

s
JT1D

�(�)�?
J2
~̂Es

�

= argmin
�
��
�
�?
J2

~̂Es
� J1( ~̂Es

~̂E
�

s
)TJT1

�
�

In other words:

�̂ = �VMIN

where VMIN = [v1 � � � vm�1] is the eigenvector of �?
J2

~̂Es
� J1( ~̂Es

~̂E
�

s
)TJT1 associ-

ated to the smallest eigenvalue and � a scale factor. The delays estimation are

related to the phases of the eigenvalues of 	(�) and are then indi�erent to the

magnitude of �. This is a set of solutions determined by an initial phase that is
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related to the argument of �.

Adding the constraint that the pulse is real and symmetric forces this so-

lution to be unique. We propose the following solution: �̂ = [�̂1 � � � �̂m�1] with
�̂i =

r
jvij

jvm�ij
so that the constraints shown in (4.67) are satis�ed.

It should be noted that the solution shown here is not optimal since the con-

straints have been applied on the unconstrainted solution.

The pulse can be deduced from �̂ by:

̂i = �̂a(fi) =

Q
i�1
j=1

1
�̂jP

m

k=1

Q
k�1
j=1

1
�̂2
j

1 � i � m (4.69)

where we assumed that �0 = 1.

4.5.3 The DToA special case

As discussed in Section 3.4, the localization procedure makes use of Di�erences

Times of Arrival (DToA). In other words, it computes the di�erences of times of

arrival calculated on several links between the mobile and the base stations.

In that case, the discussion on identi�ability is no more relevant since the

problem is related to the determination of a scale factor of  or �. Such a scale

factor introduces a shift to all delays and does not a�ect the di�erences of times

of arrival.

We can generalize the algorithms described above by combining all available

links. The non-iterative approach will be written as:

[�̂; 	̂1; 	̂2; � � �]T = arg min
�;	1;	2;���

X
i

�ikD(�)J1 ~̂Esi
� J2 ~̂Esi

	ik2 (4.70)

where 	i is the matrix 	(�) that correspond to the i-th link, � the column

vector that contains the pulse information that is shared on all links, ~̂Esi
the

estimated signal subspace on the i-th link, and �i a weighting factor; it can be a

function of the signal-to-interference ratio on the i-th link. It is however hard to

set an optimal value to these coe�cients. This problem remains an open question.

The solution is:

~̂	i =

�
J2 ~̂Esi

�y
D(�̂)J1 ~̂Esi
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and:

�̂ = argmin
�
��
"X

i

�i

�
�?
J2

~̂Esi
� J1( ~̂Esi

~̂E
�

si
)TJT1

�#
�

� is computed from the eigenvector associated to the lowest eigenvalue �̂ =

�VMIN.

4.5.4 Simulations

Simulations are performed here with the same assumptions as in 4.4. No correla-

tion is assumed. In Figure 4.9 a comparison is done between the new ESPRIT-like

approach assuming unknown pulse and the standard ESPRIT algorithm. The

normalized standard deviation of the estimation of the �rst delay is drawn with

respect to the SNR (the results on the second delay are the same). It is shown

that the loss in performance due to the lack of knowledge of the pulse is around

2 dB only.
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Figure 4.9: ESPRIT with and without the knowledge of the pulse, �� = T , L = 200

synch. bursts are used.

In Figure 4.10 a comparison is done between the iterative approach done with

Root MUSIC and the non-iterative ESPRIT-like proposed algorithm. The itera-

tive approach appears to be more accurate, it is however far more complex.

As expected, the results are not as good as those done with the knowledge of

the pulse. Such algorithms should be run if the propagation conditions are good
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Figure 4.10: Algorithm performance with an unknown pulse, �� = T , � = 0, '*' refers

to the non-iterative ESPRIT-like's approach and 'o' refers to the iterative approach

performed using Root WSF.

enough (few paths, high signal-to-interference ratio), so that the prior information

on the pulse is easily corrected. Once a good estimation of the pulse is available,

standard subspace algorithms should be used.

4.6 On complexity

We presented in this chapter a set of algorithms based on the extraction of the sig-

nal or the noise subspace. Finding a subspace from a covariance matrix requires

a large amount of computation. However, as we are just interested in �nding few

eigenvectors, some algorithms such as the power iteration method [61] might be

useful.

Recently, there has been some studies on subspace tracking. Basically, the goal

is to be able to update quickly the signal subspace whenever a new observation

is available [62,63], see also [64]. Moreover, performing an exponential weighting

of the data enables tracking the moving delays. The projection approximation

subspace tracking (PAST) [65] is a simple algorithm based on a recursive least

squares estimation approach. It appears to be a promising technique.
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Chapter 5

Hyperbolic trilateration

In this chapter, we deal with the problem of estimating the coordinates of the

handset once enough times of arrival are available. This procedure called trilat-

eration or data fusion is possible if information on the network synchronization

is available. The problem reduced then to a non linear maximization.

5.1 Problem statement

We have n times of arrival observations and m di�erences of synchronization ob-

servations. All these observations are corrupted with noise.

The times of arrival can be written in the following way:

fi =
ri

c
+ ti � q1 + bi 1 � i � n (5.1)

with,

� ri the distance between the mobile and the i-th base station,

� c � 3:108 m/s the speed of light,

� ti the transmission time of the i-th transmitter,

� q1 a reference time
1,

� fi the estimated times of arrival,

� bi an additive white Gaussian noise.

1It should be noted that this reference has a di�erent interpretation according to the location

system. For instance in the GPS system [66] this will be the handset reference.

59
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The n base stations involved in the localization procedure are assumed to

have di�erent coordinates. Indeed the mobile can hear more cells that sites (in

the case of trisectorized sites for instance) and the cells that belong to the same

base station provide little extra information.

The synchronization information is expressed by the following n equations:

�ti = ti � q2 + wi 1 � i � n (5.2)

Such measurements can be simply computed by measuring the times of arrival

of di�erent signals coming from di�erent base stations to a known point as will

be discussed in next chapter. q2 is another reference time, and wi an additive

white Gaussian noise.

We can rewrite these equations in a more compact way:

(
~F = A(�) +T� q11+Bf

�T = T� q21+Bt

(5.3)

with,

� � the column vector of the coordinates to be estimated (in two dimensions

� = [x y]T ),

� ~F = [f1 � � � fn]T ,

� A(�) = 1
c
[r1 � � � rn]T ,

� T = [t1 � � � tn]T ,

� Bf = [b1 � � � bn]T ,

� Bt = [w1 � � �wm]
T ,

� 1 = [1 � � �1]T .

We assume that the noise vectors Bf and Bt are zero mean Gaussian variables

with the following covariances:

� E[BfB
T

f
] = Qf

� E[BtB
T

t
] = Qt

� E[BfB
T

t
] = 0
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Let Q = Qt + Qf . This covariance matrix contains the con�dence values

of the time of arrival measurements after incorporation of the synchronization

information uncertainties.

Obviously the system (5.3) is equivalent to:

~F = A(�) + �T� tr1+B

where B = Bf + Bt and tr = q1 + q2. Incorporating �T in ~F the system

becomes:

F = A(�)� tr1+B (5.4)

where F = ~F � �T. These equation leads to a hyperbolic trilateration as in

GPS [66]. n must be strictly greater than two if the position estimation is re-

quired in two dimensions since three variables need to be estimated: x, y, and tr.

This is required for the system to be identi�able, but of course, the greater is n,

the better is the accuracy. In the speci�c case of radio propagation, it should be

noted that the times of arrival (i.e. ~F) are biased in general because of multipath

propagation. For instance, the direct line of sight may not exist at all.

We perform a joint estimation of � and tr. From (5.4) the maximum likelihood

estimator is given by:

[�̂ t̂r] = argmax
�;tr

[F�A(�)� tr1]
T
Q�1 [F�A(�)� tr1] (5.5)

Derivating with respect to tr, we obtain:

t̂r(�) =
1TQ�1 [F�A(�)]

1TQ�11
(5.6)

Substituting in (5.5), we obtain a concentrate function to be minimized with

respect to �:

�̂ = argmax
�

[F�A(�)]
T ~Q [F�A(�)] (5.7)

with:

~Q = Q�1 � Q�111TQ�1

1TQ�11

Note that ~Q is rank de�cient since ~Q1 = 0. That is the reason why the time

reference has been eliminated in (5.7) compared to (5.5).
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5.2 Cramer-Rao bound

The Cramer-Rao bound on � is given by (see de�nition in Section 4.2.4):

CRB�1(�) =

"
@A(�)

@�

#T
~Q
@A(�)

@�
(5.8)

Proof in Appendix C. In two dimensions we have:

@A(�)

@�
=

1

c

2
666664

x�x1
r1

y�y1
r1

x�x2
r2

y�y2
r2

...
...

x�xn
rn

y�yn
rn

3
777775 (5.9)

where xi and yi are the coordinates of the i-th transmitter. Therefore the

root mean square of any given estimator is bounded by:

RMS(�) �
q
Tr(CRB(�))

This bound is clearly � dependent. This fact is important and means that

the performance of the estimator depends on the problem geometry. This phe-

nomenon is called Geometric Dilution of Precision (GDoP); it indicates how much

the geometry inuences the �nal location error [67].

In simulations, we will take a mean value for the RMS:

RMS �

vuutRS Tr [CRB(�)] d�R
S d�

(5.10)

In the GSM standard, an additional interesting piece of data is available: the

timing advance (see Section 2.3.2). It is an approximation of the propagation

time between the mobile and the base station it is connected to. Taking this

information into account the trilateration is the intersection of hyperbolas with a

circle centered on the base station and with a radius equal to the timing advance

parameter expressed in meters. For simplicity we will take the base station the

mobile is connected to as a reference so that the timing advance can be written

as:

TA = j�j+ bTA

bTA refers to the perturbation on the timing advance, we will assume it as being

Gaussian with zero mean and variance �TA. We will noteCRBTA the Cramer-Rao

bound taking into account this new information. Using the formula: @j�j
@�

= �

j�j ,

the new Fisher information matrix is:

FIMTA(�) = FIM(�) +
1

�2
TA

��T

j�j2 (5.11)
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The inverse matrix lemma yields:

CRBTA(�) = CRB(�)

"
I� ��TCRB(�)

�2
TA
j�j2 + �TCRB(�)�

#
(5.12)

It is interesting to note two special cases:

� �2
TA
! 1, i.e. no information available on the timing advance, obviously

implies

CRBTA(�)! CRB(�)

� �2
TA
! 0, i.e. exact knowledge of the timing advance, implies

CRBTA(�)! CRB(�)

"
I� ��TCRB(�)

�TCRB(�)�

#

5.3 Algorithms for hyperbolic trilateration

5.3.1 Taylor expansion (scoring method)

This is an iterative algorithm for directly minimizing the maximum likelihood

criterion (5.7) by performing a Taylor expansion of A(�):

A(�n) � A(�n�1) +
@A(�n�1)

@�
[�n � �n�1] (5.13)

Replacing this equation in (5.7) gives:

�n = argmax
�

"
F�A(�n�1)�

@A(�n�1)

@�
(� � �n�1)

#T
~Q (5.14)

"
F�A(�n�1)�

@A(�n�1)

@�
(� � �n�1)

#

And each iteration will be written as follows [68]:

�n = �n�1 +

2
4 @A(�n�1)

@�

!T

~Q
@A(�n�1)

@�

3
5
�1  

@A(�n�1)

@�

!T

~Q [F�A(�n�1)]

(5.15)

The algorithm converges to the value that minimizes the log-likelihood when-

ever a proper initialization is available. This algorithm is also called the scoring

method: it is the Newton-Raphson method [69] in which the Hessian has been

replaced by its expected value. This expected value is nothing but the Fisher

information matrix. Note that this matrix has the same dimension of � (two or

three) and is therefore very simple to invert. Note also that the base stations

must not be arranged linearly so that the Fisher Information Matrix is full column

rank.
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5.3.2 Least squares

This approach gives a non iterative approximate solution. It is not based on the

maximum likelihood criterion (5.7). We assume again that the base stations are

not arranged linearly. Let us write the following n� 1 equations:

(ri � r1)(ri + r1) = r2
i
� r21 2 � i � n

Note that r1 is the distance between the handset and the base station it is

connected to (the nearest base station). Noting H the following (n � 1) � n

matrix:

H =

2
666664

�1 1 0 � � � 0

�1 0 1
. . .

...
...

...
. . .

. . . 0

�1 0 � � � 0 1

3
777775 (5.16)

These equations can be expressed by the following compact formula:

[HA(�)]� [(H�H)A(�)] = �2HJ� +HK (5.17)

with,

J =
1

c2

2
664
x1 y1
...

...

xn yn

3
775 K =

1

c2

2
664
x21 + y21

...

x2
n
+ y2

n

3
775 (5.18)

Note that the elements of HA(�) are nothing but the di�erences times of

arrival between the base station the mobile is connected to and all other base

stations. We can rewrite the equation in the following way:

[HA(�)]� [HA(�)] + [HA(�)]� [(H�H�H)A(�)]�HK = �2HJ�

After simpli�cation, we obtain:

[HA(�)]� [HA(�)]�HK = �2HJ� � 2
r1

c
HA(�) (5.19)

Without loss of generality, the coordinates of the �rst transmitter can be set

at the origin. Thus, r1 = j�j and the equation to be solved is:

1

2
HK� 1

2
[HF]� [HF] = HJ� +

j�j
c
HF +B1 (5.20)

where B1 = �1
2
HB�HB�RHB and R = 1

c
diag(r2; � � � ; rn). Supposing that

the signal-to-noise ratio is high enough, the term HB � HB can be neglected.

B1 is then Gaussian zero mean with covariance matrix given by:

Q1 = RHTQHR (5.21)
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The problem to be solved is then equivalent at high signal-to-noise ratios to

the following non-linear problem, where M and V are known in advance:

Y =M� + j�jV +B1 (5.22)

where,

Y =
1

2
HK� 1

2
[HF]� [HF]

and,

M = HJ V =
1

c
HF

Two cases are considered here:

� n is equal to the minimum required number of base stations (n = 3 if

� = [x y]T ), there is no extra information. We can then solve the system

explicitly by computing � in term of j�j from (5.22). Substituting this value

in r21 = j�j2 gives a quadratic or cubic expression in r1. The solution in the

area of interest is selected as the �nal position.

� n is strictly greater than the minimum required then there are extra infor-

mation and the set equations (5.22) will not meet at the same point. We

have then to estimate the point that minimize the variance error.

From now on, we will suppose that n is strictly greater than the minimum

required.

Simple suboptimal estimation

A sub-optimal solution consists in estimating � and j�j in equation (5.22) as if

they were independent:

Y =
h
M V

i " �

j�j

#
+B1

4
= G1�1 +B1 (5.23)

We have then the following solution:

�̂1 =
h
GT

1Q
�1
1 G1

i�1
GT

1Q
�1
1 Y (5.24)

�̂ is obtained from �̂1 after deleting the last element of �̂1 that corresponds to

the estimation of j�j. If the estimation of j�j is negative then the handset position
is considered to be located at the base station itself. Note that Q1 is � dependent

and is then unknown. One might perform two iterations. First, Q1 is replaced by

the identity matrix and then it is replaced by its value using the last estimation

of �.
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Chan's approach

Once an estimation of � and j�j is available, one can use the fact that �T � = j�j2
to enhance the estimation [70]:

�̂1 � �̂1 =

"
I

1T

#
diag(� � �) +B2

4
= G2�2 +B2 (5.25)

If the location is in two dimensions, this last equation becomes:

�̂1 � �̂1 =

2
64

x2

y2

x2 + y2

3
75 +B2 =

2
64
1 0

0 1

1 1

3
75
"
x2 0

0 y2

#
+B2

Neglecting the noise second-order terms, the covariance of B2 is:

Q2 = 4 diag(x; y; r1)Q1 diag(x; y; r1)

As Q2 is � dependent, one can use the value obtained in the �rst step.

The least squares estimation of �2 is given by:

�̂2 =
h
GT

2Q
�1
2 G2

i�1
GT

2Q
�1
2

h
�̂1 � �̂1

i
(5.26)

Once an estimation of �2 = �� � is available, we have to root �̂2 to obtain �.
If the location is in two dimensions we will have four possibilities. Amongst all

the possibilities we choose the point that is the closest to the initial estimation of

�. If one element is negative then its root does not exist, we choose in this case

to force it to be zero. In other words we use the corresponding coordinates of the

current base station (i.e. the base station the mobile is connected to). This is the

reason why this algorithm performs better than the CRB at poor signal-to-noise

ratios.

This algorithm is still suboptimal as some approximations on noise have been

done. However, at good signal-to-noise ratios, this algorithm is known to be e�-

cient [70] as it reaches the Cramer-Rao bound (5.10). We will use this algorithm

as a good initial estimation for the iterative Taylor algorithm.

5.4 Simulations and results

In simulations, a perfect hexagonal network is assumed. The base stations are

equally spaced. To avoid border e�ects all mobiles are generated in the center

of the network as shown in Figure 5.1. The distance between a base station and

each of its six nearest neighbors is 10 km. Five base stations are involved in
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Figure 5.1: Network architecture: 'o' represents a base station and the dots refer to

several handset positions.

each trilateration procedure. 200 handsets are generated, and for each one 20

trials are performed which gives a total of 4000 Monte Carlo simulations. The

noise resulting for the time of arrival estimation and the synchronization error of

the corresponding base station is assumed to be white gaussian with covariance

matrix given by:

Q = �2
TOA

I

Three algorithms are tested:

� The suboptimal least squares algorithm (5.3.2),

� Chan's algorithm (5.3.2),

� Taylor (5.3.1) with initialization given by Chan's algorithm and with two

iterations.

Cramer-Rao bounds, with and without the knowledge of the timing advance,

have been drawn in Figure 5.2. It is clear that for usual values of �TA, i.e. greater

than 500 meters, the gain is quite negligible.

The Cramer-Rao bound without any knowledge of the timing advance is used

according to (5.10). The Taylor expansion algorithm seems to be the best one

(Figure 5.3).

Note that Chan's approach performs better than the CRB at poor signal-to-

noise ratios: indeed this estimator uses the a priori information that the mobile

is in the serving cell as discussed ealier.
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Figure 5.2: CRB with and without the knowledge of the timing advance, �ve base

stations are involved in the trilateration.
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Chapter 6

On network synchronization

Network synchronization refers in this context to the knowledge of the TDMA

frame transmission times or more precisely, the di�erences of transmission times,

also called Real Times Di�erence (RTD), between all base stations. There are

two levels of synchronization:

� Network pseudo-synchronization: in this case the transmission times of the

TDMA frames are still uncorrelated and randomly distributed. However,

the exact di�erences of transmission times are known.

� Network absolute synchronization: in this case all the base stations share

the same clock. The TDMA frames are sent at the same moment.

As explained in the previous sections, the time of arrival technology for mo-

bile positioning requires only pseudo-synchronization. Absolute synchronization

is not really required though it can accelerate the procedure. Absolute synchro-

nization is not a new interest, it has several advantages [71]:

� Acceleration of the handover procedure since synchronous handover replaces

the asynchronous one: there is no more need to send an access burst.

� Better equalization: the bursts are completely overlapped1 by the interfer-

ing burst, the channel impulse response estimation will be true then to the

whole part of the burst.

� The possibility of de�ning orthogonal frequency hopping laws among base

stations towards a dynamical resources allocation.

� The possibility of performing dynamical training sequences allocation.

1We are neglecting here the fact that the time of propagation to the mobile is di�erent for

two di�erent bursts: however this propagation time is still small compared to the burst period,

and the statement here is approximately valid.

71
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Note that to get these advantages, a synchronization error below one bit pe-

riod is enough. However, this is not enough for location purposes since one bit

period is equivalent to 1108 meters of propagation. Moreover it is hard to main-

tain this degree of synchronization since the base stations keep drifting randomly

due to the di�erences of their local oscillatories. For these reasons, we prefer the

pseudo-synchronization scenario.

The basic idea to get the synchronization information is in the exploitation

of the location information; to get the handset position, synchronization infor-

mation is required, so if the position is known in advance then it is easy to get

the synchronization information. In other words, dedicated mobiles (also called

LMU for Location Mobile Unit) can be used successfully at known positions to

get the synchronization information. This information can be reported periodi-

cally (one report per minute). Assuming that the base stations drift slowly, it is

possible to interpolate between two consecutive reports. In fact, there are some

requirements on base station drifts; they are not allowed to exceed 50 ns/s.

Of course the use of an external device such as the GPS system to get the

synchronization information is possible but it is not the subject of this dissertation

since we are concerned with a system where the network locates its subscribers

by its own capability.

6.1 The pseudo-synchronization problem

As shown in Figure 6.1, the pseudo-synchronization problem may be de�ned as

to estimate the di�erences in TDMA transmission times according to a set of

observations of these di�erences. If we refer to each real times di�erence obser-

vation by a connection that links the two concerned base stations, we can then

de�ne a graph composed from the base stations and these links. The pseudo-

synchronization problem is identi�able if and only if the graph is connected, in

other words all base stations must be connected with at least one link.

The m real times di�erence noisy observations are put into one single column

vector Y:

Y =MX+B (6.1)

X is a vector with dimension equal to the number of observed links in the

network a. The number of unobserved links is then n(n�1)
2

� a. B is a Gaussian

noise with zero mean and covariance Q. Note that M is full column rank. Some

RTDs might be measured more than one time. The unknown RTDs are computed

by taking into account the constraint that the sum on any cycle in the graph is null
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1

2

3

Figure 6.1: The pseudo-synchronization problem. There are three cycles in this net-

work, the sum of the RTDs on each of them is by de�nition null. All base stations are

connected to the network.

by de�nition. The only condition for identi�ability is the network connectivity.

This condition requires that a � n� 1. We then get:

(n� 1) � a � min(
n(n� 1)

2
; m) (6.2)

The constraints are the fact that the sum of the RTDs on any cycle are null:

for that purpose, we can retain a base of cycles. The number of cycles in a

minimal base of cycles is given by a known theorem. This theorem gives also a

method for building such a base (see [72] for example):

Theorem 1 The number of cycles of any minimal base in a connected network

with n base stations and a links is N = a� n + 1.

The unobserved RTDs can then be computed from the
n(n�1)

2
� a cycles of

the base. Since the network is connected it is possible to estimate all RTDs. The

constraint related to a cycle can be written in the following way:

CT

i
X = 0 1 � i � N

where Ci is a vector that contains 1 or -1 on the elements of the cycle and 0

otherwise.
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The system to be solved is a least squares problem with constraints:

(
Y =MX+B

CTX = 0
(6.3)

where C = [C1 � � �CN ] is full column rank (independent cycles).

This system can be easily solved using Lagrange multipliers:

J(X) =
1

2
[Y �MX]

T
Q�1 [Y �MX] + �TCTX (6.4)

Derivating J with respect to X will give:

@J(X)

@X
= �MTQ�1 [Y �MX] +C� (6.5)

We note ~X =
h
MTQ�1M

i�1
MTQ�1Y the weighted least squares estimation

of the RTDs from the observations without any constraint, andK =
h
MTQ�1M

i�1
its error covariance.

Setting the derivative with respect to X to zero, we get the following:

� =
�
CTKC

��1
CT ~X

The �nal solution can be expressed in the following way:

X̂ =

�
I�KC

�
CTKC

��1
CT

�
~X (6.6)

The interpretation is simple. It is a weighted projection matrix. Supposing

the noise is white and that each RTD is observed once, i.e. K = �2I, equation

(6.6) becomes:

X̂ = �?
C
~X (6.7)

Incorporating a constraint is equivalent to project the estimated RTDs (with-

out constraints) onto the null space of C. In the case the cycles do not share

any element, i.e. CT

i
Cj = CT

i
Ci�ij, equation (6.7) consists in removing the mean

RTD in a cycle from each of its element.

Simple algebra manipulations show that:

X̂ = X+

�
I�KC

�
CTKC

��1
CT

�
KMTQ�1B (6.8)
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This proves that our estimator is unbiased with covariance matrix given by:

K
X̂
=

�
I�KC

�
CTKC

��1
CT

�
K

Again, if K = �2I, then we simply have K
X̂
= �2�T

C
. In other words, the noise

variance is reduced by:

Tr(�T

C
)

Tr(Q)
=
a�N

a
=
n� 1

a
(6.9)

Taking into account relation (6.2) the gain is somewhere between 1 and 2
n
. If

we suppose that L realizations ofY are available, then we can use the same results

substitutingY with 1
L

P
L

i=1Yi. The resulting noise variance will be reduced by L.

It is possible to extend the algorithm in presence of drifts. If we suppose that

the base stations are drifting slowly with di�erent speeds, we can use a Kalman

�lter to estimate jointly drift and o�set of each base station. Xi must then be

estimated from the following system:

8><
>:
Yi =MXi +Bi

Xi = Xi�1 +MV�t+Wi

CTXi = 0

(6.10)

where V is a vector that contains the drift di�erences, and �t the period

between two consecutive measurements.

6.2 Absolute synchronization

This approach is di�erent from previous one in the sense that each base station

corrects iteratively its time o�set until a global synchronized state is reached.

Each correction is made by monitoring the neighboring base stations. The al-

gorithm is iterative since the base stations are not allowed to modify their time

o�set abruptly more than a certain limit. The algorithm presented in the follow-

ing insures an autonomous synchronization; the time o�set corrections are not

centralized but each base station correct its time o�set independently.

Before presenting the algorithm, we introduce the Perron-Frobenius theorem.

De�nition 1 A square matrix A is said to be reducible if and only if the linear

operator de�ned by A contains an invariant subspace. If such a condition is not

veri�ed, the matrix is said to be irreducible.
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A reducible matrix A can be written via some permutations under the following

way:

A0 =

0
B@
B 0

C D

1
CA (6.11)

where B and D are two square matrices.

The following theorem is a simpli�ed version of the Perron-Frobenius theorem

[73, 74]:

Theorem 2 If all elements aij of an irreducible matrix A are non negative then

it has one simple real strictly positive maximal eigenvalue r. Noting si =
P

n

k=1 aik
the sum of the elements in each row, then:

min
1�i�n

si � r � max
1�i�n

si (6.12)

Moreover all eigenvalues lies in the disk jzj � max1�i�n si.

The bounds shown in this version of the theorem are not the best achievable

bounds. Nevertheless, they will be enough for our purposes.

The problem to be solved is to synchronize a set of transmitters fAig0�i�N�1.
The exact positions of all transmitters are known. We note ti the time o�set of

the i-th transmitter. We suppose that at the beginning, ti is a random variable

uniformly distributed on [0; 1]. For the problem to be identi�able, the network

must be connected. We a�ect to each point in the network a reference time2.

All transmitters are listening to theirs own neighbors. All transmitters have

at least one neighbor since the network is non-oriented and connected. At each

iteration, the time o�set of the i-th transmitter is modi�ed as [75]:

t
(n+1)
i = t

(n)
i + �

P
N

j=1 pij(t
(n)
j � t

(n)
i )P

N

j=1 pij
(6.13)

pij is a weighting coe�cient, it is a con�dence value that evaluates the link

between the i-th and j-th transmitters. Note that pii = 0. � is a constant that

�xes the convergence speed of the algorithm, 0 < � � �0 < 1 (�0 is the drift

limitation). We are not considering the noise here. Indeed, since the algorithm

requires a high number of successive observations, we assume that the resulting

noise variance converges to zero.

2This assumes that the absolute reference 0 is known and shared by all transmitters. We

can avoid such assumption if the network is roughly synchronized. For example, all TDMA

frames are synchronized to within a multi-frame.
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Noting Xn = [t1 � � � tN ]T the state of the network at step n and P the matrix

made from
pijP
N

j=1
pij

, we have:

Xn = Xn�1 + �(P� I)Xn�1 = [(1� �)I+ �P]Xn�1 =MXn�1 (6.14)

which �nally gives,

Xn =MnX0 (6.15)

Note that P is not necessarily symmetric since all base stations have not the

same number of neighbors.

Theorem 3 The algorithm described by equation (6.15) always converges in

probability to the synchronized state, in other words:

lim
n!1

Mnv = �1

where v is a randomly initialized vector and � a scale factor.

Proof 1 It is straightforward to see that P is an irreducible matrix since the

network is assumed to be connected. And since all its element are positive, the

Perron-Frobenius theorem states that the maximal eigenvalue of P is unique and

real. Since the sums of the elements of all rows in P are all equal to one, it

follows that this maximal eigenvalue is one. The eigenvector associated to this

eigenvalue is 1p
n
1. All other eigenvalues have a module that is less or equal to

1. The eigenvalues of M follows from those of P. All these eigenvalues except

the maximum one that is equal to one are inside the disk jzj < 1. The algorithm

converges then in probability to the synchronized state whatever the initial state

is.

The convergence speed of this algorithm is proportional to the ratio between

the two consecutive strongest eigenvalues, 1
�(�)

, where:

�(�) = max
1�i�n

(j1� �+ ��ij < 1)

�i refers to the eigenvalues of P. � must be chosen properly to minimize �(�):

�̂ = min

�
argmin

�
�(�); �0

�

�0 is the drift limitation previously de�ned and it is most likely that it is the

fundamental limitation since its value is very low (50 ns/s).

In Figure 6.2, simulations are done in a network consisting of �fty base sta-

tions. We suppose that each base station is connected to the same number of
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Figure 6.2: �(�) variations according to the number of neighbors per base station,

� = 0:5.

neighbors. All connected links are equally weighted. The simulation shows that

�(�) decreases when the number of neighbors increases allowing faster conver-

gence of the algorithm (� = 0:5).

It should be noted that the convergence speed could be enhanced using few

master timing references perfectly synchronized among the base stations as shown

in [75]. However, those masters should take their reference from an external device

such as GPS.



Chapter 7

Global simulations and �nal

results

In previous sections, simulations were performed independently on time of arrival

estimation and on the trilateration procedure. In this chapter, we combine both

procedures to perform the complete simulation process of a mobile localization.

The performance highly depends on the pro�le of the environment the mobile

is located in. This pro�le determines the parameters related to the channel

impulse response such as the number of paths, the delay spread, or the existence

of the line of sight path. It also determines the path loss that gives the signal-

to-interference ratio.

7.1 Channel impulse response model

In this section, we investigate the way of generating a channel impulse response

represented by a delay spread, a number of paths, and for each one, its time

delay, its mean power, and its amplitude probability distribution.

It is common to say that each path in a channel impulse response is the result

of the superposition of a large number of partial waves, each with a delay time

that corresponds to the delay of this path [76,77]. The amplitude of a given path

is in consequence that of the resulting sum of these partial waves:

E(t) =
nX
i=1

Ei exp

�
j(�0 +

2�

�
vt cos�i)

�
(7.1)

�i refers to the angle of incidence of the i-th partial wave and �0 the initial

phase. v refers to the mobile velocity.

79
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In the case the path does not correspond to the direct line of sight path, these

partial waves are uncorrelated and have a phase uniformly distributed. The re-

sulting amplitude is Gaussian complex with zero mean, its envelope follows a

Rayleigh distribution. If a strong constant amplitude is present as in the case

of the line of sight path, the resulting amplitude has a non-zero mean, and the

distribution of the envelope is more likely to be Ricean.

The amplitude time correlation function is shown to be (see [77] for example):

R(�) =

Z 2�

0
p(�) exp

�
j
2�

�
v� cos�

�
d� (7.2)

p(�) refers to the angular distribution of the partial waves. Usually p(�) is

assumed to be uniformly distributed; this assumption leads to the well-known

Jakes' model:

R(�) = J0(
2�

�
v�) , �R(f) =

1r
1�

�
f

fd

�2 (7.3)

where �R(f) refers to the Doppler spectrum and fd =
v

�
refers to the Doppler

frequency. In our simulations, we will assume that p(�) is Gaussian with a con-

stant mean value generated randomly and a standard deviation of 0.15 radians.

This model corresponds to the case where the partial waves are concentrated in a

narrow beam. In general, the higher the velocity is, the less correlated the fading

is.

The fading simulation is done by generating the partial waves randomly ac-

cording to (7.1). If the path is assumed to be purely di�used, i.e. no determin-

istic components present, then all amplitudes are randomly generated and the

resulting amplitude follows a Rayleigh distribution. In contrast, if a strong main

component is present, then the fading is more likely to be Ricean; we therefore

need to select one partial wave among the n to have a stronger amplitude. It is

common to use the Nakagami distribution [78] to model the fading behaviour:

p(r) =
2mmr2m�1

�(m)
m
exp(�m



r2) (7.4)

The constant m is related to the importance of the main component: the

larger is m, the more important is this component. 
 refers to the path energy.

We have three possibilities (see Figure 7.1):

� m = 1: we simply have the Rayleigh distribution.

� m > 1: this is an approximation of the Ricean distribution though it is not

exactly that Ricean distribution (see [79]).
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� m = 1: there is one lonely deterministic strong component, the distribu-

tion is a Dirac function.
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Figure 7.1: Nakagami Distribution

The partial waves generation is done using the two following relations [77]:

A1 =

vuut



s
1� 1

m

�2 =



n
(1�

s
1� 1

m
)

where A1 is the amplitude of the main component, and �2 the power of other

partial waves.

7.2 Environment pro�les

Several pro�les are chosen for simulations. They represent a large set of typical

environments. The selected pro�les are:

� Urban (indoor at 3km/h and outdoor at 3 and 50 km/h): populated areas,

multi-story buildings, and city centers.
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� Suburban outdoor (at 3 and 50 km/h): residential houses, suburbs, and

villages.

� Rural outdoor (at 3 and 100 km/h): inhabited areas, highways, �elds, and

forests.

The main di�erence between urban and other pro�les is in the presence of

line of sight path. No line of sight is assumed in the urban whereas a strong

line of sight path is present in the rural and suburban pro�les. Moreover, the

number of scatterers is higher in the urban pro�le and the delay spread is also

longer. These facts lead unavoidably to poorer results in the urban case. The

assumptions made on each of these pro�les are based on the common channel

model that had been established in T1P1.5 meetings [80] for each company to

simulate its own location algorithm.

7.3 Time of Arrival simulations

7.3.1 Assumptions

We are concerned in this section with the channel impulse response model as-

sumptions.

Delay-Spread model

We take the Greenstein model previously discussed (2.7) and set the three pa-

rameters of this model �y, T1, and � according to each pro�le.

Fading model

We use the Nakagami fading model according to the description made in (7.1).

The distribution of the angles of incidence of the partial waves is supposed to be

Gaussian with an initial phase randomly generated and a standard deviation of

0.15 radians.

The power generation is exponential for the urban pro�le; the power of each

delay is weighted with exp(�6�i) where �i is generated uniformly on [0; 1].

Once the powers and delays are generated, powers are normalized so that

their sum is equal to one and the delays are adjusted so that the desired delay

spread (generated according to the Greenstein model) is met:

ai (
aiP
d

i=1 ai
�i ( �i

�new

�old
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Parameters Urban Suburban Rural

T1 (�s) 0.4 0.3 0.1

� 0.5 0.3 0.3

�y 4 4 4

Mobile speed 3/50 3/50 3/100

(km/h)

LOS presence no yes yes

Number of delays 20 6 6

Delays generation f�ig1�i�20 � U [0; 1] �1 = 0 �1 = 0

f�ig2�i�6 � U [0; 1] f�ig2�i�6 � U [0; 1]

Power generation ai � U [0:5; 1:5]: a1 = 4:3 a1 = 4:3

exp(�6�i) faig2�i�6 � U [0:5; 1:5] faig2�i�6 � U [0:5; 1:5]

Nakagami m fmig1�i�20 = 1 m1 = 15 m1 = 15

parameter fmig2�i�6 � U [1; 5] fmig2�i�6 � U [1; 5]

Number of partial 100 100 100

waves per delay

Initial phase �0 U [0; 2�] U [0; 2�] U [0; 2�]

�j N (0; 0:15) N (0; 0:15) N (0; 0:15)

Table 7.1: Time of arrival simulations assumptions according to each pro�le.

All parameters are shown in Table 7.1. In Figure 7.2 and 7.3 examples of

channel generation are shown for the urban and the rural pro�les, the delay 0

refers to the line of sight path.

7.3.2 Simulations

The di�culty encountered is the determination of the signal subspace dimension.

Theoretically, it is equal to the number of paths under the assumption that this

number is lower than the channel impulse response length. This condition is not

met for the urban environment. However, some paths have a relative low power

and can be neglected, others are so close to each other that they could be merged

into one single path. For these reasons, the dimension of the signal subspace is

lower than the number of paths in practice, and few eigenvectors from the channel

covariance matrix are selected as belonging to the signal subspace. We call this

subspace the quasi signal subspace and the range space of other eigenvectors the

quasi noise subspace.

In general, the quasi signal subspace dimension rises when the number of

paths, the speed, or the delay spread increase. Since the delay spread is statisti-

cally related to the distance between the handset and the base station according

to the Greenstein model, the dimension rises when the distance increases too.
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Figure 7.2: Urban pro�le example, 20 consecutive bursts are generated: (a) at 2 km/h,

(b) at 50 km/h. At high speed, the fading is less correlated in time. There is no line

of sight path and a bias in the ToA estimation is unavoidable.

The impact of the distance and the speed on the eigenvalues is depicted in Fig-

ures 7.4 and 7.5. The mean values of the strongest three eigenvalues are drawn.

It is shown that in most cases the �rst eigenvalue concentrates more than 90% of

the channel impulse response energy.
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Figure 7.3: Rural pro�le example, 20 consecutive bursts are generated: (a) at 3 km/h,

(b) at 100 km/h. A strong line of sight path is always present.

The number of these eigenvalues represents the dimension of the quasi signal

subspace. We choose to take the Minimum Description Length criterion (MDL)

to estimate the dimension of the quasi subspace under the constraint that this

dimension should not exceed a given dimension dmax:
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Figure 7.4: Eigenvalues behaviour in urban environment according to: (a) the distance,

(b) mobile speed.

d̂ = min
j
(d̂MDL; dmax) (7.5)

The constraint that the dimension should not exceed dmax comes from the fact

that the MDL criterion may overestimate the quasi signal subspace dimension.
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Figure 7.5: Eigenvalues behaviour in rural environment according to: (a) the distance,

(b) mobile speed.

In practice, we choose dmax = 4.
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d̂MDL is given by [17]:

d̂MDL = arg min
0�k�p�1

L log

2
64
�

1
p�k

Pp

i=k+1 �i
�p�k

Qp

i=k+1 �i

3
75+ 1

2
k(2p� k) logL

f�ig1�i�p are the set of eigenvalues of the channel impulse response covariance

matrix, p is the channel impulse response length, and L is the number of observed

bursts.

Since the delays are assumed to be independent (uncorrelated), a good candi-

date algorithm for time of arrival estimation is Root MUSIC described in 4.3.2.

We take into account the relevant roots only, i.e. the roots that are closest to

the unit circle. The time of arrival is de�ned as the minimum time delay that is

obtained from the root with the lowest argument.

In Table 7.2, results of simulations are presented for all environments de-

scribed in last section at 10 dB. The RMS error in meters is computed for the

best 90% results in order to eliminate the results that are too bad: these results

can be corrected by taking the timing advance information (i.e. the position of

the training sequence). Simulations clearly show that Root MUSIC is better than

the simple poor matched �lter in all cases (see Table 7.2). Moreover histograms

of results are drawn for the rural and urban pro�les at 3 km/h showing a better

distribution while using Root MUSIC (see Figure 7.6).

Figures 7.7, 7.8, and 7.9 shows that the ToA estimation accuracy is improved

when:

� the speed increases due to better uncorrelation of successive observations,

� the number of observations increases due to a better knowledge of the signal

subspace,

� the distance MS-BS decreases due to a lower delay spread,

� the maximum signal subspace dimension dmax (see (7.5)) increases due to a

better characterization of the signal subspace. However as discussed earlier,

this value should not be very high.

The results show as expected that the ToA estimation problem depends

slightly on the signal-to-noise ratio value. The main issue is nothing but multi-

path. Even in a no noise environment (SNR = 1) the error is not negligible for

urban cases (> 100 m).
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Figure 7.6: ToA estimation error histogram at 3 km/h and 10 dB using 20 synch.

bursts for: (a) rural environment at 10 km, (b) urban environment at 1 km.

7.4 Location simulations

In this section, we combine the times of arrival estimation with the trilateration

procedure to get the �nal location.
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Pro�les Root MUSIC Matched �lter

0 dB 10 dB 1 dB 0 dB 10 dB 1 dB

Urban 3 km/h 311 231 210 323 323 323

Urban 50 km/h 156 135 134 294 294 294

Suburban 3 km/h 26 20 19 76 74 74

Suburban 50 km/h 10 6 4 47 47 47

Rural 3 km/h 18 16 12 60 58 58

Rural 100 km/h 5 3 3 44 44 44

Table 7.2: RMS error (in meters) for the best 90% results of ToA simulation results

at 10 dB and using 20 synch. bursts.

7.4.1 Assumptions

Network model

We take a perfect hexagonal network with omnidirectional base stations. The

distance between two base stations varies according to the environment. This

distance is equal to D = R
p
3 where R is the cell radius.

We choose a reuse pattern with K = 7. The minimal distance between two

base stations sharing the same set of frequencies is [81]: L = D
p
K = D

p
7, see

Figure 7.10.

Path-loss model

We will use the Okumura-Hata formula previously discussed (2.1). The parame-

ters D, Lp, and the fading standard deviation are set according to each environ-

ment (see Table 7.3). All mobiles are generated randomly inside the network so

that border e�ects are neglected, see Figure 7.11.

The uplink and downlink budget are assumed to be equivalent so that one

can use either the uplink or the downlink budget. We choose to use the uplink

budget. The noise variance is related to the base station sensibility, its value is

set to -118 dBm.

All simulation parameters are shown in Table 7.3. The C/I CDF are shown

in Figure 7.12 for the best four base stations.

7.4.2 Results of simulations

For simplicity the interferences are approximated as AWGN. This assumption

leads to optimistic results. The di�erence in performance is however negligible.
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Figure 7.7: ToA estimation in the urban environment: (a) for di�erent mobile speeds,

(b) for di�erent number of bursts, (c) for di�erent distances MS-BS, (d) for di�erent

maximum signal subspace dimensions.

Parameters Urban Urban indoor Suburban Rural

D (meters) 1500 1500 4500 10000

Lp (dB) 126 139.5 116 98

Fading std. (dB) 6 8.5 6 6

Mobile speed (km/h) 3/50 3 3/50 3/100

Sensibility -118 dBm -118 dBm -118 dBm -118 dBm

Table 7.3: Location simulations assumptions according to each pro�le.

We did not consider the mobile speed is the position, in other words the mobile

is assumed to be �xed. The speed parameter is only taken into account in the
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Figure 7.8: ToA estimation in the suburban environment: (a) for di�erent mobile

speeds, (b) for di�erent number of bursts, (c) for di�erent distances MS-BS, (d) for

di�erent maximum signal subspace dimensions.

correlation properties of successive bursts; at 50 km/h in one second, the mobile

can move only 14 meters, this e�ect is therefore not considered. 20 synchroniza-

tion bursts are used per link. Three, four, and �ve base stations are involved in

the simulations.

The selected algorithms are:

� Root MUSIC for the time of arrival estimation as discussed in Section 7.3.2.

� The Taylor algorithm for the trilateration procedure with two iterations

and initialized with the Chan's algorithm (see Chapter 5). It should be

mentioned here that no weighting values are associated to each time of

arrival involved in the trilateration. In other words, the error covariance
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Figure 7.9: ToA estimation in the rural environment: (a) for di�erent mobile speeds,

(b) for di�erent number of bursts, (c) for di�erent distances MS-BS, (d) for di�erent

maximum signal subspace dimensions.

matrix of the estimated times of arrival Qf is proportional to the identity

matrix. This leads to a loss in the performances; a�ecting weighting values

to each time of arrival is not an easy task. Indeed, it is not correct to

choose this value according to the C/(I+N) ratio, since the time of arrival

accuracy depends more on the channel impulse response structure than on

the C/(I+N) ratio as discussed in Section 7.3.2.

In the following simulations, 500 handset positions were generated and for

each one 20 independent trials were run. That gives a total of 10000 Monte

Carlo simulations that is high enough in order to obtain reliable results. Two

sets of simulations are done, the �rst assumes a perfect network synchronization

and the other assumes synchronization errors. The numerical results are shown
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Figure 7.10: Network model with a reuse pattern of 7 cells.
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Figure 7.11: Network model, urban pro�le, all mobiles are generated in the middle of

the network to avoid border e�ects.

in terms of:

� maximum error in meters of the best 67% of results,
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Figure 7.12: C/I CDF for the BCCH channel for the serving cell and the nearest three

base stations: urban pro�les are interference limited while rural and suburban pro�les

are noise limited.

� percentage of results with an error lower than 125 meters,

� root mean square error of the best 90 % of results.

Perfect knowledge of the RTDs

Perfect synchronization is assumed in these simulations. The results are depicted

in Table 7.4. In general, an improvement is observed when the number of base

stations involved in the procedure rises. There is an anomaly in the urban case;

the results using �ve base stations (shown in bold) are slightly worse than with

four. The reason for that is related to the wrong weighting of the times of arrival

before data fusion. The improvement is very signi�cant with four base stations

compared to three. Indeed, with three base stations there is no extra information
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since three is the minimum number of base stations required.

Pro�les 67 % in meters Percentage < 125 m RMS of 90%

3 BS 4 BS 5 BS 3 BS 4 BS 5 BS 3 BS 4 BS 5 BS

Urban out. 3 km/h 104 93 93 72 76 78 115 84 80

Urban out. 50 km/h 95 83 84 74 79 82 104 76 72

Urban in. 3 km/h 108 94 97 71 75 77 119 86 82

Suburban 3 km/h 17 12 12 91 98 98 20 12 12

Suburban 50 km/h 12 8 8 93 100 100 12 7 7

Rural 3 km/h 6 5 5 90 100 100 10 4 4

Rural 100 km/h 4 3 3 91 100 100 5 3 3

Table 7.4: Location simulations results with three, four, and �ve base stations. Net-

work perfectly synchronized.

Synchronization errors

The relative o�set of each base station is assumed to be corrupted with a Gaus-

sian noise with zero mean and a standard variation of 100 ns which corresponds

to approximately 30 meters. Results are shown in Table 7.5 and shown in term

of CDF curves for all speci�ed environments in Figures 7.13, 7.14, 7.16, and 7.15.

Pro�les 67 % in meters Percentage < 125 m RMS of 90%

3 BS 4 BS 5 BS 3 BS 4 BS 5 BS 3 BS 4 BS 5 BS

Urban out. 3 km/h 116 99 99 69 75 76 124 90 85

Urban out. 50 km/h 106 91 89 72 78 80 111 81 77

Urban in. 3 km/h 120 103 100 69 74 76 130 92 86

Suburban 3 km/h 49 38 34 91 98 98 42 31 28

Suburban 50 km/h 46 35 31 93 100 100 39 28 25

Rural 3 km/h 47 34 30 90 100 100 42 28 25

Rural 100 km/h 45 33 29 90 100 100 39 27 24

Table 7.5: Location simulations results with three, four, and �ve base stations. Syn-

chronization errors are included.
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Figure 7.13: Location estimation in the urban environment with synchronization er-

rors: (a) at 3 km/h, (b) at 50 km/h.
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Figure 7.14: Location estimation in the urban indoor environment with synchro-

nization errors: 3 km/h.
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Figure 7.15: Location estimation in the rural environment with synchronization errors:

(a) at 3 km/h, (b) at 100 km/h.
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Figure 7.16: Location estimation in the suburban environment with synchronization

errors: (a) at 3 km/h, (b) at 50 km/h.



Chapter 8

Conclusion and further research

In this dissertation, we have presented a global system for locating a mobile

handset in a GSM network. This system makes use of the own capability of the

network.

We have shown that the best technology for this purpose is based on time

of arrival estimation either at the handset, at the base station, or even both for

more accuracy. The main source of problems in time of arrival estimation is mul-

tipath. Based on the maximum likelihood estimator, subspace �tting algorithms

are applied to estimate the time delays of the dominant paths. The time of arrival

is simply the path that has the lowest time delay. An extension is presented to

the case of an unknown modulation pulse shape. Two approaches are considered:

the �rst one is iterative, it begins with a �rst initialization of the pulse shape

and converges iteratively to the true one. The second approach is a variant of

the well-known ESPRIT algorithm, it is non iterative and has a lower complexity.

Hyperbolic trilateration is then analyzed and appears to be a non linear max-

imization problem. The scoring approach seems to o�er optimal performances at

high signal-to-noise ratios and good results at lowest ratios whenever an appro-

priate initialization is available.

Network synchronization is depicted. A distinction is made between pseudo

and absolute synchronization. An algorithm is presented for each approach.

The last chapter presented the global system taking the channel model estab-

lished in the T1P1.5 committee.

Some aspects have not been treated in this manuscript and might be impor-

tant to complete the study:

101
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Di�use paths

In this work, we assume that each path arrived at one discrete time delay (spec-

ular path). An interesting extension is the case of di�use paths. In this scenario

the partial waves of each path arrive around a mean value.

The correct model for the channel impulse response must be modi�ed as

follows:

hj(t) =
dX

i=1

KiX
k=1

sijka(t� �i � ~�ik) 1 � j � L (8.1)

This topic has been studied recently, two main approaches exist:

� Taylor expansion [82, 83].

� The spreading in time is assumed to follow a certain distribution (mainly

uniform or Gaussian) centered on the delay and a joint estimation of the

distribution mean and variance is performed [84{86].

CRB for the unknown pulse shape case

When we estimate the delays assuming an unknown modulation pulse, the com-

parison of the performances has been done using the standard CRB. Computing

the CRB for an unknown modulation pulse shape is di�cult to achieve but might

be interesting.

Optimal weighting

No weighting factor or covariance matrix were applied to the times of arrival while

performing the trilateration. It is of course possible to use empirical weighting

based on the signal-to-noise ratio or the channel impulse response delay spread.

Finding such values remains an open question.

CDMA systems - UMTS

Localization is a requirement is future standards such as the Universal Mobile

Telecommunications System (UMTS). Unlike GSM, UMTS is a wideband system

based on Direct-Sequence Code Division Multiple Access (DS CDMA).



Chapter 9

R�esum�e d�etaill�e en fran�cais

9.1 Introduction

Depuis que le concept cellulaire fut introduit dans les ann�ees soixante, les commu-

nications sans �l ont connu un d�eveloppement sans pr�ec�edent. Il existe actuelle-

ment di��erents standards. Le syst�eme europ�een GSM est sans doute le standard

le plus r�epandu de nos jours. Ce syst�eme est bas�e sur l'acc�es multiple des utilisa-

teurs �a la fois en temps et en fr�equence. Plusieurs utilisateurs peuvent communi-

quer depuis la même zone sur la même fr�equence en se partageant �equitablement

le temps d'�emission.

En juin 1996, le comit�e f�ed�eral am�ericain de communication (FCC) a de-

mand�e aux op�erateurs am�ericains de localiser les appels d'urgence �emanant de

leurs abonn�es avec une pr�ecision de 125 m�etres dans 67 pour cent des cas d�es

octobre 2001.

La localisation est souvent associ�ee au GPS. Ce syst�eme o�re une couverture

compl�ete du globe terrestre mais demeure peu �able en zone urbaine. L'objet

de cette th�ese est de montrer qu'il est possible d'o�rir un service de localisation

�able en utilisant les infra-structures d�ej�a existantes des r�eseaux GSM. L'�etude

porte sur la localisation par estimation du temps d'arriv�ee d'au moins trois canaux

correspondant �a di��erentes stations de base. L'estimation de la position s'e�ectue

alors moyennant des donn�ees de synchronisation des di��erentes stations de base

impliqu�ees.

103
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9.2 Communications sans �l

9.2.1 Mod�ele de propagation radio

� Mod�ele d'att�enuation : au fur et �a mesure que les ondes radio se propagent,

elles perdent de l'intensit�e. Ainsi dans l'espace libre, la d�ecroissance de

l'�energie est inversement proportionnelle au carr�e de la distance parcourue.

Il existe de nombreux mod�eles empiriques de propagation. Ceux-ci reposent

en g�en�eral sur des mesures de terrain. Le mod�ele d'Okumura-Hata est le

mod�ele le plus couramment utilis�e.

� Evanouissements lent et rapide : outre l'att�enuation due �a la distance

parcourue, le signal radio est sujet �a d'autres uctuations ; uctuations

lentes dues aux masquages provoqu�es par des obstacles physiques et uc-

tuations rapides dues �a la r�eexion du signal sur une surface. En e�et,

le signal r�e�echi provient de la contribution de plusieurs r�eexions locales

d'amplitudes et de phases di��erentes. Ces r�eexions peuvent ainsi s'ajouter

ou s'annuler provoquant ainsi des uctuations rapides de l'enveloppe du sig-

nal re�cu.

� Trajet multiple et �etalement temporel : le signal radio subit des r�eexions

multiples. Chaque r�eexion se caract�erise par une �energie moyenne et

une phase. Le signal re�cu se compose ainsi d'une multitude de copies.

L'enveloppe r de chaque copie est mod�elis�ee par une loi de distribution de

Rayleigh :

p(r) =
r

�2
e�

r
2

2�2 (9.1)

�2 = E [jxj2] d�esigne l'�energie moyenne de l'�echo. En revanche, le trajet

direct, s'il existe, n'est pas de moyenne nulle, son enveloppe suit la loi de

distribution de Rice :

p(r) =
r

�2
e�

r
2
+m

2

2�2 I0

�
rm

�2

�
(9.2)

o�u m2 = jE[x]j2 et �2 = E [jx� E[x]j2].

L'�etalement temporel est un param�etre important qui caract�erise l'environnement,

il est donn�e par :

� =
q
m2 �m2

1 (9.3)

o�u mp =

P
i
ai�

p

iP
i
ai

est le moment d'ordre p du signal. ai et �i sont respective-

ment l'�energie moyenne et le retard du i-i�eme trajet. Yuanking [3] a montr�e

par des mesures de terrain que cette quantit�e suit une loi de distribution

al�eatoire qui d�epend de la distance parcourue :

� � T1d
�y (9.4)
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T1 et � sont deux constantes qui d�ependent de l'environnement. d est la

distance parcourue et y est une variable log-normale.

� Interf�erences : dans un syst�eme de communication cellulaire, la ressource ra-

dio est rare. Elle est ainsi partag�ee et r�eutilis�ee. Ceci introduit in�evitablement

des interf�erences qu'il faut minimiser lors de la planni�cation cellulaire.

Nous ferons l'approximation que les interf�erences sont gaussiennes (approx-

imation AWGN). Cette hypoth�ese est justi��ee si le nombre d'interf�ereurs est

su�samment �elev�e. Cette hypoth�ese simpli�e �enorm�ement les simulations

car les interf�ereurs ne seront pas g�en�er�es individuellement mais l'ensemble

sera g�en�er�e par une seule variable gaussienne.

� Ecart Doppler : lorsque le mobile bouge, le signal radio est sujet �a l'e�et

Doppler qui le translate en fr�equence. Cet �ecart est d'autant plus important

que la vitesse est grande. A 900 Mhz, l'�ecart maximal est �a peu pr�es �egal

�a un Hertz par km/h.

Il existe di��erents moyens de protection comme le codage de canal, l'entrelacement,

la transmission discontinue de parole (DTX), le contrôle de puissance, le saut de

fr�equence, la diversit�e spatiale et l'utilisation de s�equences d'apprentissage.

9.2.2 Aper�cu de la norme GSM

Le syst�eme GSM est bas�e sur la combinaison de deux technologies ; l'acc�es mul-

tiple par r�epartition �a la fois en temps et en fr�equence. Un groupe de fr�equences

porteuses est allou�e �a chaque cellule. Plusieurs mobiles peuvent communiquer

sur la même fr�equence en utilisant chacun une portion de temps. Le domaine

temporel est ainsi d�ecoup�e en cycles de communication ou trames. Chaque trame

se compose de huit portions de temps d�edi�ees chacune �a un utilisateur. Une por-

tion de temps est de longueur 577 �s. En g�en�eral, le temps de coh�erence (ou

m�emoire) du canal radio est plus long. Cette hypoth�ese justi�e le fait que la

r�eponse impulsionnelle du canal est constante pendant la dur�ee d'une portion de

temps.

Le canal physique duplex

Les fronts de communication montant (mobile vers station de base) et descen-

dant (station de base vers mobile) sont s�epar�es en temps et en fr�equence. Il y

a trois portions de temps de d�ecalage et un �ecart fr�equentiel constant entre ces

deux fronts. Un canal physique GSM repr�esente l'association de deux portions

de temps sur les deux fronts. On parle donc de canal physique duplex.

Chaque portion de temps accueille une s�equence de bits d'information ap-

pel�ee burst. Celle-ci a une dur�ee inf�erieure �a la dur�ee de la portion de temps



CHAPTER 9. R�ESUM�E D�ETAILL�E EN FRANC�AIS 106

pour �eviter tout chevauchement d'un burst sur le suivant. Le burst repr�esente

l'information v�ehicul�ee et il existe sous di��erents formats. Il contient toujours une

s�equence d'apprentissage de bits pr�ed�e�nie et une s�equence de bits d'information.

La s�equence d'apprentissage sert �a aider le r�ecepteur �a identi�er le canal radio

pour faciliter la r�ecup�eration des donn�ees. Les bursts normaux ont une s�equence

d'apprentissage de 26 bits, les bursts d'acc�es 48 bits et les burst de synchronisa-

tion 64 bits.

Les canaux logiques

Les trames de huit portions de temps sont organis�ees en multi-trames de 26 ou

51 trames selon la nature de l'information qu'elles v�ehiculent : tra�c ou signal-

isation. On parle ainsi de canaux logiques dont on distingue les canaux d�edi�es

qui fonctionnent en mode duplex (tra�c) et les canaux de signalisation qui ne

fonctionnent que sur un seul front montant ou descendant.

La modulation GMSK

La modulation utilis�ee en GSM est une modulation de phase �a enveloppe con-

stante appel�ee GMSK. Cependant, il est toujours possible d'approximer une mod-

ulation de phase �a codage di��erentiel par une modulation lin�eaire [6]. Dans ce

cas, le signal re�cu s'exprime de mani�ere simple :

s(t) �
X
k

dka(t� kT ) (9.5)

o�u dk d�esigne la s�equence de bits �emise et a(t) l'impulsion principale de la mod-

ulation GMSK. Cette impulsion s'�etale sur quatre temps bits.

9.2.3 Egalisation

L'�egalisation consiste �a d�emoduler le signal pour en d�eduire une estimation des

bits d'information �emis. A la r�eception, le signal r�esulte de la convolution du

signal d'�emission par le �ltre d'�emission et le �ltre repr�esent�e par la r�eponse

impulsionnelle du canal, le tout �etant noy�e dans du bruit blanc suppos�e gaussien

si bien qu'�a l'arriv�ee le signal s'�ecrit sous la forme suivante :

y(t) =
p�1X
k=0

dkh(t� kT ) + b(t) (9.6)

La fonction h(t) est commun�ement appel�ee r�eponse impulsionnelle du canal

même si elle int�egre tous les �ltres mis en jeu (modulation, �emission, canal

et r�eception). Il est important de pouvoir estimer la r�eponse impulsionnelle

pour pouvoir �egaliser. Cette estimation s'e�ectue par le biais de la s�equence
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Figure 9.1: Impulsion GMSK principale

d'apprentissage. Ainsi en �echantillonnant le signal re�cu au rythme du temps bit

qui est suppos�e satisfaire le crit�ere de Nyquist/Shannon, on peut �ecrire :

Y = D(d)H+B (9.7)

o�u d repr�esente la s�equence de bit �emise , H et Y repr�esentent respectivement

la r�eponse impulsionnelle et le signal �echantillonn�e. D(d) s'�ecrit sous la forme :

D(d) =

0
BB@

dp dp�2 � � � d1
dp+1 dp � � � d2
...

...
...

1
CCA (9.8)

Le bruitB est suppos�e blanc gaussien d�ecorr�el�e de moyenne nulle, i.e. E[BB�] =

�2I.

La strat�egie classique mais sous-optimale consiste �a estimer la r�eponse impul-

sionnelle grâce �a la s�equence d'apprentissage puis d'estimer les bits d'information

en utilisant cette estimation de la r�eponse impulsionnelle. En g�en�eral, cette

derni�ere �etape s'e�ectue avec l'algorithme de Viterbi.

En supposant que d repr�esente la s�equence d'apprentissage, l'estimation de

la r�eponse impulsionnelle aux moindres carr�es est imm�ediate et est �egale �a :
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Ĥ = Dy(d)Y (9.9)

Dy = [D�D]
�1
D� d�esigne la pseudo-inverse de D.

9.3 Technologies pour la localisation

Dans cette partie, di��erentes technologies sont pr�esent�ees pour localiser un mo-

bile. Nous nous e�orcerons d'expliquer pourquoi l'approche bas�ee sur l'estimation

du temps d'arriv�ee semble être la plus plausible.

Estimation de la distance

C'est sans doute la m�ethode la plus intuitive et la plus directe. Il s'agit d'estimer

la distance parcourue par le signal re�cu en mesurant son intensit�e �a la r�eception.

La puissance �a l'�emission est connue �a travers le param�etre de contrôle de puis-

sance. En utilisant une formule simple de propagation il est possible d'avoir une

estimation de la distance. En r�ep�etant le même principe sur deux stations de

base, trouver la position du mobile devient possible en calculant l'intersection de

deux cercles.

Reconnaissance �a base d'apprentissage

Cette m�ethode ressemble au probl�eme de la reconnaissance de caract�ere o�u, �a

partir de mesures diverses, on essaie de trouver la zone de localisation la plus

probable dans laquelle le mobile est susceptible de se trouver. Cette d�ecision

s'e�ectue moyennant une base d'apprentissage compos�ee de mesures recueillies

sur le terrain.

Angle d'arriv�ee

C'est une technique connue qui a suscit�e de nombreuses publications ces derni�eres

d�ecennies. Il s'agit d'estimer l'angle d'arriv�ee d'un signal sur un r�eseau de

plusieurs capteurs espac�es d'une longueur d'onde.

Temps d'arriv�ee

L'estimation du temps d'arriv�ee est une ancienne technique utilis�ee dans de nom-

breuses applications. Dans le contexte GSM, cette estimation s'e�ectue grâce �a

la s�equence d'apprentissage. Deux sc�enarii sont possibles selon que les mesures

s'e�ectuent sur le front montant ou descendant.
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9.4 Estimation du temps d'arriv�ee

9.4.1 Notations et hypoth�eses

Nous partons du principe que la r�eponse impulsionnelle du canal se compose de

d r�eexions discr�etes. Chaque r�eexion est caract�eris�ee par un retard et une

amplitude complexe :

hj(t) =
dX

i=1

sija(t� �i) 1 � j � L (9.10)

L'indice j porte sur la j-i�eme r�ealisation. En e�et la r�eponse impulsionnelle

du canal, suppos�ee constante pendant la dur�ee d'un burst varie d'un burst �a

l'autre. Pour obtenir la meilleure estimation possible, il faut accumuler un max-

imum d'observations. a(t) est l'impulsion GMSK principale. sij est l'amplitude

complexe associ�ee au i-i�eme retard lors de l'�emission du j-i�eme burst. Seuls les

retards �i sont suppos�es constants pendant la dur�ee d'observation des L bursts.

Le trajet direct n'est pas toujours pr�esent. Le but est d'estimer le retard du

premier trajet d'�energie su�samment �elev�ee pour qu'il puisse être d�etect�e. La

strat�egie choisie pour cela est d'estimer la totalit�e des retards puis de choisir le

premier comme �etant le temps d'arriv�ee.

9.4.2 Approche temporelle

Cette approche consiste �a traiter le signal re�cu dans le domaine temporel. En

�echantillonnant au rythme du temps bit, celui-ci s'�ecrit sous la forme suivante :

Yj = D(d)A(�)Sj +Nj 1 � j � L (9.11)

Il existe deux versions du maximum de vraisemblance selon la connaissance

que l'on a sur le vecteur des amplitudes complexes Sj. En e�et, si ce vecteur

ne suit pas une loi de distribution al�eatoire ou que sa loi est tout simplement

inconnue, alors il faut estimer les amplitudes instantan�ees conjointement avec les

retards, ceci donne le maximum de vraisemblance d�eterministe dont l'expression

r�eduite qu'il faut maximiser par rapport �a � s'�ecrit :

VDML(�) = Tr
h
�?
D(d)A(�)K̂y

i
(9.12)

En revanche si l'on suppose que ces amplitudes sont gaussiennes de moyennes

nulles alors il faudra estimer leur matrice de covarianceKs conjointement avec les

retards. Ceci donne le maximum de vraisemblance stochastique dont l'expression

r�eduite qu'il faut maximiser par rapport �a � est :

VSML(�) = ln
���D(d)A(�)K̂s(�) [D(d)A(�)]

�
+ �̂2(�)I

��� (9.13)
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avec,

K̂s(�) = [D(d)A(�)]
y
(K̂y � �̂2(�)I) [D(d)A(�)]

y�
(9.14)

et,

�̂2(�) =
Tr
�
�?
D(d)A(�)K̂y

�
m� d

(9.15)

Dans les deux cas de �gure, d�eterministe ou stochastique, la statistique su�-

isante est la matrice de covariance du signal re�cu. Il est possible de r�eduire

ces expressions du maximum de vraisemblance en supposant que les s�equences

d'apprentissage sont parfaites dans le sens o�u chaque s�equence est orthogonale �a

ses versions d�ecal�ees, i.e. :

D�(d)D(d) = I (9.16)

Cette �egalit�e est impossible �etant donn�e que les s�equences d'apprentissage sont

�nies. N�eanmoins, c'est une bonne approximation pour les longues s�equences

(burst d'acc�es et de synchronisation). Les expressions du maximum de vraisem-

blance deviennent :

VDML(�) = Tr
h
�?
A
(�)K̂

ĥ

i
(9.17)

VSML(�) = ln
���A(�)K̂s(�)A

�(�) + �̂2
r
(�)I

��� (9.18)

avec,

K̂s(�) = Ay(�)
�
K̂

ĥ
� �̂2

r
(�)I

�
Ay�(�)

et,

�̂2
r
(�) =

Tr
�
�?
D(d)A(�)K̂y

�
m(m� d)

(9.19)

=
Tr
�
�?
A
(�)K̂

ĥ

�
p� d

+O(1=
p
L)

Ces formules, d'une complexit�e moindre, d�emontrent que la matrice de co-

variance de l'estimation aux moindres carr�es de la r�eponse impulsionnelle est une

statistique su�sante :

K̂
ĥ
=

LX
j=1

ĤjĤ
�
j

Les estimateurs au maximum de vraisemblance s'av�erent di�ciles �a mettre

en �uvre car ils exigent une recherche multi dimensionnelle d'un maximum. On

leur pr�ef�ere les estimateurs suivants bas�es sur l'extraction des sous-espaces signal

ou bruit repr�esent�es respectivement par les d vecteurs propres associ�es aux d plus

fortes valeurs propres et p � d vecteurs propres associ�es aux p � d plus faibles

valeurs propres de la matrice de covariance :
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K
ĥ
= Es�sE

�
s
+ �2

r
EnE

�
n

(9.20)

Es est appel�e sous-espace signal car son image est identique �a l'espace lin�eaire

g�en�er�e par les impulsions GMSK d�ecal�ees des di��erents retards. En est orthogonal

�a Es.

MUSIC

L'estimateur MUSIC exploite l'othogonalit�e des sous-espaces signal et bruit.

Ainsi, les d�elais sont donn�es par les d pics de la fonction suivante appel�ee aussi

spectre MUSIC :

�(�) =
1

a�(�)(I� ÊsÊ�
s
)a(�)

(9.21)

WSF

[�̂ ; T̂] = argmin
�;T

kÊsW
1

2 �A(�)Tk2 (9.22)

W est une matrice de pond�eration du sous-espace signal. On peut �eliminer T

facilement, on obtient alors :

�̂ = argmin
�

Tr
�
�?
A
(�)ÊsWÊ�

s

�
(9.23)

Il existe une matrice de pond�eration optimale qui minimise l'erreur de covari-

ance asymptotique [39] :

W =WOPT = (�s � �2
r
I)2��1

s
(9.24)

En pratique, cette matrice peut être remplac�ee par un estimateur consistant sans

a�ecter les propri�et�es asymptotiques de l'estimateur. On d�emontre alors que

l'estimateur r�ealise les mêmes performances que le maximum de vraisemblance

stochastique lorsque le nombre d'observations L est su�samment �elev�e. En ce

sens, l'estimateur WSF r�ealise la meilleur performance et atteint l'erreur quadra-

tique minimale connue sous le nom de borne de Cramer-Rao [26].

9.4.3 Approche fr�equentielle

Dans cette approche, on traite le signal dans le domaine fr�equentiel. La tran-

form�ee de Fourier de la r�eponse impulsionnelle du canal s'�ecrit :

�̂
hj(f) = ~hj(f) = �a(f)

nX
i=1

sije
�j2��if + �wj(f) 1 � j � L (9.25)
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�(:) repr�esente la transform�ee de Fourier de (:), �w est la transform�ee de Fourier

du bruit complexe de variance r�eduite �2
r
.

Nous prenons le même nombre d'�echantillons que dans le domaine temporel.

Les fr�equences d'�echantillonnage f = (f1; � � � ; fp) sont prises sur la partie non

nulle de �a(f). Les observations s'�ecrivent :

�̂
Hj = ~Hj = �() ~A(�)Sj + �Wj 1 � j � L (9.26)

avec �() = diag(),  = [�a(f1) � � � �a(fp)]T et :

~A(�) =

0
BB@
e�2�jf1�1 � � � e�2�jf1�d

...
...

e�2�jfp�1 � � � e�2�jfp�d

1
CCA

La di��erence fondamentale de cette nouvelle repr�esentation par rapport �a

l'ancienne r�eside dans la s�eparation de l'information des retards de celle de

l'impulsion ; la matrice ~A(�) d�epend maintenant uniquement des retards et

l'information de l'impulsion se trouve d�esormais dans la matrice �(). De plus,

le fait que les fr�equences d'�echantillonnage soient uniform�ement espac�ees fait que

la matrice ~A(�) a une structure de Vandermonde. De nouvaux algorithmes plus

�el�egants peuvent alors être appliqu�es.

Root MUSIC

Dans un environnement sans bruit, la fonction suivante s'annule lorsque � est

�egal �a l'un des retards.

k ~̂E
�

n
�()~a(�)k2 = k ~̂E

�

n
�()[1; z; � � � ; zp]Tk2 (9.27)

avec z = z(�) = e�j2��� et � l'espacement entre deux fr�equences cons�ecutives.

Etant donn�e que z est sur le cercle unit�e, on peut substituer z par 1
z�
. Il s'ensuit

que la fonction pr�ec�edente devient un polynôme. Root MUSIC revient �a calculer

les d racines de module inf�erieur �a un et les plus proches du cercle unit�e. Les

retards sont alors calcul�es �a partir des arguments de ces racines complexes.

IQML et Root WSF

Ces deux algorithmes sont bas�es sur une param�etrisation di��erente. En notant :

B�(b) =

0
BBBBB@

bd � � � b0 0 � � � 0

0 bd � � � b0
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 bd � � � b0

1
CCCCCA (9.28)
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o�u b = [b0 � � � bd]T sont les coe�cients du polynôme suivant :

dX
i=0

biz
d�i = b0

dY
i=1

(z � e�j2��i�) (9.29)

Il d�ecoule de cette d�e�nition que B�(b) ~A(�) = 0. Or, comme le rang de B(b)

est par construction �egale �a p� d, il vient :

�B(b) = �?
~A
(�) (9.30)

De même,

����B(b) = �?
�~A

(�) (9.31)

Il est �equivalent d'estimer b ou � . Ils sont directement li�es. Il est cependant

plus facile d'estimer b. Le crit�ere du maximum de vraisemblance d�eterministe

s'�ecrit :

VDML(b) = Tr
h
����B(b)K̂~h

i
(9.32)

L'algorithme IQML est un algorithme it�eratif qui minimise cette fonction.

Ainsi �a chaque it�eration, on a :

bk = argmin
b

Tr

�
B(b)

h
B�(bk�1)�

�1���B(bk�1)
i�1

B�(b)��1K̂~h�
��
�

(9.33)

On peut initialiser b de telle sorte que B�(b0)�
�1���B(b0) = I. L'avantage

est que chaque it�eration est une simple minimisation d'une forme quadratique.

Pour �eviter la solution triviale b = 0, on peut ajouter la contrainte kbk = 1 en

normalisant bk �a chaque it�eration.

RootWSF est obtenu en remplacant simplement la matrice K̂~h par
~Es

~WOPT
~E�
s
.

ESPRIT

Cet algorithme exploite la structure Vandermonde de ~A(�). En e�et, ~A(�) sat-

isfait la propri�et�e d'invariance suivante [50] :

J1 ~A(�) = J2 ~A(�)�(�) �(�) = diag(e2�j��1 ; � � � ; e2�j��d) (9.34)

o�u J1 and J2 sont respectivement les matrices de s�election des premi�eres et

derni�eres p� 1 lignes, i.e. :

J1 = [Ip�1 0] J2 = [0 Ip�1]

Le but est de d�eterminer la matrice �(�) qui donne directement les di��erents

retards. Etant donn�e que l'espace engendr�e par ~Es est identique �a celui engendr�e

par �() ~A(�), il existe une matrice unique de rang plein T telle que :
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J1 ~Es = J1�() ~A(�)T J2 ~Es = J2�() ~A(�)T

En notant �1, la matrice � apr�es �elimination de sa derni�ere ligne et derni�ere

colonne, et �2, la matrice � apr�es �elimination de sa premi�ere ligne et premi�ere

colonne, on peut �ecrire :

J1 ~Es = �1J1 ~A(�)T J2Es = �2J2 ~A(�)T

La propri�et�e d'invariance donne alors :

J1 ~Es = �1J2 ~A(�)�(�)T J2 ~Es = �2J2 ~A(�)T

soit :

�2�
�1
1 J1 ~Es = J2 ~Es	(t) (9.35)

Avec 	(t) = T�1�(�)T. Les valeurs propres de 	(t) sont identiques �a celles

de � et donnent donc les retards. Pour estimer 	(t), on peut utiliser une simple

estimation aux moindres carr�es :

	̂(�) =

�
J2 ~̂Es

�y
�2�

�1
1 J1 ~̂Es

9.4.4 Extension au cas d'une modulation inconnue

Les algorithmes pr�esent�es dans les sections pr�ec�edentes supposent une connais-

sance parfaite de la forme de l'impulsion de modulation. Ces algorithmes sont

cependant sensibles �a une d�eformation de cette impulsion. Une erreur, même

minime, sur la forme de cette impulsion peut engendrer un biais important dans

les r�esultats d'estimation. Il est di�cile en pratique d'avoir une connaissance

parfaite car cette impulsion est modi��ee par les �ltres d'�emission et de r�eception,

ceux-ci pouvant être di��erents d'un constructeur �a l'autre.

Nous proposons ici une extension dans le cas o�u l'impulsion est totalement

inconnue. En e�et, il est possible d'estimer conjointement l'impulsion et les

retards �a une r�ef�erence temporelle absolue pr�es, i.e. on est capable d'estimer

les di��erences entre les di��erents retards sans pouvoir toutefois en d�eduire leur

valeur. Ceci ne pose pas de probl�eme pour la localisation �etant donn�e que

seules les di��erences de temps d'arriv�ee nous interesse. Il est n�eanmoins pos-

sible d'estimer le temps absolu en utilisant une simple information a priori sur

l'impulsion. On utilisera l'information que l'impulsion de modulation est r�eelle

et sym�etrique pour se d�ebarasser de cette ambigu��t�e.
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Approche it�erative

La m�ethode la plus directe est de reprendre l'id�ee que le sous-espace signal est

engendr�e par ~Es.

[̂ �̂ ]
T
= argmax

;�

dX
i=1

k ~̂E
�

s
�()~a(�i)k2 (9.36)

qui est �equivalent �a :

[̂ �̂ ]
T
= argmax

;�
�

dX
i=1

D�
i
~̂Es
~̂E
�

s
Di (9.37)

o�u Di = diag [~a(�i)].  est donc le vecteur propre associ�e �a la valeur propre

maximale de la matrice
P

d

i=1D
�
i
~̂Es

~̂E
�

s
Di �a un facteur multiplicatif pr�es. Ce fac-

teur multiplicatif peut être d�etermin�e grâce aux hypoth�eses faites sur l'impulsion.

L'id�ee est donc de partir d'une estimation initiale des retards et d'en d�eduire ainsi

la forme de l'impulsion repr�esent�ee par le vecteur . Une fois cette estimation

disponible, on estime �a nouveau les retards en utilisant un algorithme quelconque

et ainsi de suite jusqu'�a ce qu'une convergence soit atteinte.

Approche non it�erative

En reprenant la même id�ee que l'estimateur ESPRIT et en notantD(�) = diag(�)

la matrice diagonale �2�
�1
1 , et 	(�) = T�1�(�)T, l'estimateur conjoint s'�ecrit

de la mani�ere suivante :

[�̂ 	̂(�)]T = argmin
� 	

kD(�)J1Ês � J2Ês	(�)k2 (9.38)

La solution de ce probl�eme est donn�ee par :

	̂(�) =
�
J2Ês

�y
D(�̂)J1Ês

En incorporant cette equation dans (9.38), on obtient [60] :

�̂ = argmin
�

Tr
h
D(�)J1ÊsÊ

�
s
JT1D

�(�)�?
J2Ês

i
= argmin

�
��
h
�?
J2Ês

� J1(ÊsÊ
�
s
)TJT1

i
�

� est �egal au vecteur propre associ�e �a la valeur propre minimale de la matrice

�?
J2Ês

� J1(ÊsÊ
�
s
)TJT1 �a un facteur multiplicatif pr�es. Ce facteur multiplicatif

peut être d�etermin�e grâce aux hypoth�eses faites sur l'impulsion.

Di��erence de temps d'arriv�ee

Dans les deux algorithmes d�ecrits pr�ec�edemment, un facteur multiplicatif in-

connu persiste si aucune hypoth�ese sur l'impulsion n'est disponible. En fait dans

les deux cas, seule la phase de ce facteur a une inuence sur l'estimation des
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retards. Cette inuence se traduit par un d�ecalage temporel de tous les retards.

Pour pouvoir localiser un mobile, seules les di��erences de temps d'arriv�ee sont

utilis�ees. Un tel d�ecalage n'a aucune incidence sur cette di��erence de temps du

moment qu'il est identique sur tous les liens. En r�esum�e, il su�t de choisir la

même phase du coe�cient multiplicatif (par exemple nulle).

Il est possible d'a�ner davantage la pr�ecision �nale en supposant que l'impulsion

est identique sur les di��erents liens de communication. L'approche non it�erative

devient alors :

[�̂; 	̂1; 	̂2; � � �]T = arg min
�;	1;	2;���

X
i

�ikD(�)J1Êsi
� J2Êsi

	ik2 (9.39)

o�u 	i est la matrice 	(�) qui correspond au i-i�eme lien, � le vecteur colonne

qui contient l'information de l'impulsion identique et partag�ee sur les di��erents

liens. Êsi
est le sous-espace signal estim�e du i-i�eme lien et �i un facteur de

pond�eration qui re�ete le degr�e de con�ance de chaque lien. Il peut être fonction

du rapport signal-sur-bruit ou de l'�etalement temporel. Il est cependant di�cile

d'a�ecter une valeur optimale �a ces valeurs. La solution est :

	̂i =
�
J2Êsi

�y
D(�̂)J1Êsi

et :

�̂ = argmin
�
��
"X

i

�i

�
�?
J2Êsi

� J1(Êsi
Ê�
si
)TJT1

�#
�

9.4.5 Simulations

Le mod�ele de propagation utilis�e est simple avec deux �echos espac�es d'un temps

bit et de même puissance moyenne. L'impulsion de modulation est l'impulsion

GMSK �ltr�ee �a 1=T et �echantillonn�ee au temps bit. Dix �echantillons sont utilis�es,

i.e. p = 10.

Performances des algorithmes classiques : corr�elation nulle

Lorsque le nombre d'observations est su�samment �elev�e, Root MUSIC et Root

WSF sont optimaux car ils atteignent la borne de Cramer-Rao. En revanche,

ESPRIT leur est l�eg�erement inf�erieur (Figure 9.2).

Performances des algorithmes classiques : corr�elation �elev�ee

Lorsque les �echos sont corr�el�es, seul Root WSF est optimal (Figure 9.3).
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Figure 9.2: Performances des algorithmes en fonction du rapport signal sur bruit,

L = 100 bursts de synchronisation sont utilis�es, �� = 1T et � = 0.
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Figure 9.3: Performances des algorithmes en fonction du rapport signal sur bruit,

L = 100 bursts de synchronisation sont utilis�es, �� = 1T et � = 0:99.

Performances d'ESPRIT et d'ESPRIT modi��e

Sch�ema identique avec une corr�elation nulle. L'algorithme ESPRIT modi��e est

l�eg�erement inf�erieur, ce qui est normal vu qu'il ne prend pas en compte la con-
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naissance de l'impulsion (Figure 9.4.5).

−5 0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

200 bursts − ρ = 0

SNR (dB)

σ 
/T

Known pulse
Unknown pulse
CRB

Figure 9.4: ESPRIT et ESPRIT modi��e, L = 200 bursts de synchronisation sont

utilis�es.

9.5 Triangulation hyperbolique

Nous nous int�eressons ici �a la fusion des donn�ees repr�esent�ees par les estimations

des temps d'arriv�ee. Nous prendrons en compte une �eventuelle erreur de syn-

chronisation des stations de base. Le syst�eme �a r�esoudre s'�ecrit de la mani�ere

suivante : (
~F = A(�) +T� q11+Bf

�T = T� q21+Bt

(9.40)

o�u,

� � repr�esente les coordonn�ees �a estimer (en deux dimensions � = [x y]T ),

� ~F repr�esente les temps d'arriv�ee estim�es,

� A(�) repr�esente les distances qui s�eparent les n stations de base du mobile,

ce vecteur d�epend donc de �,

� T repr�esente les temps d'�emission,

� Bf et Bt sont des vecteurs de bruit,
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� q1 et q2 sont deux temps de r�ef�erence inconnus,

� 1 = [1 � � �1]T .

On supposera que les deux vecteurs de bruit Bf and Bt sont gaussiens de

moyenne nulle :

� E[BfB
T

f
] = Qf

� E[BtB
T

t
] = Qt

� E[BfB
T

t
] = 0

Il est possible d'exprimer ce syst�eme sous forme compacte par :

F = A(�)� tr1+B (9.41)

o�u F = ~F� �T. Cette �equation aboutit �a une triangulation hyperbolique. Le

nombre de stations de base n doit être strictement sup�erieur �a deux si on localise

en deux dimensions. Il y a trois variables �a estimer ; les coordonn�ees et le temps

de r�ef�erence tr. Bien entendu, lorsque n augmente, l'erreur d'estimation se trouve

r�eduite.

L'estimateur du maximum de vraisemblance s'�ecrit :

[�̂ t̂r] = argmax
�;tr

[F�A(�)� tr1]
T
Q�1 [F�A(�)� tr1] (9.42)

En �eliminant tr, on obtient une expression plus compacte :

�̂ = argmax
�

[F�A(�)]
T ~Q [F�A(�)] (9.43)

avec,

~Q = Q�1 � Q�111TQ�1

1TQ�11

D�eveloppement en s�erie de Taylor

C'est un algorithme it�eratif qui cherche �a minimiser directement le crit�ere du

maximum de vraisemblance. Chaque it�eration s'�ecrit de la mani�ere suivante :

�n = �n�1 +

2
4 @A(�n�1)

@�

!T

~Q
@A(�n�1)

@�

3
5
�1  

@A(�n�1)

@�

!T

~Q [F�A(�n�1)]

(9.44)

La convergence de cet algorithme d�epend en grande partie de son initialisation.
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M�ethode des moindres carr�es

Cette m�ethode est bas�ee sur une reformulation des �equations. Ainsi en �ecrivant

les n� 1 �equations suivantes :

(ri � r1)(ri + r1) = r2
i
� r21 2 � i � n

o�u ri d�esigne la distance entre le mobile et la i-i�eme station de base. On peut

obtenir le syst�eme compact suivant :

[HA(�)]� [(H�H)A(�)] = �2HJ� +HK (9.45)

o�u H d�esigne la matrice (n� 1)� n suivante :

H =

2
666664

�1 1 0 � � � 0

�1 0 1
. . .

...
...

...
. . .

. . . 0

�1 0 � � � 0 1

3
777775 (9.46)

et,

J =
1

c2

2
664
x1 y1
...

...

xn yn

3
775 K =

1

c2

2
664
x21 + y21

...

x2
n
+ y2

n

3
775 (9.47)

Notons que les �el�ements de HA(�) sont les di��erences de temps d'arriv�ee

(DToA) entre la i-i�eme station de base et la station de base courante �a laquelle

le mobile est connect�e. Soit, apr�es quelques manipulations alg�ebriques :

[HA(�)]� [HA(�)]�HK = �2HJ� � 2
r1

c
HA(�) (9.48)

Sans perte de g�en�eralit�es, nous pouvons consid�erer que la station de base

courante est �a l'origine, soit de mani�ere �equivalente r1 = j�j. L'�equation prend

alors la forme suivante :

1

2
HK� 1

2
[HF]� [HF] = HJ� +

j�j
c
HF +B1 (9.49)

A fort rapport signal sur bruit, on peut n�egliger les termes d'ordre deux du

bruit, et B1 demeure gaussien de moyenne nulle :

B1 � �RHB

o�u R = 1
c
diag(r2; � � � ; rn). Sa covariance s'�ecrit :

Q1 = RHTQHR (9.50)
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Finalement, on tombe sur le probl�eme non lin�eaire suivant :

Y =M� + j�jV +B1 (9.51)

o�u,

Y =
1

2
HK� 1

2
[HF]� [HF]

et,

M = HJ V =
1

c
HF

L'estimation se fait alors en deux �etapes. On estime dans un premier temps �

et j�j aux moindres carr�es comme s'il s'agissait de deux variables ind�ependantes,

on appellera cette estimateur l'estimateur des moindres carr�es. Dans un deuxi�eme

temps, on inclura la contrainte entre ces deux variables, cet estimateur est dû �a

Chan [70].

Simulations

Les simulations ont �et�e e�ectu�ees sur un r�eseau hexagonal compos�e de cent sta-

tions de base espac�ees les unes des autres de dix km. 200 mobiles sont g�en�er�es

al�eatoirement au milieu du r�eseau a�n d'�eviter les e�ets de bord. (Figure 9.5).
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Figure 9.5: Mod�ele : 'o' repr�esente une station de base et les points di��erentes positions

de mobiles.

Cinq stations de base sont concern�ees par la localisation. 20 simulations de

Monte Carlo sont e�ectu�ees par mobile, soit un total de 4000 simulations. Les
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r�esultats (Figure 9.6) montrent que l'algorithme de Taylor initialis�e par l'approche

de Chan et avec deux it�erations seulement semble o�rir de bonnes performances

�a bon rapport signal sur bruit.
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Figure 9.6: R�esultats de simulation

9.6 Synchronisation du r�eseau

On entend par synchronisation du r�eseau la connaissance des temps d'�emission

des trames TDMA de toutes les stations de base du r�eseau, ou plus pr�ecisemment

des di��erences de temps d'�emission (RTD) �etant donn�e qu'il est di�cile d'avoir

une r�ef�erence absolue partag�ee par toutes les stations. Il existe deux degr�es de

synchronisation :

� Pseudo-synchronisation : dans ce cas les di��erences de transmission sont

connues avec exactitude.

� Synchronisation absolue : dans ce cas les temps d'�emission sont identiques

et les di��erences sont donc nulles.

Pour pouvoir localiser, la pseudo-synchronisation est su�sante mais la syn-

chronisation o�re d'autres avantages. Nous discuterons ci-dessous des deux probl�emes

s�epar�ement.
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Pseudo-synchronisation

Il s'agit d'estimer au maximum de vraisemblance les di��erences de temps d'�emission

�a partir d'observations bruit�ees des di��erences de transmission. Toutes les di��erences

ne sont peut-être pas observ�ees et certaines sont peut-être observ�ees plusieurs fois.

La seule condition pour pouvoir identi�er toutes les di��erences est que le r�eseau

des observations soit connexe (Figure 9.7).

1

2

3

Figure 9.7: Le probl�eme de la pseudo-synchronisation : il y a trois cycles dans ce

r�eseau, la somme des RTD sur chacun d'eux est par d�e�nition nulle.

Les m observations bruit�ees des di��erences sont repr�esent�ees par le vecteur

colonne Y :

Y =MX+B (9.52)

X est un vecteur de dimension �egale au nombre de liens observ�es, elle est donc

inf�erieure ou �egale �a m. Les contraintes �a prendre en compte sont le fait que les

sommes des di��erences sont nulles sur tous les cycles :

CT

i
X = 0

o�u Ci est un vecteur colonne qui contient des 1, des -1, ou des 0 selon l'ordre du

parcours du i-i�eme cycle.
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Le probl�eme �a r�esoudre est celui d'une estimation lin�eaire sous contrainte :

(
Y =MX+B

CTX = 0
(9.53)

o�u C = [C1 � � �CN ] est de rang plein (cycles ind�ependants). La solution est

donn�ee par :

X̂ =

�
I�KC

�
CTKC

��1
CT

�
~X (9.54)

avec K =
h
MTQ�1M

i�1
o�u Q est la matrice de covariance du bruit B.

Synchronisation absolue

Chaque station de base corrige son temps d'�emission en fonction de l'observation

du temps d'arriv�ee de ses voisines :

t0
i
= ti + �

P
j 6=i pij(tj � ti)P

j 6=i pij
(9.55)

pij est un coe�cient de pond�eration. En notant Xn = [t1 � � � tN ]T l'�etat du

r�eseau �a l'�etape n et P la matrice fabriqu�ee �a partir des
pijP
j 6=i

pij
, on obtient :

Xn = Xn�1 + �(P� I)Xn�1 = [(1� �)I+ �P]Xn�1 =MXn�1 (9.56)

Soit :

Xn =MnX0 (9.57)

Notons que P n'est pas forc�ement sym�etrique (toutes les stations de base n'ont

pas le même nombre de voisines). On peut d�emontrer que ce syst�eme converge

en probabilit�e vers l'�etat synchrone :

lim
n!1

Mnv = �1

o�u v est initialis�e al�eatoirement et � un facteur quelconque.

9.7 Simulations globales

Dans les sections pr�ec�edentes, nous avons trait�e s�epar�ement le probl�eme de l'estimation

du temps d'arriv�ee et celui de la fusion de donn�ees. Nous nous proposons ici

d'utiliser les deux �etapes cons�ecutivement dans des environnements concrets pour

pouvoir en d�eduire les performances que l'on peut attendre d'un tel syst�eme de

localisation.
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9.7.1 Mod�ele de canal

Nous examinons ici la mani�ere de g�en�erer une r�eponse impulsionnelle du canal

repr�esent�ee par un �etalement temporel, un nombre d'�echos et pour chaque �echo

son retard, sa puissance moyenne et la distribution de probabilit�e de son ampli-

tude.

On conviendra que chaque �echo r�esulte de la superposition de plusieurs ondes

qui arrivent toutes au même moment [76, 77] :

E(t) =
nX
i=1

Ei exp

�
j(�0 +

2�

�
vt cos�i)

�
(9.58)

o�u �i d�esigne l'angle d'incidence de la i-i�eme onde, �0 d�esigne la phase initiale

et v d�esigne la vitesse du mobile. L'amplitude r�esultante est donc la somme des

di��erentes contributions. Si l'�echo correspondant n'est pas un trajet direct, les

phases de ces ondes sont uniformes, l'amplitude est alors gaussienne de moyenne

nulle et le module suit une loi de distribution de Rayleigh. En revanche, lorsqu'il

s'agit d'un trajet direct, les phases ne sont pas tout a fait uniformes et l'amplitude

r�esultante est gaussienne de moyenne non nulle. Son module suit une loi de

distribution de Rice. La corr�elation dans le temps de l'amplitude est donn�ee

par :

R(�) =
Z 2�

0
p(�) exp

�
j
2�

�
v� cos�

�
d� (9.59)

p(�) d�esigne la distribution de probabilit�e angulaire des ondes. Si celles-ci

sont uniformes, on obtient alors le c�el�ebre mod�ele de Jakes :

R(�) = J0(
2�

�
v�) , �R(f) =

1r
1�

�
f

fd

�2 (9.60)

avec �R(f) le spectre Doppler et fd = v

�
la fr�equence Doppler. Dans nos

simulations, � sera suppos�e gaussien de moyenne constante et d'�ecart-type 0.15

radians. Ce mod�ele correspond au fait que les ondes arrivent concentr�ees dans

un faisceau �etroit. Dans tous les cas de �gure, plus la vitesse est grande plus

l'amplitude tend �a être moins corr�el�ee dans le temps. La g�en�eration de l'amplitude

sera faite selon la formule (9.58). Si parmi les di��erentes ondes aucune n'est

d�eterministe, on obtient simplement une loi de distribution de Rayleigh. En

revanche si une onde est d�eterministe, la moyenne statistique n'est pas nulle,

et on obtient une loi de distribution de Rice. Il est fr�equent d'utiliser la loi de

distribution de Nakagami pour mod�eliser ces di��erences :

p(r) =
2mmr2m�1

�(m)
m
exp(�m



r2) (9.61)
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La variable m re�ete l'importance de la composante d�eterministe : plus m est

grand, plus cette composante est importante. 
 d�esigne la puissance moyenne de

l'�echo. Nous avons trois possibilit�es :

� m = 1 : distribution de Rayleigh.

� m > 1 : approximation de la loi de Rice.

� m =1 : distribution de Dirac, l'�echo est purement d�eterministe.

La g�er�eration des ondes s'e�ectue grâce aux deux relations suivantes [77] :
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avec A1 l'amplitude de la composante d�eterministe et �2 la puissance moyenne

des autres ondes.

Plusieurs pro�ls ont �et�e s�electionn�es :

� Urbain (en indoor �a 3km/h et outdoor �a 3 and 50 km/h) : zones denses,

grands immeubles et centre ville.

� Banlieue outdoor (�a 3 et 50 km/h) : zones r�esidentielles, banlieues et vil-

lages.

� Rural (�a 3 et 100 km/h) : zones inhabit�ees, autoroutes, champs et forêts.

La di��erence majeure entre le pro�l urbain et les autres pro�ls r�eside dans

l'existence du trajet direct. Il n'y a pas de trajet direct dans les zones urbaines

alors qu'un puissant trajet direct existe dans les autres pro�ls.

Ces hypoth�eses sont bas�ees sur le mod�ele de canal �etabli lors des r�eunions du

comit�e de normalisation am�ericain T1P1.5 [80].

9.7.2 Estimation du temps d'arriv�ee

Le mod�ele de Greenstein est choisi pour g�en�erer un �etalement temporel et les

param�etres des di��erentes constantes sont �x�es pour chaque pro�l. La g�en�eration

des puissances moyennes des di��erents �echos est exponentiellement d�ecroissante

pour le pro�l urbain. Les valeurs des di��erents param�etres �gurent dans la Ta-

ble 9.1.
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Parameters Urban Suburban Rural

T1 (�s) 0.4 0.3 0.1

� 0.5 0.3 0.3

�y 4 4 4

Mobile speed 3/50 3/50 3/100

(km/h)

LOS presence no yes yes

Number of delays 20 6 6

Delays generation f�ig1�i�20 � U [0; 1] �1 = 0 �1 = 0

f�ig2�i�6 � U [0; 1] f�ig2�i�6 � U [0; 1]

Power generation ai � U [0:5; 1:5]: a1 = 4:3 a1 = 4:3

exp(�6�i) faig2�i�6 � U [0:5; 1:5] faig2�i�6 � U [0:5; 1:5]

Nakagami m fmig1�i�20 = 1 m1 = 15 m1 = 15

parameter fmig2�i�6 � U [1; 5] fmig2�i�6 � U [1; 5]

Number of partial 100 100 100

waves per delay

Initial phase �0 U [0; 2�] U [0; 2�] U [0; 2�]

�j N (0; 0:15) N (0; 0:15) N (0; 0:15)

Table 9.1: Param�etres de simulations du temps d'arriv�ee pour les di��erents pro�ls.

La di�cult�e rencontr�ee r�eside dans la d�etermination de la dimension du sous-

espace signal. En th�eorie, ce nombre est �egal au nombre d'�echos. Cependant,

il est parfois di�cile de distinguer deux �echos tr�es proches l'un de l'autre et

certains �echos ont une �energie moyenne relativement faible. En cons�equence, la

dimension du sous-espace signal est en pratique inf�erieure au nombre d'�echos.

Pour l'estimer, le crit�ere de description minimale (MDL) [17] est utilis�e en lui

imposant une limite maximale :

d̂ = min
j
(d̂MDL; dmax) (9.62)

La contrainte de limite maximale vient du fait que le crit�ere MDL pourrait

surestimer la dimension. En pratique, dmax = 4.

d̂MDL est donn�e par :

d̂MDL = arg min
k=0���p�1

L log

2
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f�ig1�i�p sont les valeurs propres de la matrice de covariance de l'estimation

de la r�eponse impulsionnelle et L le nombre d'observations (bursts). Les d�elais
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sont suppos�es d�ecorr�el�es entre eux. On utilisera Root MUSIC comme estima-

teur du temps d'arriv�ee. Dans la table 9.2, les r�esultats des simulations sont

pr�esent�es �a 10 dB. Les r�esultats sont pr�esent�es en terme de la racine de l'erreur

quadratique moyenne des 90% meilleurs r�esultats. La raison �a cela est que cer-

tains mauvais r�esultats d�egradent cette erreur et il est possible de les corriger

en prenant l'information de l'avance en temps (i.e. la position de la s�equence

d'apprentissage).

20 bursts de synchronisation sont utilis�es. Les simulations montrent claire-

ment que Root MUSIC est sup�erieur au simple �ltrage adapt�e (Table 9.2).

Pro�les Root MUSIC Matched �lter

SNR 0 dB 10 dB 1 dB 0 dB 10 dB 1 dB

Urban 3 km/h 311 231 210 323 323 323

Urban 50 km/h 156 135 134 294 294 294

Suburban 3 km/h 26 20 19 76 74 74

Suburban 50 km/h 10 6 4 47 47 47

Rural 3 km/h 18 16 12 60 58 58

Rural 100 km/h 5 3 3 44 44 44

Table 9.2: Racine de l'erreur quadratique moyenne (en m�etres) pour les 90% meilleurs

r�esultats en utilisant 20 bursts de synchronisation.

Les r�esultats montrent que l'estimation du temps d'arriv�ee d�epend l�eg�erement

du rapport signal sur bruit. Le probl�eme majeur est bien le trajet multiple. Même

dans un environnement sans bruit (rapport signal sur bruit in�ni) l'erreur n'est

pas nulle.

9.7.3 Estimation de la position

Cette section pr�esente les simulations globales dans un r�eseau hexagonal parfait

avec des antennes omnidirectionnelles. La distance minimale entre les stations de

base varie selon l'environnement. Nous avons choisi un motif de r�eutilisation de

7 stations de base. Nous avons pris le mod�ele de propagation d'Okumura-Hata.

Les param�etres D, Lp, et l'�ecart-type de l'�evanouissement ainsi que les autres

param�etres sont donn�es dans la Table 9.3. Les budgets de puissance montant et

descendant sont suppos�es être �equilibr�es. Nous avons choisi le front montant. La

sensibilit�e de la station de base d�etermine le niveau du bruit, elle est �x�ee �a -118

dBm.

Par souci de simpli�cation, les interf�erences sont suppos�ees gaussiennes (ap-

proximation AWGN). La vitesse est prise en compte pour la g�en�eration des am-
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Parameters Urban Urban indoor Suburban Rural

D (meters) 1500 1500 4500 10000

Lp (dB) 126 139.5 116 98

Fading std. (dB) 6 8.5 6 6

Mobile speed (km/h) 3/50 3 3/50 3/100

Sensibility -118 dBm -118 dBm -118 dBm -118 dBm

Table 9.3: Param�etres des simulations de la localisation pour les di��erents pro�ls.

plitudes et n'intervient pas dans le calcul de la position, i.e. le mobile est suppos�e

immobile pendant la dur�ee des observations (�a 50 km/h le mobile bouge de 14

m�etres seulement). 20 bursts de synchronisation sont utilis�es. Trois, quatre, et

cinq stations de base sont impliqu�ees dans chaque triangulation.

Les algorithmes utilis�es sont :

� Root MUSIC pour le temps d'arriv�ee.

� Le d�eveloppement de Taylor, initialis�e par l'algorithme de Chan avec deux

it�erations, pour la triangulation. Les temps d'arriv�ee sont pond�er�es de la

même mani�ere.

Les simulations utilisent 500 mobiles g�en�er�es al�eatoirement au milieu du r�eseau

et pour chacun, 20 simulations de Monte Carlo sont e�ectu�ees, soit un total de

10000 simulations de Monte Carlo. Les r�esultats sont exprim�es en termes de :

� L'erreur maximale des meilleurs 67% r�esultats,

� Pourcentage des r�esultats ayant une erreur inf�erieure �a 125 m�etres,

� La racine de l'erreur quadratique moyenne des 90 % meilleurs r�esultats.

Deux s�eries de simulations sont e�ectu�ees dans les cas d'une synchronisation

parfaite et imparfaite.

Synchronisation parfaite

Les r�esultats sont donn�es dans la Table 9.4.

Erreur de synchronisation

Le temps d'�emission relatif �a chaque trame TDMA est perturb�e par un bruit

gaussien de moyenne nulle et d'�ecart-type 100 ns (ce qui correspond �a 30 m�etres

de propagation environ). A titre indicatif, les r�esultats sont �egalement donn�es en

terme de densit�e cumul�ee pour le pro�l urbain �a 3 et 50 km/h (Figure 9.8).
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Pro�les 67 % in meters Percentage < 125 m RMS of 90%

3 BS 4 BS 5 BS 3 BS 4 BS 5 BS 3 BS 4 BS 5 BS

Urban out. 3 km/h 104 93 93 72 76 78 115 84 80

Urban out. 50 km/h 95 83 84 74 79 82 104 76 72

Urban in. 3 km/h 108 94 97 71 75 77 119 86 82

Suburban 3 km/h 17 12 12 91 98 98 20 12 12

Suburban 50 km/h 12 8 8 93 100 100 12 7 7

Rural 3 km/h 6 5 5 90 100 100 10 4 4

Rural 100 km/h 4 3 3 91 100 100 5 3 3

Table 9.4: R�esultats des simulations avec trois, quatre et cinq stations de base. Syn-

chronisation parfaite.

Pro�les 67 % in meters Percentage < 125 m RMS of 90%

3 BS 4 BS 5 BS 3 BS 4 BS 5 BS 3 BS 4 BS 5 BS

Urban out. 3 km/h 116 99 99 69 75 76 124 90 85

Urban out. 50 km/h 106 91 89 72 78 80 111 81 77

Urban in. 3 km/h 120 103 100 69 74 76 130 92 86

Suburban 3 km/h 49 38 34 91 98 98 42 31 28

Suburban 50 km/h 46 35 31 93 100 100 39 28 25

Rural 3 km/h 47 34 30 90 100 100 42 28 25

Rural 100 km/h 45 33 29 90 100 100 39 27 24

Table 9.5: R�esultats des simulations avec trois, quatre et cinq stations de base. Les

erreurs de synchronisation sont incluses.

9.8 Conclusions et directions futures

Dans cette th�ese, nous avons pr�esent�e un syst�eme de simulation global pour lo-

caliser un mobile dans un r�eseau GSM. Ce syst�eme utilise les propres possibilit�es

du r�eseau sans faire intervenir un quelconque moyen ext�erieur.

Nous nous sommes bas�es sur l'estimation du temps d'arriv�ee dans ses deux

versions front montant ou front descendant. Le probl�eme majeur est le trajet mul-

tiple. A partir de l'estimateur du maximum de vraisemblance, des algorithmes

bas�es sur l'extraction des sous-espaces signal ou bruit ont �et�e introduits pour

l'estimation de l'ensemble des retards des di��erents �echos. Le temps d'arriv�ee est

d�e�ni comme �etant le minimum de ces retards. Une extension de ces algorithmes

est pr�esent�ee lorsque l'impulsion de modulation est inconnue.
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Figure 9.8: CDF pour le pro�l urbain : (a) �a 3 km/h, (b) �a 50 km/h.

La fusion des donn�ees est ensuite analys�ee et aboutit �a une triangulation hy-

perbolique. Le d�eveloppement en s�erie de Taylor semble o�rir de bons r�esultats

lorsqu'il est bien initialis�e.

La synchronisation est ensuite abord�ee dans ses deux versions pseudo et ab-

solue. En�n, des simulations globales dans des environnements r�ealistes sont
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pr�esent�ees. Les r�esultats semblent encourageants.

Les sujets non abord�es ou �a compl�eter sont les suivants :

Echos di�us

Nous n'avons consid�er�e que les �echos discrets ayant un retard bien d�e�ni. Une

extension possible serait le cas des �echos di�us o�u les ondes arrivent autour d'une

valeur moyenne. Le mod�ele de la r�eponse impulsionnelle du canal est modi��e :

hj(t) =
dX

i=1

KiX
k=1

sijka(t� �i � ~�ik) 1 � j � L (9.63)

Deux approches sont possibles :

� D�eveloppement en s�erie de Taylor [82, 83].

� Estimation conjointe du retard moyen et de l'�ecart-type autour de la moyenne.

[84{86].

Borne de Cramer-Rao dans le cas d'un impulsion inconnue

Nous n'avons pas calcul�e cette borne. Sa valeur pourrait être utile pour �evaluer

les r�esultats des algorithmes qui estiment conjointement l'impulsion et les retards.

Pond�eration optimale des temps d'arriv�ee

Nous n'avons pas pond�er�e les temps d'arriv�ee lors de la triangulation. Il est en

e�et di�cile de trouver de telles valeurs. On pourrait �eventuellement se contenter

de valeurs empiriques en fonction du rapport signal-sur-bruit ou de l'�etalement

temporel.

Syst�emes CDMA - UMTS

La localisation est requise pour les futurs standards. Ces standards, comme

l'UMTS (Universal Mobile Telecommunications System), seront bas�es sur la tech-

nologie �a r�epartition en codes (CDMA).
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GMSK pulse

A phase modulation has the following general reduced expression:

s(t) = ej
P

k
bk�(t�kT ) (A.1)

T refers to the bit period. �(t) is the modulation function, for a modulation

index of 0.5, it can be written as follows:

�(t) =

(
0 if t < 0
�

2
if t � LT

(A.2)

L is the called the memory of the modulation. In practice, �(t) is obtained

by integrating a known signal se(t):

�(t) =
�

2

Z
t�LT

�1
se(�)d� (A.3)

The GMSK modulation speci�ed in [1] is given by the following function:

se(t) = rect

�
t

T

�
?

1p
2��T

e�
t
2

2�2T2 (A.4)

with � =
p
ln 2

2�BT
et BT = 0:3.

In reality L is very high, but L = 3 is a good approximation for the GMSK

as shown in Figure A.1. Referring to [6], a phase modulation can be decomposed

into amplitude modulated pulses (AMP). Assuming di�erential coding, i.e. bi =

didi�1, and taking the �rst component of the decomposition called main pulse,

s(t) can be rewritten in the following way:

s(t) =
X
k

dka(t� kT ) (A.5)
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Figure A.1: The modulation function in the GMSK.

with,

a(t) = e�j
�t

2T

L�1Y
i=0

sin[�(t+ iT )] cos[�(t+ (i� L)T )] (A.6)

Other components appear to be negligible; the second component is given by:

b(t) =
a(t)a(t + 2T )

a(t + T )

which has an energy 24.35 dB lower than the �rst pulse. The main pulse a(t)

and its secondary pulse are shown in Figure A.2.

a(t) represents the main pulse. In the GMSK modulation, this pulse con-

centrates about 99.6% of the modulation power. In other words, it is a good

approximation to state that the GMSK modulation is linear. The GMSK pulse

has a length of four bit periods, but since it is �ltered to match the 200 kHz

bandwidth, its length may exceed eight bit periods.

Figure A.3 shows the main pulse normalized spectrum.
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Figure A.2: GMSK main and secondary pulses.
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Figure A.3: GMSK spectrum.
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Appendix B

Proof for the variance formula

�̂2
r
(�) =

Tr
�
�?
D(d)A(�)K̂y

�
m(m� d)

=
Tr
�
�?
A
(�)K̂

ĥ

�
p� d

+O(1=
p
L)

=
Tr
�
�?
D
(d)K̂y

�
m(m� p)

+O(1=
p
L)

Asymptotically, we have the following relations:

lim
L!1

K̂y = Ky = D(d)A(�)Ks [D(d)A(�)]
�
+ �2I

lim
L!1

K̂
ĥ
= K

ĥ
= A(�)KsA

�(�) + �2
r
I

The result is straightforward by noticing that for any full column rank m� d
matrix A:

�?
A
A = 0 Tr(�?

A
) = m� d

For example:
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�
�?
A
(�)K

ĥ

�
= �2

r
Tr
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�?
A
(�)
�
= (m� d)�2

r
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Appendix C

Derivation of the Cramer-Rao

bound

The Cramer-Rao bound is given by the inverse of the Fisher information matrix

(4.31). The log-likelihood is given by:

log p(Fj�; tr) =
1

2
[F�A(�)� tr1]

T
Q�1 [F�A(�)� tr1]

And the following results are straightforward:

� E
h
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� E
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The Fisher information matrix is:

FIM(�; tr) =

2
4
�
@A(�)

@�

�T
Q@A(�)

@�
�
�
@A(�)

@�

�T
Q1

�1TQ@A(�)
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1TQ1

3
5

The Cramer-Rao bound on � is given by the upper left side of FIM�1. Using

block matrix inversion we obtain:

CRB�1(�) =

"
@A(�)

@�

#T
~Q
@A(�)

@�

with:

~Q = Q�1 � Q�111TQ�1

1TQ�11
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Appendix D

Mathematical notations

Ay = (A�A)�1A� Moore-Penrose pseudo-inverse of A

A � B matrix comparison , (8x; x�Ax � x�Bx)

AT transpose of A

Ac conjugate of A

A� transpose conjugate of A

�A = AAy projection onto the range space of A

�?
A
= I��A projection onto the null space of A

A�B Schur product of A and B, i.e. the element by element product

? convolution operator

A
B Kronecker product of A and B

Tr(A) trace of A

kAk2 = Tr(A�A) Frobenius norm of A

jAj determinant of A

Vec(A) the column vector made by stacking the columns of A

Re(:) real part

Im(:) imaginary part

E[:] mathematical expectation

�ij Kronecker symbol, 1 if i = j, 0 otherwise

�(t) Dirac delta fucntion

I identity matrix with the appropriate dimension

J anti-identity matrix with the appropriate dimension

j2 = �1
I0 and J0 the modi�ed and normal Bessel function of order 0

� the gamma function

N (m; �2) normal variable with mean m and variance �2

U [a; b] uniform variable on [a; b]
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Appendix E

Abbreviations

AMP Amplitude Modulated Pulse

AWGN Additive White Gaussian Noise

BCCH Broadcast Common CHannel

BER Bit Error Rate

BSIC Base Station Identity Code

BSC Base Station Controller

BSS Base Station Subsystem

BS Base Station

CDMA Code Division Multiple Access

CRB Cramer-Rao Bound

DoA Direction of Arrival

DToA Di�erence Times of Arrival

DTX Discontinuous Transmission

ETSI European Telecommunications Standards Institute

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

FCCH Frequency Correction Channel

FDD Frequency Division Duplex

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transform

FH Frequency Hopping

FN Frame Number

GDoP Geometric Dilution of Precision

GMSK Gaussian Minimum Shift Keying

GSM Global System for Mobile communications

HLR Home Location Register

HO HandOver

IQML Iterative Quadratic Maximum Likelihood

ISI Inter Symbol Interference

JADE Joint Angle and Delay Estimation

LAC Location Area Code
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LMU Location Mobile Unit

MLC Mobile Location Center

MSC Mobile services Switching Center

MSK Minimum Shift Keying

MUSIC MUltiple SIgnal Characterization

PLMN Public Land Mobile Network

PSTN Public Switched Telephone Network

RACH Random Access CHannel

RTD Real Times Di�erence

SCH Synchronization CHannel

SIM Subscriber Identity Member

SMS Short Message Service

TA Timing Advance

TDMA Time Division Multiple Access

ToA Time of Arrival

UMTS Universal Mobile Telecommunications System

ULA Uniform Linear Array

VLR Visitor Location Register

WSF Weight Subspace Fitting
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