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Abstract

The last decade of twentieth century withessed explosive growth in wireless cellular mobile and fixed
systems, and the continuing interest in this area suggests that most future communication systems will
be untethered networks. With the advent of digital wireless cellular systems like GSM and 1S-95, the
concept of reliable global coverage in nomadic communications has for the first time seemed possible.
However, these systems were representatives of the second generation of wireless communications and
the target market was voice. Even though the quality still leaves much to be desired, voice communi-
cation in cellular radio is already considered to be a second generation (2G) issue - solved, and thus a
deployment issue, and of little interest in terms of future growth.

In today’s wireless communication forums, experts therefore dare to speak of networks capable
of handling high-speed data over mobile and wireless channels for multimedia applications. GSM
is hoping to smoothly evolve a part of itself into EDGE, a new version, capable of handling higher
(approaching 384 kb/s) data rates at the cost of mobility/coverage. GPRS, another variant, is the packet-
switched service of GSM already at the brink of seeing its market debut. It is said to be capable of
handling rates approaching 144 kb/s under low system loading conditions. Third generation systems
like the Universal Mobile Telecommunication System (UMTS) or its North American counterpart, the
CDMA-2000 are both aiming at rates approaching 2 megabits per second for cellular systems. It seems,
however, that third generation (3G) systems will be based, to start with, upon a second generation
backbone and the two will co-exist for long years before the natural death of the latter.

Lessons learned from 2G systems and attempts to develop high-rate versions of them, however,
suggest that the network must be a hybrid structure. This is motivated by the fact that all rates and
all applications are never required by all customers in all situations and communication scenarios.
Consequently, a major core of any network will need to support voice and relatively low-rate data at
all mobile speeds and locations, ensuring global reliable connectivity, with advanced services provided
wherever and whenever the need arises. The third generation of wireless networks basically aims at the
following target performances:

e Full coverage and mobility for 144 kb/s at first, and 384 kb/s later
¢ Limited coverage and mobility for 2 Mb/s

e High spectrum efficiency compared to 2G systems

¢ Higher flexibility to incorporate new services

e Backward compatibility to 2G systems

In order to satisfy some of these highly demanding requirements, a high performance physical layer
needs to be designed, incorporating sophisticated signal processing techniques to mitigate the distortion



caused by radio propagation phenomena. For DS-CDMA systems which constitute the core multiple-
access technology in future wireless systems, the traditionally used receiver technique is the RAKE
receiver. This receiver is an anti-multipath device, but is known to operate in environments where
the delay spread of the propagation channel is short relative to the symbol duration. Furthermore,
strict power control needs to be exercised in order to keep the interference level down for the proper
functioning of this receiver. If these conditions are not satisfied, when for example, transmission rates
require the symbol duration to be short, thus resulting in a small processing gain, or when power cannot
be controlled efficiently, more sophisticated interference cancelation algorithms need to be designed to
either replace or supplement the RAKE receiver. This is the driving force behind the major portion
of the work carried out in thesis wheaglvancedeceiver algorithms for multipath radio channels are
proposed as alternatives to the traditionally used RAKE receiver.

A related and even more critical issue is that of parameter estimation which implies identification
of channel parameters or its impulse response. Naturally, this estimate needs to be relatively accurate
in order to build any reasonable receiver. This thesis also deals with channel identification issues
and techniques through various methods. The usual method for channel identification is the use of
known training data. Bandwidth efficiency lost to training data or pilot channels is another of the
undesirable phenomenon in a system; to get around this problem, we phdipolsmethods (without
the use of training information) for channel identification and also explore hgerid-blindchannel
identification and receiver algorithms.

A crucial observation pertaining to advanced receivers is that the interference canceling capability
for a given receiver comes about duedigersitytechniques, which refers to the reception of the sig-
nal through several independent channels. These channels can be created by employing one of the
well-known methods e.g., fractional oversampling or several reception antennas. This issue is dis-
cussed in detail in this thesis and spatio-temporal interference cancelation schemes are presented for
both the forward and reverse link problems. Emphasis is also laid on the of exploitation of side in-
formation in the problem, like training information, transmitter filter characteristics, structure of the
channel, and the knowledge of spreading sequences of DS-CDMA users, in order to derive improved
and low-complexity receivers. From the same motivation, the uplink and downlink problems are treated
separately, since although the latter can be made to look like the former and handled in the same fash-
ion, appreciable gains can be achieved by considering it from a different angle while exploiting the
very particular structure of the forward link.

A new dimension where interference can be cancelled, and which has attracted much interest in re-
cent years is the space dimension. Joint spatio-temporal signal processing techniques, also known in
the literature asmart antenngrocessing, offer a significant advantage over pure beamforming strat-
egy for forward link transmission. This is another area addressed in this thesis. We treat the problem
of performing optimum spatio-temporal processing while using antenna arrays at the base-station for
multiuser downlink transmission. The two transmission modes discussed are the Time-Division Du-
plex (TDD) and the Frequency-Division Duplex (FDD), in which varying degrees of information about
the downlink channel is available at the base-station from the uplink channel estimate. It is this in-
formation that is exploited to design spatio-temporal filters at the base-station to attempt to separate
users in space/time and to improve downlink performance while reducing mobile station complexity.
The TDD and FDD problems are discussed separately and solutions are proposed for both. The effect
of scrambling on the structure of the problem are also discussed and solutions for this case are also
presented.

Vi



Reésune

Le récepteur RAKE est leecepteur traditionnellement utésdans les systnes d’aces multiple
par Epartition en codes (AMRC) utilisant laethiode de sjuence directe. Cecépteur est un filtre
adap€'a la cascade du canal ®ia £quence dtalement de l'utilisateur cons. C’'est un appareil
gui combine les diffrents trajetsgyeérés par le canal de propagation deda colerente et qui exploite
ainsi la diversi¢’des fEquences. Leecepteur consite les interences @ées par les utilisateurs con-
currents comme du bruit non ceté. Ceci est da I'etalement des symboles des €itfhts utilisateurs
par les gquences qui sont faiblement inter-aé@es. Par ailleurs, la quasi-orthogoreaties sguences
d’etalement estetfuite par le canal de propagation et par I'aggvasynchrone des symboles des util-
isateurs. Par corguent, le contie de puissance estoéssaire au bon fonctionnement deessepteur
et permet de diminuer les contributions d’inenéhcesala sortie du filtre adapt” La situation peut
étre encore aggrae lorsque les paragtres de transmission sont tels que le signali rest caraetise
par une importante intesfence entre symboles. Dans le cadre de cedigethnous traitons le prob-
leme d’'annulation d’'integfences dans les sgstes AMRC et nous proposons comme alternative les
récepteurs linaires avares.

L'annulation d’interBrences esttudée dans un contexte multi-voie. Ce contexte sssente par
exemple lorsqu’on utilise plusieurs antenrgeta Eception ou lorsqu’on sugehantillonne le signal
regu par rappora la cadence des symboles transmis (fonctionnement normal desggsMRC par
sequences directes) ou par rappmla cadence des bribes. Lidentification aveugle d’un e@diulti-
voie est &sormais rendue possibleagea I'exploitation des statistiques du second ordre portant sur la
sortie vectorielle stationnaire d’'un carséntees et sorties multiples (MIMO).

Nous proposons urecepteur lieairea forgagea z8ro, minimisant I'erreur quadratique moyenne
(MMSE-ZF), pour annuler les integfénces du point de vue de l'utilisateur corséd Ce Ecepteur est
adap€ de margre aveugle etetentralige. |l posede de plus I'avantageetre €sistant aux fortes puis-
sances reyes en m@sence d'utilisateurs intenfants. Nous efmontrons qu’une estimation du canal de
I'utilisateur consi@ré peutgalemenefre obtenue par cet algorithme. Cette estimation est relativement
robustea’la sur-@&termination de I'ordre du canal. Cependangmne”si I'estimation est relativement
bonne, la performance decépteur reste insuffisante patre utilis€ dans la plupart des cas. Nous
démontrons alors que les performances peugestaneliorées en utilisant I'information appes par
la $quence d’'apprentissage en conjonction avec I'information aveugle. On parle alors d’'un algorithme
semi-aveugle. Nouseaontrons que dans un tel contexte, un nombre important d’utilisateurs inter-
ferants peuetre supprine’grdce au grand nombre de degrde libe’inhérentsa’la largeur de bande
d’'un tel syseme. Un ecepteur aveugle ledire maximisant le rapport signalinterrence-plus-bruit
(RSIB) est aussi propegiour le cas particulier de la liaison descendante dans lensgstAMRC.

Enfin, nous nous irt'essons aux performances de la liaison descendante lorsque des antennes adap-
tatives sont utilisesa la station de base. L'emploi de telles antennes permet un traitement spatio-

Vii



temporel conjoint qui mrSente un avantage significatif par rapgade technique classique de formation
de voies. Finalement, nous appliquons ce principe auesyest AMRC bass sur les modes duplex de
division en féquence (DDF) et duplex de division en temps (DDT).
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Chapter |

Introduction

|.1 Digital Mobile Cellular Communications

In digital cellular mobile radio, the problem of multiple access has received considerable attentionin
recent years. These ways of accessing the channel, namely FBid&ugency Division Multiple Ac-
ces$, TDMA (Time Division Multiple Acce$sand CDMA (Code Division Multiple Acce3®r SSMA
(Spread-Spectrum Multiple Accgdmve been known for quite some time now [Rap96] and these meth-
ods or their combinations have been successfully used in the design of digital mobile radio systems to
accommodate a given number of users. The goal of all these schemes is to split time, frequency, or
the signal space into concurrent users by allocating them separate time slots, frequency slots, or dis-
tinct signature waveforms respectively. In practical systems, a combination of the above three multiple
access schemes is usually employed (taken two at a time traditionally). An example is the European
Global System for Mobile Communications (GSM) [ETS95] or the North American 1S-54 standard that
are both based upon a combination of FDMA and TDMA multiple access strategies. Another example,
Qualcomm Inc.’s IS-95 [TIA93], is a direct-sequence (DS) CDMA based mobile cellular system, with
users assigned distinct, psudorandom (PN) spreading sequences in an otherwise frequency split system.
The goal is to make different user signals look as noise-like for each other as possible. Other methods of
spreading spectrum like frequency-hopping (FH) CDMA [Pro95] never really became very popular for
wireless systems. 1S-95 was the first instance of a cellular wireless system based upon spread-spectrum
technology, which was traditionally applied in military applications, carrying the great advantage of
hiding the signal in background noise and rendering the probability of interception low.

Perhaps the foremost concern in the successful implementation of future cellular netweaks is
pacity, and can be defined as the number of concurrent users that can be supported for a given total
bandwidth. Consequently, a number of comparisons between the above multiple access methods have
been carried out (e.g., [691] [JBS93]) in recent years in order to establish the superiority of one over
the other in terms of system capacity. However, no practical examples are available to make one be-
lieve that one system is better than the other. In terms of market success of second generation systems,
GSM has had the better of the North American direct sequence CDMA based standard 1S-95. The
major reasons for its success however were a European will to invest in second generation of wireless
communications and accords among system operators making the system coverage more global (roam-
ing) and seamless in some sense, and thus of interest for the subscriber. What can be said of second
generation systems is that they basically targeted the voice market (data being considered too high rate
to handle in those days) and all customer level comparisons of the two second generation rival systems
vis-a visthe voice quality are never actually a direct measure of the technical superiority of a system
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for all other applications.

The comparisons dealing with other system issues, however, do show that a maobile cellular network
employing DS-CDMA as the multiple access scheme would have its advantages. The Rafat-off
example, in the existing mobile systems is known to be fragile since back and forth relaying between the
two base stations and mobile is involved. The proposed CDMA systems get the better of this problem
by maintaining contact to the two stations during hand-off until the mobile is sure of the proximity of
one of them. This is called "soft hand-off".

Another statement frequently made is that performance of a CDMA network degrades relatively
gracefully[PMS82]vis-a-visthe interference. A network splitting time and frequency among users can
support no more thak’ users, if K’ time-frequency slots are available. A CDMA based network is
said to havesoft capacityin the sense that if a slightly degraded performance is tolerable during certain
periods, more users can be supported.

Second generation systems had no direct handle on interference. Multiple access schemes tend
to split-up the bandwidth among active users so that some sort of orthogonality is maintained, ei-
ther in time and frequency (GSM) or in terms of the signal subspace spanned by user waveforms
(DS-CDMA). Single user algorithms are then employed to estimate the parameters (channel impulse
responses), and to detect the user of interest. However, the capacity of these systems is interference
limited e.g., co-channel interference in GSM, and multiple access interference (MAI) in DS-CDMA
systems. In TDMA/FDMA based systems, like the former, the problem is not so critical, since co-
channel interference is kept to a minimum by using the technique of frequency planning, where the
same frequency band is allocated to cells far apart from each other. Frequency re-use factord of
7 are common for GSM. In DS-CDMA based systems, there is no clear notion of cell boundaries,
emanating from the frequency re-use factor of unity. Thus, interference needs to to kept down by
employing strict power control. This situation arises, of course, when users’ spreading sequences are
non-orthogonal upon reception at the base-station, which usually is the case when user signals arrive
with different delays, and when the propagation environment leads to multipath propagation [Rap96].
Nevertheless, spread-spectrum is traditionally a well known technique [SkI97] for multipath mitigation
and the system performance may still be acceptable with single user detection techniques — such is
the case in 1S-95, and all the more the reason why third generation wireless communication systems
like the UMTS are based upon CDMA technology [ETS97a, PO98] and the RAKE receiver as the
standard reception technique. The RAKE receiver however operates under low loading ffaations
advanced techniques to reduce or cancel interference will need to be employed for increased data-rate
applications or increased loading fractions.

|.2 Characterization of the Propagation Channel

There are three basic phenomena that influence radio propagation in wireless communication sys-
tems. These are

¢ reflection which occurs when a propagating electromagnetic wave impinges on a smooth surface
with a dimension several times larger than the wavelengjth (

o diffraction, arising when a dense obstructing body of dimension larger thées in the path
between the transmitter and receiver; the electromagnetic wave rolls around the body and can

transferring control to the closest base-station as mobile traverses cell boundaries
2defined as number of users per processing gain
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reach the receiver even when there is no direct line-of-sight path, and

e scatteringwhich happens when the wave strikes a rough surface or a body whose dimensions are
lesser than or of the order af thus causing the reflected energy to scatter all over.

Depending upon the type of environment, i.e., urban, rural etc., one or several of these phenomena
might occur. Therefore, channel models have been developed for particular environments [COS89]
that take into account the effects of these mechanisms, and translate them to signal distortions like
time-spreading and loss in signal-to-noise ratio (due to multipath components). The transmitted signal
can therefore be considered to be passing through a channel which has a certain impulse response, so
that the actual electromagnetics remain transparent to the systems engineer.

A further concern is the time-variations of the channels, in terms of the power arriving at the receiver,
referred to asading and of which the two major types are as follows.

e Large-scalefading, defined as the average signal power attenuation due to motion over large
areas, occurring due to major contours (hills, buildings etc.) between the transmitter and the
receiver. The receiver is said to be shadowed by these imposing obstacles. Shadowing is statisti-
cally characterized as a log-normally distributed random variable idfthe power transmitted to
thekth mobile situated at a distandg from the base-station, then the received power is given by
Prap = Pap — Ly.aB; Liag = Li(do)a + 1010g10(§—§)” + G, where,(§, denotes a zero-mean
Gaussian random variable (in dB) with standard deviatofalso in dB,~6-10 dB). The large-
scale fading mechanism is surroundings and distance dependent, i.e., even for vehicles moving
at high speeds, the variation over time is rather sléw(dy)qg is the free-space path-loss at a
reference distanc&, somewhere close to the transmitting antenna [Hat80]. Hence the estimate
of the total path loss (in dB) including the mean path-log (power loss with distance) and
the variations about the mean accounting for shadowing, can be obtairec. for free space.

It can be smaller in the presence of guided wave phenomenon in urban streets and larger when
obstacles are present, e.g., when the mobile station is situated indoors.

e Small-scaldading manifests itself as rapid changes in amplitude and phase of the received sig-
nal. These variations are the result of a large number of multipath components with uniformly
distributed phases adding up over time. When the received signal is composed of multiple re-
flected rays plus a significant line-of-sight (non-faded) component, the envelope amplitude due
to small-scale fading has a Rician pdf. The fading in this instance is dali@an fading As the
amplitude of the non-faded component goes to zero, the Rician pdf approaches a Rayleigh pdf,
given as [Rap96]

o2 (1.2.1)
0 otherwise

ro_r
—e 222 forr>0
p(r) =

where, r is the envelope amplitude of the received signal, and is the mean power of the
received signal. Rayleigh fading is considered to occur in most urban channels.

The worst case variations can be of the orde2®B0 dB. Of course, these variations are carrier
frequency dependent and their rapidity, for the system under consideration, depends upon the
transmission rate and relative speeds (Doppler effect) of the transmitter and the mobile unit. The
fading rapidity classifies channels as eitfastor slowfading channels.
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To sum up, a mobile moving over a large area receives signals that experience both types of fading;
the resultant fading undergone can therefore be considered to be small-scale fading superimposed over
large-scale fading.

[.2.1 Wide-Sense Stationary Uncorrelated Scattering (WSSUS) Model

The notion of WSSUS ( [PZE95] and references therein) stems from modeling the signal variations
arriving with different delays as uncorrelated. It has been shown that such a channel is effectively WSS
in both time and frequency domains. The model is very general, and is applicable to all frequencies
and all time delays. There are four functions that make up the model, and serve as benchmarks for the
characterization of a channel as seen by the signal propagating through it. These four functions [Skl97]
are shown in fig. I.1. In the following, we shall examine these functions and shall discuss their impact
on system design in terms of transmission parameters and receiver structure.

R(3) IS(AS)]
Fourler
Transforms
Af
0 0
==
T,, maximum excess delay jo = = coherence bandW|dth
€Y (b)
S(v) R(A?)
_—=
Fourier
Transforms
v At

fc - fd fc fd + fc v v
‘ ‘ %
fa spectral broadening ‘

= Ld coherence time

() !

Figure 1.1: (a) Multipath intensity profile, (b) spaced frequency correlation, (c) Doppler power
spectrum, and (d) spaced-time correlation function of the channel.

[.2.1.1 Multipath Propagation

Fig. I.1a shows the multipath intensity profil&(é) as a function of the delay,. Most wireless
radio channels consist of multiple echoes (discrete paths). The multipath intensity profile defines the
maximum excess delay,,, as the time elapsed between the first and the last (significant) received
copies of the transmitted single impulse. For the most part, the last received copy would be selected by
fixing some power threshold. A good measure for this threshold could-26é dB below the strongest



|.2— Characterization of the Propagation Channel 5

component. Note that for an ideal system (with no multipait(}j) would be an ideal impulse with
weight corresponding to the total average received signal power.

Let us denote by, the symbol time of the transmitted signal. 7§, > T, the channel is said to
exhibit frequency selective fadinthus inducingntersymbol interferenc@Sl) in the received signal.
Note however, that the transmission pulse, which usually is a band-limited pulse, also induces some
kind of ISl in the signal before transmission over the channel. However this is a system design param-
eter and can be undone at the receiver. The ISl introduced by the channel needs to be removed by the
equalizer (channel equalization), for the purpose of which, the channel impulse response needs to be
estimated.

On the contrary ifT,,, < T, the channel is referred to st fading In this case all multipath
components of a symbol arrive within the time duration of that symbol, and thus are unresolvable in
time if symbol level resolution (sampling rate 1) is considered at the receiver. No equalization is
required in this case. However, a loss in SNR can occur due to adding up of different multipath phasors
destructively.

An alternative way of characterizing multipath propagation is to look at the spaced-frequency cor-
relation function shown in fig. I.1b, which is the Fourier transformigh). |S(A f)| represents the
correlation between the channel’s response to two signals as a function of the frequency difference be-
tween the two signals. It can be thought of as the channel’s frequency transfer function. The coherence
bandwidth, fy, is a statistical measure of the range of frequencies over which the channel passes all
spectral components with approximately equal gain and linear phase. Note that

(1.2.2)

However, the approximation is not appropriate in statistical terms, since different channels with the
sameT,, can have very different profiles? (), over the delay span. We can write the relation in a
more apt manner as

o~ (1.2.3)

where,

o5 = \/82 - §°, (1.2.4)

is the RMS delay spread amds the mean excess dele@% is the mean squared a@él is the second
moment of R(d). Then, o5 is the square-root of the second moment/ip) [Rap96]. v in (1.2.3)

is a number which is actually based upon system requirements and measurements [Lee89], e.g., if
coherence bandwidth is defined as the frequency interval over which the channel’s complex frequency
transfer function has a correlation of at least 0.9, thea 50. A more popular approximation g,
corresponding to a bandwidth interval having a correlation of at least Gy5i5.

A channelis referred to as frequency-selectivg ik % ~ W, where the symbol rate,/ 7" is nomi-
nally taken to be equal to the signal bandwitith Frequency-selective fading distortion occurs when-
ever a signal’s spectral components are not all affected equally by the channel. Frequency-nonselective
or flat fading degradation occurs wheneygr> W. Hence, all of the signal's spectral components
will be affected by the channel in a similar manner. Flat-fading does not introduce channel-induced ISI
distortion, but as previously stated, performance degradation can still be expected due to loss in SNR
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whenever the signal is fading. In order to avoid channel-induced ISI distortion, the channel is required
to exhibit flat fading by ensuring that

1
fo> W= —. (1.2.5)

Hence, the channel coherence bandwitlttsets an upper limit on the transmission rate that can be
used without incorporating an equalizer in the receiver. To sum up, excess signal dispersion time and
coherence bandwidth are the parameters that describe the channel’s time-spreading properties.

A cellular mobile communication system like GSM with a signal bandwidth0ofkHz. is an ex-
ample where the channel coherence bandwidth is lesser than the signal bandwidth, or as viewed in the
time domain?,,, > T, leading to significant ISI. The GSM channel is therefore sufficiently frequency
selective to require the use of an equalizer at the receiver [ETS95]. A Viterbi equalizer [For72] is
used in GSM systems. In a typical DS-CDMA based system, like 1S-95, on the otherhard, T,
and therefore no equalization is deemed necessary. The spread-spectrum signal bandwidth is approxi-
mately equal td /T, whereT is the chip duration; hence, the normalized coherence bandyjdth
of approximately unity implies that the coherence bandwidth is about equal to the spread-spectrum
signal bandwidth. This describes a channel that can be called frequency-nonselective or very slightly
frequency-selective. A RAKE receiver [PG58] [SOSL94] is employed to provide multipath diversity.
We shall discuss the operation mechanism and particularities of the RAKE receiver for DS-CDMA
systems in more detail in a subsequent section.

1.2.1.2 Time-Variance of the Channel

Multipath propagation is a phenomenon that characterizes the received signal in a fixed area. It does
not offer information about the time-varying nature of the channel caused by relative motion between
a transmitter and receiver, or by movement of objects within the channel. In practical mobile radio
applications, the channel is time-variant because motion between the transmitter and receiver results
in propagation path changes. Thus, for a transmitted continuous wave (CW) signal, as a result of
such motion, the radio receiver sees variations in the signal’s amplitude and phase. Assuming that all
scatterers making up the channel are stationary, whenever motion ceases, the amplitude and phase of
the received signal remains constant; that is, the channel appears to be time-invariant.

The WSSUS model describes equally well the time-variation of the channel in terms of transmitted
signal parameters and relative motion of the transmitter and the receiver. For example, fig. I.1d shows
the functionk(At), designated the spaced-time correlation function; it is the autocorrelation function
of the channel’'s response to a sinusoid. This function specifies the extent to which there is correlation
between the channel’'s response to a sinusoid sent at fisred the response to a similar sinusoid sent
at timety, whereAt = t, — t;. Thecoherence timgly, is a measure of the expected time duration
over which the channel’s response is essentially invariant. Note that for an ideal time-invariant channel
(e.g., a mobile radio exhibiting no motion at all), the channel's response would be highly correlated for
all values ofAt, and R(At) would be a constant function.

A completely analogous characterization of the time-variant nature of the channel can be given
in the Doppler shift (frequency) domain. Fig. I.1c shows a Doppler power spectral desigity,
plotted as a function of Doppler-frequency shift, Usually, the Doppler spectrum, for the case of the
dense-scatterer model, a vertical receive antenna with constant azimuthal gain, a uniform distribution
of signals arriving at all arrival angles throughout the raf@er), and an unmodulated CW signal, is



|.2— Characterization of the Propagation Channel 7

defined as [Rap96]

S, = ! . (1.2.6)

2
Tfay/1 — (}’—d)
A detailed description of the reasons for this bowl-shaped spectrum can be found in [Jak74]. The

largest magnitude (infinite) of (v) occurs when the scatterer is directly ahead of the moving antenna
platform or directly behind it. In that case the magnitude of the frequency shift is given by

v
where,V is relative velocity, and is the signal wavelength. It can be seen thgis positive when the

transmitter and receiver move toward each other, and negative when moving away from each other.

Knowledge ofS(v) allows us to learn how much spectral broadening is imposed on the signal as a
function of the rate of change in the channel state. The width of the Doppler power spectrum is referred
to as the spectral broadening or Doppler spread, denotef},bgnd is sometimes called the fading
bandwidth of the channel. Note that the Doppler spr¢gadand the coherence tim#;, are reciprocally
related (within a multiplicative constant). Therefore, we show the approximate relationship between
the two parameters as

N 1
fa

Hence, the Doppler spredd or 1/7 is regarded as the typical fading rate of the channel. Like in the
relationship between rms delay spread and coherence bandwidth, there is no strict relationship between
the coherence time and Doppler bandwidth, unless one defines a measure; e.g., one may define channel
time coherence dfj as the maximum time delay between the transmission of two sinusoids one after
the other so that they have a correlatiorsolUsually, fors = 0.5 [SKI97]

T, (1.2.8)

9
167 fyq°

(1.2.9)

o~

Other ways of definind@, also exist [Lee89]. The time-variant nature of the channel or fading rapidity
mechanism can be viewed in terms of two degradation categdasdading andslowfading. The

former is used to describe channels in whigh< 7" (1/7 approximately equal to the signaling rate or
bandwidthi?’), i.e., the fading rate is greater than the signaling rate. Fast fading describes a condition
where the time duration in which the channel behaves in a correlated manner is short compared to
the time duration of a symbol. Therefore, it can be expected that the fading character of the channel
will change several times while a symbol is propagating, leading to distortion of the baseband pulse
shape. Since the pulse shape is not known any longer, a matched filter at the receiver cannot be defined.
Consequently, synchronization problems, among others, will arise.

A channel is generally referred to as introducing slow fadingif>> T (signaling rate is greater
than the fading rate). Here, the time duration during which the channel behaves in a correlated manner
is long compared to the time duration of a transmitted symbol. Thus, one can expect the channel state
to virtually remain unchanged during the time in which a symbol is transmitted, i.e.,

W > fa, or T < 1Tp. (1.2.10)
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In section§ 1.2.1.1, it was indicated that due to signal dispersion, the coherence bandfyidsiets an
upper limit on the signaling rate which can be used without suffering frequency-selective distortion.
Similarly, (1.2.10) shows that due to Doppler spreading, the channel fadingfrategts a lower limit

on the signaling rate that can be used without suffering fast fading distortion.

In the 1S-95, the transmission rate is such that the symbol durdtide,much smaller as compared
to the coherence timé&} of the channel£ 5ms. at 75 mph. for a mobile user at a carrier frequency of
900 MHz). The variations of the channel are therefore slow as compared to the symbol rate (typically
of the order ofl 0 kilosymbols/sec.) and we can classify the fading process as slow fading. The fading
rate of the channel gives a measure of how often power control needs to be exercised or how often
the channel impulse response needs to be re-estimated (and the receiver adapted). In GSM, bursty
communication is adopted and it is considered that the coherence time of the channel is longer than the
burst duration. Training symbols are placed in the middle of the burst to have a good correlation of the
estimated channel impulse response with the actual channel impulse responses for signal on both sides
of the training sequence up to the edges.

In summary, practical systems avoid the pitfall of fast fading by having a reasonably high signaling
rate satisfying (1.2.10). Other ways of combating fast fading are the use of error-correcting codes
and interleaving [Rap96]. The effects of frequency selective fading can be mitigated by the use of
equalization, or by spreading the signal over a sufficiently large bandwidth (DS/SS systems).

.3 DS-CDMA Signal Model

Sectiorg 1.2 gives a fairly comprehensive description of the mobile radio channel, laying the ground-
work for the assumptions and hypotheses put to work in the following part of this document. Unless
otherwise stated, for the course of this work, we shall consider a slow fading frequency selective mul-
tipath channel, so that the channel coherence time is very long compared to the symbol duration. The
multipath channel under consideration is described by a set of delayed echos [COS89]; the channel is
therefore akin to a tapped-delay line, and can be considered finite-impulse response (FIR) for all prac-
tical purposes. If there are very few (significant) taps, and their exact positions w.r.t. some reference
are known, then the channel will be referred to aparsechannel.

1.3.1 Definitions, Notations, and Hypotheses

We shall start by setting up a few notations and hypotheses for the signal model that will be carried
through this dissertation.

1.3.1.1 Equivalent Baseband Description of the DS-CDMA Signal

We denote b)T the common symbol duration, afid, the chip duration of the DS-CDMA signal.
The ratioP = T is known as th@rocessing gainspreading factoor bandwidth expansion factor in
the literature [Vit95]. Let us consider that théh user transmits a symbol sequereg (n) } belonging
to a finite alphabet{2. The symbol sequences is first spread by ktieuser’s periodig spreading
sequence(p), p € {1,...,P — 1}, and later scrambled by lang [TIA93] pseudo-noise (PN)
sequencesy ({). Thechipsof the spreader and the scrambler belong to a finite alph@bet,

?periodic from symbol to symbol
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We shall exclusively consider linear modulations [Pro95]. The case of some non-linear modulations
has also been taken up [Tri99] by approximating them as linear modulations. The continuous-time
baseband signal (or the complex envelope) at the output of the linear modulator can be written as

+oo

pr(t) = Y plt = IT)be(D). (1.3.2)

[=—0

p(t) is the pulse shaping filter, assumed to have strictly limited (one-sided) bandWidth[Pro95],
and is usually a raised cosine (RC), or a root-raised cosine (RRC) pulse. It is cledr #iab is the
effective bandwidth of théth user’s signal. In spread spectrum systeisz Ti The spread and
scrambled chip sequengg(!) is ani.i.d. sequence.

ax(n) R?ipr)E:;P @ QJ br(1) o) x(t)

Figure 1.2: Spread signal for kth user.

In the above model, the spread signal is referred tamesiodicsince the scrambler removes the
periodicity introduced by the sequenegs$p). We can also write (1.3.1), in the absence of scrambler as

+o0
w(t) = D er(t — nT)ax(n), (1.3.2)
where,
P-1
Vp(t) = ) p(t —iTe)ep(d), (1.3.3)

Il
=]

7

is the spreading waveform for ti¢h user in the absence of scrambling. If the scrambler is active, then
¥ (t) can be replaced by, ,,(¢) in (1.3.2) and (1.3.3) to express its dependence on the symbol index,
n.

[.3.1.2 Multipath Channel

The propagation channel is characterized by a« M matrix with elementsgy ,.,, (1 < k >
K; 1 <m > M), havingK inputs (number of users) and outputs (humber of sensors or antennas
at the receiver). This model is a linear model owing to the assumption that the principle of super-
position of signals from different users holds in this case. As discussed in section .2, the multipath
propagation environment can be approximated by a small number of delayed and phase-shifted copies
of the transmitted signal. Under these assumptions, the channel fethtiiser, as seen from theth
sensor can be written as

Q-1
S (1) = Y S(t = Ty ) b, (), (1.3.4)

9=0



10 | — Introduction
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Figure 1.3: Baseband signal model for the RX signal atrth sensor.

where, () is the number of paths (assumed without loss of generality to be the same for all users),
or.m(q) and7, i, are thegth path gain (complex) and delay for théh user and thenth sensor re-
spectively. The latter depends on the angle of arrival and the geometry of the antenna/sensor. The
values of these delays depend on the propagation environment (rural, urban, etc.) [Rap96]. In a mul-
tiuser context, there will be a uniformly distributed mutual arrival delay between signals of different
users, rendering them mutually asynchronous. We shall refer to this detay fas the kth user with

respect to some reference.

1.3.1.3 Reception Filter and Discrete Time Channel

Consider the signal model shown in fig. 1.3. The causal low-pass filtered channel as seen from the
mth sensor is

AT,
i (1) = /0 p(t — T)bpm (T)dr, (1.3.5)

where, p(t) is the combined TX/RX filtéi(assumed to be the same for &llusers), andy, . (t) is
the continuous time propagation channel impulse response betwegththeer and thenth sensor
given by (1.3.4).7, denotes the chip period, ard!. is the maximum duration of they, .., (¢), i.e., the
delay spread of the propagation channglis a positive integer. The TX filtep(¢) is a band-limited
pulse shaping filter (e.g., a root-raised cosine, with an excess bandwadtishown in fig. 1.4), while
the RX is an anti-aliasing, ideal low-pass filter with a cut-off frequency corresponding to the sampling
frequency}V. Hence, to satisfy the anti-aliasing condition imposed by the well-known sampling theo-
rem [Vai93], the bandwidthl’, of the low-pass RX filter can lie anywhere beyofid. = (1 + «)/T,
which is the Nyquist frequency, and corresponds to critically sampling the received signal to avoid
aliasing.

Let us consider sampling at a rdfé. The oversampled discrete representation for the overall chan-
nel can now be written as

L-1 I

T (8) = 3 p(t = 557) Bk (1) (1.3.6)

(=0

‘the RX filter is just an anti-aliasing low-pass filter, hence the convolution of the TX and RX filters is just the TX pulse-
shaping filter
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Figure 1.4: RX filter with cut-off frequency 7-, and L2,

The¢y, ,,, (1) are the discrete representation/gf,, (¢), corresponding to a sampled version (at fatg

of an ideally low-pass filtered version of; ,,, (¢). It must be noted that in principle, W > f,,. as
shown in fig. 1.4, the discrete time representatiop,, ({), of the propagation channel is not unique.
One can essentially add any signal to it that lies within the shaded portion (befiwgeand V) to

alter the coefficientsgy, ,,, (1), since the components corresponding to those frequencies will be removed
by the TX filter. This reflects the redundancy introduced in the sampled channel coefficients due to
excessive oversampling. Alternatively, one can adjust the sampling freqiErtoyhave the cut-off
arbitrarily close to the TX pulse bandwidth. This can be achieved

e either by oversampling by a factorand then downsampling by a factpywith 3 > ~, so that
g — 1 + « (this results in a uniformly sampled signal)

e or by non-uniform sampling, in the event of which one still needs to satisfy the following exten-
sion to the sampling theorem (see e.g. [Mar87])

Theorem 1
A signal with limited spectral support can be reconstructed from its non-uniform samples as long as
the average sampling rate exceeds the Nyquist rate.

Furthermore, the representation of the overall channel in terms of sampled versions of TX/RX filter
and the actual channel is justified by the following result.

Theorem 2

The sampled version of the convolution of two band-limited signals can be represented by the convolu-
tion of the sampled versions of the two signals, once the sampling rate equals or exceeds the Nyquist
rate for at least one of the two signals.

It must be mentioned that in the instance of a sparse channel, as is the case of several mobile commu-
nication scenarios, only a few of the, ,, (/) are non-zero. The overall channel in (1.3.6) can now be
sampled at any raté/ T to obtain

L-1

. )
Pkm (nT. + ]7) = lz_;p(nTc +7J

T, )
— = —)opnm (1), 1.3.7
= )0k (D) (13.7)
where,j = 1,---,.J,andn = 0,1, ---,¥, where,¥ = A + &, and®, the effectiveduration of the
chip pulse shaping filtes(¢). The above equation can be written as

T, _
T (Ve + 5 =) = P (1) By (1.3.8)
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and where,
.Tc ~Tc L -1 T
pi(n) = [p(nTc-l-j—J),...,p(nTc—|-]7__) ,

and,Ekm = [0km(0), ..., Opm(L — 1)]T, where, L is the effective FIR length of the low-pass fil-
tered and sampled channel impulse response.

Now, the overall chip-rate channel for théh user and the:th sensor can be written as

Ek,m = {hk,m (0)7 hk,m(%)v s 7hk,m((J_J1)Tc)7

B (Te) s B (Te + Z2), g (O T+ %)}T (139
and,
A R R Y
is theM JW x 1 overall channel vector as seen by thlesensors.
P= [po(o)vpl(o)v ey Py1(0),po (1), Py (W — 1)]T (1.3.10)
is theJW¥ x L pulse shaping matrix. We can now write the overall channel as
hy = (IM ® 13) ?r. (1.3.11)

_ 7 _g 1T
where,¢, = | @y 15+ Prm

If the front-end low-pass filter (and thus the sampling #&tes known) along with the discrete path
delays,, 1, then one can consider the substitution [CM99],

b= (Iy 0 1I) (1.3.12)

where IT is a L x  matrix of sampled sinc functioRscorresponding to the front-end LPF at the

=T —~ ~
sensors, ang, = [¢; 1, - .- , @y p7] iSthel x MQ vector of discrete paths of the propagation channel.
We can write the overall channel as

oy = (IM ® 1311) . (1.3.13)

Alternatively, one could write the overall channel vector as

hké hk,1(0)7 hk,l(%)7 s 7hk,1((J_})Tc)7 hk,2(0)7 hk,?(%) HE) hk,M(%% hk,l(TC)w © Y
T
B (To 4+ T=0Tey by (T B (Te + UL Ry (W), g (O, + =0Ty

in which case, we can write as

h, = Po,, (1.3.14)

5sinc(x) — din(zz)

T
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where,¢;, = [¢7(1),..., ¢F (L — 1)]", andd? (i) = [6g.1(7), - .- drar ()], withi € {0,1,..., L —
1}, and
IM®IE’1:J

P IM§PJ+1:2J ,

In @ 13(@-1)J+1:w

with 1317 representing rows to j of the pulse shaping matrix?. Note thathy, is just a permuted
version ofh. Including the sparseness in the channel, we can write as

h, = P Oo,, (1.3.15)

where I1 is an appropriately permuted version(dfi; © IT), and the rearranged vector of discrete paths
of the propagation channel &, = [¢41(0), ..., ¢z (0), ... ,¢k71(Q 1),... ka Mm(Q — 1T

The above model gives a complete description of the equivalent baseband, discrete time, chip-rate
channel as seen by the receiver, including the TX/RX filters and the channel output sampling rate. It
becomes clear from the above discussion, that the specular radio channel (a few echoes) will yield
a different set of coefficients depending upon the ideal RX filter bandwidth, and thus the sampling
rate. Similar treatment of the channel modeling problem has been introduced in [NCP]. There is
also a definite link with the case ahnonical coordinatess introduced in [SA99, OSV99], where
the authors argue that the representation of the discrete-time channel up to infinite precision is not
necessary and that a set of basis functions (canonical coordinates) suffice to represent the channel.
Signal processing within this basis can be performed to build the desired receiver, ensuring avoidance
of unnecessary complexity incurred by processing in inactive coordinates. Of course, the number of
these basis functions does relate to precision, especially in numerical evaluations.

1.3.1.4 Diversity Reception

If the M sensors are located sufficiently far apart (mutually), we obithitkelayed and phase-shifted
copies of the received signal, leading to spatial diversity. The casg/fet 2 is shown in fig. I.5.
Two physical diversity channels are thereby created. Alternatively, oversampling the signal received
at each sensor with a ragé also leads to artificially created diversity [Ung76]. This mechanism is
depicted in fig. 1.6 for the case of = 2. The sub-channel&; and H, in this case are polyphase
components of the oversampled channel [PRS97]. The model obtained by either of the two methods
creates sub-channels and is thus referred tow@tichannemodel in the literature. Referring back to

\i Yi,n
< Yin hl

bn

Do

Discrete-time channels at chip rate

Figure 1.5: Multiple sensor diversity at the receiver.

section 1.3.1.3, let us suppose that ttie user’s signal received at theth antenna attime7'.+57./.J
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Figure 1.6: Oversampling of the received signal.

iSyg,m (nT.+j1./J). Stacking together the oversampled signal in a vector we can writgthiestant
received signal as

T, NN
Yim (7) = | Y (nTe), Yam (nTe + 7)7 ------ s Ykom (NTe + (I — 1)7)
(1.3.16)
Stacking together the samples on/gllsensors, we have,
T
yr(n) = [ygl(n),yga(n) ...... ,ng(n)] , (1.3.17)

as the overall (diversity) signal for theh user at thexth instant. As mentioned in [SI093], there are
limits to the oversampling factoy, that can be employed in practical systems, for there may not be
enough excess bandwidth in most cases to exdeed’.

Other forms of diversity also exist, namely polarization diversity, transmit diversity [Win98, ETS97a],
and smarter methods where real and imaginary components of a real constellation (BPSK, for instance)
are exploited to create virtual sub-channels [Tri99]. Unless stated otherwise, we shall stick to multiple
sensors/oversampling at the receiver, during the course of this document.

1.3.1.5 Additive Channel Noise

The thermal noisey(t) is added at the sensors, at the front-end of the receiver. It is modeled as
a white Gaussian circular random variable with zero mean and a variantg. off the sensors are
more tham\/2 apart in space, whereis the wavelength, then the noise can be considered as spatially
white. The noise power will be equally distributed across Mhesensors if they were identical. The
spectrum of white noise is very large (theoretically infinite) and is considered flat over all finite signal
bandwidths.

Most existing literature (see survey in [Mos96]) considers a chip-matched filter baseband front end,
followed by chip-rate sampling without explicit timing reference. However, chip-rate sampling in
the case of a band-limited TX pulse with non-zeros excess bandwidth, does not constitute sufficient
statistics [Kay93] for detection purposes unless the exact timing epoch is available. The noise also gets
colored at the output of the chip-matched filter. To get around these difficulties, we consider a low-pass
front end, leading to a sampled version of noise that remains white.
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Consider the case of one sendadr,= 1. NO is the power spectral density of the real (or imaginary)

part of the additive noise;(¢). The RX fllter as stated in section 1.3.1.4 is an ideal low-pass filter:
I1(t) = —=sinc(tW). At the output of this filter, we shall have

RvATd
+oo
v, (t) = v(t) x I1(t) = / H(r)o(t — T)dr, (1.3.18)
which will be sampled at instants= jE J € Z, leading tov, (j f+°° j + — T)dr.

Upon evaluation of the auto-correlation of the output noise [Tr|99] we reallze that the noise remains
white but it is amplified by a factor of: o2, = JA.

1.3.2 Received Discrete Time Signal

Fig. 1.7 shows the equivalent baseband received signal modelKTieers are assumed to transmit
linearly modulated signals over a linear multipath channel with additive Gaussian noise. It is assumed
that the receiver employs/ sensors to receive the mixture of signals from all users. The receiver
front-end is an anti-aliasing low-pass filter. The continuous-time signal receivedatiihgensor can

pulse-shaping channel v (t)

filter 77
, (i y, (p)
() \p e (p) e p(t) Prm(t) é rxfiter /T (‘J)@‘
‘ T (1/T.-Chip Rate)
[ P ()
Qm (p) Um (71)
. \V gm(p) _ \ \V
tp e () R (p) D= = —= G () D=y, (n)
ar(n) ag(n)

Figure I.7: Signal model in continuous and discrete time, showing only the contribution from one
(kth) user.

be written in baseband notation as

ZZak n)grm(t — nT) 4 v, (1), (1.3.19)

k=1 n

where thez;(n) are the transmitted symbols from uger!” is the common symbol period;, ,, (¢) is

the overall channel impulse response (including the spreading sequence, and the transmit and receive
filters) for thekth user’s signal at the:th sensor, andv,,,(¢) } is the complex circularly symmetric
AWGN with power spectral density,. Assuming the{a;(n)} and{v,,(t)} to be jointly wide-sense
stationary, the procedy,, (t)} is wide-sense cyclostationary with peridd The overall channel im-

pulse response; ,,, (¢), is the convolution of the spreading cogeandhy, ,, (¢), itself the convolution of

the chip pulse shape, the receiver filter, and the actual channel representing the multipath environment
(see sectiong1.3.1). This can be expressed as

3

G () = Y cr(p)hiem (t — pTe), (1.3.20)

=
Il
=}
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whereT. is the chip duration. The symbol and chip periods are related through the processing gain,
P: T = PT.. SIP infig .7 denotes serial to parallel conversion (vectorization) with downsampling
with factor./. Sampling the received signal At(oversampling factor) times the chip rate, we obtain

the wide-sense stationafyJ x 1 vector signaly (n) at the symbol rate. It is to be noted that the
oversampling aspect (with respect to the symbol ré;t)ais inherent to DS-CDMA systems by their

very nature, due to the large (extra) bandwidth and the need to acquire chip-level resolution. This
aspect directly translates into temporal diversity and explains the interference cancelation capability of
these systems.

We consider the FIR channét,;, between theéth user and all of thel/ sensors to be of length
U, T.. Letny € {0,1,---P — 1} be the chip-delay index for thieth user:hy, ,,, (1) is the first non-
zeroJ x 1 chip-rate sample ok ,,,(p). Let us denote byVy, the FIR duration o .., (¢) in symbol
periods. It is a function o, nx, andP. We nominate the usdras the user of interest and assume
thatn,; = 0 (synchronization to user). The symbol sequences for other users are relabeled (delayed
or advanced), so that their relative delay with respect to ugts in [0, T').

Let N = S°i, Ni. The vectorized oversampled signalsidt sensors lead to a discrete-time
PM.J x 1 vector signal at the symbol rate that can be expressed as
K Ni-1 K
y(n) =Y Y gr(ar(n—i) +v(n) =D G, A, (n) + v(n) = GrAx(n) +v(n),
k=1 =0 k=1 (|321)
where, y1(n) Ypa(n) Yp,1m (1)
yn)=| : |y(n)= : Ypm (1) = :
yp(n) Ypm(n) Yp,Jm (1)

GinN, = [9x(Nk = 1)...9,(0)] , GN = [G1 N, - - GK Ny ]
T

Ap N, (n) =[ag(n — Np+1) .. .ak(n)]T , An(n) = [A1T7Nl (n).. .A£»7NK(n)] ,
(1.3.22)

and the superscript denotes transpose. For the user of interest (user, 1)) = (C1(i) @ Inr) b,
where,h; isthe M JW, x 1 propagation channel vector given in (1.3.14) (1.3.14) and can be written as

hi1 hii him (1)
h, = : yhi; = : v R im = : )
hi,w, hy v i (J)

© denotes the Kronecker product, and the Toeplitz matri¢e6) are shown in fig. 1.8, where the
band consists of the spreading cddg ... c¢p_;]” shifted successively to the right and down by
one position. For the interfering users, we have a similar setup except that owing to asynchrony, the
band in fig. 1.8 is shifted down, chip periods and is no longer coincident with the top left edge of
the box. We denote b¢'{, the concatenation of the code matrices given above for usér 1=
(€t ... cTv - )"

From (1.3.14) and (1.3.15), we can see thatcan be split up as a product of the pulse shaping filter,
the RX filter and the actual discrete tap propagation channel. Then we can write as

g1(1) ={C1(1) @ Ipms} by = 61(1) P = 61(’) b1, (1.3.23)
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Figure 1.8: The Code Convolution Matrix C, .

where,
E1(i) = {C1(i) @ Ius} B, and, (i) = {C1 () © Iy} P I (1.3.24)

In all cases it will be assumed th&t\/.J > K, a condition which holds even if the loading fractfon
exceedd.

1.3.2.1 Periodic Spreading Sequences and Frequency Domain Formulation

Usually two modes of transmission are considered in communication system, namélyrshe
mode, where packets are transmitted independently of each o#met thecontinuousmode, where
adaptive receivers can be designed to track the slowly fading characteristics of the channel. If the packet
size is very long, and the edge effects are negligible, the two modes can be considered equivalent in
a time-invariant channel. This time-invariant, asymptotic scenario, with periodic spreading sequences
allows us to formulate the problem in the frequency domain.

For the purpose of these developments, we introduce the delay operadt¢corresponding ta !
in the z-transform domain). Then, in the noiseless cagé) (= 0), we can write (1.3.21) as

K K Ni—1 ' K Np—1
y(n) =Y Gul@)ar(n) =) (Z gm)q-l) ar(m) =Y " giliar(n —i).
k=1

k=1 =0 k=1 =0 (|325)
We can write the system model concisely in the frequency domain as a MIMO systerf iriiuts
(users) and®M J outputs. Considering; = No = ... = Ng = N,
Ng—1
y(n) = G(q)A(n) + v(n) = Y g(i)A(n — i), (1.3.26)
=0
with, G(q) = [Gi(q) --- Gx(g)],andA(n) = [ar(n) --- ax(n)]"
The power spectral density matrix of the above vector stationary process can be written as
Siy(2) = G(2)S1(2)G!(2) + Sy (2). (13.27)

Note that the signal part (contributions Bfusers) is low rank itk < PM.J.

®loading fraction is defined abF = £
"most often in TDMA based systems to benefit from burst length durationherence time
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1.3.2.2 Cyclostationarity of the Received Signal

In the instance of a time-invariant channel and periodic spreading sequences (PSC), the received
signal is cyclostationary at the symbol rate, i.e.,

Ry, (n,7) = E{y(n)y" (n — 7} (1.3.28)
is cyclic inn with period PMJ. Thus thePM.J x 1, y(n) is a stationary vector signal. The model

holds for both the periodic uplink and the downlink of a DS-CDMA based system.

On the contrary if aperiodic scrambling is active (see fig. 1.2), so that symbol-to-symbol spreading is
aperiodic, then the received signal is cyclostationany with period M .J. Chip-rate cyclostationarity
of this kind holds for a single user’s signal in the aperiodic downlink. However, if the scrambler is
the same for all downlink users (cell dependent) [ETS97a], then the sum signal received at the maobile
station is still symbol rate cyclostationary.

1.3.3 Structure of the ISI
Let us stackl successivey(n) vectors in a super vector
Yi(n) =To(GN) ANk -1)(n) + Vi(n), (1.3.29)

where,
To(GN) =[Te(GiNy), - TL(GrNg)] S

and7z (z) is a banded block Toeplitz matrix with block rows andjz 0, (1_1)] as first block row

(p is the number of rows i), and Ay r(1,—1) () is the concatenation of user data vectors ordered as
(AT Npo1 () AS np o1 () - AR v 1 (n)]T. Vi (n) is the additive noise vector. We shall
refer to7;, (G, v, ) as thechannel convolution matrifor the kth user. Consider the noiseless received

Yi(n) Ti.(G1,n,) AN, (n)

YN1 l:l ”l(n’*d)

Figure 1.9: ISI for the desired user.

signal shown in fig. 1.9 for the contribution of usér(without loss of generality, the desired user).
The desired symbol at theth instanta; (n — d), multiplies the columryg, of the channel convolution
matrix, 7, (G1 n, )

Due to the limited delay spread, the effect of a particular symhdh — d), influencesV; symbol
periods, rendering the channel a moving average (MA) process of dider 1 [Slo94b]. We are
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interested in estimating the symbol(n — d) from the received data vectdf;(n). One can notice
thata, (n — d) appears in the portiol” 5, of Y (n). The shaded triangles constitute the ISI, i.e.,

the effect of neighboring symbols diy,. The contributions from the other (interfering) users to the
received data vector have a similar structure. Note that to handle ISI and MAI, it may be advantageous
to consider the longer received data ve&or ().

.4 Parameter Estimation in DS-CDMA

In this section we briefly review the channel (and therefore the receiver) identification problem in a
historical perspective.

1.4.1 Training and Blind Philosophies

In order to determine a receiver structure, parameters like asynchronousmgeday the (multi-
path) channel impulse resporfsg of the user in question needs to be obtained. Traditional single user
channel estimation (and equalization) techniques were based on training, where the sender transmits
a training sequence (TS) known at the receiver and which is used to estimate the channel coefficients
or to directly estimate the equalizer. In GSM, for instance [Ste92], the data is organized and transmit-
ted in bursts. Each normal burst contains a midamble training sequence used to estimate the channel,
considered as time—invariant over the duration of a burst. In the single user in white noise case, least
squares channels estimation corresponds to ML. However, TS based methods also carry a major disad-
vantage: including TS decreases bandwidth efficiency; in GSM, for exaiple symbols of a burst
are used for training. In multiuser scenarios, to make matters worse, single user least-squares estima-
tion leads to a biased estimate. Joint LS is one solution to the multiuser case, for which users must
operate (quasi-)synchronously.

The concept oblind equalization emerged with the work of Sato [Sat75]. The philosophy of blind
estimation and equalization techniques is to estimate the channel or the equalizer based only on the
received signal without any training symbols. Later, the introduction of multichannels, or SIMO models
where a single input symbol stream is transmitted through multiple linear channels, gave birth to a new
approach to blind estimation techniques: when the received signal is oversampled at a rate higher than
the symbol rate, the resulting sampled signal is cyclostationary with the symbol rate. Gardner [Gar91],
Tong, Xu and Kailath [TXK91] proved that, due to spectral redundancy properties, both the amplitude
and the phase function of the channel can be identified from the Second—-Order Statistics (SOS) of the
data. This temporally oversampled model was shown to be equivalent to a spatially oversampled model
where the signal is received through multiple sensors [TXK93].

In the multiuser context (MIMO model), however, channels can only be identified up to a mixture

of users [Slo94b, Gor97]. The properties of this mixture depends on the relative lengths (orders) of the
individual user channels. Consequently, other properties of the signal like the higher-order statistics
need to be put to work to resolve this mixture. The general MIMO case in the SOS context is therefore
a problem with no practical scope. In the DS-CDMA multiuser problem, however, we can estimate the
channels of users from SOS up to a scalar phase factor as in the SIMO case [TX97a]. This issue will
be discussed in more detail in subsequent chapters, notably chapter Il, where we shall present a SOS
based channel identification algorithm.
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1.4.2 Channel Estimation by Training Sequences and Sparse Channels

Let us consider the problem of channel identificationfosynchronous users in a DS-CDMA sys-
tem by training chip sequences. Let us continue with the channel model developed in $&8tibr3,
and consider the transmission of a chip sequence of lehdhthekth user written as

bip(n) = [be(n),bp(n —1),... ,bp(n — ¥+ 1)]7

is the chip sequence vector for thth user at chip period. SinceWw — 1 is the overall delay spread
including the effect of the TX/RX filter and the actual propagation chanpgl(¢), we need to consider
a total of Vi, training chips per user, leading 8 = Ny, — ¥ + 1 chips of the known received signal.
Stackingkth user's training chips in & x ¥ Hankel matrix,B j, = [b(¥), bp (¥ + 1), ..., bp(Ne)]”,
and assuming that all users have the same channel lehgite can write the\/ N.J x 1 discrete time
received signal (sampled at ratg¢T.) corresponding to the training duration at thiesensors as

Yi={In@(Bu@I)}h+Vig={Ipy @ (B @I) P+ Vi, (1.4.1)

where, By = [By,- -, Bg] is the N x KV training chip sequence matriff = Iy ® Pisa
_ _ _pT
JKV¥ x KL matrix,¢ — {¢>1T, ‘e ,(j)i»] is the K LM x 1 concatenation of channel vectors of the

K users, anth = {Iy; @ P} ¢ istheJ K MW¥ x 1 overall channel vector for alk users and across
all M sensors. Let us further dena,; ® I; by 5 in order to simplify notationV ¢, represents the
vector of the additive white channel noise.

1.4.2.1 Structured Channel Estimation

Let Ny > 2¥ — 1 be the number of training chips per user. The unstructured least-squares estimate
of the multiuser channéi can be obtained as the solution to the problem

h=arg min|Ye - (In ©B)RJ%, (1.4.2)
h

resulting in

o~

h= {8 (IyeB) (o8 Y. (1.4.3)

Alternatively, taking into account the structure of the problem in terms of the knowledge of the pulse
shaping matrixP, we can obtain an estimate of the propagation channel as

& =arg min|Y— (In © BP) 3%, (1.4.4)

giving, as solution

6 = {Iyo (PPBHBP) " (I o BP)Y v,

- 1.4.5

—
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Rank Deficiency in the Pulse Shaping Matrix

As pointed out in [NCP97], if the sampling rate for the channel, ¥E.js large, then, so ig,
the FIR length of the channel impulse response (fine temporal resolution). Under these conditions the
pulse shaping matrixP can be fat rather than tall, arl’ (B B, @ I;)P becomes rank deficient.
The solution proposed in [NCP97] comprises of computing the SVP as P = UV, where the
J U x ¢ matrixU consists of the left orthonormal singular vectdsis the diagonal matrix of positive
singular values, an¥l is theq x L matrix of right orthonormal singular vectorgié theeffectiverank of
P), andreplacin@ by U (where,U = I'x ©U)in(1.4.5), wheneve is numerically ill-conditioned.
The column span oU is the same as that aP. Therefore, we can writd = (I; ©® P)¢ =
(In @ U)g, whereg = {Iy @ (Ix @ EVH)} ¢, resulting in

-~

g= {IM ® (ﬁH(Bfg B.21,)0) _1}(1M ® Bﬁ)HYts (1.4.6)

Fig. 1.10 shows an example of the singular value spread of the m&trixith a channel sampling rate
of W = 2/T., as shown in fig. 1.4, witty = 2 samples per chip, and a channel with= 24, so that
L is quite large. It can be seen that there is a large concentration of singular values at the two limits.
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Figure 1.10: Singular value distribution of P with W = 2/T..

However, there is no clear transition point in between (quite a few singular values are smeared out in
the transition region), with the result that there is no clear selection criterign for

One more drawback of the above approach is that in the case of sparse channels, i.e., when very few
of the ¢ ,,, ({) are non-zero, the SVD destroys the locality property in the ma®;x.e., while each
column of P was associated with a particul@y, . ({) (of which very few are non-zero), the singular
vectors inU are not, with the consequence that a certain delay contributes in all positions in addition to
its own position. In other wordsP andP are banded (so that, is sparse i, is), while U is not. No
gains can therefore be obtained if the channel is known to have a sparse rather than a full FIR impulse

response.

Estimation of the Fractionally Sampled Channel

Alternatively,I¥ can be made to approach the Nyquist frequerfigy, as closely as possible (in one
of the two ways as discussed above), in the event of whichithg!) become unique anf is smaller
than the case of integer sampling, i.B, = n/T., n = 2,3,.... As mentioned before, sampling at
W=(1+4a)/T,a=1/0,0 =1,2,3,... isrealizable by non-uniform sampling, e.g., with an initial
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sampling rate o#V; = 2/T., by taking all odd samples and one outcofperiodically) of the even
samples. As can be verified, the average sampling rate still satisfies the Nyquist rate, even though some
of the temporal resolution is lost. Sparseness can now be integrated in the model as the deletion of
the columns ofP (corresponding to fractional down-sampling), that multiply the insignificant (nearly
zero) elements ig.
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Figure 1.11: Normalized mean square estimation error (MSE) for structured and unstructured
channel estimation methods.

As an example, we considéf = 16 users in a quasi-synchronous system where the users are
block synchronous with a timing misalignment of up to a quarter of a chip. This scenario corresponds
to 100% loading (\ = processing gain) on the uplink of the TDD version of the UMTS proposal
[ETS97D] for third generation cellular systems. The transmitted block is assumed to contain a mid-
amble of Nis, = 256 training chips. For the maximum channel lengths (ISI) presumed in the third
generation systems, this number of training chips is insufficient to accommodate moreLtplamk
users. However, we consider scenarios where this number suffices for estimatioR aftehnels in
the unstructured fashion. Fig. .11 shows the normalized mean-square error (NMSE) of the channel
estimation algorithms based upon SVD and the fractionally spaced samglirgfers to unstructured,
s1 to the case where only the channel delay sprkaslassumed to be known, agglto the case where
timing delays of the few physical multipath components, ig.’s are known (estimated separately).

As seen in this figure, there is no difference between the performance of tke mathods, since the
sparseness is taken into account by both SVD based and fractionally spaced methods. However, there is
a significant performance gap between the two methods & tt@se when the channel is sampled at an
integer rate ¥ = 2/T. here) followed by SVD, and the fractionally spaced sampling with sparseness
exploited. Here, the TX pulse is a root-raised cosine with an excess bandwidth-df.22, and the
sampling rate i$.25/T..

For thes; SVD based method, the ratio of the maximum singular value tgtthene is taken to be
30 dB. As stated above (fig. 1.10), there is no clear selection criteriof fBimulations show that there
is a marked performance difference in setting the threshald*@s opposed to e.g35 dB, for which
the NMSE essentially becomes the same level as for the unstructured case. The same phenomenon is
observable if too few of the singular vectors constitiite

There is a slight flooring effect in all cases (understandably, more for the case of fractional sampling)
due to numerical approximations, e.g., the fact that the pulse shaping matrix and the RX filter are both
time-limited (and are hence only approximately band-limited).
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[.4.3 Deterministic and Gaussian Data Models

Referring to the signal model described in sectjdri3.2, we can consider ourselves to be in the
deterministic framework [Kay93] if both input symbols and channel coefficients are assumed to be
deterministic quantities. Consider the sample covariance matrix of the received¥igiii8.29), and
its expected value (w.r.t. the noise only,Ass deterministic):

M—-L-1

Ryy = To(Gx) | S Apm)Af ()| 77 (Gy) + 071, (14.7)
n=0

whereM is the length of the averaging window.

Deterministic methods are based on structural properties of the received signal and especially on the
low—rank property of/ (G ). For an irreducible channel [PRS97] and under certain conditions on the
burst length and input symbols, the channel can indeed be determined uniquely (up to a scale factor)
from the column space of (G ), which is referred to as thgignal subspacer from its orthogonal
complement called theoise subspace

In the Gaussian model, the input symbols are considered td.the Gaussian random variables
with mean0 and variancer2. This model may appear inappropriate as the input symbols are in fact
discrete-valued.

The purpose of the Gaussian model is to take into account first and second—order moments of the
data, which appear to play a predominant role in the multichannel context. In the blind case, the mean
is zero and the second—order moment is:

Ryy (0) = 02T (GN)T (Gn) + 021 (1.4.8)

Unlike the deterministic case, the input symbols in the Gaussian model are no longer nuisance param-
eters for the estimation @f,. The parameters to be jointly estimated are the channel coefficients and
the noise variance. The channel is identifiable up to a phase factor and Gaussian methods should be
solved using a phase constraint.

Already existing blind methods which base channel estimation on the second—order moments of the
data, and in which the input symbols are considesietl random variables, can be classified into the
Gaussian category. The Gaussian distribution is the simplest distribution, leading to simple derivations
and allowing to incorporate the first and second-order moments of theMataN (my (6), Ryy (),
whered is the parameter vector; the Gaussian hypothesis for the symbols leads to a Gaussian distribu-
tionforY.

1.4.3.1 Subspace Fitting Methods
The eigendecomposition &y is:
Ryy = VsAsVE + Vi Ay Vi (1.4.9)
where the columns dfs span the signal subspace and the columrigypthe noise subspaca, =

ol. Let Vs etV be estimates of the signal and noise eigenvectors obtained from the sample covari-
ance matrix.
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The signal subspace fitting (SSF) tries to fit the column spadg, 66 ) to its estimates through
the quadratic criterion:

”hrﬂlgn:l 1P, Ciha . (1.4.10)

The criterion is quadratic ig, but the method require an eigendecomposition, which can be costly.
Another variant of the subspace method called the noise subspace fitting (NSF) [AS97] is also fre-
guently used.

Several other methods, like the sub-channel response matching SRM [AS97], which is also called
Cross-Relation (CR) method [XLTK95], and is based on a linear parameterization of the noise subspace
can also be employed to obtain the desired user’s channel estimate. Note that in all these methods,
distinction between user’s channels is possible because of the partial knowledge and the distinctness
of the desired user’s spreading signature (pulse shape), which is not the case with usual multiuser
scenarios (co-channel interfereres in TDMA systems all have the same TX/RX filters).

1.4.3.2 Blocking equalizers determined by linear prediction

A minimum parameterizatio® of the noise subspace can be found in terms of prediction quanti-
ties [Slo94a, Slo94b, SPI5P can be obtained from the prediction filters or through the SRM-like
criterionmin |7 (P) Y ||* with specific constraints on several coefficientdbfdCDS98] [GS97]. The

P

channel is then determined uniquely by the subspace fitting crite”r;ttnr'gl |PCh|.
1|]*=1

1.4.3.3 Deterministic Maximum-—Likelihood (DML)

Consider a signal user situatidii,= 1, and suppress the subscripis (1.3.29). The DML criterion
corresponds to the maximization $fY |g), the Gaussian conditional probability density function of
the received dat¥’, given the channgl in white noise, and can be reduced to the least-squares criterion

min ||Y — T(Gn)AJ*. (1.4.11)
Allgll=1

This criterion can be solved directly in this form by minimizing alternatively wa.andg [PD98].

Another way of solving (1.4.11) is to eliminatd (by minimizing w.r.t. A and substituting its ex-
pressionin (1.4.11)) to get a DML criterion it

o vHpL
min Y PT(GN)Y . (1.4.12)
Computationally less intensive solutions to solve this criterion are based on a linear parameterization
of the noise subspace. Using the parameterizagion: ):

(1.4.12) = min YT (g%) [T(¢H) T (g)]

i T(gh)Y . (1.4.13)

The Iterative Quadratic Maximum-Likelihood (IQML) method was proposed in [Hua96]: at each iter-
ation, the denominatdf (g+)7* (g*) is considered constant, evaluated from the previous iteration, so
that the DML criterion becomes quadratic. In [Slo94a, dCS96], the IQML strategy was also proposed
based on the blocking equalizers. At low SNR, IQML is biased and performs poorly: SRM used to
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initialize IQML in [Hua96] performs in fact better at low SNR conditions. DML is the most pow-
erful method among all the deterministic methods, as shown in [dC99]. This method however stays
single user. Any multiuser parameterization®f () will necessarily require knowledge of channel
parameters of all users from the previous iteration. The DML therefore stays rather impractical for the
DS-CDMA problem and also for the general multiuser problem.

1.4.3.4 Gaussian Maximum-Likelihood

Again, we choose to stay in a single user caseYAs N (0, Ryy (6)), the GML criterion is:

) n[qin2] Indet Ryy () + YR, (0)Y . (1.4.14)

=[g,02

The Gaussian hypothesisis only used to build the GML criterion, which is solved using the true symbol
distribution. A semi—blind ML method based on this model was proposed in [dC99] and shown to give
better performance than ML based on the deterministic model. The Gaussian hypothesis for the sources
is also well known in in antenna array processing and direction of arrival finding [VON95] and the
associated ML is proven to give better performance than the deterministic ML methods [OVSN93]. It
was essentially introduced to solve the problem of inconsistency of joint parameter estimation resulting
from DML. Blind channel identification by GML was first introduced in [Bap96].

.4.4 The Semi—Blind Idea

header TS tail

. data - data .

¢ channel

Output Burst

TS based estimation

least squares (ML) Semiblind estimation
= ||
blind estimation combines TS and blind informations
Statistical information of outputs
data
_ @ blind estimate from data channel
NG

ﬁ; same channel ——
® phase recovery from pilot channel

pilot channel

Figure 1.12: Semi-Blind Principle: TS and pilot channels.

Recent work on single user blind channel identification [dC99] is based on the argument that these
approaches suffers from lack of robustness in various scenarios like channel order over-estimation
and proposes that SOS blind techniques should not be used alone but with some form of additional
information. Likewise, TS based methods are also hon-robustwhen the sequence is too shortto estimate
the channel impulse response. The useashi—blindechniques is therefore advocated to get around
these problems. We shall briefly describe the semi-blind idea in its raw form here while emphasizing
thatin the CDMA problems, blind channelidentification is robustto a great degree. Receiver adaptation
is however a different ball game [GS99a], and training information can be of utility to improve its
estimation. This issue will be discussed in chapter lIl.
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Assume that the data is transmitted either in burst mode or continuously. We assume that known
symbols are present in the burst in the form of a training sequence aimed at estimating the channel
or simply some known symbols used for synchronization or as guard intervals, like in the GSM or
DECT burst. The continuous transmission has a parallel channel originating from the same source,
like the downlink situation in 1S-95, where mutually orthogonal codes are assigned to the pilot and the
active users. In this latter case, it sufficess&mrchover the time-field of interest, by correlating the
received signal with the pilot sequence, for delayed multipath signals. As soon as delays are available,
phases and amplitudes can be recovered by a correlation version of the LS approach. Note that the
mechanism banks heavily on power control, and is calleds#scherbased orcorrelation based
channel estimation.

Training sequence methods base the parameter estimation only on the received signal containing
only known symbols, and all the other observations, containing (some) unknown symbols, are ignored.
On the other hand, blind methods are based on the whole received signal, containing known and un-
known symbols, possibly using hypotheses on the statistics of the input symbols, like the fact that they
arei.i.d. for example. No training information is integrated in the criterion. The purpose of semi—blind
methods is to combine both training sequence and blind information (see figure 1.12).

In short, semi—blind techniques, because they incorporate the information of known symbols, can
help avoid the possible pitfalls of blind methods (in whichever circumstances they occur). A thor-
ough discussion of the use of semi-blind methods for channel identification is given in [dC99]. There,
the problem was to improve the quality of channel estimate, or to identify channels otherwise non-
identifiable. We shall emphasize that training data can be useful for a variety of operations depending
upon the type of problem addressed [GS98a].

.5 Matched Filter Bound, Signal-to-Interference-plus-Noise Ratio and
Probability of Error

In the case of a single user in the AWGN channel, the probability of error depends on the SNR at the
input of the decision device [Pro95]. For the case of a BPSK input symbol constellation, the probability
of the error eventF., is proportional to

dmin
Q ( ) , (1.5.1)

20,

where,Q(z) = 1/V2x f;oo e‘édx, is the so called Gaussian distribution tail function [Pap91] or the
Q-function and is related to the complementary error functio@ ég) = 0.5 erfc{x/v/2}, ando? is

the additive noise varianBgandd,.;,, is the minimum distance between the signal constellation points.
In the literature [CGKS92], the square of the argument of(hieinction is called théMatched Filter
Bound

dmin
MFB 2 (1.5.2)

20,

In the multichannel (multiuser) context with ISI and MAI, if we suppose that the contribution of all
other symbols of all users, apart from symbe{n — d) has been removed (or does not exist) fig. 1.9,

8 N, ;
=2 for real signals
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then the error probability is given by

o |G
r. = (vair) = @ (21%l), (53)
o?||G1,n, ||% defines all the energy transmitted by the ISI channel due to the isolated sympok d).
A thorough treatment of the MFB is given in [Tri99].

Although the MFB represents a good performance measure, and corresponds to the performance of
the joint optimal MLSE [For72, Ver86], we shall prefer to compare the performance of parameter esti-
mators and the proposed interference cancelation schemes with their theoretical values. The reason for
such treatment is that all algorithms presented in this document are based upon statistical information
(second order statistics) of the received signal, and the major problem is to be able to estimate these
statistics with finite amount of data.

Another notion is that of the signal-to-interference-plus-noise ratio (SINR) at the output of a receiver.
The interference will be considered to include both ISI and MAI. We shall consider a single user
receiverf applied to the received signal in (1.3.29). Considering the input symbalscaszero-mean
with variances2, the output SINR of the receiver for the desired symbol is given as

SINR = Tad 9T
f(Byy - o2gial) £

In this document, we basically concentrate on linear receivers for interference cancelation [Ver98].
Therefore, we shall look at the output SINR as the performance measure for these receivers, and the
reference will be the optimal MMSE receiver of sectfoh6.2.2(of a certain FIR lengtR)

(1.5.4)

An approximation to the BER is to evoke the steady-state Gaussian approximation which consists
of modeling the residual interference plus noise at the output of the receiver as a Gaussian zero-mean
random variable noise [Mil95, Cai99]. The non-Gaussianity of this residual term in the two user case
is analyzed in [PV97]. Extension to more users is extremely difficult. Therefore in most cases, it is
assumed that the Gaussian assumption holds leading to

P.xQ (\/W) . (1.5.5)

.6 Receiver Structures

DS-CDMA receivers can basically be classified into two types. We shall refer to thesenaen-
tionalandmultiuserreceivers, thus adhering to the nomenclature in the existing literature [Ver98].

1.6.1 Conventional DS-CDMA Reception

For communications over an additive white Gaussian noise (AWGN) channel, and synchronous DS-
CDMA users x = 0, Vk), transmission of mutually orthogonal spreading waveforms fofthesers
results in an orthogonal system like FDMA/TDMA.

o for j =k
RGO B (1.6.)

°optimal MMSE receiver is essentially [IR
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The v, (t) are the unit energy (normalized) spreading waveforms given by (1.3.3). A conventional
matched filter receiver, matched to the desired user’'s spreading waveform results in automatic inter-
ference rejection. This behavior of the matched filter persists irrespective of the powers of interferers
due to the orthogonality of the modulation scheme. However, any diversion from this ideal system,
e.g., choice of non-orthogonal spreading codes, deviation of the TX/RX filters from a Nyquist pulse,
non-optimality of the RX timing, mutual asynchrony of users, multipath propagation, or a combination
of these phenomena results in a non-zero interference term at the output of the matched filter.

[|correlator bank

Yr(n) 1 ay(n-d
) T, ) h{[ ala, [

Figure 1.13: Discrete time coherent RAKE receiver.

1.6.1.1 Frequency Diversity and the RAKE Receiver

The bandwidthiW = T of a CDMA signal is much greater than the coherence bandwfglth
of the channel. As discussed in sectiph2.1.1, such a signal will result in multipath components
which are ideally considered to be independently fading. Considering that the time resolution of the
receiver isl,, for a multipath delay spread @f,,, we have== Tm resolvable signal components Hence,
the wideband spread signal results in frequency dlversr[y of the qfrcl::a\rf—0 ~ Some of the
multipath components may be zeros due to the sparse nature of the multlpath channel [Rap96]. In this
case the diversity order is n%lcﬂ any longer but of the order of the number of non-zero components.
The optimum receiver for processing the wideband signal (in the single user case) is the RAKE receiver
invented by Price and Green in 1958 [PG58, Pro95], which is a matched filter, matched to the cascade
of the spreading sequence and the propagation channel, thus combining the delayed multipath signals
coherently.

In the multichannel discrete time context discussed in segtidh2, the RAKE receiver consists of
a bank of correlators matched to the delayed multipath components givEBi by C, @ I,r;, and
the propagation channdl, . Note thatg, = T h, (see fig. 1.9).

1.6.1.2 The Near-Far Problem

In the multiuser context, the relative powers of interfering users have a significant impact on the
interference term at the output of the matched filter, thus giving rise to the much diresatefdrprob-
lem [Ver98]. When powers can be perfectly controlled [Vit95], then, under asynchronous conditions in
an AWGN channel, the matched filter receiver is stillan optimal decentralized receiver from the average
signal to interference plus noise (SINR) maximization point of view, if aperiodic (noise-like) spreading
sequences spread successive symbols of users. This behavior of the matched filter is explained by the
nature of PN interference from other users (cyclostationary with chip period, hence stationary after chip
rate sampling) which essentially acts much the same way as uncorrelated channel noise. Consequently,
the performance might still be acceptable yielding a reasonable bit-error rate if the number of users is
much lesser than the processing gaif (< 1, yielding far lower capacity than an orthogonal system).
The noise-like nature of the interfering users persists at the RAKE output, but now, the phenomenon
of dimensional crowding creeps in, since each interferer’s delayed multipath component contributes as
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an extra interference. Most studies like chapter IV and [DHZ95] (and references therein) show that the
RAKE easily becomes interference limited for moderate loading fractions.

[.6.2 Multiuser Detection

The driving force, advocating the use of more sophisticated receivers for DS-CDMA systems, is
the near-far problem associated with the RAKE receiver [Ver98]. The weaker signals from users lying
on cell boundaries suffer the danger of being swamped out by nearer (stronger) users unless tight
power control is exercised [Vit95]. Multiuser detectors propose to use some information on the MAI
to improve performance. In this section, some of the most important multiuser detection schemes are
briefly reviewed. We classify these multiuser receivers into the following two major classes depending
upon their structure and the way MAI is treated, namelydietralizedanddecentralizedeceivers. A
description of various multiuser detectors is given in [SI099].

1.6.2.1 Centralized Multiuser Receivers

Also known agjoint multiuser detectors, these receivers attempt to jointly decode all active users
in the system. It is clear that the signal model (1.3.29) addresses a multiuser setup suitable for joint
detection of allK" users provided the timing information,, k& = 1,..., K and spreading codes;
of all users are available.

First in line among near-far resistant multiuser detectors was the joint optimum MUD [Ver86] for
asynchronous multiple-access Gaussian channels was presented. There is nothing magic about this
detector. It is simply the multiuser version of the single user maximum likelihood sequence estima-
tor [For72].

e The Optimum MUD:
Consider the flat channel (no multipath) version of the signal model depicted in (1.3.29). This

refers to havinch,, k = 1,..., K scalars instead of vectors in (1.3.21). Furthermore, consider
a grouping of symbols in the data vectet,, x(.—1)(n) in the order of increasing delay, e.g.,
n < 1 -+ < Tg, instead of per user as shown in (1.3.29). We still consider a window

(slot-length) of LT". With this reordering;/;,(Gy) is irregularly banded Then the maximum
likelihood criterion, in white Gaussian noise, can be written as
. 2 . —-14H H 2
Jnin (Y2 = To(Gr) A" & min [UTTHGN) YL - URAJR, (1.6.2)
where, T..(Gn) T (Gy) is the banded matrix witd — 1 non-zero diagonals above and be-

low the main diagonal, an@” (Gx)7.(Gx) = UU is the Cholesky (triangular) factoriza-
tion [GL89] with U upper triangular and banded with non-zero diagonals.

Note that7? (G ) is simply the multichannel matched filtéf,~! the anti-causal noise-whitening
filter, and thusU ~' 7 (G y) is a whitened matched filter.

U TGN (oe DT (GNU T = U TGN TL(GNU ™ = 07T
(1.6.3)
U represents causal filtering with a filter of memdsy— 1. The MLSE can be implemented

as a Viterbi algorithm [For73] with the number of states equalidid*—'. In the case of delay
spread, more states will be required (larger memory).
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e Suboptimal MUD:

Unfortunately, the Viterbi algorithm for multiuser MLSE in the optimum MUD has a complex-

ity that is exponential irf<, the number of users (even more if channels have memory). Various
sub-optimal multiuser detectors have therefore been proposed that provide a trade-off between re-
ceiver performance and complexity, among tHarear multiuser detectors [LV89, LV90, MH94,
XRS90, CR94], andion-linear(DF or multistage) ones [DH93, VA90, VA91]. We shall briefly
review some of these techniques in the following.

— Joint RAKE Outputs
The centralized (joint) RAKE receives!(¢) takes decisions on
z(n) = G'(g)y(n) = G'(¢9)G(g) A(n) + G'(¢)v(n). (1.6.4)

G'(¢)G(q) is a square matrix with diagonal elements corresponding to signal energies if
o? = 1. The off diagonal elements are non-zero and correspond to the M8J, = ¢21,
then the RAKE corresponds to optimal preprocessing for all MUD, since it projects the
received signal on the signal subspace. As shown in the following, all linear MUD start with
the RAKE.

— Zero-Forcing Linear Detector

The ZF MUD is analogous to a ZF linear equalizer of the single user case [Slo94c]. In
the multiuser case, it is a MIMO equalizer and obtains a linear estimate of the transmitted
symbols as

A(n) = Fl(q)y(n), (1.6.5)

with, F(2)G(z) = Ik.

The ZF MUD is not unique. However, one of these receivers is the one that gives the
minimal noise enhancement, and is known asdéeorrelatingdetector derived in [LV89]

and [LV90]. In these works, however, the authors derive the decorrelator directly without
mentioning the non-uniqueness aspect. The decorrelating detector’s output is given by

o~

An) = (6"(0)G(a)) = (n). (1.6.6)

Note that the ideal decorrelating detector is IIR in both causal and anti-causal directions. The
decorrelator is analogous to the MMSE-ZF receiver in the equalization literature [CDEF95].

— MMSE Linear DetectorThe MMSE linear MUD obtains an estimate df(n) as
A(n) = —1 _s G t -
An) = Su(@)S (@)y(n) = S..G' (68,6 + 8 ) y(n)

= (GTG + Z—le) B z(n), (1.6.7)

where, the last equality holds%,, (») = 021 andS, () = c2Ippsy.

e Nonlinear MUD
Let us introduce the notation

Ne-1 0, MMSE— ZF
Q(z) = Z g(m)z"" = (GT(Z)G(Z)) + { % I, MMSE
m=—N.+1 oz (|68)
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Then we need to solve

Q(2)A(n) =q(N. — 1)A(n — N. + 1) +

ot qO)A () + o+ (=N DA N = 1) =2 (),
(1.6.9)

for fl(n). Then, subtractive interference algorithms can be applied, i.e., one can solve for one
symbol at a time and use the decisions for values of other symbols. This can be done in the
following three ways.

— Successive Interference Cancelation
In (1.6.9), we assume that future decisions are all zero, i.e.,

q(0)A(n) = z(n) — q(1)A(n — 1) — - - - — ¢(N. — 1) A(n — N. 4 1).
(1.6.10)

Then we order;. alongk in order of decreasing powers, and consider RAKE detection for
the current user (strongest). We take a decision for this user and subtract its contribution
from the received signal, by reconstructing its contribution to the latter. Users are there-
fore successively decoded. Naturally, a certain minimum performance level of the RAKE
receiver for the strongest user is required in order to avoid unreliable decisions. Wrong
decisions have a disastrous effect and the interferer's power is increased rather than its elim-
ination. This scheme works best if there is significant disparity among users’ received pow-
ers [KIHP90Ob, PH94]. Robust forward error correction codes [Vit90] can be devised for
improved performance in the SIC framework, which makes it of interest from the informa-
tion theoretical point of view, since, essentially, remaining users see less MAI [Car75].

SIC can further be improved in an iterative fashion when all users have been deteuated:
tistageSIC. In that case, not only decisions of stronger users of the current iteration are
subtracted, but also those of weaker users from the previous iteration.

— Parallel Interference Cancelation

PIC [KIHP90a, VA90] corresponds to MLSE for a particular symbol, once all other symbols
have been detected. This is done for all symbols in parallel. We take all past and future
decisions from the previous — 1)st iteration. Thus

Ne—1
(A () =2m)— > qm)AD(n—m). (1.6.11)
m=—N:+1
m # 0

The above needs to be solved for thieiteration. PIC as opposed to SIC works particularly
well in power-controlled situations. Initial decisions can be obtained by a linear detector.

Several variants of the above schemes are possible. For example, PIC can be improved by using
already detected symbols in the present stage for the detection of remaining ones. Other ways
consist of combining PIC with SIC or to implement multistage versions of these algorithms.

— Decision Feedback MUD
Let us introduce the spectral factorization

Q(z) = Fi(2)DF(z), (1.6.12)
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whereF(2) = £(0)+f(1)z~ +.. .+ f(N.—1)z~Ne*lis a minimum phase spectral factor,

D is diagonal, real, and positive, anfd0) is unit-diagonal lower triangular in structure.

F_TLZ) is the backward prediction filter f@(z). Then the DF algorithm consists of solving

for A(n) from z(n) by removing anti-causal MAI and ISl linearly, and causal MAI and ISl
non-linearly, i.e.,

F(g)A(n) = DT'F T (g)z(n) = z(n) = Fl(q)Dz(n) = z(n).
(1.6.13)

Then going backwards in time

fT0)Dz(n) = x(n) — FA(1)Dz(n+1)...— fI(N.— 1)Dz(n + N. - 1),
(1.6.14)

and forwards in time

FO)A(n) = z(n) — F(DA(n —1)...— f(N. — 1)A(n — N+ 1).
(1.6.15)

The performance of the ZF DF MUD is similar to the decorrelator for the strongest user and grad-
ually approaches the single user bound as the user’s power decreases relative to other interferers.
So the DF mainly favors weaker users.

Added advantages can be gained by using the soft-decision strategy in MUD. One way is taking deci-
sions when reliable decisions are available. Otherwise symbol estimates are left undecided.

1.6.2.2 Decentralized Receivers

It is seen in (1.3.29), that any of the above multiuser detection schemes can be implemented as
long as timing informationr;, & = 1,..., K, and spreading sequencegs, £ = 1,..., K, of all
users are available. These quantities need to be estimated from the received signal. Another relatively
recent development in the field of multiuser detection is the advent dblthé adaptive multiuser
detector[HMV95], where it was shown that the multiuser problem could be cast in a singledaser
centralizedramework, thus enabling MAI based upon single user information (desired user delay and
spreading sequence), the same as the RAKE receiver. In this framework, the linear receiver operates
directly on the received signal to extract the desired user. This breakthrough step in multiuser detec-
tion was motivated by the developments in the fieldlfid channel identification and detection (see
survey [Mad98]).

e The Optimal Linear MMSE Receiver

Let G, (=) denote the channel transfer function for the desired user. The structure of the optimal
MMSE linear receiver is given in fig. 1.14. We find,

Famse(2) = Sy (2)Syy () = 0261 (2)S (=), (1.6.16)

where,G; (z) needs to be estimated in some manner(aﬁd:) = G¥(1/2") is the multichannel
matched filter.

For a simplified implementation of the receiver, consider multichannel linear prediction with
the predictor transfer functio®(z) yielding prediction errofy(n) = P(z)y(n). We then have,
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P(2)Syy(2)P!(z) = S5(2). The prediction errors are white for infinite prediction order [Slo94b].
Syy(2) is the power spectral density matrix of the received signal. To determine its inverse, a
finite number of correlation lags @f(k) are adequate to determine the prediction error filters
P(z) leading to the FIR modeS,; (z) ~ P'(z) Rz P(2) [Sl096]. It is seen thab,; (=) is Infinite
Impulse Response (IIR) in general. In the noiseless (singular) case, however, the FIR assumption
on S, (z) turns out to be exact. In other words, a finite number of correlation lags/ofare
adequate for its estimation. We shall compare the performance of other linear receiver derived in

@J/TC
— —| S, (:) —®| Glz) |[—
y(t) Yn a1.n—d

Figure 1.14: Optimal MMSE receiver structure.

this thesis with the optimal MMSE receiver described above.
1.6.2.3 Discussion

The decentralized scheme is suitable for applications such as at mobile terminals or as a suboptimal
processing or initialization stage at the base station. It carries the advantage that no distinction is made
between intracell and intercell interference. Centralized schemes, on the other hand consider a fixed
number of intracell users. Intercell interference is usually ignored, which might incur performance
loss due to a residual interference term at the input to the decision device. Some work on residual
interference cancelation in PIC receivers can be found in [LA98].

.7 Thesis Outline and Contributions

We described the general DS-CDMA discrete-time multichannel model in segtiénl. This
oversampling/multiple senor aspect of this model holds in general for the remainder of this thesis. The
signal model described in secti§h.3.2 depicts an asynchronous periodic sequences based DS-CDMA
system. This is a typical uplink situation. Minor changes in the model for the case of the downlink
scenario will be indicated when needed. The rest of this thesis is organized as follows.

Chapter Il presents the blind projection receiver obtained in a decentralized fashion for multiuser
asynchronous frequency-selective channels. A new receiver and channel identification algorithm are
thus obtained. Identifiability conditions are discussed in detail and simulations in various scenarios are
presented. Simplified channel identification algorithms are also investigated. Results of this chapter
are partially presented in the following publications.

e Irfan Ghauri and Dirk T. M. SlockBlind Decentralized Projection Receiver for Asynchronous
CDMA in Multipath ChannelsAnnals of Telecommunications, July/August 1999

e Irfan Ghauri and Dirk T. M. SlockBlind MMSE-ZF Receiver and Channel ldentification for
Asynchronous CDMA in Multipath ChanngRroceedings of the 3rd European Personal Mobile
Communications Conference, Paris, France, March 1999

¢ Irfan Ghauri and Dirk T. M. SlockBlind Channel and Linear MMSE Receiver Determination
in DS-CDMA System#roceedings of the International Conference on Acoustics, Speech, and
Signal Processing, Phoenix, AZ, vol. 5, pp. 2699-2702, March 1999
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Semi-blind implementations of the projection receiver of chapter Il are investigated in chapter IIl.
Adaptive interference suppression algorithms are also addressed. Methods of improving the channel
estimate by means of semi-blind schemes are also presented. Performance of blind, semi-blind, and
decision-directed algorithms is compared in this chapter. Related publications are

e Irfan Ghauri and Dirk T. M. SlockBlind and Semi-Blind Single User Receiver Techniques for
Asynchronous CDMA in Multipath Channgl&EE Global Communications Conference, Syd-
ney, Australia, November 1998

e Irfan Ghauriand Dirk T. M. SlockAdaptive Interference Suppression for DS-CDMA in Multipath
Channelsin 33rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,
Oct. 1999.

Chapter IV addresses the downlink situation in CDMA systems [TIA93, ETS97a], and provides
blind and training based algorithms for that problem. Performance of the RAKE receiver is compared
with two alternatives, namely the zero-forcing and the maximum SINR receivers proposed in this chap-
ter, and the parameters influencing the choice of a particular receiver are discussed. Partial results of
this chapter have been presented in

¢ Irfan Ghauri and Dirk T. M. SlockLinear Receivers for the DS-CDMA Downlink Exploiting
Orthogonality of Spreading Sequencas32nd Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 1998.

e Dirk T. M. Slock and Irfan GhaurBlind Maximum SINR Receiver for the DS-CDMA Downlink
submitted to International Conference on Acoustics, Speech, and Signal Processing, Istanbul,
Turkey, March 2000.

The last three chapters are dedicated to spatio-temporal array processing at the base-station in order to
pre-cancel the interference on the downlink. These can be considered to constitute part-II of this thesis.
The problem addressed is that of exploiting channel state information at the base station (obtained
from the uplink estimates) to design spatio-temporal filters for efficient downlink transmission. The
publications related to these chapter are

¢ Giuseppe Montalbano, Irfan Ghauri and Dirk T. M. Slo8jpatio-Temporal Array Processing for
CDMA/SDMA Downlink Transmissipim 32nd Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 1998

¢ Giuseppe Montalbano, Irfan Ghauri and Dirk T. M. Slo8jpatio-Temporal Array Processing for
FDD/CDMA/SDMA Downlink Transmissioim Proceedings of the IEEE Vehicular Technology
Conference (Fall), Amsterdam, The Netherlands, September 1999

e Giuseppe Montalbano, Irfan Ghauri and Dirk T. M. SloS8patio-Temporal Array Processing
for Aperiodic CDMA Downlink Transmissioim 33rd Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, Oct. 1999

General conclusions are drawn the final chapter and future research directions are indicated. Wherever
relevant we also give an account of the application of the algorithms presented in this thesis for existing
and future mobile and wireless communication systems.



Chapter Il

Blind Channel Identification and Linear
Receivers for Asynchronous CDMA

In this chapter, we consider an asynchronous DS-CDMA system employing periodic spread-
ing sequences operating in a frequency selective channel. The desired user’'s multipath
channel estimate is obtained by means of a blind technique which exploits the spreading
sequence of the user and the second-order statistics of the received signal. The decentral-
ized blind Minimum Mean Square Error-Zero Forcing (MMSE-ZF) receiver or projection
receiver is subsequently obtained. This receiver represents the proper generalization of the
anchored minimum output energy (MOE) receiver [HMV95] to the asynchronous case with
delay spread. Classification of linear receivers obtained by various criteria is provided and
the MMSE-ZF receiver is shown to be obtainable in a decentralized fashion by proper im-
plementation of the unbiased MOE receiver, leading to the minimum variance distortionless
response (MVDR) receiver for the signal of the desired user. This MVDR receiver is then
adapted blindly by applying Capon’s principle. A channel impulse response is obtained as
a by-product. Lower bounds on the receiver filter length are derived, giving a measure of
the ISI and MAI tolerable by the receiver and ensuring its identifiability.

1.1 Introduction

A breakthrough step in multiuser detection, following developments in the fieldirad channel
identification and detection (see survey [Mad98]), was the introduction oblihd adaptive mul-
tiuser detecto[HMV95], where it was shown that the multiuser problem could be cast in a single
userdecentralizedramework, thus enabling multiple access interference cancelation based on single
user information (desired user delay and spreading sequence). In this framework, the linear receiver
operates directly on the received signal. The receiver in [HMV95] is the so-aildtbredminimum-
output energy (MOE) receiver. The anchored receiver is split into two components - one fixed, and
proportional to the desired user’s signature waveform (matched filter receiver), while the other, its
orthogonal complement. The algorithm constrains the inner product of the received signal with the
desired user spreading sequence to be fixed, thus restricting the optimization problem to within the
constrained space. No effort is made to exploit the structure of the MAI except for the assumption of
it being uncorrelated with the desired signal. A decentralized scheme of this nature can evidently be

35
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of considerable interest in some applications, like at the maobile terminal in a cellular network, where
knowledge of interferer parameters is not readily available, or as a suboptimal/initialization approach
at the base station. Blind adaptive multiuser detectors based on second-order statistics (non-decision
directed/ data-aided) are developed for the case of short/periodic spreading sequences, leading to cy-
clostationarity at symbol period.

The problem addressed in [HMV95] was that of DS-CDMA communications over a flat channel
(no delay spread) [SkI97]. A constrained optimization scheme was proposed in [Tsa97] for multipath
channels by forcing to zero the receiver response to all but one of the multipath components. Animme-
diate performance loss was noticeable resulting from the rejection of a major part of the desired signal
energy contained in the other paths. This signal cancelation effect was alleviated in [TX97b], where
the receiver’s output energy was minimized subject to a fixed response constraint for the desired signal.
Connections with th€aponphilosophy were drawn in that paper. The above mentioned receivers can
be shown to converge asymptotically (SNRx) to the zero-forcing (ZF) or the decorrelating solution.

It was shown in [GS97] that in order to accommodate a number of users approaching the code space
dimension (spreading factor), longer receivers are required for the ZF solution to be achievable. More-
over, we presented in [GS97] the optimal MMSE receiver for multipath channels and asynchronous
conditions, obtained by applying multichannel linear prediction to the received cyclostationary signal.
Direct estimation of the MMSE receiver from spreading sequence properties and the noise subspace
was introduced in [GSP98] following the observation that the MMSE receiver vector dwells in the
signal subspace. The ZF and the MMSE detectors in the case of high data-rate systems in dispersive
channels inducing significant ISI, were investigated in [WP98a]. Adaptive implementations are shown
in [WP98b]. The channel estimate in these two publications was obtained as a generalization to longer
delay spreads of the subspace technique originally proposed in [TX97a]. Both these schemes, how-
ever, evoke a high computational complexity since a subspace decomposition is required. It is worth
mentioning that in the context of blind methods based on second-order statistics and spatio-temporal
processing techniques [PP97], direct sequence CDMA systems allow quite robust channel estimation
(compared to TDMA systems) due to the bandwidth expansion and integratéati knowledge and
structure in terms of distinct spreading sequences that enables separation of user signals.

The purpose of this chapter is to introduce a decentralized blind minimum mean-square error zero-
forcing (MMSE-ZF) receiver for DS-CDMA systems in multipath channels. The receiver is MMSE-ZF
in the sense thatamong all ZF receivers, itis the one that minimizes the mean-square error. The MMSE-
ZF receiver is also called the projection receiver [SRAX96] or the decorrelating detector [LV89]. This
blind receiver exploits spreading sequence properties in conjunction with the second-order statistics of
the received signal to estimate the FIR channel for the desired user at a low cost. The delay spread for
thekth user is assumed to be possibly more than a symbol period\i,&,, > T in (1.3.5), and can be
different for different users.

The rest of the chapter is organized as follows. In sedibr2, the non-blind MMSE-ZF receiver is
derived and its interpretation in terms of existing methods is provided. Segctighlays the ground-
work for the blind MMSE-ZF receiver by providing analogies between the interference cancelation
problem and some related results from the array processing literature. Sgttioiis dedicated to
the derivation of the blind MMSE-ZF receiver through an alternate and simple method, namely the
unbiased minimum output energy (MOE) criterion. Blind channel estimation via the blind MMSE-ZF
algorithm is also discussed. An alternate interpretation of the MMSE-ZF receiver as a Generalized
Side-lobe Canceler (GSC) is also discussed. Receivers obtained from other projections are also dis-
cussed and a reduced complexity channel estimation method is presented in the last section of this
chapter.
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1.2 The MMSE-ZF/Projection Receiver

In the multiuser problem given in (1.3.29), there exists a multitude of possible zero-forcing con-
straints, ranging from zero MAI only, or zero ISl only, to zero forcing for both MAI and ISI, which
we shall consider here. For the purpose of our problem, let us consider the ZF or the zero-distortion
constraint, which can be written as,

AT(Gy) =], (I1.2.1)
d

where,el =[0---0[0---0 10---0/0---0], with d the "equalization” delay for the desired user.

Considering all user symbods;. (n) to be uncorrelated, the received signal covariance matrix can be
written asRyy = 02T TH + o021, whereT replaces] (Gy) to simplify the notation. The MMSE-
ZF receiver is by definition the solution to the MMSE criterion under the ZF constraint, which can be
written as

min _ fHRyyf=02+ min fYRyyf= min fUFf (1.2.2)
f:fHT:eZ; f:fHT:eZ; f:fHT:eZ;

Let us further express the receiver vecfoas
F=TFH+Tf, (11.2.3)

where, 7+ spans the orthogonal complement/ofand satisfies>,. = P#. From the ZF constraint,
AT =el = 77T, and therefore,

f1=(T"T) "eq. (11.2.4)

Hence,f = T(THT) 'es + T+ f,, wheref, is the unconstrained part which becomes zero upon
solving the minimization problem in (11.2.2). Thus the projection receiver is given by

f=T(T"T) e, (11.2.5)
and we can write the MMSE-ZF criterion as:
min fHRyyf = O'Z + Uzeg (’TH’T)_I e . (11.2.6)

FifiT=el
The ZF solution in the noiseless case gives the distortionless response for the desired user’s signal.

We can provide one more interpretation of the MMSE-ZF receiver in terms of a projection receiver
as indicated in the following proposition.

Propositiont The MMSE-ZF receiver is equivalent to a projection receiver [SRAX96] that first
projects the received data onto the orthogonal complement of the subspace spanned by ISI and MAI,
and then projects the resulting vector onto a one-dimensional subspace that is matched to the signal
part that remains in the data.

Proof: See appendix lIA.

The MMSE-ZF receiver derived above needs the knowledge of the channel convolution matrix (ar-
rival delays and impulse responses of all user channels) for its implementation. However, as we shall
see in the sequel, itis possible to determine this receiver blindly in a decentralized fashion, as a solution
to the minimum variance distortionless response (MVDR) criterion.
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1.3 Asymptotic Equivalence of the MMSE and Projection Receivers

Considering the input symbol sequence to.bd., the MMSE receiver of sectiofi1.6.2.2 can be
written as

7 = Ry Ry, = 02l T (02TTH + 021)7", (1.3.1)

Upon applying the matrix inversion lemma, this can be written as
2 -1
i =el (agTHT+ — ) TH, (1.3.2)
g
As Z—z — 0, the MMSE receiver becomes the decorrelator.

1.4 LCMV Beamforming

It is insightful to compare the problem of blind ISI and MAI rejection to that of beamforming and
direction of arrival (DOA) estimation in the antenna array processing literature [JD93]. Let us look at
a generic DOA estimation problem of a single narrowband source located at ardamgth respect
to an antenna array. The observation or snapshot v&ttoy at the array output is

Y (n) = S(8p)a(n) + V(n), (11.4.1)

with S(6y) being thearray responser steeringvector associated with the look-directiégm, andV (n)

the complex circularly-symmetric additive (spatially) white Gaussian noise (AWGN) vectay. is

the sampled source signal, with variangg In this problem there are two unknowns, namely the
direction of arrivald, (and the corresponding steering vector) and the source sigmal In the first
instance, we shall considés known. A beamformer with the weight vectgris employed to obtain
the estimaté(n) = f7 Y (n), where the superscript stands for Hermitian transpose. Intuitively, any
desirable beamformer should emphasize signals arriving from the dirdgtiaile the noise must be
suppressed. We therefore impose the zero-distortion constf&ist(6;) = 1, on the beamformer, and
minimize its output varianc&| £ Y (n)|? subject to this constraint. The weight vector of the linearly
constrained minimum variance (LCMV) beamformer is the solution to the problem

min  Elax? &  min - fARyyf = MV, (1.4.2)
F:fHS(60)=1 F:fHES(60)=1
which results in
1 _ _ -1
f= ST R S(OO)RY;S(oo), MV = (8" (8y) Ryy-S(60)) . (11.4.3)
YY

At this point we realize that we do not yet knéy. However, we can obta#y by Capon’smethod [SM97]
as the argument of the maximum of the minimum variance over all possible look directions. Thus,

f = arg max (SH(O)R;%/S(O))_I = arg mein SH(0) R,y S(0)

S™! (Vinax(Ryy)) = S71 (S(6o)) = b0, (1.4.4)
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sinceRyy = 028(60)SH (6y) + o2I, and assuming a proper normalization$f¢). We denote by
Vimax(RyY ), the eigenvector oRyy associated with the maximum eigenvalue.

Note that Capon’s approach could be extended to the multisource case if the sources are uncorrelated
and if they are treated jointly. Here, we shall stick to the decentralized single source formulation of
the Capon’s method. The rest of the developments in this paper are based upon the striking similarity
between the purely spatial (beamforming) problem discussed above, and the ISI and MAI cancelation
issue depicted in fig. 1.9. In particular, we show in the sequel that for the DS-CDMA problem, given
certain conditions on the number of concurrent users and their channel orders, partial knowledge of the
channel vectorgy, (¢)’s in terms of distinct spreading code matricé€s,(¢)’s, leads to an unambiguous
estimate of the channel vecthy, for the kth user.

[1.5 Connections between Linear Receivers

We can classify the unbiased linear MOEceiver in relation with other optimization criteria as
indicated in the following proposition.

Proposition 2 The minimum mean-squared error (MMSE), and the minimum output energy (MOE)
are interchangeable criteria under the unbiased constraint, and are equivalent to the maximization of
the output SINR.

arg min MSEunblased—arg min OE= arg max SINR, (1.5.2)
fifHEan=1 JifHgi=1 f

Proof. (i) Consider first, the MMSE criterion
MSE = Ela;(n — d) = Flay(n — d) — fHY|?
=0l —0if"g —olg\' F+ f'Ryv
N——’

output energy

= min MSE = unbiased MOE (1.5.2)
ffHEgi=1

proving the first equality in (11.5.1).

(i) The signal partinY 1,(n) isYs = gya1(n — d), whereas the interference (MAI & ISI) plus noise
isYi, = T A+ Vy,where, T isthe same a%;, (G ) with the columng, removed. SimilarlyA is
the same asi(n) in (1.3.29) without the symbat, (n — d), i.e., the symbol that multiplieg,. Then,
for an arbitraryf, assuming uncorrelated symbols, we obtain,

fHRsf . 2fH.‘]L‘h f

SINR = = , (11.5.3)
H ~
foRinf A (RYY — 02919 ) f
from where,
H
max SINR ¢ min SINR™! &5 min 1_200S
f ; fooaglff e (11.5.4)
= min  f7Ryyf,
f:fHﬁlzl
which is the unbiased MOE criterion of (I1.5.5). [ |

'a derivative of the minimum variance distortionless response (MVDR) method, and a particular instance of the linearly
constrained minimum-variance (LCMV) criterion
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[1.5.1 Relationships between Various Constraints

At this juncture, we are able to identify the relationship between the unbiased linear MOE and the
unbiased linear MMSE approaches which give the same receiverffiltdote that the unbiased MMSE
criterion yields the MMSE-ZF receiver in the noiseless case and so does the unbiased MOE. A further
observation is that the unbiasedness constrdifiy = 1) is not the distortionless constraint (the ZF
constraint) given by (11.2.1). Itis only the ZF (distortionless) constraint which guarantees the minimum
variance ¢2) with a fixed response for the desired user signal, which is the desired goal in the original
MVDR approach.

In [TX97b], the authors interpreted zero distortion of the Capon’s method as unbiasedness, and max-
imized the MOE to obtain the channel impulse response for the desired user. It was also shown there,
that the distinct spreading sequences allowed identifiability of users’ channel responses. However, un-
biasedness is a weaker constraint as compared to the zero distortion constraint. Intuitively, with only
the unbiasedness constraint, the other symbols (ISI) remain present in the estimator output and do not
allow the application of the single user form of Capon’s principle, which corresponds to the maximiza-
tion of the MOE (minimum variance) under the zero-distortion constraint. However, unbiased MOE on
noiseless data corresponds to the MMSE-ZF, which in turn is equivalent to zero forcing MOE on noise-
less data. Hence, in conclusion, we can determine the MMSE-ZF receiver by applying the unbiased
MOE on denoised data, leading to a simple treatment of the problem.

[1.5.2 Blind Unbiased Linear MOE Receiver

Suppose thaf is a linear FIR receiver applied to the received d&fa,(n). The goal is to obtain
a linear estimate of the transmitted symhol(n — d) for the desired user symbol (with a possible
delay ofd symbols). Theni, (n — d) = f2Y 1(n) is the linear estimate of the desired symbol. Finite
alphabet information can later be applied to the this estimate to determine the symbolfvasaid
to beunbiasedf f¥g, = 1, where,g, = T h; (see fig. 1.9), withTy = [0 C¥ 0] @ Iny
being the signature matrix for the desired uggr (n» — d) is the contribution ofi; (n — d) to Y 1,(n).
The energy at the output of the receiver (noiseless case) can be wrifiéfidd " (n)|> = f7 R, f,
where the superscrigtstands for noiseless or denoised data. The unbiased MOE criterion proposed
in [TX97b], which is a generalization of the instantaneous channel case of [HMV95], is in principle a
max/min problem solved in two steps with,
step:1 unbiased MOE

1
. H pd —d =~
min f'Ryvf=f=—"—R,\9;, (1.5.5)
prfm=” g Ry,
with MOE(h;) = ===, followed by,
)= gmr3, Y
step:2 Capon’s method
max MOE(hi) = min hy (TiRyLT) Ay, (11.5.6)
hy:l|haf]=1 hysf|hal]=1

from where b, = Vinin(T1 R;gl/TfI), which is the estimate (up to a scalar phase factor) of the desired
user’s FIR channel response.
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[1.5.3 Discussion and Comparisons

The minimum output energy (MOE) receiver, first proposed in [HMV95] was developed for asyn-
chronous users in the AWGN channel, where the channel is simply represented by a complex gain
factor. The linear receivef can be expressed g5 = ¢; + «, where,¢; is the fixed component,
viz., the desired user’s spreading sequence,arslit orthogonal complemente(’c; = 0), i.e., a
blocking transformation for the desired signal. The fixed respdpisd, = 1, (theanchop constrains
the desired signal’s output variance to an arbitrary constant, which is determined by the channel gain,
and the MOE criterion minimizes the output variance of the rest. The receiver is therefore determined
blindly up to a scale factor. This receiver, upon scaling the output response to unity for the desired
signal corresponds to the unbiased MMSE-ZF receiver of section 1.2, leading to a distortionless (ZF)
response in the noiseless case. The extension to the multipath channels of this scheme is elaborated
upon in [TX97b]. However, in the later approach, the distortionless response (and thus the proper im-
plementation of Capon’s method) will only be guaranteed if denoised statistics were employed in the
MOE cost function.

[1.5.4 Unbiased MOE via the Generalized Side-lobe Canceler

The generalized side-lobe canceler (GSC) [JD93], is a particular implementation of the LCMV
beamformer. Hence, the unbiased MOE criterion, which itself is a particular instance of the LCMV
approach can be implemented in the GSC fashion as elucidated in the following. Let us denote by

I 0 o
Ti=[0 C{ o0]@Iyjand To=|0 C{ 0| ®Iumy, (1.5.7)
0 0 I

the partial signature of the desired user and its orthogonal complement employed, respectively, in the
upper and lower branches of the GSC, as shown in fig. 0+ is the orthogonal complement of

C, the tall code matrix given in section fig. I.EQCI = 0). Then,C’fIYN1 = T,Y; and the

matrix T's acts as a blocking transformation for all components of the signal of interest. Note that
PT1H + PTQH = I, where,Px is the projection operator (projection on the column spacX pf Then

the LCMV problem can be written as

: H pd : Hpd

min PRy f= min Ry f, 11.5.8

S HTE=(RER)-1RE vy fofETER =1 vy ( )
FETERE =0

where, [y hf] is a square non-singular matrix, ahd’ b = 0. Note that in the LCMV problem

(GSC formulation) there is a number of constraints to be satisfied. However, imposing the second set
of constraints, namely?T7 hi- = 0 has no consequence because the criterion automatically leads to
their satisfaction oncepan{ Ry} Nspan{T}} = span{TH h,}, i.e., when the intersection of the
signal subspace and the subspace spanned by the coluffiisisfone dimensional.

The matrixT', is nothing but a bank of correlators matched tothedelayed multipath components
of userl’s code sequence. Note that the main branch in fig. 1.1 by itself gives an unbiased response for
the desired symbob;; (n — d), and corresponds to the (normalized) coherent RAKE receiver. For the
rest, we have an estimation problem, which can be solved in the least squares sense, for some matrix
Q. This interpretation of the GSC corresponds to the pre-combining (or pathwise) interference (ISI
and MAI) canceling approach [DHZ95, WMN93, ZB92].
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The vector of estimation errors is given by
Z(n)=[T1—-QT3)Y(n). (1.5.9)

Since the goal is to minimize the estimation error variances, or in other words, estimate the interference
term in the upper branch as closely as possible fi5Y ;. (), the interference cancelation problem
settles down to minimization of the trace of the estimation error covariance nfagixfor a matrix

filter @, which results in

Q= (TleTéf) (TszTgf)_l, (11.5.10)

and where R is the noiseless (denoised) data covariance maRix;-, with the subscript removed
for convenience. The outpdt(n) can directly be processed by a multichannel matched filter to get the
symbol estimatej; (n — d), the data for the user.

. 1 1

ai(n—d) = 1Y 1(n) = Zg=h{ (T1 - QT5) Y 1.(n) (11.5.11)

= 5=
g1 91 g1 91

The covariance matrix of the prediction errors is then given by

[|correlator
Y (n) + Z(n) 1 N _
T " 4’®_' hy! Prp S
191
RAKE
Ty —» Q

\/

Figure II.1: GSC implementation of the MMSE-ZF receiver.

1
Ry,=T RTH T, RiTY (TszTgf) T,R'TY, (1.5.12)

From the above structure of the interference canceler, we observe thatwhi&fy, — g,«;(n)) can

be perfectly estimated fromy Y 1, the matrixR ;7 is rank-1 in the noiseless case! Using this fact, the
desired user channel can be obtained (up to a scale factor) as the maximum eigenvector of the matrix
Rz, sinceZ(n) = (CHC\) @ Inrshiay(n — d). It can further be shown easily thatdf, = T1,

then

TRy, TV = (T TY) Ry, (T, TY), (1.5.13)

where, R is given by (11.5.12), and?, given by (11.5.10), is optimized to minimize the estimation
error variance R? replacesRyy in the above developments. From this, we can obtain the propagation
channel estimate for the desired user,as

hy = vmx{(:rlzrffi’)‘1 Ry (TleI)_l} .

The above structure results in perfect interference cancelation (both ISl and MAI) in the noiseless case,
the evidence of which is the rank-1 estimation error covariance matrix, and a consequent distortionless
response for the desired user. In the noiseless edsg £ 0), we have the following two cases of
interest.
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11.5.4.1 Uncorrelated symbols

In the absence of noise, wiiti.d. symbols, the stochastic estimation’Bf Y from T2Y is the
stochastic estimation af  7;,(Gn) A from T3 7., (G n) A with R4 = ¢21. Hence, it is equivalent to
the deterministic estimation §f7 (G ) T{ from T (Gn)TH e,

min TG T - TGN T QM.
Then, given the condition
span{T{'} N span{T,(Gn)} = span{TL(Gn)e,}
= span{7TL(Gn)} C span{T3} & span{g,}
- TL(Gn)ey = To(Gin,)ed = Gy = Tihy, (11.5.14)

and Where,e; ande, are vectors of appropriate dimensions with all zeros andlogelecting the
desired column iV, (G n) and 71, (G1 n, ) respectively. We can write the channel convolution matrix
T.(Gn) as

TL(GN) = gief +To(@N)F,u = (g, TYB, (11.5.15)

for someB. Then we can write,

~
TH(GN) (T - TY Q") =e,h{ T\ T1 + BY [ glgl ] - B" [ T (;I“H ] Q"
242

—e,ht'T T + BT - Bl (T,1Y) Q"
(11.5.16)

Note thate;lHBfI = 0,7 € {1,2}. This implies that the first term on the R.H.S. of (11.5.17) is not
predictable from the third. Therefore, if the second term is perfectly predictable from the third, then the

two terms cancel each other out aRg  turns out to be rank; andh; = (TlT‘F)_1 Vinax (Rzz).
11.5.4.2 Correlated symbols

In the case of correlated symbols, with a finite amount of data, given the conditions in (11.5.15), it
still holds thatspan{ 7/ (Gn)T4} = span{P., 71,(Gx)}. Now, we can write the received vector
d

Y(n)as
Yi(n) = To(GN)A = To(Gr)eyar(n — d) + T L A. (1.5.17)

Now, the estimation of"; Y in terms of T, Y = T, 71, (Gn) A = T, 7 1 A is equivalent to estimation
of T,Y interms of A.

T.\Y|py =TY - T,Y
-1
—T,Y - (Tlel/YTgf) (TQRgl/YTgf) T.Y
T1Y]| 5 = T1TL(GN)eyi (n — d)

=TT} hyay(n— d)| 5. (1.5.18)
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This results in,

-1
—d
(TlRwT’fI) =02 palihts (115.19)

The ranki results in a normalized estimate of the channel. It must however be noted that the estimation
error variance of the desired symbol is now smalter fi—g) < o).

[1.5.5 Identifiability Conditions for the Blind MMSE-ZF Receiver

Let us continue with the assumption of uncorrelated symbols. We also consider the noiseless case, or
the denoised version of second-order statistics of the received signaRy-g.js replaced byR{-, =
02T (GN)TH (GN). Then, we see from the derviations in sectidh5.4.1, that

min  fYREy =02, iff FITL(GN)=ef, (11.5.20)
Ffg=1
i.e., the zero-forcing condition must be satisfied. Hence, the unbiased MOE criterion corresponds to
ZF in the noiseless case. This implies theDE(g,) < o2 if g, + g,. We consider that:

(). FIR zero-forcing conditions are satisfigahd
(ii). span{72.(G)} Nspan{T%} = span{T4 h,}.

The two step max/min problem boils down to

~H _1 L
j max Ry (T0TY) T T P T T (T (11.5.21)
1:||h1||=1

where,P¢ = I — X (X" X)~' X" Then identifiability implies that
ToPrugu i = TP hhi' Ty = 6,61,
or
P;LHTgTLH(GN) = Pe;TLH(GN), (1.5.22)

Condition (i) above implies that, € span{7;7 (Gx)}. From condition (ii), sincd¥ h; = T1.(Gn)e,,
we have
span{TL(GN)T'} = span{P5 T/ (Gn)}

. , 11.5.23
span{T/ (Gn)} = span{T/ (GN)TF} & span{e;} ( :

from which, 7 (Gy) = PTLHTgTLH(GN) + P, TH(Gw), which is the same as (11.5.22).
d
11.5.5.1 A Note on Sufficiency of Conditions

We consider first the conditions)( Furthermore, in the following developments, we consider
that K < PM.J, which is easily achievable with a small (e2), multiple sensor and/or oversam-
pling factor. The effective number of channels is given(B3\/.J).¢ = rank{Gx}, whereGy is
given in (1.3.23). LetG;(z) = ZnN;gl g:(n)z~" be the channel transfer function for userwith
G(z) =[G1(z) - - -Gk (z)]. Then let us assume the following:
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(@). G(z) isirreducible i.e., rank{G(z)} = K,Vz.
(b). G(z) is columnreduced rank{[g,;(N1—1) - -gx(Nr —1)]} = K.

Given that the above two conditions hold, the channel convolution mai&X x) is full rank w.p.
1, and the FIR lengtH required is given by,

— N-K
p2i=| |

PR (11.5.24)

Note that conditiond) holds with probabilityl due to the quasi-orthogonality of spreading sequences.

As for (b), it can be violated in certain limiting cases e.g., in the synchronous case wheyg — 1)'s

contain very few non-zero elements. Under these circumstances, instantaneous (static) mixture of the
sources can null out some of the(N;, — 1) (more specifically, at most’ — 1 of them). ThenV gets
reduced by at most’ — 1. However, even ther, given by (11.5.24) remains sufficient.

The conditionij) can be restated as the following dimensional requirement:
rank{77(Gn)} 4 rank{T!} < row{T(Gn)} + 1, (1.5.25)
from where, under the irreducible channel and column reduced conditions,

N-K+4+WMJ—1
(PMN)eg — K|’

LZL:[ (11.5.26)
where, ¥ is the channel length for usérin chip periods. If (11.5.26) holds, then conditioii)(is

fulfilled w.p. 1, regardless of th&,’s, i.e., thespan{T'}{'} does not intersect with all shifted versions

of g;’s, Vk # 1, i.e., the columns of/(Gy), which further means that no confusion is possible
between the channel of the user of interest and those of other users, whether the mixing is static (same
orders) or dynamic (different channel lengths), with lengths measured in symbol periods.

[1.5.5.2 Violation of conditionif)

If the lengthW {, of h, is over-estimated by such a number thatgets over-estimated, then condi-
tion (i) is violated w.p.1. In that case, more than one shifted versiongofvill fit in the column space
of T . The estimated channel in that case can be expressBd(as = G, (»)b(»), where,b(») is a
scalar polynomial of the order that equals the amount by which the channel has been over- estimated.
An ad hoc but expensive solution to this would be to try all orders\Mgrand stop at the correct one.
Once, the delay estimates have been obtained, however, overestimation of the channel order is highly
unlikely in most DS-CDMA systems, where, the delay sprédaé P, and in which casey; = 2 for
a synchronized usé.

[1.5.6 Case of Sparse Channels

An immediate extension to the case of sparse channels can be made by considering the relations
(1.3.23) including the pulse shaping filte(¢) and the low-pass front end RX filter. In that case, we
simply redefinel’y andT'; as

I 0 O
~H ~ 1
T1 = 0 Cl 0| and T2 = 0 Cl 0 y (”527)
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~1H ~ ~
sothat C, C; = 0). Note that the number of columns @, is much lesser than i’;. Thus
the main GSC branch is tuned to a few fingers of the channel represenggd, bsit themth receiver
sensor. The identifiability conditions presented in secfidh5.5 will be accordingly modified and
the stacking factor required;, will be reduced. Theny; M .J will be replaced byM () in equation
(11.5.26).

[1.5.7 Two-Sided Linear Prediction

We can give one more interpretation of the MMSE-ZF receiver in terms of two-sided linear predic-
tion (TSLP) of the received signal. Let us consider the noiseless c&ge 0), and replace thd",
andT'y in (11.5.7) by,

I 00

le[o Ile 0]®IMJ,and TQI|:0 0o I

] ® Iy, (11.5.28)

This corresponds to thieast squares smoothirapproach of [TZ98] in a single user case. We can
proceed with a similar treatment as previously discussed in section 11.5.4 for the GSC implementation
of the unbiased MOE algorithm. However, now,

rank{Rz7} > K, (11.5.29)

whereK denotes the number of users with channel orders shorter than or edual@&599b] [ZT98].

A mixture (instantaneous when channel orders are the same) of different users’ channels is now ob-
tained. In the event ok = 1 (the desired user), the composite channel vegtaran be obtained from

the ranki Rz, although the stacking factdrrequired will be much longer thah given by (11.5.26).

From the above discussion it is obvious that the two-sided linear prediction approach has some ca-
pability of multiuser interference cancelation in very special situatidhs€{ Ny, Vk # 1). However,
for the DS-CDMA problem under discussion, the presenc€ ¢fterm in the blocking matrixr’';
"cleans up” the contributions of interfering users without regard to their channel orders, and highlights
the great degree of robustness of the systema-visthe channel and thus receiver identification issue.

1.6 Numerical Examples

We considerk’ = 5 asynchronous users in the system with a spreading factér ef 16. The
channelh; (including the pulse shaping filter) for thigh user is modeled as a FIR channel of order
¥, ranging from8 — 21 chip periods for differenk’s. The channel delay spread is therefore shorter
than one symbol period for some users while longer for others. Mild near-far conditions prevail in
that the interfering users are randomly (ranging fremoe 15 dB.) stronger than the user of interest.

Fig. 11.2 shows the bit error-rate performance of the blind MMSE-ZF receiver and the MMSE receiver

(azﬁ;;ﬁl). It can be seen that the performance depends on the quality of the correlation matrix
estimate. Better results are therefore obtained if more data is available. This figure highlights the major
drawback in the implementation of second-order statistics based linear receiver algorithms. Under
power controlled conditions, with good choice of spreading sequences, and a small loading fraction, a
simple RAKE receiver may outperform the linear receivers, unless a good estinfag-d6 available.

On the other hand, as seen in fig. 11.3, the channel is estimated fairly accurately (normalized mean
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Figure I1.2: Measured bit-error rate performance for P = 16, and K = 5 users for different size
of data blocks used in the estimation algorithm.
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Figure 11.3: Channel estimation performance for P = 16, and K = 5 users for different size of
data blocks used in the estimation algorithm.
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Figure I1.4: Output SINR performance of different receivers in near-far conditions for spreading
factor, P=16, and K=5 users.
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squared errér(NMSE) of the order of-25 dB at20 dB SNR) with a data block size a0 — 100
symbols from the rank- R (see section 11.5.4). Performance of the noise-subspace fitting based
algorithm [TX97a] is also shown for several input SNR’s.
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Figure 11.5: Output SINR performance of different receivers in power-controlled conditions for
spreading factor, P=16, and K=5 users.
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Figure 11.6: Normalized channel estimation MSE for the denoised and non-denoised®yy, for
spreading factor, P=16, and K=5 users

In fig. 11.4 and II.5, we show the performance of blind MMSE-ZF receiver in near-far and power-
controlled conditions, respectively, and compare it with that of the theoretical curve for the MMSE
(Ryy = o2T(GN)TL(GN) + ¢21), and the theoretical MMSE-ZF (11.2.5) receivers. A data record
of 200 data samples is employed to estimate the receivers. It comes as no surprise that the optimal
unbiased MMSE is not approached by any of the other receivers due to finite data effect. A theoretical
curve for the MMSE-ZF is also provided. Fig. 1.6 shows the quality of the channel estimates for the
case when denoised statistics are employed in the unbiased MOE algorithm. It can be observed that the
blind channel estimate is relatively near-far resistant.

h,—h,)? N
2NMSE= plta=tll” ||1h1||5” = LyN

thy b2
I2AE
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II.7 Receivers from Other Projections and Reduced Complexity Blind
Channel Estimation

Let f be any linear receiver applied to the received déta»). A linear estimate of the desired
symbola; (n — d) is obtained ag (n — d) = f7 Y 1(n). If the channel convolution matri¥ (G y)
were known, a minimal noise-enhancing projection (decorrelating) receiver [GS99c] could be obtained
simply asf = P%gl, whereP% = I - P7, Py = X(X"X)~7'X" is the projection operator, and
T is the channel convolution matrik(G ) without the columry,. However, as shown in 11.5.2, the
projection receiver or the MMSE-ZF can be obtained blindly from the received signal second-order
statistics and only the desired user’s timing and spreading sequence knowledge.

We maintain the notation introduced in (11.5.7) wheTg, andT'; represent theartial signatureor
the transmit filter (including the pulse shape and the signature) of the desired user and its orthogonal
complement respectively, so that the desired user’s overall channel is writign asT} h;, and
T,TH = 0 (C{C, = 0). Then the projection receiver can be obtained in a simple manner as
indicated by the following proposition.

Proposition 1 Any receiver vectolf obtained as the eigenvector lying the noise subspace of the of the
matrix R{-, T T, R, is a projection receiver.

Proof. See appendix B.

Rﬁl/Y denotes the noiseless or the denoised version of the received signal covarianceRmatrix

[I.7.1 Existence of the Projection Receiver

Let us consider the noiseless casé) = 0). The above result can be interpreted in terms of the
signal and noise subspacBs and 5, of R, and{, andi/, of R} T T,R} . The receiver
vector f lies in the signal subspacB; but it also lies in4,,. If the intersection of the two subspaces is
one-dimensional, thefi exists. This condition is simply the conditioin)(of section§ll.5.5, leading to
the same stacking factor as given by (11.5.26). Note thak{7} = rank{Ppx T}, since,

span{7L(Gn)} C span{TL} @ span{g,}. (1.7.2)
Furthermore,
span{7r(Gn)} Nspan{TL} = span{T }. (1.7.2)

Hence, the projection 6f on the range space @ is a projection on a larger dimensional subspace.
The noise subspace GTT?HPHJ??H is therefore a subset of the noise subspadB @t . We know

that any vector lying in the noise subspace of the latter qualifies as a projection receiver. Hence, any
vector in the subset of this noise subspace does so as well.

Alternatively, we can see that the dimensioSafis PMJL — (N + K (L — 1)) while?4,, contains
exactly one more vector, if the above conditions are satisfied. Needless to say, that the span and
rank conditions are satisfied w.j. for the case of randomly chosen spreading sequences. It is also
observable that given that the condition (11.5.25) is satisfied, the criterion by construction leads to zero
only if RY-y f =g,.

Unfortunately, the performance g¢gfthus obtained is extremely poor due to the estimation errors in
the signal covariance matrix, especially for short data records, and in the low SNR region. The former
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is an estimation problem. Temporal averaging ry requires a large number of data samples to

give a consistent estimate. The latter is due to the large noise enhancement, since the projection is
on a subspace orthogonal to a large dimensional subsﬁé;cmsstead ofT) for the decorrelator).
However, interference is still rejected if the subspace structure exists and the receiver vector somewhat
compensates for the estimation errordiy- in the estiamtion of the channel vector.

Proposition 2 A channel estimate can be obtained from the projection receiver exploiting the fact that
the latter lies in the signal subspace.

Proof: See appendix C.

I1.7.2 Uniqueness of the Projection Receiver

The matrix@Q; in appendix B is not unique which means that the orthogonal decompositions are as
many as the dimension of the noise subspamﬁﬁ?H. In other words, all noise subspace vectors in
U, qualify as projection receivers. Note, however, that the objective in the above approach is to obtain
an estimate of the channel impulse respogseand not to estimate the receiver vector (which results
in very poor performance). Any of th@,’s therefore suffices for our purpose.

1.8 Numerical Examples

We consider the same simulations scenario as for the blind MMSE-ZF receiver discussed above.
As mentioned, the receiver performance is very poor since a projection on a very low rank of the
interference free subspace is obtained. The interest is to observe the channel estimate obtained from
these projections. Fig. 11.7 shows the normalized mean-square error (NM&Ehannel estimates
for the proposed method. Channel estimated from Capon’s method (the MVDR approach) is also
shown. It can be seen that the performance of the blind projection receiver based method falls short of
the MVDR method by several dB’s, but as this example exhibits, this quality of channel estimates is
largely sufficient for most purposes.

1.9 Conclusions

The blind MMSE-ZF or the projection receiver for DS-CDMA was presented in this chapter. This
receiver is the ZF solution that leads to the minimum noise enhancement among all possible ZF re-
ceivers, and is also called the decorrelating receiver in the literature.

The receiver was shown to be the proper extension of the anchored MOE receiver [HMV95] to the
general asynchronous case in multipath channels, leading to the distortionless response for the desired
symbol of the desired user. It was also demonstrated, that the receiver is obtainable from the blind
unbiased linear MOE criterion in a decentralized manner. A simpler implementation in the form of a
Generalized Side-lobe Canceler (GSC) or the MVDR was also shown. In terms of its implementation,
the blind algorithm, like the MMSE linear receiver, requires a large amount of data for the estimation
of the channel covariance matrix thus making it rather impractical for rapidly changing environments
(fast fading) and large numbers of usefs (+ P). Such algorithms can find their utility in indoor

INMSE= pllhal? _ 150

thy R 2
I2E
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Figure I1.7: Channel estimates from the Capon’s method and the projection algorithm,P = 16,
K =5.

wireless LANs where channels change at relatively slow rates and a fair amount of data is available
for the estimation of the covariance matrix. A possible implementation can be at the uplink, where,

knowledge of spreading codes and timing of all users in the cell can be exploited to obtain a better
RYY.

Identifiability conditions of the blind MMSE-ZF receiver, for channels of arbitrary length (even
longer than a symbol period) were given and it was shown that the channel is blindly identifialile w.p.
(up to a scalar phase factor), unless it is overestimated. The likelihood of overstimation in DS-CDMA
systems with large spreading gains is low, but cannot be ruled out if delay spread is of the order of or
is larger than the spreading gain.

Alternative projections were also discussed and it was shown that even though a projection receiver
itself may perform poorly, being obtained from a projection on a very low rank subspace of the desired
decorrelation subspace, it is still sufficient to give a channel estimate of reasonable quality. This rather
surprising phenomenon can be explained as the attempt of the projection receiver to compensate for
finite-data estimation errors of the correlation matrix of the received signal,

Appendix I1A

The MMSE-ZF receiver was derived in section I1.2f456 = eT (T 7)~'TH , where, weT denotes
here, a column-permuted version of the channel convolution mai&y ), i.e.,

T:[gl T],W":h glzTed,and ed:[l()()]

Let us further define a square transformation matgxgiven by

0— [ 1o ] , (1.9.1)
so that

70 =[5, ?][ ! "]:[P%al 7|27 119.2)
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and,

To ! = {P%ﬁl ﬂ [ ] =[g T]=T, (11.9.3)
and where X = — (7" 7)~'7" §,. Then, the MMSE-ZF receiver can be written as

-1 —

=l [Ta Te)] (e "

o (=H=\ "=
IedQ(T T) T

~ ~ -1 ~
o[ 1 o]|a'Ptg, 0 (P£g,)"”
=% | x 7 —=H—= —=H
0 7T T
L p
= =0 Pz, (11.9.4)
g1 P?gl

WhereP$ is the projection operator that projects the received data v&c¢idin) onto the low rank

subspace defined by the orthogonal complement of the subspace spanned by the colfipnasdof
matched filtering withg, is the projection on the one-dimensional subspace matched to the desired
signal. |

Appendix 11B

For the purpose of this discussion let us consider the input symbolsitbche with o2 = 1. In
order to show thaf is a projection receiver, we write the cost function as

f~ff}i|?—1 fARyyTHT, Ry f, (1.9.5)

Let us express a column permuted version of the channel convolution Matty;) as7 = [51 7] .
Then,g, = Tegy,ande; = [10 --- 0]7. Let us define the eigen decompositior%fH by

As 0 Vs
[ Vs V”][o 0][Vn]. (1.9.6)
Then we can write as
1 00 g
Riy=[g T V.]|lo T o]|]|7T]. (11.9.7)
0 00 i

Let us further define a square invertible transformation ma@ix,given by
1 0

Q= 7 : (11.9.8)
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so that
(7T VarlQi=|g Ti|a=Pta T, (1.9.9)

where, 7, = [T Va1, Va1 denotes: — 1 out of n orthonormal eigenvectors (thus all except the
first) of the noise subspace @f??H. X = —(7’{1’?1)—17'{/51, andP%L1 is the projection operator
on the complementary subspaceﬁf. In a similar fashion, we can writé, = [T Va2, and so
on up to7,,, wheren is the dimension o¥,,. Each time we take — 1 vectors out of: to compose

Tit=1,...,n. Q;, ¢t =1,...,n are the corresponding transformation matrices. Next, we define
but do not specify an invertible transformatighsuch that,
1 =~ 1 =~ 1 =~ T
[T Vn] Q= {P%l.(h P%2g1 P%n.(h T]. (11.9.10)

Note that in the above formulation,
Pz g, = P4, (1.9.11)
and therefore,
~H pl 1~ _
a1 P%1P%291 =0,
and[Pz g, Pzg, -+ Pz gi]qualifies as the noise subspacesd 7. Furthermore, from

(1.7.2), the noise subspace Bﬁl/YPTf R{. also qualifies as the noise subspacejjTTH. More-
over, both contain the contribution gf, . This results in

f=CPian, (11.9.12)

where( is a complex scalar scale factor, ang 1, ..., n. |

Appendix IIC

Let us continue with the noiseless casé¢t{ = 0). The overall channel for the desired user is
determined from the projection receiver as
Ryy f=(g,. (1.9.13)

We can write the left side of the above equation as

C§1:U§ {51 Tz} 010 5 P%.§1
00 0 7T
o~ g1 P= -
=0, {91 Ti] Q?[ 1%}7@ Pz g, (1.9.14)

Upon some algebraic manipulations, the right side of the above equation shrinks to

g 7

~H 1~
e o~ o~ o~
Oprm—1)x1 '

with ¢ =1, ..., n. The above gives a scaled estimate of the channel. |
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Chapter Il

Semi-Blind and Decision-Directed
Algorithms: Implementation Issues

The blind MMSE-ZF receiver proposed in chapter Il is a batch mode receiver, and relies
on a consistent estimate of the signal covariance maRrix, which requires a large num-

ber of data samples, especially if a large number of users are concurrently active. In this
chapter, we proposesemi-blindalternative for the estimation of the interference canceling
filter, Q. We also investigate the channel estimation by training and semi-blind methods.
Iterative improvements of the IC filter based upon exploitation of the finite-alphabet are
also discussed. Performances of different interference cancelation schemes are compared
in terms of the output signal-to-interference-plus-noise ratio (SINR). Adaptive implementa-
tions are also addressed. A low-complexity version of the IC scheme, namely, the Interfer-
ence Canceling RAKE Receiver (ICRR) is presented, which can reduce the number of IC
filter coefficients to be estimated once the channel impulse response is available.

[11.1 Introduction

Semi-blind approaches [dCS97] have recently kicked off with the intuitively attractive idea of em-
ploying, in the estimation problem, as muahpriori knowledge as can be made available. Forth-
coming third generation mobile cellular systems like the European UMTS Wideband CDMA and
TDMA/CDMA [ETS97a] [ETS97b] standards both anticipate the use of a training sequence integrated
within the signal frame. It is worth mentioning that in the context of blind estimation, CDMA systems
possess the most desirable characteristics of all existing multiple access systems with the necessary
(extra) bandwidth and integratedoriori knowledge in terms of spreading sequences. Any further in-
formation, like known training data, should provide further gains resulting in more efficient interference
suppression and reduced computational complexity.

Although scant, the CDMA literature asemi-blindhas had the term employed with varying sig-
nification. Semi-blindness to some comes from known spreading codes of intracell users, with the
inter-cell co-channel users contributing to the blind part [HM98]. In our problem, we shall consider
knowledge of only the spreading sequence of the user of interest, with known training symbols for this
user (thus a semi-blind problem).

Batch processing complexity is usually considered prohibitive for most real-time applications. A de-
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composition of the Wiener filter based upon orthogonal projections and leading to a multistage imple-
mentation using a nested chain of scalar Wiener filters was presented in [GRS98]. This decomposition
leads to a reduced rank Wiener filter which evolves a basis using successive projections of the desired
signal onto orthogonal, lower dimensional subspaces. Applications to the DS-CDMA problem of this
reduced rank filter have been explored in [HG98, HX99]. However, no results presented until now have
shown that the Wiener filter estimation becomes data efficient if reduced rank approximations of it are
considered. Other work in the area of reduced complexity MVDR approaches [KBP98] suggests using
an arbitrary number of auxiliary vectors for the blocking transformation (see 11.1) instead of a trans-
formation spanning the whole noise subspace. Again, results have not been very promising in terms of
data efficiency/performance trade-off.

Of particular interest for stochastic gradient based adaptive implementation are the MOE receiver
of [XT98], where two algorithms for the adaptation of the receiver coefficients and the channel impulse
response are introduced. The drawback of both is the interdependence of the two entities to be adapted,
which makes it difficult to choose adaptation step sizedor the two. Furthermore as pointed out
there, the presence of local minima canagriori be dismissed. One particular implementation of the
MMSE-ZF receiver, given in chapter Il which also corresponds to the pre-combining interference can-
celer followed by coherent combining lends itself to a particular disjoint adaptation of the interference
canceling filter and the channel. We shall investigate, in this chapter, an LMS based adaptation of this
receiver. It is shown that the quadratic cost-function viz. the estimation error covariance at the out-
put of the bank of correlators is quadratic in coefficients of the interference canceling filter leading to
guaranteed global convergence. The channel coefficients, on the other hand, are separately optimized
based upon the knowledge of the interference canceler, assuming that interference has already been
done away with. We explore the particularly attractive case of sparse channels and present a decision
directed strategy to improve the quality of the IC filter. It is shown that significant performance gains
can be achieved if decisions are reused in a soft fashion to influence the adaptation procedure.

I1l.2  Semi-Blind Algorithms for DS-CDMA Systems

Fig. .12 in sectior§ 1.4.4 depicts the semi-blind philosophy. In multipath (1SI) channels, it is advan-
tageous to keep the training symbols grouped together in the transmitted burst, as is the case in GSM.
The reason for this grouping is that the channel impulse response has a certain/esgthtfols) and
the number of equations of the least-squares criterion should be sufficient to solve this linear equation
problem. At the two edges of the training burst, some symbols (precisely) are unusable for build-
ing the afore mentioned equations, since they contain contributions from unknown symbols. However,
if N =1 (no ISI), the channel convolution matrix is a block diagonal, and each symbol irrespective
of its position contributes one equation to the least squares problem. Nevertheless, the above argu-
ments are valid only for the single user situation. A variety of algorithms have been presented for this
problem in [dC99]. We shall investigate the semi-blind problem in the DS-CDMA multiuser problem
from various angles in this chapter, while maintaining as receiver and channel estimation algorithm,
the MMSE-ZF and Capon’s method respectively of the previous chapter.

In third generation wireless cellular systems like the UMTS WCDMA [ETS973], training symbols
are allocated for all users in the uplink. Itis however, well-known that channel estimation by single-user
LS leads to a biased estimate in the multiuser problem. Joint channel estimation is then, one alternative
which requires timing information and some kind of alignment of user signal arriving at the base-
station. Although the TDD situation [ETS97b] is well-suited for joint LS channel estimation, satisfying
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the afore mentioned conditions of alignment and quasi-synchronism due to block transmission, the
UMTS FDD uplink is not, and channel estimation is a rather critical issue in these systems. The
channel identification issue is further aggravated if power control is not efficient. This brings one to
the conclusion that interference not only affects the receiver performance if not handled properly but is
also a nuisance for the parameter estimation problem, which also needs to be near-far resistant in the
interest of the receiver which is based upon its quality.

1.2.1 MMSE-ZF Receiver and Semi-Blind Channel Estimation

Consider the GSC-like implementation of the MMSE-ZF (projection) receiver depicted in fig. I11.1.
The fact that the two-sided linear prediction (supplemented bythein the desired signal portion)
leads to an estimation error covariance matk; », that is rankt, has the following very interesting
implication.

Proposition The two-sided linear prediction problem converts the MAI and ISI problemib=a 1
(non-ISI) problem. B
Proof Let us stack together successive prediction error veétdrsa super-vectoZ as

Z4

N
Il

: =T(T)Yr4m—1 = T@)T(T2)Y r4n—1
YAV

where, 7(T'1) represents the block Toeplitz convolution matrix composed of appropriately shifted
blocksT;. Same holds foff (T';) and7(Q). A; denotes the lengt/ data vector for uset.
D(h1) = hy ® I denotes the block diagonal matrix of the propagation channel vector for thé user
signifying a channel length a¥ = 1 symbol.E = [ET ... ET,]" stands for the noise (plus residual
interference) term in the estimation erdr

[11.2.1.1 Training Based Channel Estimation

We observe that the pre-combining interference cancelation structure of fig. I1.1 cleans up the contri-
bution of the ISI and the MAI from the signal of interestMf = M, + M,,, whereM;, and M, denote
the number of known and unknown symbols respectively, the least-squares cost function [Kay93] can
be written as

?1,1 = arg rrlllin |2Mk — D]\@(h,l)AL]le2 = arg rrlllin |2Mk — Ahy)?,
: : (111.2.2)

where, the second equality is due to the commutativity of convolution.
[11.2.1.2 Semi-Blind Channel Estimation

In semi-blind channel estimation methods, the goal is to combine the TS cost-function with some
blind criterion in some optimal manner. Let us write the estimation error vector as

Z =D(h1)Ay + E = Di(h1) Ay + Dy(hy) Ay + E = Ayhy + Ayhy + E.
(111.2.3)
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Let us consider a Gaussian model for the input symbols, i.e., the input symbols are considered to be
i.i.d. Gaussian random variables with me&nand variancerg. Then,Ra4 = 031, which implies that

Rp, ()4, = 0.Du(h1)Dy (h1) = (o7hihi) © I, (11.2.4)

whereZ, isaM x M matrix with zero off-diagonal elements aihd in positions of unknown symbols
on the diagonal. An intuitively reasonable semi-blind criterion can therefore be devised as

> 120 = hraral® + b (RZYy = Amin(RZ5)T) ha, (111.2.5)
nEQk

simply combining, without any optimality consideration, the blind (rdnk-, ) and TS based criteria.
In the above Rz 7z = Znegu ZnZnH, and<2; and<2, denote the set of known and unknown symbols
respectively.

111.2.1.3 Semi-Blind Gaussian Maximum-Likelihood

In section§ 1.4.3, the Gaussian model for the received signal is described. Note that k+-thser
problem, the parameter vectbdepends upon channels of all K users along with the noise variance,
o2, However, if we consider the TSLP approach to have cleaned up the contribution of the MAI and
the ISI, then, assuminy to be Gaussian, the estimation error vectrcan also be considered to be
Gaussian distributedZ ~ A (Akhl, Rgg + (azhlhf) ®Iu). The semi-blind GML criterion for

Z minimizes the log-likelihood cost function

~ H _ ~
,C(O) = Indet (RDu(hl)Au) + (Z - Akhl) (REE + RDu(hl)Au> ! (Z - Akhl)( )
I.2.6

Note that the cost function in (lI1.2.6) is quadraticdh Furthermore, for a fixed, andcs2, it can be
solved forhy, resulting in an iterative solution in the three parameters.

The difficult part is the estimation adR 5. In the signal user case addressed in [dC99], one can

obtain a theoretical expression gz by plugging in the previous iteration’s results fhy ando?.

In the K -user CDMA problem (111.2.1) addressed in the decentralized TLSP or GSC fashion as in the
present development, this approach is not feasible since channel estimates for all users will be needed.
One possible approach consists of estimatRgg from averaging over a number of realizations,
naturally requiring a large number of data samples. A possible low-complexity approach consists of
exploiting the block Toeplitz structure @& gz and limititto Reg = Rg, g, ©® I, in which case

(11.2.6) reduces to

L(0) =M Indet (R, E,) + M, Indet (Rg, g, + o2hih{) (11.2.7)
_ -1
+>  (Z,—ha)" Ry g (2, —hia,)+ > ZI (Rp,g, +02h b)) Z,.

Note that the above approximation f& 55 reduces optimality but still leads to a useful semi-blind
criterion.

Letus assume thd g, g, = 021, i.e., the contributions of the residual interference in the prediction
error Z ,, is white. We furthermore assume that the coefficients,adire real, although an extension to
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the case of complex parameters can be easily made. The gradient of the cost function, apart from the
third term that takes into account the training (LS) portion, can now be written as

0 _
OLO) _pp v (021 + o2h R~ 0 (021 + 02h,h1T) (111.2.8)
8hi 8hi
—tr { (021 + o2h I o (021 + a2hahil) (21 + o2hihi) ST Z, 20
¢ nEQk
Furthermore,
_ hy -
0 : 0
hi—q
o (621 + 02hihi') = H; = |hy -+ hioy 2k higr - hagwl,
i his1 (11.2.9)
0 : 0
i It gw ]
and applying the matrix inversion lemma [Kay93],
1 1 o? !
(021 + o2hhi!) " = = [I_h1 (—;+h{1h1) h{f] , (11.2.10)
which in the limit as% — 0, leads to
- 1
(021 + 02k i)™ = =P (I11.2.11)
g

€

1
It can be seen that agé — 0, Rz becomes rank; andR,, — Amin(R,5) I — — P, the value of

the gradient becomes zero, and the sub-optimal semi-blind GML becomes eqeuivalent to the semi-blind
criterionin (111.2.5).

Other semi-blind channel estimation criteria are also possible but are beyond the scope of this thesis
and will be discussed no further. We shall refer to the [dC99] for details and performance analysis of
these methods, while emphasizing that channel estimation (rapidly changing parameters that constitute
h; must be estimated by first nulling out the interference which in the current framework is based upon
slowly varying parameters (path delays).

l11.2.2 Semi-blind Adaptation of the IC Filter

Fig. 1.2 shows the bit-error rate performance of the MMSE (emplof?@_gl/) and the MMSE-ZF
receiver derived in chapter Il. It can be seen that the receivers are plagued by the finite-data effect. Here,
we show that when training data side-information is available, this problem can be partially alleviated.
To this end, we proceed with the linear prediction problem formulated in the GSC fashion described in
section§ 11.5.4. First, the channel vectqy, is determined as an initial estimate from the TS, blind, or
the semi-blind problem. It is actually the presence of a strong desired signal contribution in the main
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Figure 111.1: Output SINR performance of blind vs. semi-blind receiver, along with the perfor-
mance improvement obtained by iterative HD reuse

branch of the GSC that perturbs the estimation of the interference term in that branch. This effect is
more obvious in the case when the input SNR is low. To alleviate the excess-mean-square error effect
and to improve the estimate of the IC filtg, semi-blind information can be used. This will be done

over the training period by removing the contribution of the desired signal from the main branch of
the GSC. To incorporate the training information, we formulate the followieghted least-squares
(WLS) cost function:

s Z 1213 + Z 12, — T hyar,all? } (11.2.12)
unEQ ner

where, a; ,,_4 is constrained to lie within the training sequence. The weighting faetgrand a,ﬁ
can be determined respectively as the ensemble averafés, (i and||Z,, — T hya; ,,_4||3 for the
blind and training sequence parts of the given data sequence. The denoised signal covariance matrix

~d
R = Ryy — /\mm(Ryy) I, where, \,i, is the minimum eigenvalue of the estimated covariance
matrix, and

Ryy = Z Y, YH—|— = > v, vl (11.2.13)
nEQu ner

The algorithm is semi-blind for the estimation of the interference canegland can involve a
blind estimate of the channel. An update of the channel vector, in iterative implementations, is also
possible based upon the knowledge that in the noiselesgtagés rank one. The performance of the
semi-blind adapted version of the MMSE-ZF receiver is illustrated in fig. I11.1.

I11.2.3 Exploitation of Finite Alphabet

An iterative implementation of the MMSE-ZF algorithm is possible when decisions are re-used at
each iteration to re-estimate the fil@@r We propose to start from the semi-blind cost function (111.2.12)
and make hard-decisions at the output of the receiver, thus exploiting the finite signal constellation
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(BPSK in this case). The decisions taken are fed-back to re-estimate the IC filter. Upon each iteration,
more correct decisions are available resulting in improved performance. We compare results with the
limiting case where all symbols are known (ASK) at the receiver and their effect is removed from
the estimation o). The hard-decision (HD) algorithm converges to this state in a small number of
iterations, as seen in fig. lll.1. In this numerical example, we consider a spreading fatfomath a

burst length 0200 data samples of whickb are the training symbols.

111.3 Interference Canceling Rake Receiver

The generalized side-lobe canceler (GSC), is a particular implementation of the linearly-constrained
minimum variance (LCMV) beamformer. It was shown in chapter Il (where it was referred to as the
decentralized receiver) that the projection receiver could be implemented in a GSC manner. However,
in 11, the emphasis was on channel identification. Here, we proceed with the case where the channel has
been estimated beforehand to obtain an improved, low-complexity receiver, termed as the interference
canceling RAKE receiver (ICRR).

~ aln—d
Rl BT () N

at w

T2 n

Figure 11.2: Interference canceling rake receiver.

The GSC implementation of the receiver is shown in fig. l1l.2. Note that the main branch in fig. 111.2

is the multichannel matched filte'y?f. Wheng1 ~ g,, we have an unbiased response for the desired
symbol, a, ,—4, (after scaling) and corresponds to the (normalized) coherent RAKE receiver. This
second branch contains firgg*, which is any blocking transformation (of appropriate dimensions)
for the signal of interest. In our problem for examgl®, qualifies as a blocking transformation and so
does a blocker parameterized by the channel coefficients [SI096], given irttaasform domain by

—GQ(Z) Gl(Z) 0 e 0
Gl(z) = 0 —Gia(2) G_?_(Z) 5 , (I1.3.1)
GP]W-J(Z) 0 —Gl(z)

with G* its time-domain counterpart. In all cases;"g, = 0. Note thatP; + FPg.x = I. Inthe
above,

~H ~
tin=6, Yi(n), and @5, = G Y (n). (I1.3.2)

It is clear thatz , contains no signal of interest but some of its components are correlated pyith
and can be used to lower the interference level in the latter. We thus have an estimation problem, which
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can be solved in the least squares sense, for some vector WiterThis interpretation of the GSC
corresponds to the post-combining interference (ISI and MAI) canceling approach [DHZ95, LA98].

The estimation error is given by
~H ~ 1
z(n)=|g; — WG | Yr(n). (11.3.3)
Since the goal is to minimize the estimation error variance, the interference cancelation problem settles
down to the estimation of the Wiener filt&, minimizing the estimation error variance and resulting
in
_ ~H ~LH /~1 ~1H\ 1
W = Ryz, Rgle, = 61 RiyG (G RL, G ) , (111.3.4)

The outputg, ,—q, the data for the usdris given by

. 1 1 ~H ~ 1
i = g I Y1(n) = (91 -wa ) Y (n) (11.3.5)
91 91 g1 91
I11.3.1 Semi-Blind Receiver
The mean square estimation eredris given by
~H -~ = -~
MSE = |2,/ = (g, - WG ) Riy (3, - GLHWH) . (11.3.6)

There is an excess mean square estimation error tesfnijndue to the presence of the desired user’s
signal,aggflg1 in the main branch. Since there is no sighal component in the bottom branch, this term
is uncorrelated with all components of the lower branch. Therefore, to estimate the interference term
in the RAKE output, ideally, there should be no signal term in the main branch. Since the channel is
known (estimated), we can subtract the contribution of the desired user during the training period to
reduce the excess MSE resulting in improved performance. Then the main branch output is given by

~H = ' . . . .
1, = g, [Y1.(n) — g,a1(n)] and the Wiener filter is determined in the same way as before.

l1I.4 Numerical Examples

We considet’ = 6 asynchronous users in the system with a spreading factor-oefl 6. The overall
channel (including the transmit and receive filters) for ttte user is modeled as an FIR channel of
lengthW . ranging from6 — 14 chip periods for different. Mild near-far conditions prevail in that the
interfering users are randomly (ranging fréno 10 dB) stronger than the user of interest.

In fig. I11.3, we show the performance of blind and semi-blind (ICRR) receivers and compare it with
that of the theoretical MMSE receiveRfy = o271 (Gn)TL(Gx) + o). It comes as no surprise
that the optimal MMSE is not approached by any of the other receivers due to finite data effect. A
theoretical curve for the MMSE-ZF or the decorrelating receiver is also provided. It can be seen that
the semi-blind ICRR does relatively well. In all simulations of the ICRR, channel estimates obtained
from the proposed blind method are employed. In these simulations we cop&itlamming symbols
in a packet 000 symbols. More training symbols result in improved performance.
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There is a flooring effect in the high SNR region for the semi-blind receiver which is due to the fact

that if the blocking transformatiof  is parameterized by the channel coefficients, then a bit of the
desired user’s signal creeps into the interference cancelation branch due to estimation §|ir.oT$1m
blocking transformatioff”, therefore qualifies as a better blocker, since itis based upon spreading code
and delay spread information, and both these quantities are ka@niori. Simulations further show

that the quality of the blocking transformation affects the performance of the training based ICRR more
than that of the estimated multichannel matched fiﬁ@r,
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Figure 111.3: Output SINR vs. SNR for different receivers, M, = 20, K = 6, P = 16, near-far
conditions.

I1I.5 Adaptive Implementations

The GSC formulation of the MMSE-ZF as given in section 11.5.4, converts the constrained opti-
mization problem (unbiasedness constraint) into an unconstrained one [JD93]. In [XT98], the authors
propose to adapt the MOE problem in a GSC fashion by splitting it into two optimization problems,
one for the interference canceling filter, and the other for the channel impulse resppnke prob-
lem with such an approach is that the problem becomes that of joint optimization thus rendering it
susceptible of falling into local minima. The alternative formulation is that pfeacombiningnter-
ference canceler, as shown in fig. Il.1. The interference canceler operates independently of the channel
response. The optimization problem however becomes that of optimizing for a matrix@iltérhe
entity that needs to be minimized is the trace®f ;.

One situation of interest is that of sparse channels (se¢tibf.6) whereT', defined by (11.5.27)
contains a small number of non-zero rows, highlighting the fact that only these directions of the corre-
lator bank carry the signal plus interference energy. Note th@t aso longer contains only the code,
but also the contribution of the pulse shaping filter, the channel parameter ygasoa short (/) x 1)
vector with thel) non-zero elements of the sparse channel per RX sensor. If the corresponding rows of
the IC filter@ can be assumed to operate independently so as to cancel interference in these directions,
they can be adapted independently. Let us denotg;gndt;, the:th row of the matrixQ andT'y
respectively, then the cost function to be optimized becomes

Z;= R, = (t; — q;T2) R* (t; — q;T2)" . (I11.5.1)
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where,i € {1,...,l1}, andl; is the number of non-zero taps of the sparse charfiyek quadratic in
q,, and can be optimized in the LMS or the NLMS fashion. It can be noticed that while minimgzing
its contribution to the trace aR 7z also gets minimized. Same applies for othgs. Then, the update
equation will be of the from

Qint1 = 99ipn — KV Ziy (111.5.2)

where y, is the step size for the LMS algorithm [WS85]. The derivative (the gradient) can be computed
as

Ve 2i = —Ty R + T,RqY, (11.5.3)
leading to the recursive update equation

Qint1 = Din — Mg {Tszqfn —~ Tsztﬂ : (111.5.4)

As Rz is rankd in the batch processing mode, the adaptive search for path coeﬁi&ign’em then

Lo , . ~H <~
be based upon the maximization of the signal varian¢ég, T:T4 ¢,)/|/g:| at the output of the
maximum ratio combiner, resulting in a recursive update as

Prp1 = Pro 15, [T1— QT R [T - Q,T:]" 6, . (I11.5.5)

In the above adaptive algorithnR? is approximated by, Y — 521, wheres? accounts for the
denoising operation.

[11.5.1 Hard/Soft Decision Directed Mode

The adaptive interference cancelation scheme can be adapted in a decision directed mode to improve
the quality of the filter@,,. The presence of the signal term in the output of correlafBys perturbs
the estimation of the IC filters. The hard/soft decision-directed mechanism works by examining at
the scaled soft outputs, ,,_q of the receiver (see fig I.1). W& ,—4 > ¢, then an update is made
by subtracting the contribution of the desired ternfagy — §1d1,n—d) from the correlator outputs.
Otherwise no update is made. Several more sophisticated schemes are also possible. For example, the
update can always be made while subtracting the soft output rather than the hard decision.

l11.5.2 Delay Tracking

In the above frameworkl™, is assumed to be fixed. However, the discrete path components of the
sparse channel tend to drift from their nominal positioffs, is no longer a strict signal blocker if
it is obtained fromT'; as the orthogonal complemenPTLH qualifies as a blocking transformation.
An update of thel'; can be when oversampling the received signal w.r.t. the chip rate is employed.
Considering an oversampled version of the pulse-shaping filtgr,we can write as

kT. kT,
p(k—=) = p(—) + 7p(—),
wherep(t) is the first derivative of the pulse shaping filter, ands a continuous time delay. Hence
the positions inT'; can be updated as discrete shifts every time a decision is made based upon the
values of matched filter outputs pfk7./.J) andp(kT./.J) for a givenk. This adds a little in terms of
complexity since two matched filtering operations are required. However, this complexity is justified
by a better choice of delay on which the entire interference canceling structure is based.

(111.5.6)
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1.6 Numerical Examples

We considerk’ = 6 asynchronous users in the system with a spreading factér ef 16. The
propagation channel (excluding the transmit and receive filters, which is a raised-cosine pulse, and the

effect of which are absorbed in the code convolution mattij as shown in equation (11.5.27)), for the
kth user is modeled as a sparse channel wite 4 discrete paths spanning a delay spreafl ef21

chip periods for different’s. The interfering users are randomly (ranging frérto 10 dB) stronger
than the user of interest.
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Figure IIl.4: Channel estimation error for the adaptive algorithm K =5, P = 16, SNR=15 dB.
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Figure II1.5: Output SINR for two step sizes K = 6, P = 16, SNR=25 dB, near-far conditions.

In general, the normalized LMS (NLMS) results in better convergence due to the gradient noise am-
plification problem in the original LMS algorithm [WS85]. We shall therefore consider the normalized
version of the LMS algorithm in these simulations. Fig. Ill.4 shows the normalized mean-square error
(NMSE)? of adaptive channel estimation algorithm. We start with random initialization for the channel

7 (1)
1 _ plhi-h? _ o1~ =Ry )P
NMSE= £ Wz — 1 it IAE
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Figure 111.6: Output SINR for blind and decision-directed algorithms K = 6, P = 16, SNR=25
dB.

taps since the interference canceling filter does not need path amplitudes and phases. Path delays are
assumed to be known and fixed in these examples.

In fig. 11l.5, we show the convergence of the NLMS adaptive algorithm [WS85] for two different
values of the step size. Convergence is guaranteed in all cases due to the quadratic nature of the cost
function, once the step sizg, lies in the region of interest. In fig. I11.6, we show the performance
of the decision-directed algorithm. It is seen that the blind algorithm suffers from a saturation effect
due to the presence of the desired signal component in the estimation of the interference canceling
filter, while removing this contributions over reliable decisions gives significant performance gains.
No simulation examples are presented for the case of joint channel and MOE receiver optimization as
presented in [TX98]. It appears that the choice of step sizes (there are two) in the joint optimization
problem is a complicated issue. We tried to compare the performance of our approach numerically
with the joint optimization one of [TX98], however, no definite range of step sizes could be obtained
for convergence for the latter case.

[11.7 Conclusions

Semi-blind adaptation of the MMSE-ZF receiver leads to improved performance as compared to the
purely blind approach; this occurs due to the excess MSE term in the estimation of the IC filter in the
latter. Semi-blind algorithms for channel estimation are also possible. However, practical implemen-
tation of such algorithms in the MMSE-ZF algorithm may be unnecessary since a blind estimate of
the channel is obtainable from Capon’s method, i.e., as the principal eigenvector of thie eaok-
covariance matrix ; .

The adaptive receiver presented above distinguishes clearly between two issues, namely channel
identification and receiver adaptation, i.e., the interference canceling part of the receiver operate in a
fashion that it attempts to cancel the interference independently of the channel parameters apart from
the delay. In this respect, it qualifies as a pre-combining interference canceler. The disjointness of
the two estimation algorithms leads to global convergence of the two once the system is identifiable
in the batch mode. It was also seen that the decision-directed mode of operation results in much
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improved performance over the blind method. It must however be mentioned that the quality of the
blocking transformation is crucial in all cases. If the desired signal component leaks through this
branch, performance of the algorithm greatly suffers due to the desired signal cancelation. Delay
tracking is therefore necessary for operation in fading.
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Chapter IV

Downlink Solutions

This chapter deals with the problem of downlink interference rejection in a DS-CDMA sys-
tem. Periodic orthogonal Walsh-Hadamard sequences spread different users’ symbols fol-
lowed by scrambling by a symbol-aperiodic, base-station specific overlay sequence. This
corresponds to the downlink of the second generation North American I1S-95 standard, and
the European UMTS Wideband CDMA proposal for third generation wireless cellular sys-
tems. The point-to-point propagation channel from the cell-site to a certain mobile station
is the same for all downlink signals (desired user as well as the interference). The compos-
ite channel can be shorter than a symbol period under certain circumstances while it can
be longer for some cases, like for high-rate users in a multirate configuration. In the latter
case there is significant ISI when the channel is frequency selective. In any case, orthogo-
nality of the underlying Walsh-Hadamard sequences is destroyed by multipath propagation,
resulting in a multiuser interference contribution at the output of the coherent combiner
(the RAKE receiver). Alternatives to the RAKE receiver are proposed; these include the
linear zero-forcing (ZF) and the maximum SINR receivers which equalize for the estimated
channel, thus attempting to render user signals orthogonal at the output of the equalizer.
A simple desired user code correlator subsequently suffices to cancel the multiple access
interference (MAI) from intracell users.

IV.1 Introduction

While sophisticated joint multiuser detection techniques are being pursued for the uplink of the
third generation wireless systems mostly due to the inability of the RAKE receiver in combating the
near-far effect, downlink situations are considered to be much too deficient in terms of information
and processing power to implement multiuser techniques. However, the net capacity of a communica-
tion network can only be increased if both links can support similar transmission rates. Other recent
studies argue that the real bottle-neck occurs in the downlink for high rate applications, like internet
surfing, where asymmetric traffic is likely to take place. The existing trend in downlink capacity en-
hancing techniques, nevertheless, remains to be improved transmission schemes like transmit antenna
diversity [Win98], and advanced receiver algorithms at mobile stations are virtually non-existent in the
DS-CDMA literature.

In situations where a relatively small number of users are active(%% of the processing gain),

69
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the RAKE receiver [Pro95] might perform in an adequate manner and more complex signal processing
may be deemed unnecessary. Under power controlled conditions, this loading fraction approximately
corresponds to a SIR of approximat&lyglB and advocates support of abéatusers in a system with

a processing gain a6, as is the case of UMTS WCDMA proposal [ETS97a]. Increasing the number

of users to approach the spreading factor, however, has a catastrophic effect on the performance since
small contributions of multipath signals of each interferer captured by the matched-filter bank add up
to large values, even in the power controlled case. This effect is simply due to the suboptimal treatment
of the MAI as uncorrelated noise by the RAKE receiver.

As an alternative to the RAKE, linear receiver techniques based upon single pseri informa-
tion have lately been an active topic of research [GS98a] (and the references therein). These receiver
algorithms are based upon symbol rate wide sense cyclostationarity (see also chapter Il) and have been
shown to converge asymptotically to the MMSE solution. The application of these techniques in exist-
ing systems, however, is not straightforward, since symbol rate time-invariant processing can no longer
be performed when aperiodic overlay sequences spread/randomize the orthogonal user sequences.

Itis to be noted that in the structure of the downlink problem, the only entity fixed over the processing
interval is the propagation channel. Burst processing techniques can thus be applied once the channel
has been estimated, and single user information (symbol spreading code of the user of interest) and cell
specific randomizing codes of active base stations are available.

In the 1S-95 CDMA standard, a perpetually active known wideband downlink pilot signal is used to
estimate the downlink channel. This pilot is much stronger (typicellgiB) than other user signals
and a correlation based searcher constantly searches the best fingers for building the coherent RAKE
receiver [PG58, Pro95]. Channel estimation on the downlink using the known pilot symbols was pre-
sented in [WF97], where it was assumed that all downlink codes were known. Such an assumption
is reasonable in the case of the UMTS WCDMA norm [ETS97a], where a fixed number of downlink
codes can be used at one time, and all common cell information is constantly broadcast over the en-
tire cell. Some blind algorithms exploiting théd. nature of the spreading sequences and symbols
have been presented [LZ97, MS98a, WLLZ98]. However, these algorithms rely on averaging out of
multiuser interference, and happen to be data inefficient.

In this chapter, we start by introducing a linear zero-forcing (ZF) receiver for the DS-CDMA down-
link which equalizes for the propagation channel, once the latter has been estimated,; this equalizer in
the noiseless case renders the user signals orthogonal again, doing away with the frequency selective
distortion introduced by the propagation channel. To counter the noise enhancement problem of the
ZF algorithm, a maximum SINR receiver is subsequently introduced. These schemes are shown to
be attractive alternatives to the RAKE receiver under certain circumstances pertaining to delay spread
and transmission rates, which will be discussed in detail. Oversampling/multiple sensors are used at
the mobile station to facilitate equalization. Multichannels can also be created by treating real and
imaginary parts of a signal when the input constellation is one dimensional, e.g. BPSK.

IV.2 Downlink Signal Model

Fig. IV.1 illustrates the downlink channel model. Thé intracell users are assumed to transmit
linearly modulated signals over a linear multipath channel with additive Gaussian noise. It is assumed
that the signal is received at the mobile station through multiple (diversity) discrete-time channels,
obtained from oversampling the received signal multiple times per chip or through multiple sensors
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(or a combination of the two schemes). We shall consider the signal to be received through precisely
M channels whereld = no. of sensorsc oversampling factor. The signal received throughtttl
channel can be written in baseband notation as

K

Y (6) = DD b (t = nT2) + v (8), (IvV.2.1)

k=1 n

where the subscript denotes the user indef;. is the chip period; the chip sequencés. , } &,
are assumed to be independent of the additive npiggt) }; and hy,, (t) characterizes the channel
impulse response between thth user signal and the:th sensor or the oversampled phase of the

received signal. Let us denote by, = [w} p _,,wip o, ..., wj,]", the structured aperiodic
Repea& b1 n
= s @ 20
10 1\ 'U(l,)
ei(p1)
o 50yl h(t) >é9\ﬁ
ek (Px) J/T,
Repeat V ¢ 0
p
aK tinﬁ(es u \><JI)K n
v,
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Figure IV.1: The downlink signal model.

spreading sequence vector for tliesymbol of thekth user. The aperiodic spreading sequences consist
of a periodic Walsh-Hadamard spreading sequence [c; p,—1, - .. , ¢k 0], Overlaid by a base-station
specific scrambling sequensg;. Then,w?i = ¢80, ¢ € {0,---, P, — 1}. We can write the chip
sequenceby, ,, } corresponding to the data symbel},;, for thekth user as

brn = ak,zwém mod P, - (IV.2.2)

The chip period?,, is a constant, while the symbol peridd,, ¥k, is a function of the transmission rate

of the kth user. The symbol and chip periods are related through the processing’gai, = PiT..

We shall also consider the chip sequence to have normalized enjeggy:= 1. While orthogonal
Walsh-Hadamard sequences [Vit95] can be chosen as underlying spreading codes for users in a sys-
tem with a common spreading factor, future systems [ETS97a] envision multirate applications where
spreading codes are selected from a tree structure to ensure orthogonality between users with all rates.

For the purpose of the following discussion, let us assume a common spreading Facod a
common symbol period]’. As the downlink propagation channel is the same fortath a single
cell/sector, we shall suppress the subsdtififom Ay, () in the sequel. We consider that there are no
intercell interferers (or are considerably weaker) and their effect is momentarily ignored. We assume
that the timing information has already been acquired from the initial synchronization procedure. Due
to the synchronous nature of the channel, user signals will be considered to arrive perfectly aligned at
the receiver.



72 IV — Downlink Solutions

cq1 =[1,1,1,1]
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Figure IV.2: The tree structure for spreading codes selection for multirate systems.

The oversampled cyclostationary received signalfaimes the chip rate can be stacked together to
obtain theM x 1 stationary vector signal,, at the chip rate, which can be expressed as

K N-1 N-1 K
ynzzzhibk,n—i+vn: Zhi (Zbk) +v,=HNB, +v,,
k=1 =0 i=0 k=1 i (IvV.2.3)
where,
yl,n hl,n Ul,n
yn: 1 hn: 1 vn: 1
YMn hM,n UM, n
Hy = [ho hy ... hy_1]istheM x N channel matrix, once again including the TX/RX filters, and
B, = ?:1 By, With By, ,, = [brs ... b;m_NH]T, thenth instant input chip sequence for thth

user. Let us consider a block éf P + [, + I data vectorgy,,, and denote it b}y, to write as,

K

Y, =T(h)S5.Y CrApn+Va, (IV.2.4)
k=1
where, ~ } i o H
Ynlg—1 h = [hN—lv"' 7h0]
) c, 0 .- 0
) 0 ¢, O
yn,O ék _ .
Yp—1,P-1
Y e . , Ck
" o --. CL
Yn-1,,0 Ck,P-1 Ck,P—1 Chlg—1
Yo-l1-1,P1 . . .
: ca=| - |.e=|  Cp=
Ck.1
LYn—t,—-1,P—1,

Ck,0 CL,P—I Ck,0

T (h)istheM (L + P — 1) x N block Toeplitz channel convolution matrix filled up with the channel
coefficients grouped togetherkn and has full column rankV = L+ P+ N —2, and the periodic code
matrixC';, is the({sP+14+1s) x (I3+2) matrix accounting for the contribution 6f+2 symbols in the
received signaY’,,. ¢, andc;, denote the partial contribution of the end symbols of the data block. We
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shall denote thé; +2 columns ofC, asC., for 1 € {0, ..., Is+1}. Ap, = [ahn sy Ghnts_1]”
is the symbol sequence vector, atig denotesthd + P+ N — 2 = [3 P+ 1, + [ diagonal scrambling
code matrix with the diagonal element given by

[Sn,l(;—lv <o 3500, 5n—1,P—15 """y Sn—13,0) Sn—I3—1,P—15 - - - 7Sn—13—1,P—l4] .

IV.3 Training based Channel Estimation

Consider a downlink synchronous slot corresponding ef P — 1 received data vectors as depicted
in (IV.2.4). As mentioned before, the MIMO problem can simply be cast into a SIMO framework
due to the point-to-point nature of the downlink channel permitting one to write (IV.2.4] as=
T(h)B,+V,.

We suppose here that the training symbols for all active users are known over the common training
period of the frame/slot. Inthe UMTS WCDMA downlink, the control/data slot contains a fixed number
of training symbols for all users which are time-aligned due to the synchronous nature of the downlink.
As in the current GSM standard, the training symbdls, can be pre-selected quantities. In the
case of intracell users, the number of active users and their rate information is broadcast on a common
downlink channel, thus making the spreading code information available to all mobile stations managed
by the cell site. Then, the estimation of the channel is the one obtained by the least-squares criterion.
By exploiting the commutativity of the convolution, we g&t(h)B,, = Bh, where,

B = BW,N®IM

b_nt1 b_ny2 -+ Do
b_Ni2 '

BN,N = .
by ... by

Then, solving the maximum likelihood criterion
m}}nHY—TBnW<:>mhinHY—BhH?, (IV.3.1)
for the channel, admits as solutiol:= (BHB)‘lBHY. The inputsB,, are from a modified discrete

constellation alphabet which comes about from the linear combinations of the individual user chip
alphabets summed together before entering the discrete time cltannel

IV.4 Downlink Zero-Forcing Receiver

In the CDMA downlink problem, there are several kinds of zero-forcing criteria that can be pursued.
We shall consider the following two special cases:

IV.4.0.1 Zero-Forcing for ISI and MAI

Extension of (IV.2.4) to a symbol rate channel model of (1.3.29) is immediate. However, the channel
convolution matrix7 (G ') now is time varying due to the aperiodic nature of spreading sequences. If
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the scrambling were inactive, then the downlink channel model collapses into the uplink channel model
presented in sectiohl.3, with channel lengthsy;, same for all users issuing from the same cell-site.
The development of chapter Il therefore holds and we can derive an MVDR receiver just like for the
uplink case. It is straightforward to see that the receiver results in perfect ISI and MAI rejection, in the
noiseless case - the decorrelating solution.

IV.4.0.2 Zero-forcing for ISI only

Alternatively, one may concentrate on the inter-chip interference (and thus ISl) introduced by the
multipath channel. Exploiting the fact that the downlink channel is the same for all signals, we can treat
the problem as a single-input multiple-output (SIMO) vector channel transfer function, obtained from
the single inpub,, = Zi‘;l br,» to the multiple outputs through th&f x 1 z-domain FIR transfer
function of the channeln(z) = "' h;z2~". The received signal can now be written as; =
h(¢)b, + v,, where,q=b, = b,_;. As shown in fig. IV.3, the downlink receiver has a constrained
structure composed of a channel equalizer followed by a descrambler and a desired user code correlator.
Itis well known, that al x M FIR equalizeff(z) = Zf:_ol f.2~" qualifies as a zero-forcing equalizer
with a delayd if f(2)h(») = »~%. Let us further note that = {5 P 4 Is. This gives us a reduced set of
constraints

fTu(h)=[0---010---0], (IV.4.1)

with 1 in thedth position. To be able to satisfy all the constraints (IV.4.1), we need to choose the filter
length such that the system of equations is exactly or underdetermined. Hence,

- N -1
L>L=|——]1, v.4.2
N ’VMeH_ 1-‘ ( )

where, Mg = rank{ H ' } is the effective number of channels, ahds measured in chip periods.

IV.4.1 Discussion

In DS-CDMA systems, it is of course meaningful to suppress both the ISI and the MAI. Interference
cancelation after despreading is one way to proceed resulting in a treatment of the problem as discussed
in chapter Il. The approach presented above corresponds to zero-forcing equalization before despread-
ing, i.e., a chip-rate ZF receiver. The chip-rate equalizer/correlator structure is well suited to the single
cell downlink problem. However, the disadvantage can be a significant noise enhancement, since the
chip SNR is usually low in high spreading factor systems and constraining all the energy in one tap
could be highly sub-optimal. Such is not the case for the RAKE receiver which collects the energy
from all paths to maximize the SNR at the output (being a matched filter). However, when interferers
are present, constraining all the energy in one tap is still sub-optimal for the user of intedesisthe

b ~
el S PR e
¢stackP;h
Sn i

Figure IV.3: Downlink receiver structure.
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noise enhancement, but a better SINR is achieved since the interference is cancelled. We shall discuss
these trade-off issues in a subsequent section, when comparing the performance of different receivers.

IV.4.2 Multicellular Environment

If strong signals from/ base stations are received (usually= 3 is a maximum number given
hexagonal cell geometries), tHereceived vectorsy,, = zf{zl Hy,B,, + v,, can be stacked
together to givey’,, = zf{zl T (hy)Bytr-1,n + V5. We further assume that given fairly longd.
sequences, their linear combination is alsa.ath. sequence.

Note that soft hand-off can be handled in a natural way by the ZF solution by forcing to zero the
ISI from all cells but keeping one channel tap for each cell-site. Once again, the channel can be
estimated jointly from the least squares criterion, and a zero-forcing equalizer satisfying (1V.4.1) can
be determined, given a certain smoothing fackor,

IV.4.2.1 Dimensional Requirement

Consider the noiseless cas€#] = 0). Then we can write the received signal vectorYas =
T(h)Bnyr—1 = [T(h1) -+ T(ht)][bf N, 41-1 bl Ny 4+1-1)F - Now, T (h) is of dimensionV L x
N+ U(L - 1), with N = 3"V N,.. Then in order to be zero-forcing in the noiseless céskas to

be such thaf (k) is a tall matrix of full column rank in general. Theh,> L = L\f‘U

here
eﬁ_U—‘ L W L
U is the number of active base stations for the mobile user. Notélihgat> U is a condition that is

easily satisfied for worst-case scenarios, L.e= 3, in the hexagonal cell geometry.

IV.4.3 Cyclostationary nature of intercell interferers

It is interesting to observe the behavior of intercell interference in terms of its statistical properties.
Due to the aperiodic overlay sequences, the out-of-cell interferers add up as cyclostationary noise at
the chip ratep,2 %, 7(h.,)TH(h.) = o2 Ry,;,. Now Ry, is a banded Toeplitz matrix with a strong
diagonal element (considering chip-rate sampling is performed)Rayyl — I, as the delay spread of
the channel reduces. If these interferers are weak, then their effect can be ignored due to the relatively
small terms on the bands &,,;,.

IV.5 Blind Maximum SINR Receiver

Let us assume an arbitraify which givesf(z)h(z) = S220N"2 0,2~ We can write this set of

eguations as
T(F)T(h)=T(a)=T(ay) +T(@,), (Iv.5.1)

where, 7 (f)isaP x M(L + P — 1) block Toeplitz convolution matrix filled up with the equalizer
coefficients.7 (a) denotes a Toeplitz matrix with the first rde¢. 0p,_;]. Same holds foff (a;) and
T(a,;), where,

a=[apay ... apinN—2], a; =[0...0a30...0]

a;=[wg ... ag_1 Oagyr ... apyN—2]. (IvV.5.2)
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The P x 1 vector of successive equalizer outputs can now be written as
Z,=T(H)Y,=V.fT, (IV.5.3)

where, the last equality follows from the commutativity property of convoluf)dnis a block Hankel
matrix with 1 x M blocks (received signal componenig,). The equalized signalZ,, needs to be
descrambled aX ,, = S Z.,,, where

n—l5—1
S, =diag{s,p_1,.-- 501,500} -
Note that if the equalizer is ZFa{; = 0), then in the noiseless casg{) = 0), the correlator by itself
suffices to suppress the interference contributions in[GS98b].

Let us denote by
Q =[c1 ...cx],and QL =lex41 ---cp],

the matrices whose columns are constituted by the used and unused Walsh-Hadamard sequences re-
spectively for the systeng“[g = 0). Then an equalizef can be obtained by imposing that the

descrambled output of the equalizer be orthogonal to the ogdeiﬂ the absence of noise [LL99]. In
other words, the equalizer can be obtained as the argument of the following cost function:

arg min E|CH X% (IV.5.4)

A fixed response constraint must be applied to the descrambled output of the equalizer for the desired
signal (usefl) to avoid signal cancelation, i.e.,
ElcE X, |* = cnst.. (IV.5.5)

The solutionto this constrained optimization problem can be written as the following generalized eigen-
value problem

* P T
fI' = arg min fljiofT, (IvV.5.6)
FffRif

where, Ry = avg{),S,C*CHSH Yy and R, = avg{),S,cicl SV, andave denotes
the temporal averaging operation, and can be replaced by an expectation operator if the scrambler is
inactive, i.e.,S, = Ip andS,, = I.

Upon first sight, it is difficult to tell what optimization problem is the equalizer a solution of. The
criterion can be interpreted as the output energy of the receiver contained in the orthogonal gpace of
i.e., Ct. Intuitively, this should be minimized. The constraint on the other hand imposes a constant
response for the desired user. As we show in the sequel, the overall receiver (equalizer followed by
descrambler and correlator) turns out to be the receiver that maximizes the SINR at its output.

IV.5.1 Asymptotic Analysis

Note that, 5T (a;)S, = T(ay). The scrambler is modeled asd., and hence asymptotic re-
sults need to be averaged over it. We shall assume symbol period cyclostationarity and that the input
sequence is zero meand. with variances?. User powerss, are included in the input sequence
variance,az = Bro?. We shall replaces,,_;._; by S,, in the definition ofX ,, to simplify notation.
Let us now examine the constraint and the criterion separately in terms of their asymptotic behaviors.
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IV.5.1.1 RX Output Energy - The Constraint

The output energy (variance) of the receiver which also is the constraint term, can be written as

BlelX =B {c STT(f)Ryy T (£ Scl}—|—ZUkE{ HSH T (o )Snékéféffrff(g)sncli,
(IV.5.7)

where,Ryy = E{V,V!}isthe noise covariance matrix of appropriate dimensions. In order to treat
the problem in its generality, we considér, to be composed of not only the additive (white) channel
noise but also the intercell interference contributed by a few base stakgpg.is then banded instead

of diagonal, representing the noise color. We shall maintain the not&ig{y wherever necessary,
irrespective of its dimensions. We shall consider the following two cases of interest:

a. no scrambler

In the absence of the scramblst, = I'» andS,, = I, and the receiver output energy is given by

Elell X, = R 45015, 0F {ell T(al)ChC) T! (@) )er + el T(a)) C4Cy, TH &) e
ey T(Qd)CkajT (ad)cl +c T(ad)ckck TH(ad)cl} (IV.5.8)

which, upon some algebraic manipulations reduces to

K
' n~H o ~H o
Blell X, [P = FR 1 + atllall + 20%Re {aiCY T (@ery + 3 oHIEL T @e

=1 (IV.5.9)
where, Ry = T(ef")RyvT" (c]') yo, = [ 0agp 0 ... 0ag0 ... 0 agp 0 ...],
ad = a — ad, andad = [... ag_p g agyp ...]isal x I3 vector consisting of non-zero

elements oix Not that if f is a ZF equalizer, then in the noiseless cage)(= 0), a, = 0, and the
only remaining contribution is the second term in (1V.5.9), from which it becomes clear that upon ZF,
contributions fronm/s symbols appear in the output amounting to residual ISI in the receiver output.

b. with scrambler

In this case,
Elcl X |* =cH diag {T(f YRyv TH( fl}e+ Zak {cl (ay Cka TH(ay)e

+B{el! T () C,C 5, T @)sncl}w{cl SHT (@), ChCy T (e}

+ E{c{fanT@d)§n6kéf§nHTH@d)snc1H . (IV.5.10)

It can be easily verified that the first term inside the summation avér (1V.5.10) giveso2|ay|? i.e.,

the desired signal energy, instead gfterms as in the case without scrambling (IV.5.9). The fourth
term in (IV.5.10) can be written a5 24" E{cl! ST (@,)S,C .} O T (@ )e1, of which the
term outside the expectation is non-zero onlyice 1 and! = [5+1 (corresponglng to the correct po-
sitioning for the scrambler). The expectation term can be written{ds(a;) £ (S,C1 el S}, 1 €
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{0,...,l3+1}, and is always zero due to expectation over the scrambler. Similar treatment applies for
the third term. As for the last contribution of (IV.5.10), which can be written as

I3+1
~ ~H
Z Efel' SIIT (@) S.CriClLS, T (@) Sner},
=0
it is a fourth-order expectation in matricés, andg‘n and using the relations
o« B{STT(@,)5,} =0
p= el 1
o F{S,C},C{;S, } = $Iy
o E{S,cicl’ S} = LIp

e F{xzz!} =0, if z is a circular random variable [JS88],

can be written as a sum of three (two) second order terms in the case of real (complex) scrambling.
It can be shown that the overall contribution can be writterj|@g||*>/P per user in the complex
scrambling case, to which a teriis_, o2 tr{ BD; D, B*D,D,} is added in the real scrambling
case.Dy = diag{c;} and

0 Qgy1 ctr Qgepoq
g1 0 :
B =
Qg1
| dg-py1 v 0y 0 ]

isaP x P Toeplitz matrix. We can now write the RX output variance as

K K
1
El' X, 1> = fRyv 7 + o?|ay|* + > (Z ag) |l@,ll>+ > oftr{BDDB*D;D:},
k=1 k=1 (|V511)

wheretr stands for théraceoperator, and is the complex conjugation operation. The output SINR of
the receiver can finally be written as

oflog)?

r, = . .
fRyvf? + % (Z?Zl Uz) &yl + Yy o} tr {BD,D1B*D; D1} (IV.5.12)

in the case of real scrambling, which reduces to

otlag|?

FC = - 1
FRv ™ + 5 (S 0F) lla)?

(IV.5.13)

in the case of complex scrambling, due to the circularity property of the scrambling sequence matrix.
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IV.5.1.2 The Criterion

Let us now examine the criterion (1V.5.4) more closely. Similar treatment as for the constraint and
the fact that the columns @L consist of mutually orthogonal codes allows us to expand the criterion
as

BICH X |12 =te | E{CH SIT(F) Ry T (£)S,C* ]

K
+> ot [B{cHs1T()5,6,C,'S, T (@S, ]
- - o (IV.5.14)

Again let us analyze the following two cases:
a. no scrambler

Again substituting forS,, = I'» and forS, = I, and observing tthHT(gg)ék =0, fork =
., I, equation (IV.5.14) reduces to

P Is+1 K

EICH X7 = fFRFT+ > DN ofle! T(@) Cral’, (IV.5.15)

1=k+1 (=0 k=1

where R=Y0, T(cRyyT" (). In the above, we note th& 7 (a)))cy = 0, Yk =

. K. This criterion becomes zero and the fixed output energy constraintin (IV.5.7) can be satisfied
in the hlgh SNR regiom((¢ ) — 0 andfRy f andf Rf both small) at zero-forcing. This follows
froma, = 0. However,a;, # 0. This shows why several terms contribute in the solution to the
criterion. The ZF criterion gets satisfied without removing the ISI contributions. In other words, if
there is no scrambler, nothing distinguishes one symbol period from another neither in the criterion,
nor in the constraint. The resulting ISI can possibly be removed by applying a symbol rate equalizer at
the correlator output. However, a serious handicap in the realm of blind symbol-rate equalization will
be the monochannel aspect of the correlator output.

b. with scrambler

The criterion can be shown to result in the following relation in the instance of a scrambling whose
alphabet is chosen from a real constellation

P K
P— A
E|CH X ,||*=(P - K)fRyv f'+ ZakHadH +Y > oitr{BD:D;B"D;D.},
i=K+1k=1 (IV.5.16)

It is the final contribution in (IV.5.16) that arises only in the case of real scrambling. The overall
problem for the complex scrambling case then be expressed as

K K
) 1 _ 1 o
min fRvv £+ GOl st fRyv S+ G bl + ot = st

Apart from a scale factor, this is equivalenti@ax SINR.
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IV.5.2 Alternative Criteria and Constraints

A number of alternatives exist for criteria and constraint sets. For example, the constraint can also
involve all used codes. The modified constraint can now be expressed as

K K
EICTX* =" |ef' X, > = KfRyv T + (Z a,‘f) ||
k=1

=1
K K

K -
K
+ (§ Uz) Fugduu E E oitr{BD;D;B*D;D;},
k=1 =1 k=1 (|V517)

The criterion in (1V.5.16) subject to the above constraint still gives the max SINR receiver. The sum of
(IV.5.16) and (IV.5.17), i.e.,

K

K
1
ElIX. = Zaz) |ad|2+P{wafH+ Zaz) Fu@du?}.
=1

=1

(IV.5.18)

which holds for both real and complex scrambling owing to the disappearance of the last term in the
sum (Zf:l D;BD; = 0), can also be maximized subject to tEﬂgLHXnH? = cnst., or

Bl Xa|?
ax ————— IV.5.19
Let us consider
K 1 1 K
E||X,|* = cnst. = fRyv 7 + ZO‘% —|l&y||* = enst. — —= ZO‘% v |?.
P P
k=1 k=1 (IV.5.20)

We can also write the output energy as

K
1
Elf X ,|? = cnst. + {af -5 (Z ag) } |ag|?. (IV.5.21)
k=1

Then, another alternative is

max ElcX,|? st.  E||X,|* = cnst., (IV.5.22)

if 07 — (X4, o2)/P > 0. Also, since
K I( K
EHQHXnHQICnSt.—I— {(Zgz) _F (Zgz)} |ad|2 >0,
k=1 h=1 (IV.5.23)

we can also do
max E|CTX,|? st E||X,|* = cnst.. (IV.5.24)

It is easy to see that all these criterion and constraint sets lead ﬂi%)thHNR solution. Furthermore,

in terms of asymptotic performance, all criteria are equivalent. Computationally, however, one imple-
mentation may have numerical advantages over another.
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IV.6 The RAKE Receiver

If a RAKE receiver is employed for the desired user’s signal at the mobile station, flhen=
hf(z), anda in (IV.5.2) represents the autocorrelation sequence of the channel. Let us introduce the
superscript to account for this fact.

Qh = [04—N+1 O_N42 ...00 ...QN_2 OéN—l] )
ah=10...0000...0],and
QZ = [Oé_N_|_1 O_N42 ... .01 0 a1...00N_2 OéN_l] y (|V6l)

where,aq = ||h||? represents the middle tap, or the autocorrelation at lag zero of the channel. Then,
using the same set of derivations as before, the RX output energy can be expressed by the following
relation.

K K
1 _ .
Elef'X, 2= " Ryvh + o?||h|* + = (Z ag) &> + > oitr{B,DyDB; DD},

P k=1 k=1 (IvV.6.2)
where,
0 aq ap_q
Bh _ a_q 0
aq
a—P+1 TRy a—l 0

is the P x P Toeplitz matrix comprised of the channel correlation sequence elements. The output SINR
of the RAKE receiver can finally be written as

of|[h|I"

W Ryvh+ b (SIS of) Ilah 12 + $is, of 1 {BaDxD1B;DcD1}  (V.6.3)

'RAKE, =

for the case of real scrambling, shrinking for complex scrambling to
ot ||h[*

W Ryvh+ 5 (S5, oF) )2

I'rakE,: = (1V.6.4)

Note that the matrix3;, will be a banded matrix (with a zero diagonal) in the case whére P, i.e.,
when the delay spread of the propagation channel is smaller than the processing gain, as usually is the
case in spread-spectrum systems [TIA93].

IV.6.1 Comments

Equations (1V.5.12) (IV.5.13) and (1V.6.3) (IV.6.4) are highly illustrative in comparing the perfor-
mances of different receivers for the DS-CDMA downlink in the case of a single cell. The first ob-
servation is that complex scrambling yields improved performance irrespective of the type of receiver.
Computationally however, the averaging operation might require longer time (more samples) if com-
plex scrambling is applied. Another observation is that the use of orthogonal signature sequences is
justified, as opposed to randomly chosen sequences. In the latter case, as seen from (1V.5.10), the inter-
ference term in the denominator will be augmented byv,|* for thekth user, where,, represents the
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cross-correlation between the spreading sequences of the desirtdnéhekth user. Same holds
for the RAKE receiver.

Another consideration is the spreading factoy,in relation with the delay spread], of the chan-
nel. For the case of high rate users in a multirate situation [ETS37&,small and so ig<. The
chip energy to noise ratio%) is fairly good in such an instance. Howevéf,can be fairly large (sig-
nificant delay spread), and the denominator term in the SINR equations will be dominated by the ISI.
Consequently, an equalizer/correlator approach appears to be more attractive in these situations. The
ISI terms at the RAKE output will act as several equal power interferers resulting in a flooring effect in
the output SINR, which is typical of the RAKE receiver in interference. Another argument in favor of
the equalizer/correlator receiver structure is that the RAKE does not benefit from inherent interference
rejection property of a spread spectrum system when the processing gain is so sma&ll fe4),,and
is highly suboptimal if the input signal-to-noise ratio is reasonably high PAkecreases, the system
effectively starts looking more and more like a TDMA based system. [Fef 4, for example, only
one user is likely to be active at a certain instant [ETS974] in a network.

On the other hand, in multicode communications, the RAKE appears to be the more judicious choice
owing to a worseF. /N, ratio which will render the operation of a ZF receiver impossible due to
significant noise-enhancement. Furthermore, ISI can essentially be igndfed-if N, and under
power controlled conditions, sophisticated receivers may be too complex to be of utility.

Another consideration is thd 1 can account for the intercell interference. Nevertheless, since the
scramblers are base-station dependent it is banded and approaches a multiple of identity if the channel
from interfering base-stations are short, and can be ignored if powers of these interferers are very weak.

IV.7 Numerical Examples

The simulation framework models the downlink of a UMTS Wideband CDMA type system with
orthogonal channelization codes overlaid by a cell-site specific scrambler randomizing the periodic
user code sequences. Several values for the spreadingfaire assumed for these examples. We
consider a fixed value of delay spread (approximafethip periods) in these examples. The extent
of I1SI will naturally depend on the value d@f for different cases. Note that there is no change in the
model if users with different rates are present, since the basic signature waveforms are orthogonal.
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Figure IV.4: Eye of the received and equalized signals for the ZF receiver with as SNR 30 dB,
and K = 9 intracell users, P = 16, with an input symbol constellation of QPSK.

luserl is considered as the desired user
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Figure IV.5: Eye of the received and equalized signals for the maximum SINR receiver with as
SNR= 20 dB, and and K = 5 intracell users, P = 16, with an input symbol constellation of
QPSK.

The input signal constellation is QPSK with the primary spreading sequences from the binary Walsh-
Hadamard set, followed by the randomly selected scrambler with an alphake{+1, —1} for the
real case, and, € {£(1 + j),£(1 — j)}. The eye of the received and equalized signals are shown
in fig. IV.4 for the ZF equalizer at a SNR &0 dB. As expected the equalized signal vectors are
combinations of the input alphabets. A root-raised cosine pulse with a roll-off factoe®is used
in these simulations conform with the UMTS WCDMA norm [ETS97a]. Fig. IV.5 shows the eye
diagram for the blind maximum SINR receiver withintracell users and an input SNR 2@ dB. It
comes as no surprise that the constellation is slightly rotated showing the phase ambiguity classical of
second-order statistics based methods (see [dC99] for details). We choose a relativelysimi gl
periods) equalizer in these simulations in order to satisfyr zero-forcing in all cases. Furthermore,
it is a well-known result that longer equalizers give improved performances. Another issue that can be
verified by using equalizers spanning several symbols is the max. SINR output where scrambling is
inactive. Indeed, contributions from several symbols are seen when the blind maximum SINR receiver
is adapted without scrambling. Fig. IV.6 compares the output signal-to-interference-and-noise ratio
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Figure IV.6: SINR comparison of RAKE, ZF and the max SINR receiver for P = 16, K = 1

intracell users, real scrambling (left), and complex scrambling (right), an input symbol constel-
lation of QPSK, and a delay spread of approximatelyd chip periods.

(SINR) performance of the ZF and the maximum SINR receivers with that of the coherent RAKE
receiver for the case of a single user system with a processing Bain,16. On the SNR axis, the
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performance cross-over point is SNR dB for the ZF receiver while SNR 2 dB for the max. SINR
receiver. The RAKE performance is the theoretical performance in all case since the actual channel
is supposed to be known for all RAKE curves. The other two receivers are estimated entities, and
thus suffer from estimation errors in the low SNR region. Similar effects are observable for the case
of complex scrambler. The term contributed by real scrambler in equations (IV.5.12) and (1V.6.3)
fluctuates around zero and is ignored in these simulations. A flooring effect is noticeable for the RAKE
receiver. As for the ZF and MMSE receivers, once the channel is equalized, the effect of other users
can be perfectly removed owing to the underlying orthogonality. It is observable in these plots that at
low SNRs, a significant performance loss for the ZF receiver is incurred due to the noise enhancement.
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Figure IV.7: SINR comparison of RAKE, ZF and the max SINR receiver for P = 4, K = 1 intra-
cell users, real scrambling (left), and complex scrambling (right), an input symbol constellation
of QPSK, and a delay spread of approximatelyd chip periods.
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Figure IV.8: SINR comparison of RAKE, ZF and the max SINR receiver for P = 16, K = 10
intracell users, real scrambling (left), and complex scrambling (right), an input symbol constel-
lation of QPSK, and a delay spread of approximatelyd chip periods.

Fig. IV.7 shows the performance of the three receivers in a single cell caséwithl user and a
spreading gain oP = 4. The performance of the RAKE receiver is affected by increased ISI, while the



IV.7— Numerical Examples

85

30

-~ RAKE
251 o~ ZF
—— Max. SINR

201

15¢

101

Output SNR  (dB)

Output SNR  (dB)

10
Input SNR  (dB)

30

o
T

ol
T

[| = Max. SINR

- RAKE
-e- ZF

8/-3“" P O S T ot T ot T
&8
e

0 10 20 30
Input SNR  (dB)

Figure IV.9: SINR comparison of RAKE, ZF and the max SINR receiver for P = 4, K = 2 intra-
cell users, real scrambling (left), and complex scrambling (right), an input symbol constellation
of QPSK, and a delay spread of approximatelyd chip periods.

cross-over now occurs at a much reduced SNR value. Fig. IV.8 shows resutts#for0 with P = 16.

This time the RAKE suffers due to a large contribution of MAI. This again results in a cross-over at low
SNR. Similar trends are observed in fig. IV.9 #Br= 4, and K = 2, and in fig. IV.10 forP = 4, and

K = 3, which represents L 75%. Comparing the two figures, we see that such heavy loading has

its effect on the max SINR receivers, since the number of unused codes is reducaddamumerical

errors may be enhanced due to a projection on a one-dimensional subspace. However, the receiver still
is fairly robust in terms of the output SINR over a reasonable input SNR range.
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Figure IV.10: SINR comparison of RAKE, ZF and the max SINR receiver for P = 4, K = 3
intracell users, real scrambling (left), and complex scrambling (right), an input symbol constel-
lation of QPSK, and a delay spread of approximatelyd chip periods.

The left curve in fig. IV.11 shows on one part the degradation of the training sequence based channel
estimate agys = 7 intercell interfereres1) dB weaker) from a different cell sites interfere with

K, =

8 incell users, and on the other the improvement when powers of extracell users is reduced

gradually. The right curve in this figure also illustrates the same phenomenon for a fixed SNB,
and reducing interferer powers. Finally, fig. IV.12 shows the performance degradation of the receivers



86 IV — Downlink Solutions

as intercell interference starts to creep in. We hve: 15 users in a code space Bf= 16, of which

K; = 10 are orthogonal users sharing the same downlink channel. The ther 5 issue from the
neighboring cell site and are getting weaker and weaker with w.r.t. the user of interest. The figure
depicts performance loss incurred by ignoring such interference.

IV.8 Conclusions

We presented a linear training based ZF receiver and a blind maximum SINR receiver as alternatives
to the coherent RAKE for the downlink of a DS-CDMA system. This work has generated a lot of in-
terest in the CDMA community was taken up in [KZ99] among others. It is seen that given an estimate
of the common downlink channel, perfect zero-forcing equalization is possible in the noiseless case,
irrespective of the number of users, as long as their inner spreading sequences are orthogonal (which is
the case in various existing and future CDMA standards), and if sufficient spatio-temporal diversity is
made available. Performance comparison with the RAKE receiver shows thatin the absence of intercell
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Figure IV.11: Channel estimation normalized MSE for TS method, with P = 16. for varying
number of users and extracell usersl0 dB weaker as a function of input SNR (left), and as a
function of extracell interference (right), with SNR=5 dB with K = 15 users of which5 are
extracell users.

interference, these receivers are near far resistant and provide promising gains. Extension to multicel-
lular environments is also possible if all downlink channels can be estimated. However, more diversity
channels will be needed to zero-force in this case. Burst processing based ZF downlink receivers have
also been proposed in [Kle97, FV98] for the monochannel case. However, the processing involves
complex matrix operations over blocks of data andlibang tall condition of the channel matrix is
satisfied by considering zeros transmitted before and after the burst instead of multiple channels in our
formulation. Furthermore, in the approach presented in this chapter, performance of the receivers is
expected to be much better due to the multichannel aspect.

We also presented the blind maximum SINR receiver for the DS-CDMA downlink. Itis an attractive
alternative to the ZF receiver since it does not suffer from the noise enhancement problem of the latter.
The max. SINR receiver can be adapted blindly only if the scrambler is active. In the absence of
scrambling, the receiver can still be adapted blindly if the cascade of the channel and equalizer does
not span more than one full symbol period. Otherwise, all desired user symbols contribute in the output
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Figure 1V.12: Output SINR vs. SIR in a two-cell case withK' = 15 users, P = 16, with an input
SNR of 5 dB, and real scrambling.

leading to ISI, and a symbol rate equalizer will be needed at the correlator output. Once must mention,
however, that in order to reduce the effects of intercell interference, scrambling is always integrated on

the downlink of cellular wireless systems.



88

IV — Downlink Solutions




Chapter V

Spatio-Temporal Array Processing for
TDD/CDMA Downlink Transmission

In this chapter we address the problem of performing optimum spatio-temporal processing
when using adaptive antenna arrays at base stations for multiuser downlink transmission
in CDMA systems, using periodic spreading sequences and assuming the knowledge of the
channel of all the users. This assumption typically holds in TDD based mobile communi-
cation systems. We consider the SDMA strategy for using antenna arrays to gain system
capacity. In that case the number of interfering users located in the same cell, nEmely

can be higher than the spreading factor. The goal is to design FIR transmissionfilters at the
base station in order to maximize the minimum matched filter bound among trsers.
Several approaches, namely the zero-forcing, linear minimum mean square error, minimum
output energy and the pre-rake are considered to solve the problem.

V.1 Introduction

The use of adaptive antenna arrays at the base station can increase the capacity of a mobile radio
network allowing an increase in the number of users. In the downlink however, the possibility of spa-
tial diversity reception by Multiple Antennas (MA) is limited due to complexity and space limitations.
Furthermore, some third generation systems like the UMTS TDMA/CDMA [ETS97b] envision oper-
ation in the time-division duplex (TDD) mode. Note that in TDD based systems the uplink and the
downlink channels can be considered to be practically the same over two successive slots, assuming
the mobile velocity low enough and the receiver and transmitter appropriately calibrated. Under these
circumstances, since the channel is known (or estimated) from the uplink, efficient spatio-temporal
processing can be performed at the base station during transmission as well as during reception. Re-
cently, in [MS98Db], the problem of performing optimum spatio-temporal processing at base stations
for multiuser downlink transmission was addressed in the context of TDD/TDMA based mobile com-
munication systems. Here, we consider the same problem but in the CDMA case. In CDMA systems
for low transmission-rate users, the length of the channel is fairly short compared to the symbol du-
ration resulting in very little Inter-Symbol Interference (I1Sl). In typical downlink transmission (e.g.,
I1S-95), the multiuser channel is synchronous and the users are assigned orthogonal Walsh-Hadamard
spreading sequences. It must be noted, however, that the orthogonality is destroyed by the multipath
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propagation phenomenon and the actual capacity is much lower than the theoretical one. In the present
work, we propose to restore the orthogonality of the spreading codes through proper pre-filtering at the
base station, exploiting the knowledge of the downlink channels, which corresponds to Zero-Forcing
(ZF) the Inter-User Interference (IUl). More appropriate Minimum Mean Square Error (MMSE) cost
functions can be formulated when ZF cannot be obtained. In the existing literature, array process-
ing technigues have been employed at the base station with uplink capacity improvements as objec-
tive [SNXP93, NP94]. However, emphasis is almost exclusively on purely spatial techniques. More re-
centwork [RZ97] addresses the spatio-temporal aspect in terms of a two dimensional rake receiver with
the cancelation of strong inter-user-interference (IUl) on the uplink. In our treatment the cost function
results from the formulation of the Matched Filter Bound (MFB) optimization problem. We assume a
TDD/CDMA mobile communication system employing Periodic Spreading Sequences (PSS), operat-
ing with Spatial Division Multiple Access (SDMA) frequency reuse technique to gain system capacity.
Then more interfering users may be located in the same cell than the spreading factor (interference
coming from other cells is neglected, except for the users in soft-handover mode). We point out that
the framework can be easily extended to also include interferers from other cells. The maximization
of the MFB leads to the minimum probability of error for an optimal receiver. We also assume that
the reciprocity between up-link and downlink channels holds, i.e, the channel remains the same within
successive uplink and downlink time slots. The base station performs transmission thrahghnels
resulting from the inherent Over-Sampling (OS) due to the spreading factor, from the use of MA and/or
from additional OS w.r.t. the chip rate, towarlsusers. Each of th& mobile receivers is assumed

to have one antenna, to sample at the chip rate (i.e., no additional OS is provided at the receivers) and
to employ a correlator receiver. The goal is to designthe K FIR transmission filters in order to
maximize the minimum MFB among th€ users.

V.2 MFB optimization problem formulation

We assume a CDMA based system employing periodic spreading sequences, with a period equal
to one symbol. Assuming the channels time-invariant for the observation time, because of such peri-
odicity, the cascade of the code filter, the transmit filter, the channel and the receive filter results in a
time-invariant system. Since the overall system is time-invariant we attempt to maximize the minimum

MFB among all thelX" users. Actually, theth user discrete-time received signal,foe 1 ..., K, is
K
yi(n) = e (H] () Y Fj(q)a;(n) + vi(n) (V.2.1)
7=1

where thea;(n) are the transmitted symbols intended for gitle user,¢~! is the unit sample delay
operator (i.e.g~'y;(n) = y:(n — 1)), HY (2) is the channel transfer function between the base station
and theith user,c? (z) is the combiner matched to the code for ttieuserc;, F;(z) = F(z)c; isthe
spatio-temporal filter for the transmitted symbols, accounting for both the actual transmk fi{tgrto

be optimized and the spreading code for flieuser, and; (») is the additive noise at thih receiver.

The superscripts and” denote transpose and Hermitian transpose respectively. Assuming we have
chips per symbol period, each transmission fifefz) will perform sampling at least at the chip rate,
i.e., itwill be at least an. x 1 column vector. If no additional OS or MA are provided, the optimization
problem for all theF;(z)’s reduces to one of spreading codes optimization at the transmitter in the
presence of multiuser multipath channels. Moreover, in ged&ral) will be am x 1 column vector,
With m = m mmaos, Wherem,, is the number of MA and is the additional OS rate.
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We denoteG 7 (¢) = ¢/ H! (¢) the overall channel associated to thie user as seen from the base
station. Note that since the receiver is assumed to sample at the chiHFate), is am. x m matrix,
cfisal x m. row vector, so thaG? () isal x m row vector, and¥;(z) is am x 1 column vector.
Note thatG;(z) is them x 1 channel in the uplink from thé&h user to then base station channels.
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Figure V.1: Transmission filters and channels forK users

V.2.1 Frequency Domain Problem Formulation

The frequency domain MFB definition for thh user, considering interferers as Gaussian noise, is

2t .
MFB;: — QLTJ : UaT“(Z)TZTZ(z) : dz V2.2)
03> 2 Tji(2)T}(2) + 0 7

whereT;;(z) = GI(2)F;(2), 0 = E{|a;(n)|?}, o2 is the variance of the additive noisg(n),
assumed temporally and spatially white hereafter,ifgr = 1, ..., K, and, in generall’(z) =
TH(1/2*), where the superscriptdenotes conjugate. The symbols are assumed to be i.i.d. and the
symbol constellation is assumed to be circular (for a real constellation, the complex signals should be
splitinto in phase and in quadrature components). The cost function is given by

max_min{MFB;} (V.2.3)

{Fi(=)} ¢

V.2.2 Burst Processing Time Domain Problem Formulation

Consider theth user I/O transmission chain (see fig. V.1) regardless of the contributions intended
for the other users. The channgl (1) = ¢ H! () and the transmission filtef; (t) = F'(t)c; are
assumed to be FIR filters with duratid@i7 and LT respectively (approximately), wheie = m.T.
is the symbol period and. is the chip period. In discrete-time representation we have

zi(n) = Y15 Fillai(n = 1) = FiA; (n)
() Zkb gl (k)zi(n — k) + vi(n) = Gi X, n,(n) + vi(n)
=g/ (Ni=1) ... gl (0)], Fi=[fi(L—-1)... fi(0)] (V.2.4)
N, (n) = [2f (n = N+ 1) .2l ()]
ALL(n) =lai(n—L+1) ... ai(n)]T
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where superscriptdenotes transposition of the blocks in a block matrix. If we accumulaonsec-
utive symbol periods

Yo (n) = Tar (G Tara N1 (Fi) Ai N+ -2 (n) + Vi (n)
whereY; ar(n) = [y (n — M + 1) ...y (n)]" and similarly forV; as(n). Tar(A) is in general a

block Toeplitz matrix withM block rows and.A 0, ,1/—1)] as first block row, whered is a matrix
with p x ¢ block entries.

Then, introducing also the contributions of all the other users, foittheser we have
ZTM DTN, —1 (F)Aj vaNi+1—2(n) + Vi ar(n) (V.2.5)

and in the corresponding burst covariance matrix

K

7=1

we can distinguish the following contributions
R = o201 (G Tarai—1 (Fi) T s (P TH (G

R = 2 (GO Tarne—1 (FH) Ty (F)TH(GY)

Jt

(V.2.6)

whereR(M) and R(M) are the contributions of th&h andjth transmitted signals respectively at the

ith receiver, forj # i. Note thaty ., R ( ) represents the burst covariance matrix of the whole 1UI
at the:th receiver. Then the burst processmg MFB is defined as

MFBEM):—tr{R DR 1021y (V.2.7)
JF

where t{-} denotes the trace operator. Remark thatlass oo, MFBEM) — MFB; in (V.2.2).
In a similar fashion to the frequency domain formulation (V.2.3) the optimization criterion results in

ax 1 B V.2.8

Both problem formulations (V.2.3), (V.2.8) are too complicated to allow any analytical approach to
find the optimum solution. Nevertheless analytical solutions can be found under the following assump-
tion that the optimal solution corresponds to a low Interference-to-Noise Ratio (INR) for all the users,
i.e.,

4z
= — 3 V.2,
INR; zma2 Z% <1, Vi (V.2.9)

In that case, it is easy to see that maximizing the MFB is approximately equivalent to maximizing the
Signal-to-Interference-plus-Noise Ratio (SINR) and vice versa.
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Hence, referring to the burst processing problem formulation, the SINR definition fahtbeer is

wr{ R}

SINR; = (V.2.10)
tr{S 5 B + 02 Lur)
By introducingF! = [f1(L — 1) ... £(0)], it can be written as
2pt p tH
SINR; = 9o b RiF, (V.2.11)

where R; is a properly defined covariance matrix related to the chat#elwhose derivation is
straightforward. In the continuous-processing case, we fve- TL(GZ»)TLH(GZ»), whereG; =

[g(N; — 1) ... g(0)]. According to the definition (V.2.11) we dendi&NR; = ~; in the sequel. Then

let F! = \/p;Ut, whereU! is a vector with unit norm (e.g||U%|l, = 1 or U!R,U" = 1), the vector

of the inverse SINR's = = [y;! ... 7%']T and the vector of the transmit powers= [p, ..., px]’.

In addition we need to constrain the overall power transmitted by the base station to be less than or equal
to pmax. Hence the optimization criterion is

: -1 T
min |7 e St ¢'P < Pmax V.2.12
o [ ( )

wheré ¢ = [||U]13 ... [U%|I2]T. In the rest of this development we shall consider the SINR opti-

mization criterion (V.2.12), regardless of its relationship to the MFB criterion in (V.2.3). In that case
o2 can account for the variance of the inter-cell interference also. Then we define the normalized
power delivered by thgth transmission filteF”; to theith user as;; = U R, U, For anyi we have

72'_1]72'02'2' = ijcji + v (V.2.13)
J#
where we introduced; = o7, /o? for all thei's. In order to account for all the users we introduce the
matrix CT defined as

T _ Cj; fOI’j 75 2
). = { oz (V.2.14)
the matrix D, = diag{[c1; ... cxx]}, the vectorv = [v; ... vx]" and the matrixP = diag(p).
Then we have the following equation

vy rt=D'P Y CTp+v) . (V.2.15)

So the criterion (V.2.12) generally leads to a set of coupled problems which cannot be solved analyti-
cally. It can be shown however that the optimum (V.2.12) leads to the sdorall the users. Indeed if
somey;’s are not the same, then we can scale{the to improvey;, (refer to [YX98] for a detailed
proof).

V.3 MFB optimization problem solutions

Generally the optimization problem cannot be solved analytically for pathd {U !} at the same
time. Nevertheless under certain assumptions the optimization can be carried out in a decoupled way

for p and{U?} allowing analytical approaches to find the optimum.
! Actually, the proper norm for th& s in ¢ is U!W U, whereW depends on the transmit pulse shape filter, but we
shall ignore this issue in this development.
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V.3.1 Zero-Forcing (ZF) Solution
In the noiseless case or assuming the assumption (V.2.9) holds, the MFB optimization becomes

¢ tH ¢ tH _
IITE?IZIZX—I{UiRiUi } S.t. E p;U;RU =0 (V.3.1)
tll= i

Note that the conditior)_ .., p,U R;U! = 0 is equivalent to a set of ZF conditions in the form
UIR;UM =0, for j # i. Then the optimization problem reduces to

o N\UMTL(GH|3  stUTL(G;) =0forj # i (V.3.2)
Uf =1

Defining B; = [71.(G;)];2:, which is a block Toeplitz matrix accounting for all the channels but the
channelG;, the solution of the problem (V.3.2) &7 = VmaX(PﬁiRiPﬁi). In order for a non trivial
solution to this problem to exist, we need > K — 1, which is easily achievable when MA and/or
additional OS are employed, and the constraints should not fix all the available degrees of freedom and
we require

Yz N - (K-1)

L
7 e — (K — 1)

(V.3.3)

wherem.g denotes the effective number of channels and is given by the row raiik.cf (G, ... G4].

Note thatm.s = min{N — K + A,, N, m}, whereA; = rank{[g; (N1 — 1) ... gx(Nx — 1)]}.

We also assume#; to be full column rankyi. The constraints present in the optimization problem
(V.3.2) lead to perfect Ul cancelation. This is obtained at the expense of increased ISl at the receiver.
In order to consider the ISI as well as the [UI rejection in the optimization problem we rely on the ZF
pre-equalization conditions.

V.3.1.1 ZF Conditions for IUl and ISI Rejection

In order to ensure ZF conditions for IUl and ISI for tiik user the set of constraints to be considered
is
tth user
UlTL(Gy)=10...0...]0...000...0]...0...0] (V.3.4)

where T,(Gy) = [TL(G1) ... TL(Gk)], N = Y'U ) Nj anda # 0 is an arbitrary constant to be
fixed in order to satisfy the constraint on the normof. When IUI and ISI are zero-forced we have
SINR; = SNR; = MFB; for any:. Assumingm > K and7.(Gy) to be full column rank, to be
able to satisfy all the constraints (V.3.4) we need to choose the length of eact/fijtér such that the
previous system is exactly or under-determined. Hence

(V.3.5)

LZL:[LLH-‘

Meft — d
Then assuming > L we can consider two limiting set of constraints:

¢ |Ul rejection, no ISI rejection, as in section V.3.1.
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¢ both IUI and ISI rejection: in this latter case the set of constraints is (V.3.4), i.e., weMaye
L — 1 more constraints.

The goal is to maximize the MFB which, in the absence of Ul (equal to zero due to ZF), is proportional
to the energy in the pre-filter-channel cascade. Then, the MFB decreases if all the energy is constrained
inone tap. Hence if no ISl rejection is provided the best performance will be achieved, for a specified
due to the larger number of degrees of freedom. However, in that ca#tl tkeeeiver needs to equalize

a delay spread of up t&; + . — 1 symbol periods, corresponding to the whole delay spread due to
the convolution between the channel and the transmission filter. We may prefer that the introduction
of the pre-filter does not increase the delay spread, or we may want to limit the delay spread seen by
the mobile to limit the complexity for the equalization task in the mobile. In those cases additional
constraints in order to obtain at least partial I1SI rejection, i.e., limited delay spread, can be added,
leading to intermediate solutions between the previous two limiting cases. In general to have complete
IUl and partial ISI rejection we addV; + L — 1) — Lis; constraints (coefficients of the pre-filter-channel
cascade being zero), with< Lig; < (N; + L — 1), whereLg; corresponds to the residual delay
spread, i.e., residual ISI. This optimization problem has to be carried out for all possible positions of
the nonzero part of lengthys; of the pre-filter-channel cascade, and the best position should be chosen.
Finally, note that ad. increases the MFB increases as well. So, we shall choose the actual length of
the transmission filteré according to a trade-off between performance and transmitter complexity.

Finally one may note that ZF here corresponds to the design of a bi-orthogonal perfect-reconstruction
transmultiplexer in which thé’;’s andG;’s are synthesis and analysis filter banks respectively.

V.3.2 Downlink Synchronous and Asynchronous Transmission

The downlink transmission can be performed in a synchronous or asynchronous fashion. In the
asynchronous transmission mode the base station transmits maintaining the same asynchronous chan-
nel model for PSS-CDMA from the uplink, according to the TDD assumption of perfect channel reci-
procity. On the contrary, the synchronous transmission mode corresponds to lining up all the user
channelgy; (z)'s in a synchronous fashion. In this case we havéde sens@DD channel reciprocity,

and the matricesRﬁw) in (V.2.6) have to be builby handfrom the uplink channel estimates. In the
previous developments we considered ZF-FIR conditions on both IUl and ISI, yielding an expression
for the minimum transmission filter length The condition for the ZF-FIR filter for Ul and ISI cance-
lation to exist is that the channel matfix (G ) must have full column rank for a certain filter length

L > L. This assumption holds with probability close to one in the asynchronous mode for smaller
L than in the synchronous mode. Indeed in the asynchronous thgde K with probability close

to one. On the contrary, in the synchronous madecan almost surely decrease when the channel
delay spreads for all users are smaller than the number of users. That results in asmgaldrich

in turn results in a larget. Finally, note that/;, (Gy) is full column rank with probability one for
L>N-K.

V.3.3 Minimum Mean Square Error (MMSE) Solution

The MMSE criterion is given by

min mas 2 {[li(n) — ai(n = R)[3). (V3.6)
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wheren is a properly chosen delay to minimize the MMSE and
K
yi(n) =Y FiTL(G) A Nipr-1(n) + vi(n)
j=1

Then the criterion (V.3.6) can be written as

min - max{E||p;UTL(Gi) Ai 4 1-1(n) — ai(n — B)|34+02> " p,USTL(G) T (GHUH + 02}
p[|Uflla=1 ¢ i (V.3.7)

where the first term corresponds to the I1SI and the second one to the IUI. Hence it is straightforward to
see that the MMSE corresponds to ZF on ISI and 1UI when ZF conditions (V.3.4) can be applied.

V.3.4 Minimum Output Energy (MOE) Solution
Applying the MOE criterion leads to

r?int}maX{ijUéRiUﬁH + Uzi} st.pUMTL(G;) = q, (v.3.8)
p,{U;} ¢ ;

for any ¢, wheregq; denotes a vector of constraints on tile user pre-filter-channel cascade. It is
straightforward to see that forn.g > K the MOE criterion leads to ZF conditions on Ul while the
residual ISI depends on the constraint vegtor

V.3.5 The Pre-Rake Scheme

The pre-rake solution consists of an independent pre-distortion of the downlink signal of each user
by settingU ! = G'/||G*||3. The mobile receiver then needs to tune to the largest peak of the pre-
distorted signal. Although the pre-rake solution involves a low complexity, it is inherently sub-optimal
in the presence of multiuser transmission, since it does not account for the Ul and the ISI. The aim is
to avoid coherent combination of interfering signals while reducing the mobile receiver complexity.

V.3.6 Power Assignment Optimization

Assuming a given sefU;}, since the optimum involves all thg’'s to be the same, expression
(V.2.15) can be arranged in order to include the constraint on the transmitted POWer pmax.
By definingp = [p 1], p = D'v, AT = DZ'CT, and¢'p = pmax, (V.2.15) reduces to the
following problem (see [YX98] for details)

Ep=~"'p, E-= (V.3.9)

Pmax Pmax

SinceF is a non-negative matrix its maximum eigenvalue is non-negative and the corresponding eigen-
vector is non-negative as well [HJ85]. Hence the solution to the problem (V.3.9) is unique and itis given
by v7! = Anmax(E) andp = Vi,ax(E). Note that we can always re-scgien order to make its last
element equal to one.
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V.3.7 Implementation Issues

The presence of the noise makes the optimization of the fif#&rs involve a set of coupled prob-
lems that does not allow any analytical approach to find a solution. Therefore, we suggest to compute
the vectors{U !} applying ZF conditions (V.3.2), (V.3.4), MMSE criterion (V.3.6) or MOE criterion
(V.3.8) assumingn.; > K, which is always the case in practice. Then, giVéf }, we optimize the
power assignment according to the criterion (V.3.9).

When the noise is present, since the base station cannot estimate the noise vefiaatceach
receiver, unless such an estimate is provided by the mobile, the weatannot be estimated. To
remedy this drawback we shall properly define the SNR at the receiver. A possible definition is given
by

SNR; = %/\maX(RZ»), Vi

k3

In practice we need

min{SNR;} > SNRumin (V.3.10)

whereSNRui, IS @ value necessary for the mobile receiver to work with an outage probability below
a specified maximum. Assuming all the users using the same receiver the worst casetfoutes
occurs Wherp; = pmax While v; = vnay = ||V]|. Therefore a sufficient condition to satisfy the
requirement (V.3.10) is given by setting

SNRymin = 222 1min { \nax(R:)} (V.3.11)
Vmax *
Given SNR hin @and pmax, Ymax €an be derived. Then setting = viax for all thei’s the condition
(V.3.10) is satisfied. Finally, note that fpf,.x — oo the optimum solution is the one in the absence of
noise, for any/ax > 0.

V.4 Simulations

The following simulations are provided to illustrate a practical implementation of the proposed so-
lutions. Here we consider an CDMA/SDMA scenario in the presend€ ef 3 users which receive
signals transmitted from a base station. The chan@els are known (or estimated from the uplink).

In the first simulation we assumed. = 16 chips per symboln,,, = 2 antennas ane,; = 2 OS

factor w.r.t. the chip rate, so that = 64. The channel delay spreads weé¥g = Ny = N3 = 2
symbol periods whilen.¢ = 6. Sincem.g > K ZF conditions (V.3.4) can be applied. By setting the
length of all the transmit filters equal o = 2 symbol periods we obtain the performances plotted in
figure V.2, in terms of SINR at each receiver versus the minimum SNR. Note that due to the large pro-
cessing gainy., w.r.t. the number of users and to the small delay spreads introduced by the channels
the performances are insensitive to the residual delay sgrgadntroduced by the pre-filter-channel
cascade. Furthermore, extensive simulations have shown that larger valués bt yield significant
improvement of performances in that case. The second plot (fig. V.3), the effective number of sub-
channelsisn.g = m = 8. The channel delay spreads wéfe = N, = 3 and N3 = 4 symbol periods
respectively. We can now apply ZF conditions. The transmit filters all are of lefigth,4 symbol
periods. This situation corresponds to a loading fractiofi’éf. Due to the high loading fraction,

the residual delay spread;ss, introduced by the pre-filter-channel cascade affects performances more
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than for the previous case (fig. V.2). We may however observe that the ZF solution still provides good
performance with an output SINR of dB for anSNR,;, = 20 dB for perfect ISI cancelation, i.e.,
List = 1. The pre-rake falls much short of these performances for such a heavily loaded system.

In the third simulation we consideredsaturatedsystem configuration assuming= 3, m. = 4
andmm,, = mes = 1. The channel delay spreads wéyvg = N, = 3 and N3 = 4 symbol periods
respectively. Alsoin this case.gq > K (m.g = 4) and ZF conditions (V.3.4) can still be applied, buta
larger filter length/, will be needed. We fixed = 8 symbol periods to achieve (V.3.4), wherdas- 4
suffices for the pre-rake. The resulting performances are plotted in fig. V.4 where significant differences
arise for different values of.1s;. Note that the pre-rake, even power controlled and assuming an
ideal receiver, like in this case, performs always worse than the proposed solution, since it does not
provide IUl cancelation. The effect of IUI can become catastrophic when working close to the system
saturation, namely when the number of users approaehes

V.5 Conclusions

We addressed the problem of the optimization of the MFB with respect to the transmit filters at a
base station performing spatio-temporal processing. A general problem formulation yielded the proper
cost function to be minimized. We showed that the ZF solution allows analytical approach to the
optimization problem and, under certain assumptions, it is optimal for the MFB maximization. We
showed that both MMSE and MOE criteria lead to the same solution as ZF conditions in cases where
ZF conditions (V.3.4) apply. The pre-rake scheme was also considered and it was shown that it performs
always much worse than our ZF solution. We also discussed the effects of different values of the
transmit filter length and different delay spreads introduced by the pre-filter-channel cascade. Finally,
we observe that the PSS-CDMA without any further array processing represents a particular case of
the presented framework.
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Chapter VI

Spatio-Temporal Array Processing for
FDD/CDMA Downlink Transmission

This chapter delas with the problem of performing optimum spatio-temporal processing
when using adaptive antenna arrays at base stations for multiuser downlink transmission
in DS-CDMA systems, using periodic spreading sequences and assuming partial knowledge
of the channel parameters of all users. This assumptiontypically holds in frequency-division
duplex (FDD) based mobile communication systems. We consider the SDMA strategy for
using antenna arrays to gain system capacity. The channel is assumed to comprise specular
multipath, and a per-path argument is pursued to design FIR transmission filters at the
base station in order to maximize the signal-to-interference-plus-noise ratio (SINR) at the
mobile receivers. Joint optimization of the transmitter and receiver is considered. The per
path decorrelating pre-filter is introduced, and it is shown that due to the large number of
degrees of freedom available because of the large processing gain (inherent oversampling
with respect to the symbol rate in CDMA) and possible multiple antennas/oversampling, the
downlink performance can be greatly improved in the FDD problem.

VI.1 Introduction

Transmit antenna diversity is known not to give the same gains as the receive antenna diversity if
the no knowledge of the channel is available [Bel99]. Furthermore, it is seen at the receiver as time
diversity and is of use to create multipath diversity in flat-fading channels. On the contrary, if some
parameters of the downlink channel are known, pre-processing of some sort at the transmitter can
result in improved performance and simplified, low complexity receivers for the mobile stations. The
amount and nature of tha priori knowledge of the channels depends on the system architecture. In
time-division duplex (TDD) based systems (see chapter V), the uplink and the downlink channels can
be considered to be practically the same (reciprocity), assuming the mobile velocity low enough and
the receiver and transmitter appropriately calibrated. Under these circumstances, since the channel is
known (or estimated) from the uplink, efficient spatio-temporal processing can be performed at the base
station during transmission as well as during reception. The TDD case has been treated in chapter V.

Contrary to TDD, in the FDD mode, the base station has no direct knowledge of the downlink chan-
nel, since it cannot be directly observed and therefore estimated. A solution to this problem consists

101
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of providing the base station with feedback from the mobile station about the downlink channel at the
cost of reduced spectral efficiency. On the other hand, if such feedback is not provided, the downlink
channel characterization can only be based on the estimates of parameters related to the uplink channel,
which are relatively frequency independent and whose rate of change is slow with respect to the frame
duration. Actually in FDD based mobile communication systems, in the absence of feedback, the best
one can obtain is an estimate of the downlink channel covariance matrix. In reality even a robust and
reliable estimation of the channel covariance matrix represents a non-trivial issue.

The channel parameters of interest are typically the angle of arrival/departure, the delay, the mag-
nitude and the phase for each path in the multipath propagation. We assume the knowledge of the
covariance matrix of the channel impulse response averaged over the path phases and amplitudes (the
guantities unknown at the base-station). For the purpose of transmit filter optimization, the specular
nature of the paths, and the randomness of the path phases leads to the modeling of the multipath com-
ponents of a certain mobile user as equivalent to several correlated users, each propagating through a
single path. Assuming the individual paths to be spatio-temporally resolvable, the averaged covariance
matrix can still be built. Delays for paths which are resolvable in space only can be adjusted prior to
transmission to make them temporally distinguishable at the receiver.

In the light of the above arguments, we consider here the problem of performing optimal spatio-
temporal processing when a FDD/DS-CDMA system is adopted. Due to the lack of knowledge of the
path phases, the effective number of users is actually given by the sum of all the paths of all the users.
If only the spreading (temporal) dimension is exploited, then, in order to restore the orthogonality we
need the total number of paths to be less than the spreading factor. This in turn results in a low loading
fraction'. The loading fraction can be increased by using spatial and other multichannel information in
conjunction with the temporal (spreading factor/OS) dimension.

Theoretically, even a number of interfering users larger than the spreading factor may be located in
the same cell (interference coming from other cells is neglected, except for the users in soft-handover
mode). So zero Ul can be achieved as long as the total number of paths does not exceed the total
number of sub-channels. The latter can be quite large is MA and OS is employed. In our treatment,
the emphasis is on simple mobile receiver structures (e.g., a correlator or a RAKE receiver) while
the optimization criterion consists of maximizing the minimum signal-to-interference and noise ratio
(SINR) among the users considered, subject to a total transmit power constraint. Each ohtisle
receivers is assumed to have one antenna. We introduce the pre-combining like decorrelator filter to
decouple the multipath signals [DHZ95]. The problem then settles down to the power assignment to
signals through these pre-filters, in order to maximize the SINR at the mobile station. We show that
the optimal power assignment turns out to corresporstection diversityan approach that has also
been followed in [BJU 99] based on heuristic reasoning.

V1.2 The FDD Framework and Reciprocity

We consider a specular path channel model that consists @hultipath components for thah
user. Theth's usergth multipath channel component as seen form the base station can be modeled in
the continous-time domain as follows

hiy(r, 1) = aig(t)al (8:)8(r — 7ig) (VI.2.1)

! defined as number of users per spreading factor
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wherer;,, 0;,, anda;, (t) denote the delay, the angle and the fading attenuation associated;tb the

path of theith user, respectively, anal6) represents the array response vector. Assuming a similar
multipath channel model for the uplink, the parameters which can be assumed approximately constant
between the uplink and the downlink channels are the angles, the delays and the variances of the ampli-
tudes. Since the difference in phase between up- and downlink is random it can be assumed uniformly
distributed, whereas the magnitudes for both links are also random but can be assumed to have the same
variance. The variances of the path amplitudes can be estimated by non-coherent averaging over a cer-
tain time interval. The angles can be estimated if the array manifold at the downlink carrier frequency

is known. For particular array geometries and relatively small uplink—downlink frequency shifts, the
array response can be transposed from the uplink to the corresponding response in the downlink via a
linear transformation [AFFM98] without requiring explicit angle estimation. Another approach con-
sists of performing deamspactransformation (namely a spatial DFT) to estimate the beams in which

the signal energy is located [CTK94]. The downlink transmission then occurs through the same beams
as the uplink reception.

VI.2.1 The Pathwise Channel-Receiver Cascade

In order to reason in a pathwise manner, we assume that each receiver processes symbol rate data
coming from the outputs of a bank of receive (RX) correlators. The number of correlators equals the
number of paths for the intended user. For the pulse shaping matched filter at receiver we denote
wi(t) = et ¢ (r — IT.) as the cascade of the chip-pulse shape matched filfe), and the
ith user correlatot’ (—7) = 7;60‘1 c;l&(r — IT.), whereT. is the chip period aneh . the spreading
factor. The superscripts 7 and” denote complex conjugate, transpose and Hermitian transpose
respectively. We assume thatr) is a FIR filter with time duration approximately equalitq,7". T
is the symbol period. Then the following discrete-time channel model at the symbal/fEtevhere
T = m.T., can be described

gl (k, n) = aiy(n)[a(6iy) @ wig(n)]"
: (V1.2.2)
G, (n) = ajg(n)[a(byy) @ Wi(7i)]'

where® denotes the Kronecker product and the superstuenotes transposition of the blocks in a
block matrix,w;,(n) = w;(to + kT — 7;),

me — 1

wig(n) =[w(to+nl —71y) ... w(to+T(n+ ) — Tq)]T

and W, (ri,) = [wig(Ly, — 1) ... wi(0)] 2. We could also account for OS w.r.t. the chip rate by
replacingm, with m.m, in the expression above. We use the notalibn = a(§;,) @ W;(7;,) in

the sequel. One may notice that t¥ig,’s can be built based upon the estimates of the path angles and
delays, and the knowledge of the receiver correlator.

We also introduce the spatio-temporal channel covariance matrix associate@d yfth averaged
over theith user'sqth path phase, given by

R = BT (Giy (n) T (Giy ()] = 03 T (Vi) T (Vi) (V1.2.3)

q

2The length ofL., may be different for different users, although we shall neglect this issue in these developments
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whereo? = E[|a;,(n)|?], , E[-] denotes the expectation operator, afig(A) is in general a block
Toeplitz matrix withA block rows and A 0, ,(17—1)] as first block row, andt is a matrix withp x s
block entries.

We shall observe that due to the assumption on the receiver structure the dekayenote the
overall delay between the transmitter antenna(s) andttiheorrelator output of théth receiver. In
general, a cost function for the transmit filter optimization should be formulated so as to optimize also
each correlator synchronization time, i.e, to optimize theby properly advancing or retarding the
receiver correlator with respect to the base station transmitter clock. For the purpose of the overall
channel description and the filter optimization algorithm, we shall assume the dgelay® be fixed
and known at the transmitter.

VI.3 Signal Model

Assuming the channels;, time-invariant for the observation time, thith user discrete-time re-
ceived signal,fok =1 ..., d, is

K Q]

vig(n) = I HE (O D T Fiu(Q)aj(n) + vig(n) (VI.3.1)

7=11=1

where thea;(n) are the transmitted symbols intended for fitle user, ~! is the unit sample delay
operator (i.e.{ " y;(n) = y;(k — 1)), H};(z) is the channel transfer function between the base station
and theqth path of theith user channek ! is theith user correlatorf ;;(z) = F’,(2)c; is the spatio-
temporal filter for the transmitted symbols, accounting for both the actual transmitfilter) to be
optimized and the spreading code, for thejth user, and;, (») is the additive noise associated to the
gth path of the'th user.

Since we haven, chips per symbol period, each transmission figy(z) will perform sampling
at least at the chip rate, i.e., it will be at leasha x 1 column vector. If no additional OS or MA are
provided, the optimization problem for all t&, (z)’s reduces to one of spreading code optimization
at the transmitter in the presence of multiuser multipath channels. Moreover, in gén¢ralwill be
am x 1 column vector, withn = m.m,m,, wherem, is the number of MA.

Fii(2) G,ll'(z) ou(n)

a(n) xq1(n y11(n)
T e | ) HIG) == of D
c g c

D

FKQA’(Z) G};’(Z) UKQJ’(”)
(I;’I’ n Y YKQx (”)
< (n) CK > F0.(2) H%,, (2) - cﬁ 4>®_>
me g, n) me

Figure VI.1: Transmission filters and single-path channels fork™ users
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We denoteG?, (¢) = ¢/ H (¢) the overall channel associated with thie user'ssth path as seen
from the base station. Note that since the receiver is assumed to sample at the cliit};r(a:t)ais a
m. x m matrix,c isal x m, row vector, so thaG};(z) isal x m row vector, and;;(z) isam x 1
column vector.G;,(z) is them x 1 gth single path channel in the uplink from thi& user to then
base station channels.

VI.3.1 Burst Processing Time Domain Signal Model

Consider the 1/O transmission chain (see fig. VI.1) associated tgtthgath component of théh
user regardless of the contributions intended for the other paths and other users. Theg:]jézrjnel
chH}; (t) and the transmission filtef, (t) = F (t)c; are assumed to be FIR filters with duration
N;, T andLT respectively (approximately). In discrete-time representation we have

zig(n) = 15 Fiy(Dai(n —1) = FyyAi 1(n)

yig(n) = Yop2o "t gl (k)aig(n — k) + vig(n) = GI X4y, 1, (n) + vig(n)

G, =[g(Lu—1)...9L00)], Fig=[fi,(L=1)... f,(0)]

Xigp,(n) = [@(n— Ly, +1) ... 2l (n)]H (V1.3.2)

A p(n)=la;(n—L+1) ... a;(n)]"
If we accumulateld consecutive symbol periods
Yigm () = Tar(G) Tiag Lo —1 (Fig) Ai, My Lo 1—2(n) + Vig, v (n)

where,Y;, ar(n) = [yl (n — M + 1) ...y (n))" and likewise foV/j, ar(n).

K3

Then, introducing also the contributions of all the other paths and all the other users, it the
user’sqth path component we have

K @

Yig () =D D T (Gl) Targ -1 (Fi) Aj Mt Lo £-2(n) + Vig 2 (n)
7=11=1 (V|33)

We observe thaflr;; = a;, Vi,

V1.4 Transmit Filter Optimization

A major issue in the transmit filter design problem consists of the power assignment optimization
among different paths and different users’ pre-filters. In order to find an analytical solution we decouple
the power assignment optimization problem by considering first the optimization of a set of unit norm
transmit filtersU ;, such thatF';, = ,/p;;U,. Then, once th&/;, have been determined the powers
piq Will be properly assigned subject to a maximum total transmit power constraint.

For the sake of simplicity in the following developments, we introdH¢e = [ %(L—l) 3;(0)]
and the respective unit norm filtéf; . We also remark that for the convolution of afiyandG", the
relation

F'TL(G) = G'"Ty(F)

holds, wherel, and V are the durations in symbol periodsBfandG respectively.
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VI1.4.1 The Per-Path Pre-Decorrelator

A solution for the design of the filter& ;,'s consists of pre-decorrelating the paths of the user of
interst while canceling out the 1UI, namely the contributions due to other user’s paths. In order to
achieve perfect IUI cancellation and IP pre-decorrelation, we shall consider the following set of ZF
constraints

o UL TL(Vi)l; st ULTL(Vi)=0 (V1.4.1)
iq 2=
forany:,7 =1,...,K,l=1,...,Q;,¢=1,...,Q; st. ¢ # l wheni = j. DefineB;, as

[71.(V ;)] as the matrix accounting for all the paths of all the users buytiheath of theith user,
andA;; = T(Vig) T1(Viy). Then, the solution to problem (V1.4.1) 8} = Vina (P, AP, ),
WherePﬁm is the projection matrix onto the null space of the column spacB gf In order for a
non-trivial solution to problem (V1.4.1) to exist we need the lengtbf the transmit filterdJ ;, to be

K3

(Lo —1D(@Q-1)
mefr — (Q — 1)

where = . Q; andm.g is defined as the rank df g = [V;; ... Vigg,]. Note thatm.q =

min{m, L,,Q, (L,—1)Q+A} whereA = rank([vy1(L,—1) ... vkgg, (L, —1)]). The constraints
present in the optimization problem (VI1.4.1) lead to perfect 1UI cancellation along with an interpath
pre-decorrelation for the user of interest. This is obtained at the expense of increased ISl at the receiver.
In order to consider the I1SI as well as the 1UI rejection in the optimization problem, we rely on the ZF
pre-equalization conditions.

L>

(V1.4.2)

VI1.4.2 |IP Pre-Decorrelation, ZF Conditions for IUl and ISI Cancellation

In order to ensure ZF conditions for 1UI and ISI for itk user'sgth path the set of constraints to be
considered is

ith user'sgth path
Ui, T.(Vg)=1[0...0...]0...0a0...0]...0...0] (V1.4.3)

where7.,(Vg) = [T (V11) ... TL.(V ko, )], anda # 0 is an arbitrary constant to be fixed in order to
satisfy the constraint on the norm&f;,. Assumingn > @ and7.(V ) to be full column rank, to be
able to satisfy all the constraints (VI1.4.3) we need to choose the length of eaclﬁffjllteL, such that
the system of equations V1.4.3 is exactly or underdetermined. Hence

(L~ 1)Q - 11

— 5 (V1.4.4)

LZLI[

Then assuming > L we can consider two limiting set of constraints:

e |Ul rejection, no ISI rejection, as in section VI1.4.VI1.4.1.

¢ both IUl and ISI rejection: in this case, the set of constraintsis (VI1.4.3), i.e., welhavel — 1
more constraints.
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In the absence of 1UI (equal to zero due to ZF), the SNR at the output of each correlator is proportional
to the energy in the prefilter-single path channel cascade. Then, the SNR decreases if all the energy
is constrained in one tap. Hence if no ISI rejection is provided the highest SNR will be achieved,
for a specifiedl, due to the larger number of degrees of freedom. However, in that case, once the
strongest path has been selected;theeceiver needs to equalize a delay spread of upta- I — 1

symbol periods, corresponding to the whole delay spread due to the convolution between the single
path channel and the selected transmission filter. We may prefer that the introduction of the prefilter
does notincrease the delay spread, or we may want to limit the delay spread seen by the mobile to limit
the complexity for the equalization task in the mobile. In those cases additional constraints in order
to obtain at least partial ISI rejection, i.e., limited delay spread, can be added, leading to intermediate
solutions between the previous two limiting cases. In general to have complete IUl and partial 1SI
rejection we add L., + L — 1) — Ligr constraints (coefficients of the prefilter-channel cascade being
zero), withl < Ligr < (L, + L — 1), whereL ;g1 corresponds to the residual delay spread, i.e., residual
ISI. This optimization problem has to be carried out for all possible positions of the nonzero part of
length I.1g1 of the prefilter-channel cascade, and the best position should be chosen. Finally, note that
as L increases the SNR increases as well. So, we shall choose the actual length of the transmission
filters L according to a trade-off between performance and transmitter complexity.

One might think that by transmitting only through the strongest path per each user the amount of ISI
at the receiver is negligible. However, althoub is in practice very small (2, 3 symbol periods), for
high loading fractions, i.e., for a large number of paths, the requiredn become relatively large, in
order to achieve the above ZF Ul conditions, which in turn results in significant ISI.

Finally, one may note that ZF-pre-decorrelating here corresponds to the design of a bi-orthogonal
perfect-reconstruction transmultiplexer in which thg,’s andG;,’s are synthesis and analysis filter
banks respectively.

VI.4.3 RX Correlator Positioning / Delay Optimization

The ZF problem in (VI1.4.3) supposes that the delaysV: = {1,..., K}, ¢ = {1---Q;}, for
all users are known at the transmitter. This implies that the correlator at the receiver is also supposed
to be located at a known fixed position in time. It is for this overall defay, and all othersy;,,
Vi=A{1,...,K},r={1---Q;}, andr # ¢ whenj = ¢, that the pre-decorrelating conditions are
satisfied. In the optimization scheme, due to the presence of the RX correlators in the overall channel,
it is taken for granted that the assumed delay would lead to the maximization of the SNR at the output.
It would suffice then, that the correlator, in an independent operation mode, searches for the delay
by sweeping over the field of interest of the assumed delays. However, since the ZF conditions are
being satisfied for a set of discrete delays, the 1UI and IPI will have its contributions at all intermediate
positions. Furthermore, this may not necessarily be the global SNR maximization delay for the RX
correlator.

In order to maximize the SNR, let us introdub,,,, as the ZF prefilter for theth path of theith
user with the correlator placed at a delaynopositions (e.g., chips periods) w.r.t. an arbitrary initial
position. This can be seen assashift of the elements in the columns®f (V;,), (i.e., the first vector
co-efficient now containg more zeros). The optimization fdv,,,, is still done at the symbol rate
for the new7r,(V;,). The optimization problem still stays the same as (V1.4.3) and the optinsal
selected to maximize the output SNRax, SNR,,. The RX correlator can still search for the delay.
It can be seen, however, that the optimal delay selection is a coupled problem. Its choice, therefore,
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influences and is influenced by the design of other users’ prefilters.

An alternative approach for SNR maximization w.r.t. the correlator delay consists of searching over
several transmit filterd/,,,, for the one that maximizes the SNR, considering that the RX correlator is
fixed. Then, for the optimization problem of section VI.4.V1.4.1., assumigg= m, = 1,

Uzgn = [OIXn qun le(mc—n)] )

and then € {0---m. — 1}, in the case where chip-level resolution is sought in the delay optimization.
The number of zeros is fixed, and the solution to (V1.4.1) is still

Ui — Vmax(P%mZiqPi )

qn Big

The matrixB;, is built from B;, = [7.(V ;)] (section VI.4.1) by appending zero rows at the top
and (m. — n) zero rows at the bottom. Besides we hatg = T (V)7 (Vi,), whereT (V)

is built from 77,(V';,) in a similar fashion asE»q. We have assumed in the above that the TX filter

U}, is an integer number of symbols long, since it settles nicely in our framework (see sec. VI.4.1).
This, however, is hot necessary, and the filter length can, for example, be defined in number of chips.
The two approaches discussed above lead to similar kinds of delay optimization. Both problems are
coupled leading to joint oprimization for all users. Upon solving the joint optimization problem, the
optimum delay is determined leading to the maximization of the SNR at the RX correlator output. A
simpler, decoupled approach then consists of preselecting (see the following section) the dominant path
a priori, i.e., before the design diffq’s, and assuming that the RX correlators for all users are aligned

to the delay of the dominant paths. The delay assignment thus assumapttat anda posteriori

(after ZF-prefilter design) dominant paths will be the same, a very likely event. The prefilters for all
users can now be designed as discussed previously in a decoupled fashion. Fine tuning of TX filter
delays as discussed in the previous paragraph can still be applied, subject to the fixed delay constraint
for the correlators. We concede that the pre-assigned delays may not, in all cases, be the optimal ones,
but this simplifies the optimization problem making it much simpler to implement.

VI.5 TX Diversity and Power Assignment

We have assumed that each receiver consists of a correlator per multipath component. Assume that
the correlator outputs are combined according to the maximum ratio combining (MRC) criterion. The
multipath signal components are assumed to be spaced such that the correlator outputs are uncorrelated.
The effect if IUl and ISI may be ignored at this point (we have seen that pre-filtering will cancel them).
Fig. V1.2 shows the the TX-channel-RX cascade for itieuser. We assume a constraint on the total
transmit power such theE?:"l piq = pi (With p;, > 0). The output signal-to-noise ratio (SNR) for the
ith user is

E[| 2%, |ai?pigai ()] 62 &
SNR; = 2q oF ; = —QZEHaiqmpiq (VI1.5.1)
0y Zq:l E|aiq| Piq T4, g=1

whereo? = E[|a;(n)|?] for all thei’s ando?, is the variance of the noise at each correlator output
(for the variance of the noise at the correlator output it is assumed that the spreading sequences are
sufficiently white). The optimal power assignment among the different paths that maximize the SNR is
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Figure VI.2: Transmit diversity for the ith user through @); diversity branches/paths after pre-
decorrelating pre-filtering and ZF [UI

determined by solving the following problem

Qi
max{}_(Elaw )i} st Yo pig = pis (V1.5.2)
q=1

the solution to which is the well knowselection diversityvhich corresponds to assigning the whole
tranmsit power to the path carrying the most power (on the average). Hence, under the conditions above
the previous receiver structure collapses into a single pulse shape matched filter and a correlator.

We remark that the strongest multipath component is the one with the maximum energy in the
corresponding prefilter-channel. Then in general, when a pathwise pre-filtering is performed at the
base station then, strictly speaking, the strongest path selection for a certain user can take place after
the pre-filter design for each path. Hence, all paths need to be considered for the pre-filter design.

VI.5.1 Power Assignment Optimization

Since the transmission strategy consists of exciting one path per user, we gt ands? as
the filter, the channel (up to the fading coefficient) and the variance of the fading associated with the
selected path for théth user. Once we have designed the normalized transmit fliférse need to
optimize the transmit power assignment amonghihesers. In the absence of 1UI due to ZF, we shall
optimize the transmit power assignment in order to make the SNR at the output of each selected path
correlator, the same for all the users, subject to a total transmit power constraint. The SNRiflor the
user is given by

Uz 277t 2
V= b N1USTL(Va)ll2 (VI.5.3)

where) . p; = pmax. Since the optimal leadg; = ~ for all the users then it is straightforward to
derive the following expressions fgrand the optimap,;’s

2

1 1 Ty
; B pmaxgg Z U?"Uf%(vl)"%

7

(V1.5.4)
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V1.6 Discussion

The pre-decorrelating transmitfilters designed according to (VI1.4.1) are optimal in the noiseless case.
Indeed the limited power constraint does not affect in this cas&lthB, which reduces to the Signal to
Interference ratio (SIR) at each receiver, and which is infinity for any power assignment when ZF IUl is
achieved. However, in the presence of noise at receivers as the number of ZF constraints will increase,
anoise enhancemephenomenon will arise which might reduce the SINR gain obtained from the Ul
cancellation. If the CDMA system under consideration allows a large number of degrees of freedom,
namely a largen, compared to the number of paths of all the users, then the noise enhancement
phenomenon will be practically negligible compared to the SINR gain yielded by ZF the [UI.

An alternative solutionis represented by a pre-RAKE like pre-filtering. Due to the lack of knowledge
of the path phases (and amplitudes) of the downlink channel, only non-coherent pre-RAKE processing
is possible at the base station. However, the result of section VI.5, disagrees with pre-RAKE kind of
prefiltering.

VI.7 Simulations

We consider an CDMA/SDMA scenario in the presencé&of 3 users having); = 2 paths each,
which receive signals transmitted from a base station. The total paygrando? are constant, and
the noise variances?, = o7 is assumed and to be the same at all receivers and to be known at the
transmitter. The single path delays’s, the array response vectet;,) to build the channel¥’;,’s,
and the variances;, are estimated from the uplink.

In the first simulation we consideredsaturatedsystem configuration assuming the. = 8 and
m, = m, = 1. In this casen.g > @ (m.g = m = 8) and ZF conditions (VI.4.3) can be applied, if
filter lengthisl. > 4. We fixedl. = 4 symbol periods to achieve (V1.4.3). The resulting performances
are plotted in left plot of fig. VI.3 in terms of SNR at each receiver versus the residual IS} (
introduced by the pre-filter channel cascade. Due to the high system loading significant differences
arise for different values of.;s1. In the second simulation we considered the same user scenario as
above,m. = 8, but employingn, = 2 antennas at the transmitter. Sinegg = 13 and@ = 6 IP
pre-decorrelation ZF IUIl and ISI conditions (VI1.4.3) can be applied. By setting the length of all the
transmit filters equal td. = 4 symbol periods (even though = 1 suffices to achieve ZF conditions)
we obtain the performances plotted in the right plotin figure VI.3. Note that in this case due to the large
mefr, W.I.t. the number of user patlisand to the small delay spreads introduced by the path channels
the performances are quite insensitive to the residual delay spreadlt can be demonstrated that
larger values of.. yield improvement of performances, more significant whes is not very large
compared td@).

Fig. V1.4 shows the performance improvement as the processing window length (TX filter length),
L, isincreased. The left plot is for the case of a single antenna, while- 2 for the plot on the right.

V1.8 Conclusions

The FDD/CDMA downlink problem was addressed. It was shown that due to the partial knowl-
edge of the downlink channel, each path of a particular user could be treated as a seperate user. Pre-
decorrelation was applied on the downlink to cancel the IUl and IPI. For the desired user, the path
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selection diversity scheme was shown to be the best power assignment choice in terms of the SNR op-
timization. Performance of the receiwgs-a-visthe residual ISI was also shown. It was observed that

as long as the system has sufficient degrees of freedom (OS/MA factor), IUI can be cancelled by TX
pre-filters, leading to low complexity, improved mobile receivers. RX delay optimization was shown to
be a coupled problem and a simplified strategy was presented to obtain an individualized framework.
We point out that the above framework can easily be extended to include more complex situations, like
extracell interference etc.
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Chapter VII

Spatio-Temporal Array Processing for
Aperiodic CDMA Downlink Transmission

Consider a DS CDMA system employing aperiodic spreading sequences (APS) as signa-
ture sequences for different users. Multiple transmission antennas (MA) are employed for
increasing the network capacity. It is assumed that partial or total knowledge of the down-
link channel is available at the base-station due to either a time-division duplex (TDD) or
some feedback structure in the network. Spatial and temporal dimensions can no longer be
jointly exploited due to the aperiodic spreading. Hence, spatio-temporal pre-cancellation
of downlink interference (zero-forcing) is no longer possible. However, beamforming can
be applied to maximize the signal -to- noise plusinterference (SNR) ratio on a user-to-user
basis. We proceed with such an approach and provide closed-form relations for the sig-
nal and interference terms at the output of a mobile station RAKE receiver. We also show
that using the spatial dimension at the base station enhances the system performance. The
mobile receiver can later employ an equalizer to do away with the residual intersymbol
interference, thus maximizing the matched filter bound (MFB) at its output.

VIl.1 Introduction

Third generation wirel ess communication systems envision the use of DS-CDMA employing aperi-
odic spreading sequencesfor the downlink, typically consisting of periodic Walsh-Hadamard sequences
followed by masking by a symbol aperiodic base-station specific overlay sequence. Alternatively, even
the scrambling sequence can be user dependent.

When periodic spreading sequences are adopted, effective spatial-temporal processing can be carried
out at the base station transmitter relying on symbol rate wide sense stationarity. Under these circum-
stances in chapter V and VI it was demonstrated that orthogonality between the spread signals can be
restored at each receiver by properly filtering/spreading the symbolsintended for different users, based
upon the information of the channel state associated with each user. Then a number of interfering users
more than the processing gain may be located in the same cell, in particular accounting for the usersin
soft hand-off mode.

The application of these techniquesis not straightforward when the symbal rate cyclostationarity
no longer exists due to the use of aperiodic overlay spreading sequences which spread/randomize the

113



114 VIl — Spatio-Temporal Array Processing for Aperiodic CDMA Downlink Transmission

orthogonal user sequences. It has to be noted that, assuming the fading processes slow enough, in the
structure of thisdownlink problem, the only entity fixed over the processing interval is the propagation
channel. The actual channel as seen from the base station to a certain user will consists of the cascade
of spreading, transmit filters, propagation channel, receive filters and RAKE receiver. Due to the
aperiodicity of spreading sequences the previous cascade results in a time-variant filter from symbol
to symbol. This precludes the possibility of performing feasible adaptive temporal pre-filtering at the
base station, asin chaptersV and VI, because the pre-filters need to be up-dated every symbol period.
Some related work is also found in [RFT98].

It has been observed that in outdoor propagation the most scattering phenomena occur in the prox-
imity of the mobile user and not of the base station. Thistrandatesin a relatively small angle spread
at the base station antenna. Also due to cost reasons, the base station array consists of just afew an-
tennas. Thisyieldsa small antenna aperture, namely a poor spatial resolution, so that in practice very
few main nominal multipath directions can be resolved. As showed in the literature on channel mod-
eling (e.g. [Zet97]), for outdoor channels there exist one or two main distinct directions of multipath
components called clusters. On the other hand, due to the spreading operation in CDMA systems, a
very high multipath temporal-delay resolution can be achieved, and temporally sparse channels exist
in outdoor propagation with distinct multipath delays. The spatio-temporal channel can therefore be
modeled as a clusterized channel where, to each nominal direction of propagation, correspond severa
multipath components which are temporally resolvable. Such a channel model can be factorized in
gpatial and temporal channel components for each spatio-tempora channel path cluster. The above
arguments lead to an approach considering only the transmit spatial processing (namely beamforming)
at the base station, and to maintain the temporal processing as the one traditionally done when RAKE
receivers are employed at the mobile.

In the sequel we consider a scenario where K intra-cell users, each with a RAKE receiver, captures
signalstransmitted from a base station with 7 antennas. We shall consider both full and partial channel
state information for each user, corresponding to TDD and FDD mode respectively. The goal consists
of designing a proper set of beamforming weight vectors in order to maximize the minimum signal to
interference plusnoiseratio (SINR) at the /X' mobilereceivers, under the constraint of alimited transmit
power at the base station.

VIl.2 Channel Model

Due to the high temporal resolution of CDMA systems we consider a specular path propagation
channel model that consists of ¢) multipath components. The multipath channel as seen form the base
station can be modeled in the continuous-time domain as follows

Q
Al (r ) =) ey (t)a’ (0,)p(r — 1) (VI1.2.2)

where 7, 6,, and o, (¢) denote the delay, the angle and the fading attenuation associated to the gth path,
respectively, p(¢) denotes the chip pulse shaping filter, and a(¢) represents the array response vector.
If the angle delay-spread is small compared to the base station antenna array resolution, paths can be
collected in clustersyielding the following model for the /th channel cluster

Q1
hi(r, ) =a’(6) Y oy (tp(r = 73) (VI1.2.2)

=1
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where ();, o, (t) and 7, are the number of multipath components, the fading coefficients and the delays
associated to the pathsin the/th cluster, and 8, isthe corresponding direction of propagation. Thewhole
channel can be modeled as the superposition of the single cluster channels, i.e.,

L
im0y =) hi(r 1) (VI1.2.3)
q=I

InaTDD framework assuming a similar multipath channel model for the uplink, the mobile vel ocity
sufficiently slow compared to the round-trip time and the transmitter and receiver properly calibrated,
the uplink and downlink channelsfor a certain user can be assumed to be approximately the same. So,
the uplink channel estimate can be assumed as downlink channel for the transmit filters design. On the
contrary operating in the FDD mode the uplink and downlink channels are not the same. The param-
eters in the channel model which can be assumed approximately constant between the uplink and the
downlink channels are the angles, the delays and the variances of the amplitudes. Since the difference
in phase between up- and downlink is random it can be assumed uniformly distributed, whereas the
magnitudes for both links are also random but can be assumed to have the same variance. The vari-
ances of the path amplitudes can be estimated by non-coherent averaging over a certain time interval.
The angles can be estimated if the array manifold at the downlink carrier frequency is known. For par-
ticular array geometries and relatively small uplink—downlink frequency shifts, the array response can
be transposed from the uplink to the corresponding response in the downlink via a linear transforma-
tion [AFFM 98] without requiring explicit angle estimation. Another approach consists of performing
a beamspace transformation (namely a spatial DFT) to estimate the beams in which the signal energy
is located [CTK94]. The downlink transmission then occurs through the same beams as the uplink
reception.

VII.3 Signal Model

We assume a CDMA based system employing aperiodic spreading sequences, ¢;(t; nT), for i =
1, ..., K,whereT isthesymbol period and » isan integer. The spreadingfactorism.and 7. = T'/m.
denotes the chip period. Due to the time-variant nature of the spreading sequences the cascade of
the spreading code filter, the transmit filter, the channel and the receive filter (a RAKE) resultsin a
time-variant system. In the sequel the problem of the maximization of the minimum SINR of the
K users is addressed, accounting for the presence of an equalizer following the RAKE receiver. In
thiscase the IS for the signal of interest will be considered as contributing to the signal and not to the
interference energy. Noticethat the actual temporal channel as seen from the base stationisgiven by the
autocorrelation sequence of the channel itself. Thisis straightforward if we commute the de-spreading
and channel matched filtering operationsin the RAKE receiver.

Assuming the channels, h;, time-invariant for the observation time, the ith user discrete-time re-
ceived signal at the RAKE output, for: =1 ..., K,is

K
yi(n) = (n)GT(Q) ij @ ¢j(n)a;(n) + vi(n) (VI1.3.1)

where the a;(n) are the transmitted symbols intended for the jth user, (! is the unit sample delay
operator (i.e., ("ty;(n) = y;(n — 1)), GT(z) isthe channel autocorrelation transfer function between
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Figure VII.1: Transmission filters channels and RAKE receivers for K users

the base station and the ith user channel, ¢ (n) isthe ith user correlator, w; isthe beamforming weight
vector for the transmitted chips c¢;(n)a;(n), that has to be optimized, @ denotes Kronecker product,
c¢;(n) isthe spreading code for the nth symbol of the jth user, and v;(n) is the additive noise at the
output of the :th RAKE receiver. Weremark that v;(n) will beacolored noisein general dueto matched
filtering to the channel.

The channel autocorrelation G (z) isam,. x m matrix, and ¢ isa1 x m. row vector. The product
of w; ® cj(n) = f;(n) generatesam x 1 column vector, with m = m.m, where m, isthe number
of multiple antennas.

VIl.4 Temporal Channel Structure

Assume that the channel is of the form (VI1.2.3). For simplicity we consider that there is only one
path cluster. Several clusterscan be analyzed separately and their effect can be combined afterwards. In
the single cluster case the channel can easily be factorized in spatial and temporal components. Hence
we analyze the tempora channel component, and we evaluate the signal and interference energies
transmitted through it averaged over the spreading codes statistics.

The tempora channel for the ith, h;(¢) is assumed to be an FIR filter of duration approximately
equal to N, chip periods. Let h; = [AT1(0) ... A (n; — 1)]* denote the discrete-time representation
of the ith channel. Let N; be thelength of the channel in symbol periods.

The autocorrel ation sequence of the actual channel, writtenas g, = [¢7 (—n; +1) ... g (n; — 1)]7
has duration 2n; — 1 chip periods, or 2/N; — 1 symbol periods. The whole cascade spreading-channel
autocorrel ation-despreadingwill last at most 2N, 41 symbol periods, namely m..(2/N;+1) chip periods.
Without loss of generality we may zero pad g, in order to have 2NV;m. + 1 coefficientsin the channel

autocorrelation sequence.

Hence the overall energy in the spreader-channel-channel matched filter and correlator cascade for
the ¢th user can be written asfollows

Si = gl'E{Ci(n)" BI'(n) Bi(n)Ci(n)}g; (VI1.4.1)

where E{-} denotesthe expectation operator, C;(n) isa (2N;+1)m. x (2N;m.+1) Toeplitzmatrix with
[e;(7)09N,m. x1]7 asfirst columnand [¢;(1, n) 0Oyy2n,m. ] asfirstrow, B;(n) = blockdiag{e! (k —
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Ng), - el (k—N;)Yisa(2N;41) x (2N, +1)m, block diagonal matrix, and, hereinafter g, denotes

k3

the zero padded version of the channel autocorrel ation sequence.

For the interference from jth user signal to the ith user receiver a smilar expression as (VI1.4.1)
holds, i.e.,

Lii = g/'E{C;(n)" BY (n) Bi(n)C;(n)}g; (VI1.4.2)

In the following we shall distinguish between the case of complex and real spreading sequences when
taking the expectationin (V11.4.1) and (V11.4.2).

VIl.4.1 Complex Spreading Sequences

We consider complex circularly symmetric spreading sequences ¢;(n) where, without loss of gen-
erality, we normalize the chip energy to one. Taking the expectation in (V11.4.1) and (VI11.4.2) we
obtain

S; = BE{C:(n)" B (n) B;(n)C;(n)} = m.diag{[1n;m. me 1nim.]}

and
Ij; = B{C;(n)" B (n) Bi(n)C;(n)} = m.I

respectively. Then (V11.4.1) and (V11.4.2) reducesto

[ 2 |4 12 - ||
S mchH2 + me(llgill* = [[Aill*) (V11.4.3)

where the superscript ()¢ denotes the use of complex spreading sequences. We remark that having
normalized to one the energy per chip the energy per symbol iso? = m..

VIl.4.2 Real Spreading Sequences

If we consider real spreading sequences c;(n), taking the expectation in (V11.4.1) yields an extra
contribution with respect to the complex case, namely

SZ = mcdla;g([].Nlmc me 1szc])+
antidiag([0(n, —1yms 1,2, - ooy (me — 1), 0, (me = 1), .., 1, 0w, —1)m..]) (VI.4.49)

On the contrary the interference term /5, = I, = [;; does not change. The signal energy consists of
two contributions, namely

me—1

S{:Sf+2mc( > n(Re{g(n)})Q) (VI11.4.5)

n=—me+1

where S¢ isgivenin (V11.4.3). Theadditional contributionarising when using real spreading sequences
can be considered negligiblefor the case of large channel delay spreads.
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VIl.4.3 Channel Covariance Matrices and Extension to Multi-Cluster Channels

Once the signal and the interference energy terms have been computed, the signal and interference
gpatial channel covariance matrices for the :th user are given by

R, = a(@z)aH(ez)SZ Rji = a(@i)aH(ei)I]" fOI’j 75 1, (V||.4.6)

The approach above can be extended to treat multi-cluster channels, by simply computing each cluster
contribution separately as shown previously, and summing up the corresponding covariance matrices.

VILS5 Transmit Beamforming Optimization

With the previous definitionsfor R ;; and w; the SINR for the :th user is given by

w; Rnwz

K Hr oo
j=1, i W Rjwj + v

SINR; = (V11.5.1)

wherev; = o7, /o2 where o} = E{|a;(k)|*} for any i and o}, isthevariance of thefiltered noise v; (k).
We denote SINR,; = ~; for any . Hence the general optimization problem is

max min{~;} (VI1.5.2)
{wi} ¢
or
{min max{y; '} (VI1.5.3)

Thenletw; = /piu;, with||u,||2 = 1, thevector of theinverseMFB’sy~! = [y ... v5']T andthe
vector of the transmit powersp = [py,. .., px]’. We also need to limit the maximum transmit power
at the base station, i.e., ||p|l1 < Pmax-

The criterion (V11.5.3) can be reformulated as

min |7 M St [[Pllec < Pmax [|till2 = 1Vi (V11.5.4)
P {u:}

Then we define the normalized power delivered by the jth base station to the ith user as
cj; = uflRﬁuj .

For any : we have

%'_lpicii = ijcji + v (VI11.5.5)
JF
In order to account for all the users we introduce the matrix D. = diag(ciy, ..., cxx ), the matrix

C7 defined as

T _ Cj; fOI’j 75 2
c Lj—{ Gz (V11 56)
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thevector v = [v; ... vx]T and the matrix P = diag(p). Then we have the following equation
vy t=DPCTp+v] . (VII.5.7)

So the criterion (V11.5.4) generaly leads to a set of coupled problems which cannot be solved analyt-
ically. Furthermore it can be shown that once the vectors u; are fixed the optimum power assignment
Vector p isunique.

We consider in the following an analytical approach for the optimization of the minimum signal
to interference ratio (SIR) for the normalized weight vectors design. Once the we have obtained the
vectors u;'s we can plug them in the problem (V11.5.4) and solve for p.

VII.5.1 SIR Optimization

The SIR for the ¢:th user isdefined as

HR
SIR, = Wi Fiiwi (VI1.5.8)
K HR. v
Zj:l,j;éiwj jiW;
The equation (V11.5.7) in the absence of noise reduces to
vy l=DtPcTp (V11.5.9)

where now +; = SIR; for any i. Considering the criterion (V11.5.4) and the definition (VI1.5.8) it is
straightforward to see that the optimum is achieved when all the MAI is zero so that 7;1 = 0 for
al i’s. Then, if m, is greater than the number of al the nominal propagation directions of all the
users channels, the optimum approach in the absence of noise would lead to a zero-forcing (ZF) MAI
solution. In practice this condition never arises so non-ZF approaches need to be considered.

Note that since the optimum still involves~; = ~ for any ¢, the equation (V11.5.9) reducesto
v 'p=A"p (V11.5.10)
1

where AT = DZ'C7 isanon-negative matrix. Moreover p has to be a non-negative vector and  ~
has to be non-negative aswell. On the basis of the following theorems ( [HJ85, Y X98])

Theorem 3
For a non-negative matrix, the eigenvalue of the largest normis positive, and its corresponding eigen-
vector can be chosen to be non-negative.

Theorem 4
For a non-negative matrix A, the non-negative eigenvector corresponding to the eigenvalue of the
largest normis positive.

Theorem 5
Given the matrix A” there exists only one solution to equation (VI1.5.10).

we can say that for a given set of unit norm vectors {u;} then the optimum yidlds y ="' = Apax (A7)
andp = Vipax(AT).
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Having an estimate of p, we can optimize {u; }. Indeed the optimization criterion is given by

?n% Amax(AT) (VI1.5.12)

In order to simplify the problem formulation without loss of generality, we consider !'s normalized
suchthat !’ R;;u; = 1, sothat D. = Tand AT = CT. Then the criterion (V11.5.11) becomes

?m}l gt ATp st ul'Rju; =1 (VI11.5.12)
u;

where g = Vinax(A). Thecriterion (V11.5.12) leadsto a set of /' decoupled problems whose solution
€;

H H —_— . —_— .. IX’ . .. y
isgivenby u; = \/ﬁ wheree; = Vinax(Rii, Z#i ¢; R;;) for any i. The new set of vectors

{U'} can be used to re-optimize the powers p according to (V11.5.10).
VIL.5.1.1 || AT||; minimization based solution

As sub-optimal approach or initialization we might use the following criterion

r?i?HATHl st. ul Rju; =1 (V11.5.13)
u

Thisapproach has the advantage of optimizing the direction vectors {«; } independently from the pow-
ersp. Inthat senseit is suitableto initialize an iterative procedure to find the global optimum. Indeed
it leads to a set of K decoupled minimization problems whose solutionis given by uw; = €

71
w/elHR,‘,‘B,‘

Note that the criterion (V11.5.13) corresponds to minimizing the power delivered to the undesired
users while maximizing the power delivered to the desired user, by each spatial filter w,.

where, inthiscase, e; = Viax (R, 2?;1 R;;) forany :.

A similar criterion wasalready proposed in[Zet97, GF97] to optimizetheweight vectorsfor transmit
beamforming.

VII5.1.2  Apax(AT) minimization based algorithm

According to the previous arguments, we propose the iterative procedure summarized in Table V1.1
to find the global optimum in the absence of noise.

Table VII.1: /\maX(AT) minimization based algorithm

0] Initializew; using (VII1.5.13) for: =1, ..., K
(”) CompUteq = VmaX(A);

(”I) CompUteei = VmaX(Rii7 Z];éz q]RZ])1

(iv) Computew; = ——&i_;

(v)  Goback to (ii) until convergence;

(vi) Computep = Viax(AT);

(vii) Compute w; = /p;u;.
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VII.5.2 Power assignment optimization

Assuming a given set {u;}, since the optimum involves all the ;s to be the same, the expression
(VI11.5.7) can be arranged in order to include the constraint on the transmitted power as follows

Qp=~"'5p (VI1.5.14)
wherep = [p? 1]7,
AT M] [IK O x1 ]
= S =
Q |:01 XK 0 ST —Pmax
where u = D tw, s = [|lug])? ... [Jux||!]" and sTp = pmax. Then similarly to [Y X98] since S is
invertible we have
AT 7
Ep =~"1p, E=58"1Q= (V11.5.15)
sTA" sTp

Pmax Pmax

which is a non-negative matrix. Relying on theorems 1-3 we can say that v ~' = A\nax(ET) and
P = Viax(FE). Further, note that we can aways re-scale p in order to make its last element equal to
one.

VII.6 Simulations

In this section we consider ascenariowith K’ = 4 usersoperatingin CDMA system with aspreading
factor m. = 6, corresponding to a loading fraction of 66%. Each user has a single cluster channel
characterized by a nominal angle and a several delays. The usersare in near-far conditions, namely the
useful signal powersare proportional to 20 dB, —60 dB, 20 dB, and —20 dB. Theanglesare §; = —45,
Ay = —25, 65 = 5, 8, = 30 degrees respectively for the first the second, the third and the fourth user.
An array of m, = 3 antennasis used at the base station to transmit at the 4 users. In fig. VII.2 it is
shown the convergence of the proposed algorithm. The output SIR is11.6 dB, 2.8 dB with 3 and 1
antenna respectively (i.e., only RAKE temporal processing).

Fig. VI1.3 showsthe beam radiation pattern after the optimization. The arrowsin the graph represent
the angles associated with the different userswhile their amplitudeis approximately proportional to the
strength of the corresponding user. In general the beamformer of strong users attempts at putting nulls
in correspondence of weak users whileweak usersaim at maximizing the energy in their own direction.

Finally fig. VI1.4 shows the output SINR after the optimization versus the input SNR. The SINR

improvement with respect to pure RAKE processing is larger as the SNR increases. Thisis due to the
zero-forcing nature of the optimization al gorithm.

VII.7 Conclusions

We addressed the problem of SINR maximization at the mobile stations by performing spatial filter-
ing at the base-station and emplying a RAKE receiver at the mobile stations. It is shown that in cases
where spatio-temporal processing cannot be employed to precancel the interference, significant perfor-
mance gains can still be achieved by spatial filtering only. The case of complex spreading was treated
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along with that of real spreading sequences. The behavior of these two casesis slightly different, lead-
ing to an extra term for the signal part in the real codes’ case. An agorithm for power allocation and
gpatial filter optimization was also presented.
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Chapter VIII

Concluding Remarks

We addressed the problem of linear interferenceregjectionfor DS-CDMA systems. Since the received
DS-CDMA signal comprises contribution of all active users, single user information cannot be used in
the classical way, e.g., by least-squares, in order to estimate parameters of interest of the desired user.
Single user reception techniques like the matched filter (or RAKE in multipath channels) also suffer
from performance degradation due to the presence of interfering user signals. The problem therefore
becomes that of user separation, and alternative receivers and parameter estimation algorithms need to
be devised.

It was shown that these systems have inherent properties of interference mitigation owing to the mul-
tichannel aspect that comes about due to the large (extra) bandwidth occupied by the signal. Further
gains can be obtained by tempora oversampling in excess of the chip-rate or exploiting the space di-
mension in terms of multiple antennas. In thisthesis, several blind channel estimation and interference
cancelation approaches were considered for different situationsin DS-CDMA systems.

In chapter Il we presented a blind uplink (asynchronous channel) projection receiver structure ob-
tained by solving the MOE criterion subject to the unbiasedness constraint. The received signal is
cyclostationary at the symbol rate owing to the periodicity of spreading sequences. The receiver isa
representative of decentralized linear multiuser detection schemes where the knowledge of parameters
like spreading sequence and timing information of only the user of interest is considered to be avail-
able. The origin, powers, and relative asynchrony of interferersis not a concern in this problem. Only
their number has to stay below a certain loading fraction in order to satisfy identification requirements
for the channel and for the receiver to exist. Bounds on receiver length as a function of the number of
users was given in thiswork. The important issues pertaining to this approach can be summarized as
follows

e The MOE criterion solved subject to unbiasedness constraint (or ZF MOE) gives the MM SE-ZF
or the projection receiver.

e Theinterference canceling scheme is similar to the pre-combining interference canceler. The IC
stage convertsthe MAI/ISI problem into asingle user no ISl problem (thus cleaning up theinter-
ference), and a channel matched filter subsequently suffices to coherently combine the multipath
signals.

e Applying Capon’s method in conjunction with the MOE criterion leads to an unambiguous blind
estimate of the channel impulse response of the desired user, as a by-product of the IC scheme.

125
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The receiver therefore fallsin the category of directly estimated receivers, i.e., the channel esti-
mate falls out of the interference canceling scheme.

Training and semi-blind channel estimation is also possible due to the single user aspect of the
residual problem after interference cancelation.

The approach is of particular interest for channel estimation of the user of interest in the asyn-
chronous uplink of aDS-CDMA system employing periodic spreading sequences, sinceall users
can be treated in a similar fashion once spreading sequences and timing information is available
for each of them.

The blind channel identification algorithm was shown to be robust and identifiability exists w.p.
1 unlessthe channel is overestimated beyond a certain limit.

Thereceiver can be seen as an extension of the RAKE receiver. Thisextension comes about from
the interference canceling aspect. The lower branch of the GSC version accounts for the added
complexity incurred by the interference canceling algorithm. This branch can be switched off if
the performance of a RAKE isdeemed sufficient for a particular application.

The interference cancelation algorithm can be adapted independently of the channel impulse re-
sponse estimation and is based only upon the knowledge of delays of the multipath components.

Sparse channels can be easily handled in the structure leading to reduced complexity adaptation
of the receiver.

The receiver structure lendsitself readily to reduced complexity LM S adaptive implementation.

Semi-blind and decision-directed implementation al so lead to improved performance.

Future research in the area of receiver algorithms for asynchronous DS-CDMA systems will need to
address the issue of fast-convergence and tracking algorithms, particular ways of soft-decision re-use
in decision-directed implementations and extensionsto the case of aperiodic spreading sequences.

Chapter 1V deds with the downlink interference rejection problem exploiting the very particular
structure of the downlink problem - the fact that all downlink user signals arrive at the mobile receiver
through the same channel. The following series of conclusions can be drawn from the results of this
chapter.

Alternativesto the RAKE receiver are desirable for low spreading factors and significant ISI.
A ZF receiver is obtainableif the channel impulse responseis available.

The ZF receiver suffers from significant noise enhancement and its performance is poor within
the SNR region of interest.

The maximum SINR receiver is an attractive aternative and can be obtained blindly from the
knowledge of unused spreading sequences and the desired spreading sequence.

The presence of scrambling rendersthe blind algorithm amaximum SINR receiver. 1nthe absence
of scrambling, the MAI is still canceled by the blind receiver structure but the criterion and
constraint set lead to residual 1Sl if the receiver islong, i.e., the delay spread of the propagation
channel issufficiently large.
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e The RAKE receiver's output SINR depends on the ratio of delay spread and the processing gain,
and also on the loading fraction. These three parameters decide whether the RAKE sufficesfor a
certain application or if more advanced receivers are inevitable.

e The use of orthogonal spreading sequences as underlying signature spreading is the best choice
for intracell interference in downlink transmission.

An interesting problem to investigate for the case of downlink equalizer/correlator approach is the
training based or semi-blind adaptation of the SINR maximizing receiver. This may lead to speedy
convergence.

We have also considered the problem of performing optimum spatio-temporal processing for mul-
tiuser downlink transmission in wireless communication systems. This particular method of exploiting
the plurality of antennas at the base-station assumes total or partial knowledge of downlink channel
parameters. This channel-state information is considered to be available up to varying degreesin TDD
or FDD based communication systems respectively. Exploiting some knowledge of downlink channels
allows one to strategically pre-filter the transmitted signal to account, prior to transmission, for not
only the MAI bound to be added in the forward channel but also the signal distortion (1SI) introduced
due to multipath. This results in significant gains compared to the case where the forward channel
is not known, and where transmit antennas couple energy into the spatial channel without regard to
interference created towards concurrent users.

The assumption of channel reciprocity is considered to hold for TDD. On the other hand the fre-
quency shift between uplink and downlink carrier frequencies is enough to destroy the reciprocity.
However, this shift is usually small enough to render invariant certain parameters like angles of arrival,
the delays, and the average powers associated with the uplink and downlink channels. Nevertheless,
thisinformation is not enough to build an estimate of the downlink channel. We consider a base-station
transmitting through multiple channels coming about due to multiple antennas and/or oversampling
of the transmitted signal. For both TDD and FDD cases, we proposed ZF approaches to cancel the
interference prior to transmission on the downlink. It was shown that spatio-temporal processing isan
attractive means of enhancing the network capacity by controlling the interference upon transmission,
and building low-complexity mobile receivers. The mgjor conclusions drawn from this work are as
follows.

e ZF pre-cancelation can be achieved in the FDD problem by considering each path as a distinct
user as opposed to the TDD case where the downlink channel is considered known. A small
number of paths per user can therefore be handled for the FDD case

e Selection diversity is the best possible power assignment approach when path phases are un-
known, and corresponds to exciting the best path or cluster of pathsfor downlink transmission.

e When aperiodic spreading sequences are employed, spatio-temporal processing can no longer be
performed to pre-cancel the interference. However, spatial processing (beamforming) can still
performed to enhance the SINR at the mobile station

e Oncethetransmissionfilters have been designed, powerscan be allocated in all casesto maximize
the minimum SINR among all mobile stations
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Appendix A

Sommaire cetaille en Frangais

A.1 Introduction

Les systemes de communications mobiles de troisieme génération sont fondés sur la technique
d’ acces multiple par répartition en codes (AMRC) utilisant la méthode de séquence directe. L' AMRC
a été choisi comme technique d’ acces multiples dans les normes car elle présente un certain nombres
d’ avantages liés a la capacité en terme de nombre d’ utilisateurs coexistants dans une cellule, et ala
facilité liée ala gestion de ressources dans ces systemes.

Dans cette méthode d’ acces multiple séquences d'etalement différentes et a priori orthogonales
sont attribuées aux utilisateurs. Cependant, le canal atrgjets multiples détruit I’ orthogonalite entre les
signaux de ces utilisateurs et crée le phénomene d'interférence entre utilisateurs. |1 faut donc trouver
des méthodes pour annuler ces interférences. Plusieurs aspects de ce probléme ont été étudiés dansle
cadre de cette these et plusieurs méthodes ont été proposées pour diverses situationsrencontrésdansles
systemes. L' accent a été mis sur I’ utilisation des connaissances a priori existantes dans les différents
problémes comme celles de filtres de transmission et de réception, les conditions de synchronisation
des utilisateurs pour la liaison descendante, et |’ orthogonalité de codes d' etalement.

A.2 Modele du signal AMRC

Le modéle du signal en bande de base a &é décrit dans la section § 1.3, qui tient compte du
phénomene de trajets multiples. Dans ce modéle, 7" signifie la durée du symbole, T la durée du chip
et le rapport P = Tl est connu sous le nom de facteur d'etalement ou facteur d’ expansion de bande
de fréguence. On considére que le k-ieme utilisateur transmet une ségquence de symboles a (n) appar-
tenant & un alphabet fini ©2. La séguence de symboles est d’abord étalée par la séquence d’ etalement
périodique de I’ utilisateur k, cx(p), p € {1,..., P — 1}. Ensuite, cette stquence de chips, est em-
brouillée par une séquence longue pseudo-aléatoire (PN), s (/). Les chips de la séquence d’ etalement
et du brouilleur appartiennent & un alphabet fini ©. On considére exclusivement le cas de modulations
lingaires. Le signal en temps continu en bande de base (envel oppe complexe) ala sortie du modulateur
linéaire peut s ecrire comme

+oo

pr(t) = Y plt = IT)be(D). (A.2.)

[=—0
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ou p(t) estlefiltre de miseen forme delargeur de bande unilatérale /2 [Pro95], qui est le plussouvent
un cosinus surélevé (raised cosing) ou un racine carré de cosinus soulevé (root-raised cosine). W est
auss la largeur de bande du signal &éalé. Dans les systemes a spectre étalé, W =~ TL Le séquence
des chips, b; (/) est une i.i.d. Dans le modéle ci-dessus, le signal étalé peut étre considéré comme
apériodique puisque le brouilleur enléve la périodicité introduite par la séquence ¢ (p). On peut ainsi

écrire (A.2.1) souslaforme

+o0
> Wkt = nT)ar(n) (A.2.2)
avec,
P—1
Z p(t — i1 )ex (i) (A.2.3)
=0

ou 1 (t) est lasignaturede I’ utilisateur & en absence de brouillage. Si le brouilleur est actif et opérant,
on peut gjouter I'indice n dansles équations (A.2.2) et (A.2.3) pour exprimer ladépendance sur I'indice
du symbole.

A.2.1 Canala trajets multiples

Le canal de propagation est caractérisé par une matrice X' x M avec desééments ¢y, ,,,, (1 < k >
K; 1 <m > M), ayant K entrées (nombre d’ utilisateurs) et M sorties (nombre d' antennes). |1 s’ agit
d’un modéle linéaire dans lequel le principe de superposition (des différents signaux) est applicable.
Pour les signaux a bande limité, on peut approximer |’ environnement de propagation par un ensemble
de tragjets multiples atténués et déphasés. Ainsi, lafonction de transfert entre |’ utilisateur % et I’ antenne
m peut s ecrire comme

Q-1
Bran () = > 8(t = Ty k) Gren () (A.2.4)

9=0

ou () et le nombre de trgjets, et gkm (q) €t 74 xm SONt respectivement I’ amplitude complexe et le retard
du tragjet ¢ pour I utilisateur £ et Iantenne m. Leretard 7, 1,,, dépend de |’angle d' arrivée de |’ onde et
de la géométrie de I'antenne. La distribution des amplitudes et les valeurs (déterministes) des retards
dépendent de |’ environnement de la propagation (urbain, rural etc). Dansun contexte multi-utilisateurs,
un retard 7, liéal’ utilisateur & qui est uniformément réparti sur une période symbole vient s gouter a
I’ ensemble des retards.

A.2.2 Filtre de réeception

Lemodéle du signal est décrit danslafigure A.1. Le canal qui est un filtre causal vu del’ antenne m
est donné par

AT,
i (1) = /0 p(t = T)Ppm(T)dr (A.2.5)

ou p(t) est le filtre de transmission/réception combinés et ¢, ,,, (¢) est la réponse impulsionnelle du
canal de propagation en temps continu entre I’ utilisateur & et I’ antenne m. AT. est ladurée maximale
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Figure A.1: Modele du signal reeu en bande de base la m-ieme antenne.

delaréponseimpulsionnelle ¢y, ., (t), ¢’ est-a-dire ladurée maximale du canal aréponseimpulsionnelle
finie (RIF). A est un nombre entier positif. Le filtre de transmission est bande-limité avec un facteur
d acceés de largeur de bande o montré dans la figure 1.4. Quant au filtre de réception, il s'agit d’un
filtre anti-repliement idéal, passe-bas avec une fréquence de coupure correspondant a la fréguence
d’echantillonnage V. Donc, pour éviter le repliement du spectre, il suffit que la fréguence de coupure
du filtre de réception se trouve au-dessous de la fréguence de Nyquist. Cette derniére correspond a
I"echantillonnage critique du signal pour éviter le repliement du spectre.

Si on considéere un échantillonnage au rythme 1, on peut écrire le canal suréchantillonné total
comme
L—-1 |
him (1) = p(t - 777 9xm (1) (A.2.6)
(=0
Les ¢y ., (1) sont lareprésentation discréte de ¢y, ., (¢), correspondants a une version échantillonnée au
taux W du canal filtré passe-bas. Comme détaillé dansla section § 1.3.1.3, en fonction de la fréquence
dechantillonnage, les ¢, ., ({) peuvent avoir plusieurs valeurs rendant la représentation du canal filtré
non unique. Au total, le canal en temps discret peut étre écrit comme

hy = Pg, (A2.7)
ou bien comme
hy = P I, (A.2.8)

le produit des matrices contenant les coefficients des filtres de transmission P et de reception IT en
fonction de la connaissance a priori de ces filtres. Cette représentation du canal présente comme
avantage, laréduction du nombre de parameétres a estimer une fois lesfiltres, P et I1 sont connus.

A.2.3 Diversité de reception

Si les M antennes du récepteur sont placées suffisamment éloignées les uns des autres, on va re-
cevoir M copies rétardées et déphasées du signal recu. Cela correspond a la diversité spatiadle. Le
casde M = 2 est représenté dans la figure I.5; on a ainsi deux canaux physiques. Inversement, un
suréchantillonnage du signal regu au rhythme Ti crée auss une diversité; cette fois artificielle. Ce mé-
canisme est illustré par lafigure .6 pour lecas.J = 2. Les sous-canaux h; et i, Secomportent comme
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deux canaux virtuels transportant les composantes polyphases du signal. On peut ainsi écrire le signal
vectoriel recu par une m-ieéme antenne al’ instant » comme

T, 1. 1"
Yiom (1) = | Ukm (WT0) s Yrm (0T - 70), ...... Ym0+ (J — 1)76) .
(A.2.9)
Empilant les signaux regus sur les M antennes, on peut recevoir le signal vectoriel total comme
T
Yie(n) = [yia(n) yia(n) ... Yhar(n)] (A.2.10)

Dans la pratique, il existe des limitations sur le facteur .J de suréchantillonnage, a cause des con-
séguences de I’ exces de bande.

A.2.4 Modele du signal asynchrone en temps discret

Lafigure |.7 montre le signal équivalent en bande de base. Le signal total recu ala m-iéme antenne
peut étre écrit comme

ZZak n)grm(t — nT) 4 v, (1), (A.2.11)

k=1 n

oulesay(n) sontles symbolestransmis par e k-iéme utilisateur. gy, ., (¢) est laréponseimpulsionnelle
du canal total (contenant I’ effet de la squence d etalement et les filtres de transmission et de réception)
pour le k-ieme utilisateur et la m-ieéme antenne. On considere dans ce dével oppement, les séquences
d etalement périodiques. v, (¢) et le bruit blanc circulaire centré et gaussien, de densité spectrale de
puissance unilatérale Ay. On fait I’ hypothése de cyclostationarité conjointe au sens large (deuxiéme
ordre) de vy, (t) et les ai(n) avec la période symbole, T'. Le cana total, g; .. (t), peut alors ére
écrit comme la convolution entre la séquence d'etalement et Ay, ., (¢), ce dernier éant lui-méme la
convolution du canal de propagation et e filtre de mise en forme, et le filtre de réception. On peut
exprimer cette convolution comme

I§

Gem(t) = Y cr(p)hem(t — pTo); (A.2.12)

=
Il
=}

Le signal vectoriel stocké peut étre écrit comme

K Np—1 K
Z Z gp(i)ag(n —1) +v(n ZGkaAka( )+ v(n) =GNAn(n)+ v(n),
k=1 =0 k=1 (A.2.13)
avec y1(n) Yy (1) Yp,1m (1)
ym=| 1 L=l | Yw()= :
yp(n) Yp (1) YpJm (1)

Gin, = [9x(Nk = 1)...95(0)] , Gn =[G N, .. .G Ny ]
A (n) = [ar(n = N+ 1) ..ap ()], An(n) = [ATy, () ... A% x, ()]

(A.2.14)

Pour I’ utilisateur désiré (utilisateur 1), g, (i) = (C1(¢) @ Iarg) h1, OO hy est le vecteur du cana de
propagation de longeur M .JW¥; x 1 donné par (1.3.14) (1.3.14) et peut &tre écrit comme



A.2— Modele du signal AMRC 133

h171 hl,il hy Zm(l)
h, = : yhi; = : v R im = : )

)

hiw, hi v i im (J)

@ signifie le produit de Kronecker, et la matrice Toeplitz C'(¢) est montrée dans la fig. A.2, ou la
bande consisteen séquence d’ etalement [co ... cp_1]” decalée successivement adroite et en basd’ une
position. Pour les interféreurs, on a une méme configuration sauf que la bande dans la figure 1.8 est

\ vy \

0
C4(0) P
A

Figure A.2: La matrice de convolution de codeC,.

décalée par n;. périodes chips et ne coincide plus avec celui del’ utilisateur désiré. On désigne par Cy,
la concatenation des matrices de code pour |’ utilisateur désire 1: € = [CT(0) ... CT (N, — 1)]T.

On peut voir dans les équations (1.3.14) et (1.3.15), que h; peut étre décomposé comme étant une
cascade du filtre de mise-en-forme, du filtre de réception et du canal discret proprement dit. On peut
ainsi écrire

g1(i) = {C1()) © Ins} hi = C1(i) ¢, = C1(i) 1, (A.2.15)
ou,
Ci(i)={Ci() @ Ins} P, and, Ci(i) = {C1(i) @ Ins} P IL
(A.2.16)

Danstousles cas, onvaconsidérer PAM.J > K, une condition qui demeure correcte méme si le facteur
de chargement! est plus grand que 1.
A.2.5 Linterf érence entre symboles (IES)
Un vecteur de longeur 7, du signal stationnaireregu est écrit comme
Yi(n) = To(GN)Anik-1)(n) + VL(n). (A.2.17)

ou,
To(GN) =[Te(GiNy), - TL(GrNg)] S

"le facteur de chargement est défini comme LF = £
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et 77.(x) est la matrice bande bloc Toeplitz matrix avec L lignesblocs et [z 0, (;_1)] commela
premiere ligne bloc (p est e nombre de lignesen z), et Ay (1—1)(n) signifie la concaténation des
vecteurs de symbolesdes utilisateurs[A{ ;1 (n), ALy (n), o ARy, p (W]T. Vi (n)
est le vecteur du bruit du canal considére spatialement et temporellement blanc. On nomme 77, (G v, )
lamatrice de convolution du canal pour le k-ieme utilisateur.

Lesignal non-bruité (v(t) = 0) estillustrépar lafigure A.3 et montre la contribution del’ utilisateur

Yi(n) T1.(G1,n,) AN, (n)

YN1 l:l ”l(n’*d)

Figure A.3: Linterf érence entre symboles pour I'utilisateur souhad.

1 (considéréici commel’ utilisateur de choix) au signal total Y7,(n). Le symboleutile au n-iémeinstant,
a1 (n—d), multiplielacolonne g, delamatrice de convolution7z,(G1 n,). A cause deladuréelimitée
du canal de propagation, I’ effet d’ un certain symbole a, (n — d) influence N; symboles, rendant le canal
un processus de moyenne gjustée (MA) d ordre N; — 1. On est intéressé par |’ estimation du symbole
a1 (n —d). On peut remarquer que le symbole a; (n — d) apparait danslaportion Yy, duvecteur Y7, (n).
Lestriangles hachurés constituent I’ |ES. L es contributions des autres utilisateursau signal recu ont une
structure identique. Les méthodes d’annulation d’ interférences sont destinées a enlever ces triangles
hachurés du signal utile.

A.2.6 Lestimation du canal dans les sygmes AMRC

Afin de déterminer un récepteur, les paramétres comme |le délai asynchrone et la réponse impulsion-
nelle du canal del’ utilisateur en question doivent d' abord étre estimés. L es techniques mono-utilisateur
pour I’ estimation et |"egalisation sont basées sur |a méthode de séquence d’ apprentissage, ou le signal
envoyeé contient une sequence d’ apprentissage connue du récepteur. Cette derniere est utilisée par le
récepteur pour estimer la réponse impulsionnelle du canal ou directement I'egaliseur. En GSM par
exemple, le paquet transmis contient une séguence de symboles connus située au milieu de ce paguet.
Les 26 symboles suffisent pour estimer le canal par la méthode de moindres carrés dans la plupart des
cas. Une version simplifiee de moindres-carrés, mise en place comme corrélation est utilisée plus sou-
vent. Dans le cas d’ un mono utilisateur en bruit blanc, la méthode de moindres-carrés correspond ala
méthode du maximum de vraisemblance (ML). Néanmoins, |’ intégration de sequences d apprenti ssage
entraine une perte de 20% en termes d’ efficacité spectrale, et constituel’ effet indésirable de cette méth-
ode.

L’ aternative consiste en I’ estimation aveugle, c.-&d. estimer les paramétres comme les coefficients
du canal ou I"egaliseur sansaide de laséquence d’ apprentissage. L es méthodes aveugles font appel aux
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statistiqguesdu signal recu. Une branche des méthodes aveugles se fonde sur |les stati stiques de second
ordre du signal regu a travers plusieurs canaux de diversité (suréchantillonnage et/ou antennes multi-
ples). Ces canaux de diversité donnent naissance a un modéle a entrée unique et a sorties multiples. I
a été démontré que le signal suréchantillonné contient les propriétés de la redondance spectrale et que
I’amplitude et la phase du canal vectoriel pouvaient étre récupérées en utilisant les statistiquesde deux-
ieme ordre. Cependant, dans e contexte multi- utilisateurs, les canaux de différents utilisateurs peuvent
étre identifiesaun mélange pres. Les propriétés de ce mélange (instantané ou convol utif) dépendent de
I’ordre relatif des canaux (considérés comme étant a RIF) des différents utilisateurs. En conséquence,
il faut faire appel aux autres propriétés du signal comme les statistiquesd’ ordres supérieurs.

En général, le cas multi—utilisateurs n' a pas été intéressant pour le systéme pratique. Inversement,
dans le cas multi—utilisateurs AMRC utilisant la méthode de séquence directe, on peut séparer les
différents utilisateursen exploitant les statistiquesd’ ordre deux. Ce fait, dil aux séquences d etalement
distinctes, souligne les avantages de la technique AMRC pour |es réseaux mobiles ou sansfil.

A.3 Lesrécepteurs AMRC

Les récepteurs AMRC peuvent étre répartis en deux catégories principales selon la classification
traditionelle. Ces deux catégories s appelle les récepteurs conventionnels et multi-utilisateurs. Les
récepteurs de cette deuxieme catégorie peuvent également &étre classées dans deux sous-branches :
récepteurs centralisés et décentralisés.

A.3.1 Le recepteur AMRC conventionnel

Pour les communicationssur e canal bruit-blanc gaussien centré (BBGC) et dansle casd’ un systéme
synchrone (7, Yk), latransmission des signaux orthogonaux pour K utilisateurs donne un systeme
parfaitement orthogonal.

+oo S
{ L for j=Fk (A3.)

BRI GEACTES M
Les ¢ (t) sont les filtres d’etalement de I’energie normalisée. Un récepteur conventionnel a filtre
adapté au signal del’ utilisateur désiré permet | annul ation automatique d' interférences. L es puissances
inégales (dUe al'effet near-far) des interférences n’ont pas d' effet sur la performance du récepteur du
a |’ orthogonalitée de la modulation. Cependant, toute dérive par rapport au systeme idéal, par exem-
ple le choix de codes non orthogonaux ou le phénoméne de multi—trajets ou une combinaison de ces
phénomenes, aboutit & un terme non nul di aux interférences ala sortie du filtre adapté de I’ utilisateur
désiré.

A3.1.1 Diversitédesfréguenceset |le récepteur RAKE

La largeur de bande W d’'un signal AMRC est en géneral beaucoup plus grand que la bande de
cohérence du canal. Pour un tel rapport entre la bande de cohérence et la largeur de bande du signal
utile le phénomene de multi—trajets se produit comme indiqué dansla section § 1.2.1.1. Lesdifférents
trajets subissent des évanouissement indépendants. Si la résolution temporelle du récepteur est T, la
période chip, 7}—’" trajets sont captés par e récepteur et donnent une diversité en frequence del’ ordre de

%. L e récepteur optimal pour ce signal est le RAKE, qui est un filtre adapté a la cascade " sequence
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d’etalement” ” canal de propagation”. Ce récepteur combine les trajets de maniere cohérente. Dansle
contexte multi—canaux a temps discret abordé dans la section § 1.3.2, le RAKE consiste en une étape
de corrélation adaptée aux trajets décalésdonnéspar TH = C; @ Iy, 5, et le canal de propagation, b .
L e recepteur RAKE est alors adapté au canal total, g, = T h, (fig. A.3).

[|correlator bank

Yr(n) 1 ay(n-d
—» T, P>k o [

Figure A.4: Récepteur RAKE colerent en temps discret.

Les puissances relatives des interférences ont un impact significatif a la sortie du filtre adapté
(RAKE) entrainant ainsi le probléme near—far tant redouté. Ce probléme se manifeste par des puis-
sancesfortes regues desinterféreurs par rapport alapuissancedu signal utile. L'interférence totale peut
étre assez élévée pour noyer le signal utile. Quand on peut exercer un contrble de puissance, le filtre
adapté reste le récepteur optimal du point de vue de la maximisation du rapport signa a interférence
plusbruit, si les sequences d etalement sont apériodiqueset |e canal BBGC. Ce comportement du filtre
adapté peut étre expliqué par la nature des interférences pseudo-aléatoire (PN) des autres utilisateurs
qui se manifestent de la méme fagon que du bruit décorrelé. Alors, la performance du RAKE peut
étre raisonnable si le nombre d' utilisateurs est nettement inférieur au facteur d etalement (rapport de
chargement du systeme beaucoup plus petit qu’ un systeme orthogonal). Cette nature d’ interférences
persiste alasortie du RAKE dans les canauix atrajets multiples. Pourtant, le phénomeéne de saturation
commence a intervenir, car le signal décalé de chague utilisateur se manifeste comme un nouvel util-
isateur. La plupart des études déemontrent que le systeme devient tres vite limité par I'interférence, et
ce d'autant plus lorsque les codes sont périodiques.

A.3.2 Recepteurs multiutilisateurs centrali€s

Aussi connu sousle nom de détecteur s conjoints, ces récepteurs sont destinés a détecter les symboles
de tousles utilisateursen méme temps. Ainsi, une application se trouve sur laliaison ascendante d’ un
systeme cellulaire, ou la station de base doit impérativement détecter tous les utilisateurs en service
danslacelule d'intérét. Le premier des récepteurs et tout e domaine de détection multi—utilisateurs
a été introduit par Verdu en 1986 [Ver86]. Cet ouvrage décrit le récepteur optimal de Viterbi, des-
tiné & détecter tous les utilisateurs et s appelle le détecteur optimal multi—utilisateur. Pourtant, il n'y
arien de magique a propos de ce récepteur. 1l est, tout smplement, le détecteur de séquence a maxi-
mum de vraisemblance (DSMV) pour |e cas mono-utlisateurs éendu au cas utilisateurs multiples. D
a I’aspet multiutilisateur, malheureusement, ce récepteur a une complexité qui est exponentielle en
nombre d’ utilisateurs dans |e cas d’ un canal non-selectif en fréquence. En plus, pour les canaux atra-
jets multiples, une complexité liée al’ ordre du cana s gjoute au systéme augmentant ainsi, le nombre
d etats dans le treillis de I’ algorithme de Viterbi. Ce fait rend I" application de cet utilisateur dans les
systemes chargés impossible et justifie la nécessité de trouver des récepteurs moins complexes. Parmi
eux, les récepteurs linéaires comme le récepteur décorrelateur est une version multi—utilisateursdu ré-
cepteur forcant a zéro I’ interférence entre symboles dans le cas mono-—utilisateur. Un autre récepteur
est celui minimisant I” erreur quadratique moyenne entre le symbol e et son estimé.

Dans le cadre de récepteurs conjoints non linéaires, il existe des détecteurs annulant I’interférence
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successivement (SIC) ou en paralléle (PIC). Un autre récepteur linéaire connu dans la littérature est le
détecteur centralisé a retour de décision (DF) qui a comme homologue mono-—utilisateur le récepteur
non-causal aretour de décisions. Plusieursstratégiesimpliguant ces récepteursnon linéairesa plusieurs
étapes et retour de décision douce ont aussi &té proposés.

A.3.3 Recepteurs multi-utilisateurs decentralises

Dans le contexte de détection centralisée décrit auparavant, les récepteurs doivent impérativement
connaitre les parametres comme le délai d' arrivée et les réponses impulsionnelles des canaux de tous
les utilisateurs en communication avec la station de base en question. L’ interférence issue des cellules
voisines est ignorée. Cela entraine une perte en termes de performance des récepteurs centralisés.
Une innovation récente dans le domaine de détection multi—utilisateursest e récepteur aveugle multi-
utilisateurs[HMV95], ou il a éé demontré que le probleme multi—utilisateurs pouvait étre amené dans
un cadre mono—utilisateur. Le systéme est ainsi transposé du probleme de séparation de source a
I"annulation d’interférences. Le récepteur aveugle travaille sur le signal regu pour demoduler le signal
de ' utilisateur utile.

Un des récepteurs linéaires recemment propose est le récepteur optimal décentralise minimisant
I"erreur quadratiqgue moyenne. Une mise en oeuvre relativement moins complexe a été décrite en
utilisant la technique de prédiction linéaire. Un des grands avantages des récepteurs décentralisés
provient du fait qu’ils ne font pas la distinction entre les utilisateurs sortant d’une cellule d’intérét
ou d'une cellule voisine. Dans le cadre de cette thése, nous traiterons des techniques d annulation
d interférences décentralisées.

A.4 Le récepteur EQMM-FZ / projection

Dans |le probléme multi—utilisateurs donné dans |"equation 1.3.29, il existe une multitude de con-
traintes correspondant au forcage a zéro, dont le forcage a zéro de I'interférence d'acces multiple
(IAM) seulement, le forcage a z&ro de I'interférence entre symboles (IES) uniquement, ou les deux.
On va considérer la derniere possibilité par la suite. La contrainte de distorsion nulle peut &tre écrite
comme

fIT(Gr) = €], (A.4.1)
d

ou,e; =[0---0[0---0 1 0---0/0---0], avec d le délai d'egalisation pour |’ utilisateur désiré. Le
récepteur minimisant I’ erreur quadratique moyenne-forcage a zéro (EQMM-FZ) est le récepteur connu
sous le nom de décorrelateur dans lalittérature AMRC et correspond a la solution de forgage a zero qui
entraine le mimimum d’ amplification du bruit.
Proposition 1: Lerécepteur EQMM-FZ est égquivalent a une transformation qui projette le signal recu
sur un sous-espace qui est le complément orthogonal du sous-espace engendré par I'l|AM et I'[ES; et
ensuite projette le vecteur résultant sur un sous-espace unidimensionnel adapté au signal restant dans
le vecteur regu.
Démonstration: appendice llA.

Le récepteur EQMM-FZ décrit ci-dessus ne peut étre déterminé que si la matrice de convolution
71.(G ) du cana (les délais d arrivée et les réponses impulsionnelles des canaux de tous les utilisa-
teurs) est connue. Comme on vale démontrer par la suite, ce récepteur peut étre déterminé de maniere
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décentralisée en utilisant la connaissance a priori de I’ utilisateur d’intérét, comme solution du critére
de réponse sans distorsion a variance minimale (LCMV).

A.4.1 Formation de voie minimisant la variance sous contrainte ligaire de distortion
nulle

Il est utile de comparer le probléme d' annulation d' interférences décrit par lafigure A.3 acelui dela
formation devoieet d’ estimationdedirection d arrivée danslalittérature de traitement d' antennes[JD93].
Une source se trouvant a un angle 6, par rapport a un réseau d’antennes génére un signal Y (n) a
I'instant » ala sortie du réseau d' antennes donné par

Y (n) = S(6p)a(n) + V(n), (A.4.2)

oU S (6p) est laréponse du réseau d’ antennes pour ladirection 6, et V' (n) est le vecteur du bruit additif
circulaire qui est spatialement blanc. «(n) est le signal de source avec variance o 2. 11 est évident que ce
probléme comporte deux inconnues; ladirection d’ arrivée 8, et le signal transmisde sourcea(n). Dans
un premier temps, on vaconsidérer 6, et donc S(6,) connu. Unformeur devoielinéaire f peut donner
une estimation du signal a(n) comme é(n) = fY (n). Ce formeur de voie doit renforcer les signaux
arrivant de ladirection 6, tout en supprimant le bruit. On impose alors la contrainte de distorsion nulle
f15(8,) = 1 sur le formateur de voie et on minimise lavariance, |7 Y (n)|?, asa sortie sous cette
contrainte. La solution a ce probleme donne le formeur de voie LCMV

min ~ Elag? & min - fARyyf = MV, (A.4.3)
F:fHS(60)=1 F:fS(60)=1

qui donne

F 1
~ S"(6o) Ry S(60)

R;LS(60), MV = (87 (6p)RyL S(60)) " . (A.4.4)

On peut trouver la direction d' arrivée, 6, encore inconnue comme solution alaméthode de Capon, qui
correspond a la maximisation de la variance minimale sur toutes|es directions d arrivées possibles

f = arg max (SH(O)R{/%/S(O))_I = arg mein SH ()R, S(0)
= 57" (Vinax(Ryy)) = 571 (S(60)) = b0, (A45)

ol Ryy = 025(00)SH (6y) 4 021, est lamatrice de covariance du signal regu. Vi,.«(Ryy ) signifie
lavecteur propre associée a lavaleur propre maximale delamatrice, Ryy .

On peut constater que la méthode de Capon peut étre appliquée au probléme multi-sources si ces
derniéres sont décorrélées et traitées conjointement. La motivation d’ application de ces criteres dans
le cas d’annulation d’interférences en AMRC s explique par la similarité frappante entre ce probleme
illustré par la figure A.3 et celui de la formation de voies. Plus précisement, on démontre qu’ etant
donné certaines conditionsliées au nombre d’ utilisateurs, |a connai ssance partielle des réponsesimpul -
sionnelles des canaux T4 des différents utilisateurs en termes de sequences d etalement distincts C'y,
nous permet d’identifier leurs canaux sans ambiguité.
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A.5 Relations entre les divers crieres

Lesdifféerentscriteres linéaires sont liés entre eux comme indiqué par la proposition suivante:
Proposition 2: Les critéresminimisant |’ erreur quadratique moyenne (EQMM) et minimisant I"energie
a la sortie (EMS) peuvent se remplacer et sont équivalents a la maximisation du rapport signal a
I'interférence et bruit (RSIB).

Démonstration: Cf. section|1.5.

On peut donc identifier la relation entre le critére du EMS non-biaisé linéaire et celui de I'EQMM
non-biaisé: lesdeux donnent le mémefiltrelinéaire. Entout cas, lesdeux donnent |erécepteur EQMM-
FZ dansle cas sansbruit. Une observation auss intéressante est que la contrainte de biaisnul n’ est pas
méme que celui du forgage a zéro. C' est cette derniére qui garantit la variance minimale (¢2) avec une
réponse fixe pour I’ utilisateur utile; le but dans|’ approche LCMV ou MVDR. On constate aussi, quela
contrainte non-biaisée donne un FZ dans le cas sans bruit. Strictement parlant, pour arriver a satisfaire
le contrainte de distortion nulle, il nous faut résoudre le probléme de I annulation d’ interférences pour
trouver un récepteur linéaire EQMM—ZF par laminimisation de |’ energie alasortie (EMS) ou variance
(MV) sous la contrainte de forcage a zéro. Dans le cas avec bruit, nous proposons donc de travailler
avec le signal débruité ou les statistiques d’ ordre deux débruitées.

A.6 Reécepteur lineaire non-biai minimisant I'énergiea sa sortie

Le récepteur EMS peut ains &tre déterminé comme solution du critére EM'S sous contrainte de bias
nul. Le problemetotal est ainsi un probleme max/min quon résoud dans deux é&tapes suivantes
étape1: EMSnon-biaisé

1

: H pd —d ~

min f'Ryvf=f=—"—R,\9;, (A.6.2)

pig=t Y g'Rylg,
avec MOE(h) = —g—=1—, SUivi par,
) = g3, P

étape2: Méthode de Capon
“max MOE(h;) = min izfl (TlR;gl/T{I) hi, (A.6.2)
hy:l|haf]=1 hysf|hal]=1

dou, hy = Vinin(T1 RS- TH), qui est I’ estimation (& un facteur scalaire de phase pres) du canal RIF
del’ utilisateur désiré.

Ce récepteur peut aussi étre formulé de lafagon d’ un formateur de voie généralisé pour annuler les
lobes secondaires (GSC) comme décrit danslasection11.5.4. Uneétude sur lesconditionsd’ identifiabilité
aauss été faite dansle cadre de ce récepteur en fonction des longueurs des canaux. 1l a été demontré
gu’etant donné un certain nombre d’ utilisateurs, il suffit de choisir une fenétre de traitement, 1, assez
longue &fin d'identifier laréponse impulsionnelle du canal et le récepteur aveugle.

A.7 Reécepteurs semi-aveugles

L e récepteur EQMM—FZ aveugle proposé est un récepteur de mode paguets et se fonde sur une esti-
mation de la matrice de covariance du signal recu Ryy, pour laquelle un grand nombre d’ echantillons



140 A — Sommaire détaillé en Francais

du signal regu est nécessaire. Pour améliorer la performance de ce récepteur on peut faire appel
aux méthodes semi—aveugles qui utilisent la connaissance des sequences d’ apprentissage en conjonc-
tion avec les statistiques d’ ordre deux du signal. On a constaté dans le chapitre 11, que I’ estimation
du vecteur de cana est suffisamment bonne pour un nombre faible d'echantillons du signal regu.
En conséquence, la sequence d’ apprentissage peut &tre utilisée pour réestimer le filtre d’annulation
d’interférences dans la branche inférieure du GSC 11.1. En fait, ¢’ est la présence du terme fort en én-
ergie dans la branche supérieure a la sortie des corrélateurs pour I’ utilisateur d’intérét qui en quelque
sorte perturbe I’ estimation du terme contenant les interférences a partir de la sortie de T',. Cela en-
traine une erreur d’ estimation excessive qui est proportionnelle a I’ erreur quadratique moyenne mini-
male (MMSE). Afin dediminuer I’ erreur résiduelle, on propose d enlever la contribution du signal utile
pendant la période contenant les symbolesd’ apprentissage. Ainsi, on introduit laformulation moindres
carrés pondérés donnant la fonction de colt suivante

. 1 1 ~
min § = ¥ 1 Zal3+ = D 120 = T hiaraal3 ¢ (A.7.1)
Q o o
u nEQu k ner

ou, a; ,—q Sont contraints de se trouver dans la séquence d’ apprentissage. Les facteurs de pondération
o2 et o} peuvent ére déterminés respectivement comme les moyennesd' ensemblede || Z,, |3 et | Z,, —

Tffﬁl a1,,—q|3 pour lapartie aveugle et non aveugle du signal regu.

L’ algorithme est semi-aveugle pour I’ estimation du filtre d’annulation d’interférence, mais reste
aveugle pour I’estimation du canal. Une estimation récursive dans une mise-en-oeuvre itérative peut
étre envisagée pour le vecteur du canal. Les performances comparatives des versions aveugles et semi-
aveugles du récepteur EQMM-FZ sont illustrées par lafigure I11.1.

A.7.1 Exploitation de la propriété d’alphabet fini

Unemiseen oeuvreitérative del’ agorithme EQMM-FZ qui réutilise a chaque itération les symboles
détectés pour réestimer le filtre d’annulation d’interférences Q peut auss étre envisagée. Dans cette
configuration, on propose de prendre des décisions dures et de les retourner comme des symboles
connus augmentant ainsi le nombre de symboles connus dans I’ equation A.7.1. Si la longueur des
séguences d’ apprentissage est suffisamment élevée, on trouve des performances améliorées a chaque
itération. Les performances de I’ algorithme de décision dure sont auss illustrées par la figure I11.1.
Dans cet exemple, on consideére un facteur d'etalement de 16 et un paquet de 200 symboles transmis
avec une séquence d’ apprentissage de longueur 25.

A.8 Reécepteur RAKE avec annulation des interérences

La branche supérieure du récepteur EQMM-FZ peut étre le filtre adapté a la cascade de T, et de
h, dansle casou h; est connu ou estimé a priori. Cela impligue que la branche inférieure contient
un filtre vectoriel d'annulation d'interférences au lieu d’ une matrice comme cela était le cas pour le
récepteur EQMM-FZ. La quantité a estimer devient ainsi un scalaire simplifiant |’ estimation du filtre
W (cf. figure I11.2). Les mémes considérations d’ erreurs résiduelles de |’ estimation indiquées dans
le cas d EQMM-FZ sont valables. La condition principale pour une bonne estimation du filtre W
de I'annulation d’ interférence est que la sortie du filtre adapté ne contienne aucune contribution du
signal de I’ utilisateur d'intérét. Sinon, il y aura une tendance d’ annulation du signal utilealasortie du
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filtre adapté. Contrairement al’'EQMM-FZ le ICRR correspond al’ annulation d interférences apres la
combinaison cohérente du signal .

A.8.1 Algorithmes adaptatifs

La formulation GSC du critere EM S non-biaisé se préte bien aux applications adaptatives surtout
dans le cas de canaux spéculaires (nombre de trajets limité). Dans ce cas, T'; défini par (11.5.27)
contient un nombre faible de lignes non nulles soulignant le fait que I'energie est captée par des cor-
rélateurs dans ces directions. Le filtre d’annulation d’interférences Q peut ensuite étre adapté par un
algorithme de gradient comme LM S normalisé. Cette adaptation de @ est entierement indépendante
de I’ estimation du canal qui peut aussi étre adapté par un agorithme simple de poursuite des valeurs
propres extrémes. La convergence de ces algorithmes est garantie grace aux fonctions de colit quadra-
tique. LesfiguresIll.4, 111.5 et I11.6 illustrent la convergence pour des valeurs différentes du pas de
I’algorithme LM S normalisé. |l existe des possibilités d’ adapter simultanément le délai des différents
trajets. Une amélioration peut aussi &tre obtenue en utilisant les décisions a retour dans le mode doux
ou dur.

A.9 Laliaison descendante

Bien que les algorithmes complexes multi-utilisateurs aient éé proposés pour la liaison ascendante
dans les systemes mobiles & acces multiples de troisiéme génération, la situation de la liaison descen-
dante a toujours été considérée comme trop déficiente en terme d’ information a priori et de puissance
detraitement. Une raison supplémentaire étant |’ inefficacité du récepteur RAKE pour combattre I’ effet
proche-loin (near-far) qui a été considéré plusimportant dansle cas de laliaison ascendante. Pourtant,
la capacité nette des systemes peut étre augmentée si les deux liaisons sont capables de supporter les
mémes débits. Dans certaines applications comme la navigation sur I'internet, par exemple, la liai-
son descendante doit supporter les débits plus & evés que son homologue ascendante. Jusqu’ a présent,
la plupart des méthodes proposées pour I’ augmentation de la capacité sur la liaison descendante sont
fondées sur le traitement d' antenne ala station de base pour améliorer le mécanisme de transmission,
pour gjouter en quelque sorte, ladiversité au récepteur mobile. Cestechniguesrestent pourtant efficaces
pour les canaux peu sélectifs en fréguence, ou la diversité des trajets multiples n’ existe pratiquement
pas.

Dansles situationsd’ un faible nombre d utilisateurs, le récepteur RAKE peut marcher suffisamment
bien, et tout traitement avancéresteinutile. Celasuggere un rapport de chargement d’ approximativement
20% dans |e cas de contrdle de puissance ou un rapport signal ainterférence (RSl) d’environ 7dB. On
peut constater qu’ un systeme comme UM TS WCDMA peut héberger a peu pres 50 utilisateurspour un
facteur d'etalement de 256. Un rapport de chargement plus é evé pourtant a un effet catastrophique sur
la performance du récepteur RAKE. Celarésulte du traitement del’|AM comme bruit décorrélé par ce
récepteur.

Sur laliaison descendante, aux utilisateurs sont attribués des codes orthogonaux périodiques suivis
par un brouilleur qui est unique pour une cellule ou un secteur de cellule. Une aternative au RAKE,
dans le cas de codes périodiques est le récepteur lingaire décentralisg, traité dans le chapitre Il. En
termes de complexité d’ information, ce récepteur se comporte comme le RAKE et la connaissance des
parameétres des autres utilisateursn’ est pas nécessaire. Cependant, dans | e cas des codes apériodiques,
guand le brouilleur est active, le traitement invariant dans le temps n’est plus possible a cause du
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changement de canal total pour chaque symbole. Le brouilleur reste une partie intégrale du systéme
pour les liaisons descendantes afin de distinguer entre les signaux issus de différentes cellules.

Dans le cadre de la liaison descendante pour une celluleisolée, le canal de propagation est un canal
point-a-point entre la station de base et une station mobile. Pour identifier ce canal, un signa connu
sous la forme d'un pilote est transmis en continuité dans la norme américaine 1S-95. Ce pilote est
généralement beaucoup plus puissant que les signaux utiles (environ 10 dB) et suffit pour estimer le
canal defagon cohérente. Plusieurstravaux dirigésvers|’identification du canal en liaison descendante
ont &tés proposésdans[LZ97, MS98a, WL L Z98] mais ces méthodesfondées sur |a moyenne statistique
sur le brouilleur restent inéfficaces.

Nous proposons les récepteurs linéaires forcage a zéro (FZ) et maximisant le rapport signal ainter-
férence plus bruit (RSIB) pour la liaison descendante d’un systeme ARMC. Le récepteur FZ égalise
pour le canal une fois que ce dernier est estimé pour rendre les signaux de différents utilisateurs or-
thogonaux en supprimant I’ effet de canal. Ensuite, un corrélateur pour I’ utilisateur désiré suffit afin
de supprimer I'lAM générée par les autres utilisateurs. Le récepteur maximisant le RSIB est un ré-
cepteur aveugle et évite le probleme d’ explosion du bruit du récepteur FZ. On considere que la station
mobile recoit le signal atravers plusieurs canaux de diversité venant de I’ aspect multiples antennes ou
suréchantillonnage.

A.9.1 Modeéle de la liaison descendante

Lafigure A.5 décrit le modéle du canal sur la liaison descendante. Les K utilisateursintra cellule

Rq)eat blm
Py X X p(t)
ay, | times pad \F o)
C1 (p1) h(t) %{ v,
Siit
ek (Pk) J/T.
Repest v | "
Px p
e || T
f— o
b" n
—| h, y

Figure A.5: Modele du signal pour la liaison descendante.

transmettent des signaux modulés par une modulation linéaire sur un canal lin&aire a trajets multiples
avec du bruit additif gaussien. Le signal est regu atravers M canaux multiples obtenus par suréchantil-
lonnage du signal regu plusieursfois par chip ou atravers des antennes multiples. Le signal en bande
de base équivalent peut étre écrit comme

K

Y (6) = DD b (t = o) + vy (8). (A.9.1)

k=1 n

him (t) caractérise la réponse impulsionnelle du canal pour la m-iéme antenne et le k-iéme utilisateur
et {v,,(t)} estlebruit additif. Lesw) = [w}, p_1,w} p_y, -, wj |7 sontlescodes apériodiques
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pour le symbole! du k-ieme utilisateur. Les codes apériodiquessont formés par une séquence brouilleur
s;; qui multiplie les séquences périodiques ¢, = [ck p.—1,- - - , Ck,0] de Walsh-Hadamard. On peut
écrire les séquences chip correspondant au symbole a;, ; comme

Dk = Ak gW 1y mod P, (A.9.2)

Lefacteur d etalement peut étre différent pour différents utilisateursselonle débit detransmissionexigé
par les applications diverses dans les systemes de troisieme génération. Les sequences périodiques
sont sélectionnées pour la cellule en question selon I’ arbre indiqué dans la figure 1V.2 et donc sont
mutuellement orthogonales. La séquence de chips composite passe au travers d un filtre de mise en
forme et ensuite a travers le canal de propagation commun. Le signal recu peut étre écrit comme un
signal vectoriel

K N-1
ZZhbkarvn_Zh (Zbk) +v,=HyNB, +v,,
k=1 =0 n—i (A93)
ou,
Yin h1,n U1,n
Y,= v hi= » U= )
YM,n It UM
Hy = [ho hy ... hy_1] est lamatrice M x N du canal, qui inclut la contribution des filtres de
transmission et de réception et B,, = S°r_, By, OU Bip = [bin - - brnny1]7, estlaséquence

chips d’entrée au n-ieme instant pour le k-iéme utilisateur. On considéreun bloc de Iy P + I + Ig
vecteurs de données y,,, quel’onnote Y,
K

k=1
ou, _ - _ H1H
Ynle—1 h = [hN TR ’ho]
. ¢, 0 .- 0
0 ¢ 0
Yno ~
n, Ck —
Yn—1,pP-1
] c
Yn = . ] F =
0 C;
Yu-1,,0 Ck,P-1 Ck,P-1 Chk,lg—1
yn—ll—l,P—l . : .
: ck=| ° |.a=| - €=
Ck.1
LY n—11—1,P—15 Cko Ck,P—1 Ck,0

T (h) estlamatrice M (L + P — 1) x N bloc Toeplitz du canal remplie avec les coefficients de h,
et est, en général derang plein. N = L + P + N — 2 et lamatrice de codes périodiques C, est de
dimensions (3P + 4 + ls) X (I3 + 2) tenant compte de |a contribution de /3 + 2 symboles dans le
sgnal regu Y',,. ¢, €t ¢, signifient la contribution partielle des symboles de bords du bloc de donées.
Arp = [ahp,s.. ., ak,n—13—1]T est le vecteur de symboles, et S, signifie la matrice diagonale du
brouilleur dedimension . + P + N — 2 = I3P + {4 + l¢ avec la diagona e donnée par

[Sn,l(;—lv <o 3500, 5n—1,P—15 """y Sn—13,0) Sn—I3—1,P—15 - - - 7Sn—13—1,P—l4] .

Il est évident qu’ on peut estimer la réponse du canal si les sequences de chips de tous les utilisateurs
sont connues du récepteur comme décrit dansla section 1V.3.
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A.9.2 Récepteura forcagea zéro (FZ)

Comme indiqué auparavant, dans le probleme ARMC, il existe plusieurs sortes de récepteurs FZ.
Comme le probléme multi utilisateurs de la liaison descendante ressemble & un probléme mono-
utilisateur (mono-entrée / mono-sortie), on va considérer le forcage a zéro uniquement pour I'IES.
Un récepteur f(z) est qualifie comme un récepteur de forcage & zéro pour le canal h(z) avec un délai
d s f(z)h(z) = 2z~ Lalongueur minimale pour satisfaire les conditions de forcage a zero est in-
digquéepar (1V.4.2). Il est utilede supprimer I'lAM et |’ [ES dansles systemes AMRC, maislastructure
particuliére du probléme de la liaison descendante nous permet de supprimer I'lAM par un simple
corrélateur de sequence de I’ utilisateur d’ intérét une fois le canal &galise. Un des désavantages du ré-
cepteur a forcage a zéro est I’amplification du bruit die au fait que le rapport signal a bruit par chip
reste relativement faible dans les systémes avec un grand facteur d' etalement.

Les environnements multi—céllulaires peuvent également étre traités si e nombre de canaux mul-
tiples (suréchantillonnage/antennes multiples) est suffisamment large. Le transfert de controle doux
entre |es stations de base? peut &tre géré de fagon naturelle par la solution FZ en forgant a zéro I'[ES
de toutes les céllules en gardant une coefficient par station de base. Les canaux peuvent étre estimés
conjointement par le critére moindres carrés. Les dimensionsde 7 (h) devront étre de telle sorte que
cette derniere reste rang plein. En général, dansle pire des cas, le nombre de cellulesintervenant est de
trois dans une géométrie hexagonale.

A9.2.1 Interferencesintercélulaires

L’ interférence intercéllulaire s gjoute comme du bruit cyclostationnaire au taux chips. Cela est dil
au fait que les brouilleurs mutuellement peu corrélés sont utilisés dans les différentes cellules. La
matrice de covariance du bruit o2 >Y_, 7(h.)7# (h.) - o2 Ry,;, est une matrice Toeplitz bande avec
une diagonale relativement forte. Ry, — I comme lalongueur du canal tend vers 1 (canal BBGC
échantillonnéau rythme chip). Si lesinterfereurs sont faibles, leur effet peut &tre ignoré grace au terme
faible des ééments hors diagonales de lamatrice R, .

A.9.3 Récepteur maximisant le rapport signala interf érence plus bruit

Un récepteur quelconque f donnef(z)h(z) = ZZ»L:JBN ~2 a;2~%. On peut écrire ces équations dans

le domaine temporel comme
T(F)T(h)=T(a)=T(ay) +T(@,), (A.9.5)

ou, 7 (f)isaP x M(L+ P—1) estlamatrice bloc Toeplitz remplie avec des coefficientsde |’ egaliseur.
T (o) définit la matrice Toeplitz avec lapremiéere ligne[a 0p_;]; ce qui est vrai aussi pour 7 (a,;) et
T(Qd), OU,

a=[apay ... apinN—2], a; =[0...0a30...0]
Qd = [040 N 7 | 0 &gyt .. OéL_|_N_2] . (A96)

Levecteur P x 1 des sorties successivesde |’ egaliseur peut &tre écrit comme

Z,=T(H)Y .=V f", (A.9.7)

2 soft handoff
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H
n—l5—1

Lesigna égalisg, Z,, doit maintenant étre débrouillé comme X,, = S Z,,ou

S, =diag{s,p_1,.-- 501,500} -

On remarque que si ce égaliseur est un FZ (a; = 0), dans le cas sans bruit (v(¢f) = 0), le corre-
lateur lui-méme suffit pour annuler I'interférence en X,, apportée par les autres utilisateurs grace a
I’ orthogonalité des codes [ GS98b]. On définit par

C=1le ...cx],and QL =lext1 ---cp],

les matrices dont les colonnes constituent les codes de Walsh-Hadamard utlisés et non-utilisés pour
le systéme en question (C+7C = 0). Un égaliseur f peut &tre obtenu en imposant que la sortie
débrouilléde | egaliseur soit orthogonal aux codes contenusdans C' *+ dansle cas sans bruit [LL99]. En
outre, |"egaliseur peut &tre obtenu comme argument de la fonction de colit suivante:

arg mfin E|CH X% (A.9.9)

Uneréponsefixe doit &reimposée alasortie nettoyée de brouilleur de |’ egaliseur afin d’eviter I’ annulation
du signal de I’ utilisateur d'intérét, c.-a-d.,

E|lcE X |* = cnst.. (A.9.9)

La solution a ce probleme d’ optimisation quadrati que sous contrainte également quadratique est donné
par le vecteur propre généralise minimal

FRof"

Rof A.9.10
f R f" ( )

fT = arg min

oll, Ry = avg{V, S, CtC H SHYH) et Ry = avg{V,S,cic SHYH) et avg signifielamoyenne
temporelle et peut &tre remplacé par un opérateur d’ espérance si le brouilleur est inactif, i.e., S, = I'p
eas,=1.

A premiere vue, il est difficile de dire de quel probleme d’ optimisation f est une solution. Il a été
démontré dans lasection IV.5.1 que e récepteur donné par le critére (A.9.10) aboutit & un récepteur qui
maximise le RSIB asasortie. Le RSIB alasortie du récepteur peut étre écrit comme

o]ag)?

r, = . .
fRyviT + & (2221 Uz) &> + >, 0} tr {BD;D1B*D; D1} (A.9.11)

dansle cas de brouilleur réel et réduit a

otlag|?

Fc = IR , (A912)
FRyv I+ 5 (TIL oF) la?
dans le cas complexe. 11 a &té démontré dansla section 1V.5.1, que si le brouilleur est inactif, plusieurs
symboles contribuent & la sortie du récepteur. En conséquence, un égaliseur entrée simple / sortie
simple (SISO) au rythme symbole est inévitable a la sortie de ce récepteur.
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A.9.4 Recepteur RAKE

Lerécepteur RAKE est convenablement inclus dansla dérivation du chapitre V. Le RSIB alasortie
du RAKE pour le cas du brouilleur réel et complexe est respectivement donné par

of||p]*
hHvath%( K 1%) [@i|? + YK o2tr{B,DyD:B;D:D1}  (A.9.13)

'RAKE, =

of|[h|I"

- 1 : (A.9.14)
" Ryvh + & (Zk 1 Uk) (=3

'RAKE, =

A.9.5 Comparaisons des diffrents recepteurs

Le traitement précédent est extrémement utile pour la comparaison des différentes techniques de
réception pour la liaison descendante dans les systemes AMRC tel que le UMTS WCDMA. Pour
débuter, on constate que le brouilleur complexe donne le récepteur maximisant le RSIB. Il y a un
terme perturbateur qui reste en dénominateur pour le brouilleur réel. Une autre observation est que
I’ alocation de codes orthogonaux est la meilleure stratégie pour la liaison descendante. Si les codes
aléatoirement choisis sont attribués, le RSIB diminue, car un terme correspondant a |’ intercorrélation
de codes est gjouté au dénominateur.

Le facteur d'etalement P, en relation avec lalongeur du cana N, et le nombre d' utilisateurs actifs
K, est décisif pour le choix du récepteur a employer. Si le rapport N/P et K sont petits, un RAKE
suffit comme technique de réception. Sinon, il faut impliquer les récepteurs plus avancés pour obtenir
une performance acceptable. Plusieurs exemples humérigues sont montrés sur lesfigures 1V.6 a1V.10
pour illustrer cet argument.

A.10 Traitement d’antenne pour la transmission liaison descendante

Letraitement d’ antenne a la réception est connu pour améliorer la performance des systemes grace
aladiversité de réception. La possibilite d’ employer les antennes multiples sur laliaison descendante
reste pourtant difficile a cause des contraintes d' espace et de la puissance de traitement. |l est aussi
connu que la pluralité des antennes a la transmission n’ gjoute pas les mémes gains que celle alarécep-
tion. Cela semble intuitivement évident car les antennes tentent de distribuer I'energie dans I’ espace
sans tenir compte de la fagcon dont sont couplés les canaux des différents utilisateurs mobiles. Un
des problémes traité dans cette thése consiste en I’ utilisation de la connaissance totale ou partielle des
canaux de laliaison descendante pour la conception des filtres de transmission afin de les découpler.
Naturellement, |a performance de la liaison descendante peut étre nettement améliorée en utilisant la
technique de la transmission par des antennes multiples.

A.10.1 Transmission en mode DDT et DDF

Plusieurs systémes cellulaires de troisieme génération envisagent aussi d’ utiliser les techniques de
diversité de transmission pour augmenter la capacité des systemes. Le mode duplex de division en
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temps (DDT) semble plus adapté pour ces techniques de transmission car le canal peut &tre considéré
invariant dans le temps s la vitesse du mobile est faible et si le transmetteur et |e récepteur sont cal-
ibrés de maniére appropriée. L'estimation du canal a la liaison ascendante pour tous les utilisateurs
peut étre considéré valable pour la liaison descendante. Nous proposons de restaurer |’ orthogonalite
des séquences par le traitement approprié a la station de base. Cela correspond au forgage a zéro de
I'interférence inter-utilisateurs (11U). Le modele du canal et le schéma du systéme sont illustrés sur la
figure V.1. Chacun des utilisateurs mobiles est considéré muni d’ une seule antenne et est sUpposé avoir
un récepteur corrélateur. Le signal discret regu par |’ :-eme utilisateur peut ére écrit comme

K
yi(n) = e (¢)H (q) Z F;(q)a;(n) + vi(n) (A.10.1)

ol, a;(n) sont les symboles destinés au i-eme mobile, Y (») est le canal de laliaison descendante, et
F;(z) = F’(z)c; sont lesfiltres spatio-temporelsincluant | es codes d' etal ements supposés périodiques
pour le signal du ¢-eme utilisateur. L’ optimisation se fait donc en deux étapes: on congoit d’ abord les
filtres de transmission F;, Vj = 1...K pour découpler les canaux des différents utilisateurs, et puis
on aloue | es puissance pour assurer un RSIB minimal pour tous.

Cependant, pour le mode duplex de division en fréquence (DDF), les canaux ne peuvent pas étre
traités de la méme maniére pour les deux liaisons. Certains parametres comme les angles d’ arrivée
et de départ, les délais d' arrivée des différents trgjets peuvent cependant étre les méme s I'ecart des
fréguences porteuses pour les deux liaisons est faible (généralement le cas). Autres parameétres, par
exemple les amplitudes et les phases des tragjets sont dépendantes des fréguences porteuses. On peut
néanmoins supposer que la matrice de covariance du canal moyenne sur |es phases et les amplitudesdes
trajets est connu. On peut aussi supposer que les différents trajets sont séparables spatio- temporelle-
ment. Ainsi chague trajet venant du signal d’ un mobile se comporte comme un utilisateur corrélé.
Contrairement au cas DDT, le nombre d' utilisateurs virtuels devient égal au nombre total de trajets.
Les délais pour les trgjets qui ne sont que séparables en espace peuvent étre gjustés a la transmission
pour étre distincts en temps. On suppose que le canal du :-eéme utilisateur possede ) ; trgjets spécu-
laires. La g-ieme composant du :-eme utilisateur vu a la station de base peut &re modélisé en temps
continu comme

hiy(r, 1) = aig(t)al (8:)8(r — 7ig) (A.10.2)

ou 74, 0;,, €t a;, correspondent aux délais, a I’angle d'arrivée et au coefficient d’evanouissement
respectivement pour le g-iémetrgjet du :-eme utilisateur. a(#) est laréponse du réseau d’ antenne.

A.10.2 DDT: criteres d’optimisation

Laborne du filtre adapté (BFA) est une bonne mesure pour la performance. Pour |e :-eme utilisateur
cela peut étre écrit comme
MFB; = L UgTL(Z)T?(Z) dz
23 023 Tii() T (2) + 02, 2

(A.10.3)

ou Tj;(2) = G (2)F(2), 02 = E{|ai(n)|*}, et o2, estlavariance du bruit v;(n), considéré spatiale-
ment et temporellement blanc par la suite. Lafonction de colit peut alors étre écrite comme

max min{MFB; A.10.4
{F;(=)} ¢ { J ( )
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ce qui signifie la maximisation du minimum de BFA entre les utilisateurs. On peut écrire |e probleme
dans le domaine temporel par les équations (V.2.4). La BFA pour le mode paguet peut ainsi étre écrite
comme

MFBEM):—tr{R DR ]!} (A.10.5)
JF

oud . i ;Z ) represente la matrice de covariance en mode paguet de I’ [1U au :-eme récepteur. Re-
marquons que si M tend vers!’infini, MFBg N MFB;. On peut donc réécrire laBFA comme

max min MFB( ) A.10.6
mas min M) (A106)

Lesproblémes (A.10.4) et (A.10.6) sont tousdeux trop complexes pour trouver une solution analytique.
Cependant, on peut trouver les solutions anal ytiques en supposant que la sol ution optimal e correspond
au rapport interférence a bruit (RIB) faible pour tous|es utilisateurs,

2
d
RIB, = —° 5 fTT»(Z)T]‘Z'(Z); <1, Vi (A.10.7)

Jt

On peut ainsi considérer que lamaximisation de la BFA est équivalente a celle de RSIB. Dansle mode
paquet, le RSIB peut étre écrit comme

tr{ RIM
RSIB; = at T } (A.10.8)
tr{>, . Ry o0 Ia}
En subsgtituant F! = [f7 (L — 1) ... £F(0)], celas ecrit comme
2t p tH
RSIB; = 9ot R, (A.10.9)

02 F'R;F'M 52

ol R; est une matrice de covariance structurée de maniére appropriée et liée au canal Gt. On définit
RSIB; = v;, et F! = \/EUf,OU U'! est unvecteur anormeunité(e.g., ||Ull]; = 1ouU!R,UH = 1).
Le vecteur des RSIB inverse est v~ = [y7! ... 7517, et p = [p1,..., px]7 est le vecteur des
puissances allouées. La puissance totale est donnée par pmax ala station de base. Le critere peut étre
écrit comme

min || lee St ij < Pmax A.10.10

(UL} I H ( )

ou C = Ut .. U 7. Dans la suite, on considere le probleme d OptIIIIIS'dtIOI’\ de RSIB
112

(A.10.10), sans consi deran on de sarelation avec le BFA (A.10.4). Dans ce cas % peut également
tenir compte de la variance de I interférence inter-cellulaire. On définit aors la puissance normalisée
issue du j-eme filtre de transmission F'; et regue par le i-eme utilisateur comme ¢;; = U?RZ»UﬁH.
Pour un ¢ quelconque, on a

Clpici =Y picii+ v (A.10.11)
JF
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olion aintoduit v; = o2 /o2 pour touslesi. Afin de tenir compte de tous les utlisateurs, on introduit
lamatrice CT définie comme

T _ Cj; fOI’j 75 2
[C ]Z.], _{ 0 forj— i (A.10.12)

lamatrice D, = diag{[c1y ... cxx]}, levecteur v = vy ... I/K]T et lamatrice P = diag(p). Ona
donc laréation suivante pour le RSIB inverse

vy rt=D'P Y CTp+v) . (A.10.13)

En conclusion, le critere ((A.10.10) donne un ensemble de problémes couplés et 1a solution analytique
N’ est pas possible. On suppose cependant que le critere donne le méme RSIB pour tousles utilisateurs.
Si v; ne sont pas les mémes, on peut toujours ajuster {p; } pour ameliorer yin.

A.10.3 La solution forcagea zéro
Dans le cas sans bruit, une solution au probleme d’ optimisation de la BFA devient

t tH t tH _
IITE?IZIZX—I{UiRiUi } St. E p;URUT =0 (A.10.14)
o= i#i

Remarquons que lacondition 3 ., p; U}HRZ»Uﬁ = 0 est équivalente a |’ ensemble des conditions FZ
danslaforme U! R, U = 0, pour j # i. Celaréduit le probléme d’ optimisation &

o N\UMTL(GH|3 st UITL(G;) = 0for j # 1. (A.10.15)
Uf =1

Définissonspar B; = [71,(G;)];+: lamatrice bloc Toeplitz tenant compte de tous les canaux sauf G';.
Lasolution & (A.10.15) est donnée par UH = VmaX(PﬁiRiPﬁi). Pour une solution non triviale, on
exigem > K — 1, qui est valable quand on utilise les antennes multiples ou le suréchantillonnage et
les contraintes ne doivent pas fixer tous les degrés de liberté disponibles qui donnent comme longeur
de filtres de transmission

Yz N — (K -1)

L
7 e — (K — 1)

(A.10.16)

ou meg = rank{ Gy} est le nombre effectif des sous-canaux. Les contraintes données par (A.10.15)
menent al’ annulation parfaitedel’ 11U. Celaest pourtant obtenu au prix del’ | ES surgjouté au récepteur.
Pour annuler I'ES, il faudrait des contraintes supplémentaires qu’ on appelle les contraintes de pré-
égalisation.

L e but de cette optimisation est de maximiser laBFA qui correspond, en absencedel’llU al’energie
dans la cascade du pré-filtre et le canal. Alors, laBFA est minimisée si |’energie est concentrée en un
seul coefficient. Un équilibre entre la performance et la complexité détermine le choix de lalongueur
L dufiltre. Dans le cas ou les contraintes annulent seulement I’ [1U, le récepteur maobile devra égaliser
pour I'lES résiduelle. Finalement, on peut remarquer que les filtres FZ correspondent a la conception
d’ un transmultiplexeur bi-orthogonal ayant la propriété de construction parfaite ou les F'; and G; sont
respectivement les bancs de filtres de synthese et d' analyse.
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La transmission sur la liaison descendante peut &tre organisée de fagon synchrone ou asynchrone.
En tout cas, comme les canaux des utilisateurs sont connus a la station de base, on peut compenser les
délais asynchrones en fabriquant la matrice de covariance des canaux descendants manuellement.

Autres solutions, EQMM et EM S par exemple, sont également proposées pour ce probleme et cor-
respondent a la solution FZ. Une solution ad hoc connue sous le nom de pré&-RAKE, consiste en une
pré-distorsion du signal transmis sur la liaison descendante pour chague utilisateur en sélectionnant
U = G!/||G!||3 comme le filtre normalisé de transmission. Le récepteur mobile n’aqu’ as adapter
au trajet significatif du signal pré-distordu. Bien que ce soit une solution a complexité réduite, le
pré-RAKE reste une solution sous optimal e du probleme de la liaison descendante.

A.10.3.1 Optimisationde la puissance allouée

Etant donné un ensemble {U; }, lasolution optimal e signifieles mémes valeurs de RSIB ~; pour tous
les utilisateurs. La solution optimale pour le vecteur des puissances donné dans I"egquation (A.10.13)
est le vecteur propre correspondant ala valeur propre maximale de lamatrice E donnée par

AT 7
Ep=+vy"'p, E= : (A.10.17)

Pmax Pmax

oup=[pl1)T, u=D v, AT = D7IC7, et (Tp = pmay. Cette solution est unique pour un E
donné sous la contrainte de la puissance maximale a la station de base. La performance de la solution
FZ et |e pré-RAKE sont comparés sur lesfigures V.2 a V.4 pour différentesvaleursde L.

A.10.4 DDF : Les criteres d’optimisation

Comme indiqué auparavant, les @); trajets correspondants a un utilisateur i peuvent étre considérés
comme (); utilisateurs virtuels pour le probléme DDF. Les critéres d’ optimisation correspondent a
I"annulation de I’ interférence entre utilisateurs, a I’ annulation de I’ interférence entre symboles et ala
pré-décorréation sont données par les équations (V1.4.1) (VI1.4.2) (V1.4.3) et (VI1.4.4). Naturellement,
le praobléme de FZ exige deslongueursdefiltre /. plusimportantesque dansle casde DDT. On suppose
que les délais 7y, Vi = {1,..., K}, ¢ = {1,...,Q;}, pour tous les utilisateurs sont connus des
transmetteurs. Cela signifie que la position du corrélateur a la réception est aussi supposée fixe et
connue dans le temps. On considere a priori que les délais fixés d’ avance vont maximiser le rapport
signal-a-bruit (RSB) alasortie. Cette suppositionacomme conséquence que les délais des corrélateurs
fixés d'avance ne soient pas les optimaux globals. Cela rend le probléme d’ optimisation couplé et
I” algorithme devra chercher la solution optimal e sur tous|es délais de tous les utilisateurstestés un par
un; ce qui complique énormément latache. Une alternative découplée et de complexité réduite consiste
en sélectionnant le trajet dominant avant la conception desfiltres U ;, et en supposant que |es positions
du corrélateur sont alignées a ce méme tragjet.

A.10.4.1 Diversitédetransmission et allocation de puissance en DDF

On a supposé que chague récepteur est un corrélateur par composante multi- trajet. On suppose aussi
que les sorties des corrélateur seront combinées en rapport maxima (MRC). Les trajets multiples sont
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supposéstels que les sorties du corrélateur sont décorrélées. Le RSB ala sortie du i-eme utilisateur est
donné par

B 2 JaigPpigai(m)] 02 &
SNR; = — = = =2 N Ef g Py, (A.10.18)
O"U,‘ Zq:l E|a2q| plq O-Ui g=1

ol 02 = E[|a;(n)|*] pour tout i et o7, est la variance de bruit a la sortie de chaque corrélateur.
L alocation de puissance parmi les différents trajets qui maximisent le RSB est déterminée comme
solution du probleme

Qi
rr;ax{Z(E|aiq|2)piq} st. Z?;l Dig = Di- (A.10.19)
iq =1

La solution de ce critere correspond a la diversité de sélection et suggere I’ excitation d’' un seul trajet
portant la plus grande puissance moyenne. Le récepteur optimal est donc un filtre adapté au filtre de
mis-en-forme suivi par un simple corréateur de sequence d’ etalement de |’ utilisateur en question. On
remarque que letrajet le plus puissant est celui portant I’ energie maximale dans la cascade du canal et
du pré-filtre. Donc, dans le sens strict ce trgjet doit étre sélectionné apres les conceptions du filtre de
transmission.

En général, le phénomene d’ explosion du bruit vainfluencer 1a performance de cette stratégie dont
I’ effet sera minimal si un grand nombre de degrés de liberté sont gjoutés en utilisant un nombre con-
séguent d antennes. Plusieurs exemples de cette manipulation dans le cas DDF sont illustrés dans les
figuresV1.3 et V1.4.

A.10.5 Traitement d’antenne pour les systmesa s2quence agriodique

Si les ségquences d'etalement sont apériodiques, la conception des filtres invariants dans le temps
n'est plus possible. Le traitement spatio-temporel dégénere alors en un traitement purement spatial.
Le cana spéculaire a trgjets multiples peut étre écrit en temps continu comme indiqué par VI1.2.1.
Les tragjets peuvent &tre collectionnés dans les paquets comme montré dans VI1.2.2. Le cand total
peut &tre modélisé comme la superposition de ces paguets comme montré dans |'equation V11.2.3.
On va supposer que la transmission sur la liaison descendante se fait par les mémes faisceaux que son
homol ogue ascendant. Le probléme devient alors celui de lamaximisation du minimum de RSIB parmi
K utilisateurs. Le RSIB pour le :-eme utilisateur est donne par VI11.5.1. Cela est encore un probleme
découplé et suggere comme auparavant de concevoir lesformateurs de voies et ensuite d’ optimiser pour
les puissances allouées. On démontre qu’ une fois lesformateurs de voies congus, il existe une solution
unique pour le vecteur d alocation de puissance. Cette allocation est étroitement liée aux mesures
de congestion dans les systemes AMRC qui constituent une direction active de recherche dirigée vers
le rapprochement des opérations de la couche physique et celui de contrdle dans ces systemes. Les
performances des méthodes de formation de voie sont illustré danslesfigures VIl.2 aVIl.4. Lescasde
séguences d' etalement réelles et compl exes sont aussi traités dans le cours de ce dével oppement.

En conclusion, le traitement purement spatial reste moins performant par rapport au traitement
spatio-temporel ou I’ on arrive a annuler Iinterférence avant la transmission. Pourtant, des gains rela-
tivement importants sont obtenus par rapport au cas ordinaire (antenne unique). De plus, le traitement
invariant dans le temps N’ est en tout cas pas approprié quand des codes apériodiques sont employés.
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