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ABSTRACT

We consider mobile radio communications with one user of
interest and possibly interfering users and noise, over sev-
eral discrete-time channels obtained either by oversampling
or from multiple antennas. The optimal receiver structure
for one signal of interest plus spatially and temporally cor-
related noise is MLSE equalization with an appropriately
weighted metric for vector signals. We show however that
we can alternatively pass the vector received signal through
both a MISO (multi-input single output) matched filter and
a MIMO blocking equalizer. The blocking equalizer output
is independent of the signal of interest and is used as the
input to a MISO Wiener filter that reduces the noise in the
matched filter ouput. The training sequence of the signal
of interest can be used to estimate the corresponding chan-
nel, from which matched filter and blocking equalizer can
be determined. The remaining quantities can be adapted
from the available signals.

1. MULTIPLE CHANNELS

The multiple FIR channels we consider here are due to over-
sampling of a single received signal and for the availability of
multiple received signals from an array of antennas (in the
context of mobile digital communications). To further de-
velop the case of oversampling, consider linear digital mod-
ulation over a linear channel with additive noise so that the
cyclostationary received signal can be written as

u(t) = > h(t—kT)ax + o(2) (1)

where the ax are the transmitted symbols, T is the sym-
bol period and k(%) is the channel impulse response. The
channel is assumed to be FIR with duration NT' (approxi-
mately). If the received signal is oversampled at the rate %
(or if m different samples of the received signal are captured
by m sensors every T seconds, or a combination of both),
the discrete input-output relationship can be written as:
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where the first subscript i denotes the i** chanrel and super-
script ¥ denotes Hermitian transpose. yik,t = 1,...,m
represent the m phases of the polyphase representation of
the oversampled signal: yix = y(to + (k + £)T). For the
receiver structure to be discussed to be strictly optimal, the
sampler at each antenna should be preceded by an analog
matched filter (matched to the channel response h(t) from
the transmitted symbols to the antenna signal). If over-
sampling is used and the sampling rate satisfies the Nyquist
criterion for the channel response k(t), then a simple anti-
aliasing filier can be used. In the polyphase representation
of the oversampled signals, we get a discrete-time circuit
in which the sampling rate is the symbol rate. Its output
is a vector signal corresponding to a SIMO or vector chan-
nel consisting of m SISO discrete-time channels where m is
the sum of the oversampling factors used for the possibly
multiple antenna signals, see Fig. 1.

2. PREVIOUS WORK

From the work of Falconer [1] on the one hand and Win-
ters, Salz [2],[3] and others on the other, it is well-known
that the thus available frequential or spatial diversity can be
exploited to cancel or diminish multi-user interference. As
discussed in [4], a decision feedback equalizer (DFE) con-
sisting of m feedforward filters and a feedback filter can
be used to achieve this. In TDMA mobile communica-
tions, the channel can vary fairly rapidly. Therefore the
data is sent in fairly short time-slots over which the chan-
nel can be considered time-invariant. A midamble of train-
ing sequence symbols is provided in the slot to allow for
receiver adaptation. From a design point of view, the num-
ber of parameters in the multichannel DFE to be estimated
though increases with m since there are m feedforward fil-
ters. Hence, a training sequence that is designed for m =1
will not allow a reliable design of the spatio-temporal feed-
forward filter. Therefore, a suboptimal optimization of the
spatio-temporal feedforward filter is proposed in [4] as a lin-
ear combination of delayed beamforming (spatial filtering)
problems. A short training sequence suffices for the solu-
tion for each of the subproblems. On the other hand, the
training sequence length required for the reliable estimation
of the channel is independent of m. This is exploited in [5]
to reduce the estimation of the received signal covariance
matrix to the contributions of the interferers. The dimen-
sionality curse is not much alleviated however. Therefore,
attention is restricted in [5] to the cancellation of spatially
correlated (but temporally white) interference and the de-
tails for the suboptimal scheme of [4] are considered also.
Since the interference is assumed to be only spatially corre-
lated, the small performance loss of the suboptimal scheme
is not surprising. Since the time slot structure of the in-
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Figure 1. ICMF optimal receiver structure for one user received through multiple channels in colored

additive Gaussian noise.

terferers is not necessarily synchronized with that of the
user of interest, interferers can appear and disappear dur-
ing the time slot. Therefore, adaptation of these schemes is
considered in [6].

In [7], the appropriate metric for use in the Viterbi algo-
rithm for spatially correlated (but temporally white) noise
has been considered. This metric is straightforward, but the
interesting connections to a number of existing schemes as
special cases are outlined. When the noise is spatially un-
correlated, this reduces to Maximum Likelihood Sequence
Estimation (MLSE) with joint diversity metric combining.
When the channel is memoryless and the symbols come
from a constant modulus constellation, the scheme is equiv-
alent to 2 MMSE beamformer with MLSE. When the chan-
nel is memoryless and the noise is spatially uncorrelated,
the scheme reduces to maximal ratio combining.

We shall consider optimal and suboptimal receiver struc-
tures for the case when the additive zero mean noise is both
spatially and temporally correlated. Strict optimality will
only hold when the noise is considered Gaussian. When the
noise actually consists of multiuser interference plus Gaus-
sian noise, the optimal receiver performs joint detection of
all users. However, the estimation of the matrix transfer
function from all users to all antennas (and/or sampling
phases) is a formidable and often prohibitive task. Further-
more, the complexity of MLSE can be enormous in this case.
We will accept the suboptimality induced by the Gaussian
assumption. We will find that the suboptimality disappears
in certain cases. We shall assume (short-term) stationarity
of the vector received process. For that, we assume the
transmitted symbol sequence to be stationary, the channel
to be time-invariant and the additive noise to be a combi-
nation of stationary and cyclostationary components with
period T (co-channel interference).

3. ICMF DERIVATION

Assume we receive M samples:
Yu = Tu(Hy) Amen-1(M)+ Vi (3)

where Yy = [y¥ - y¥]1¥ and similarly for Vu, and
Tu(Hu) is a block Toepliz matrix with M block rows and
[HN Opmx(a—1)] as first block row. With RY; = EVM VY,
the proper distance function to be used with the Viterbi al-
gorithm is

(Y —Tane(Hn) Amen—1) ¥Ry (Yo — T (Hn) AM+NE‘11g

where Apen—1 = Amsn—1(M). When vi is (modeled as)
a multivariate AR process, R;,V is banded and can be easily
expressed recursively. Making abstraction of finite length

effects, we can say that we need to pass the received signal

-1
¥, through a noise whitening filter Sy ?(z) where Sv{z)
is the power spectral density matrix of the noise vi and

1
S&(z) is a (minimum-phase) spectral factor. Alternatively,
consider the transformation

%= AG)ye = [ 24 ] = [H‘(z)H@:le,k ]
(5)

A(z) = [ I'_Ij(z) , Wi = [ Wik ] = A(z) vk .

W2 .k
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H(z) = 2N hiz™ = [H (2)- - Hii(2)]" is the SIMO
channel transfer function and Hi(z) = HY(1/2*) is its
matched filter. P(z) is an (m—1) x m transfer function

such that P(z)H(z) = 0 and is therefore also called a set of
m—1 blocking equalizers. One possible choice is

_ —Hz(z) Hl(z) 0

P() = (1)

—Hn(z) 0 Hy(z)
which is FIR. A better (lower order) choice is based on
the multivariate forward prediction error filter P(z) for
the noiseless received signal. Omne can show ([8] and ref-
erences therein) that P(z) H(z) = ho. Hence, if hi is a
m x (m—1) matrix such that h{)"H ho = 0, then we can take
P(z) = hi “P(2). A(2) is an invertible transformation in
general. Note that w2 contains no signal of interest but
only filtered noise. However, since Wz is correlated with
w1k, We can use Wz x to lower the noise level on z1,5. Hence
consider the transformation

w = B(2)xx = [ U1,k ] = [ H!(2)H(z) ax + @14 ]

u2.x W2 k
(8)
where
B(:) = [ ¢ ) |, W= [ ;”:;: | = B@awe

(9)
and W(z) = Su,w, S‘_,,,lzw2 is the Wiener filter for estimat-
ing w1k from wzx. Note that W(z) = S;,1x28,'ax2 also.
For Gaussian noise, w2 is independent of u;x and ag.
Hence the u; x constitute a set of sufficient statistics for
the detection of the ax. The cascade B(z)A(z) leads to



the Interference Cancelling Matched Filter (ICMF) struc-
ture depicted in Fig. 1. It will be convenient to process u x
further by a whitening filter 1/g(z) (see Fig. 1) (this fil-
ter can be combined with any other filter that may follow):

9(z) = (H'(z)H(z))%. We get for the resulting signal si:
sk = g'(z)ax +nk (10)
where z~("~1g!(z) is a maximum-phase FIR filter of

length N. The power spectral density of the additive noise
can be shown to be

et [ 4\ —1 __
H'SyvH — H SyvP' (PSWP‘) PSvvH
H'H

Snn(z) =
(11)

If the colored noise vi consists of d < m—1 interfering users
(that also have symbol period T') plus temporally and spa-
tially white noise then

Svv(z) = G(2)G'(2)+ 02l (12)

where G(z) (m x d) regroups the channel transfer functions
of the d interferers. In this case we have

-1
Spn(z) = o2 (1 +tr {G’PHG (G'P_I;,G ¥ 031.,) })
(13)
where Py, = H(z) (Ht(z)l'l(z:))_1 H'(z). Note that

when G(z) = 0, Sna(z) = 02 and W(z) = 0. The result-
ing structure with MLSE from sx is optimal and comsists
simply of the multichannel whitened matched filter. When
G(z) # 0 but o2 = 0 (Svv(z) singular), then S,n(z) = 0:
the resulting structure is again optimal even though the ad-
ditive noise is not Gaussian because up to m—1 interfering
users can be eliminated in the noise-free case!

4. CONSERVATION OF MFB

Considering the interferers as colored noise and the trans-
mitted symbols to be uncorrelated (Sua(z) = 03), the
Matched Filter Bound (MFB) using the received signal y,
is

MFB = 02 }{ ‘i—zH*(z)s:,{,(z)H(z) : (14)

At the output of the ICMF, the MFB is (see (10))

A f %%ﬂ For the ICMF to be optimal, these two ex-

pressions should be identical which we show now. We in-
troduce a lossless transfer function ©(z) (010 = I,n)

O(z)=D'A = [Hg-* P (PP /2 ' (15)

with D(z) some obvious block diagonal transfer matrix.
Then we get

H's;LH = H'e'esy, 0'0H
=[9 0] (©Svv®!) " [¢ 0)' = [¢ 0] D'SHwD g 0]
= (H'H)?[1 0] Syiw(1 017 = (H'H)’[1 o]st‘:ﬁl,.B[l 0)H
= (H'H)?[10]S3.. [1 0] = (H'H)?’SZ'. =H'HS,;, .
WWwW wywy
(16)

5. RELATION TO BEAMFORMERS

When the channels for all users are memoryless, then the
ICMF corresponds to the (narrowband) generalized side-
lobe canceller (GSW) [9]. The ICMF can therefore be
considered as a particular instance of the broadband GSC
beamformer. The GSW is itself a particular implementa-
tion of the linearly-constrained minimum variance (LCMV)
beamformer. We shall now elucidate which constrained
optimization problem the ICMF is the solution of. Con-
sider obtaining sx as the output of a MISO filter F(z):
sk = F(z)ys. The unit-energy filter F (§ £FF' = 1)
that maximizes the variance of the signal part of sx (o2 if
vi =0)is F, = éH’ where f is any unit-energy scalar
transfer function (in the previous development we consid-
ered the specific choice f(z) = 1) . All filters F that have
the same influence on the signal part of six as F, satisfy the
constraint

FH= 5 H'H. (17)
An arbitrary parameterization of F(z) is

F=Fole=[fi F:;]® (8)
= LH!' + F,(PP)/?P = L (H' - WP)

where we can alternatively take fi and F2 or fy and W
as free parameters (1 x 1 and 1 x (m—1) transfer functions
resp.). We shall consider the second parameterization. In
order to satisfy the constraint (17), we require f1{z) = f(z).
Hence W (z) represents the free parameters. We shall choose
these parameters to minimize the variance o? = f d—:—S,,(z).
We find

1
Sss = fo (gtg 0'3 + Snn) , Spn = g'_g[]. —'W]Sww[l —W]t.

(19)
Minimization of Ss, at every frequency leads to minimiza-
tion of o2 and hence the optimal solution is obtained for
W (2) = Sw,w,Sw,w, as before.
We can give one more interpretation of the ICMF in terms
of SNR maximization. We can write as before any F as
F= f;‘-(H' — W P). We have for S,,

Sss=f]tflgtgaz‘*'fltflsﬂn=S:s+szs (20)

which we have decomposed into signal and noise contribu-
tions. The SNR in S,, is

% _gedt a
Ses San

which is again maximized for the same W(z) and fi(z) is
arbitrary (as before). Remark that we consider the SNR
in S,s and not in o2 because the further processing of s
is not limited to instantaneous detection, arbitrary filtering
(by f(2)) in sk is possible.

6. IMPLEMENTATION ISSUES

As far as the design of the various filters is concerned,
the channel transfer function H(z) can be estimated with
the training sequence for the user of interest. From H(z},
one can determine the whitened matched filter and the



blocking equalizers. The theoretical expression for W(z) =
Sw, W, 5%, w, using (12) is

-t (st
W(z)=H'G (G'P_,G +oil) G'F' (PP ) .
P
(22)
If 2 = 0, then W(z) satisfies

W(2)P(2)G(z) = H'G(z) . (23)

This system of equations allows an FIR solution for W(z)
if the number of interferers is limited to d < m—2. In
general, W(z) is IIR and will be approximated by an FIR
filter. The 1 x (m—1) Wiener filter W(z) can be estimated
from the signals xx. Even though W(2) can contain quite
a few coefficients, the samples of xi over the whole time
slot can be used for the estimation of W(z). Alternatively,
W(z) can be adapted to track changes in the interference
scenario during the time slot.

For implementing an actual receiver, we need to estimate
Sss(z) which can be done from the signal sx observed over
the time slot. For a MLSE receiver, we can estimate the
psd of the colored noise as Spn(z) = S.s(2) —oZH (2)H(z).
For MMSE equalizers, we consider the transfer function
(Wiener filter)

Sus()ST(z) = o2 9(x)STE(2)STH(2).  (29)

This is the transfer function of the MMSE linear equalizer
(LE). For the MMSE DFE, we consider the last expression
in which the first two factors correspond to the feedforward
filter while the last factor, the feedback filter, gets imple-

mented in decision feedback form. Note that S,—,"L(z) is
proportional to the prediction filter for the psd S,s(z).

The proposed receiver structure is appropriate for the
downlink at the mobile unit (where only the training se-
quence for the user is assumed known). For instance in
the GSM system, using multiple antennas at the mobile
unit may not be realistic, but oversampling with a factor of
m = 2 can be applied in a meaningful fashion. This would
imply that if only one (dominant) interferer is present, it
could be perfectly canceled with the ICMF, whose imple-
mentation requires no changes to the GSM standard. The
ICMF could also be used as a suboptimal receiver struc-
ture for treating the users separately in the uplink at the
basestation.

7. COMPARE TO CLASSICAL APPROACH

The classical approach would be to conmsider directly a
MMSE MISO LE F(z). As mentioned before, the direct
estimation using training sequence data of an FIR model
for such an equalizer leads to a dimensionality curse as the
number of channels increases. It is useful however to con-

sider the structure of the MMSE LE. We find

Fumse(z) = Say(2) Syy(2) = 02 H'(2)Syy(2) . (25)
Again, H can be estimated using training sequence data,
but for the estimation of Syy the data of the whole time

slot are available, which solves the dimensionality problem.
One can also show that

Say () S3y(2) = 8as(2) 83 (2) 7 (2)1 —W(z)][ ‘%'(S‘)) ]
(26)

so that Say(z)Syy(2) ¥x = Sas(2) S;3(z) sk, i.e. the MISO
MMSE LE corresponds to the ICMF foliowed by the MMSE
LE in (24). In order to implement other equalizers than the
MMSE LE, it would be useful to produce the signal u; x.
This can be done in two alternative ways:

H! H'H _ (. HH ..

[ -w] [ P ] Hfs;,;,HH YY = HisimE T oV
(27)
Hence one can proceed with either Syy or with Syv =
Syy — o2 HH'. We will in any case want to work with an
FIR model for S~ (the FIR approximations become again
exact in the case of singularity). Proceeding with Syy, the
estimation of a finite number of correlation lags of y, suf-
fices to determine the prediction filter P(2) producing the
prediction error y, = P(z)y, and leading to the FIR model
S;,;,(z) = P! Rl_yP for use in (27). To compare with the
ICMF approach, the main difference lies in the estimation
(variance) (and possibly adaptation) of a 1 x (m—1) transfer
function W(z) for ICMF versus m x m quantities Syy(z)
for the classical approach. There is also the influence of
FIR approximations, for W in ICMF and for S;;,,S‘_,{, in

the classical approach (the length required for W gets in-

creased a bit to compensate for P) and possibly other filters,
depending on the equalizer used.
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