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docteur ès sciences

Jury members

President: Prof. M. Vetterli (EPFL)

Thesis supervisor: Prof. P.A. Humblet (Eur´ecom)

Reviewers: Dr. J.C. Belfiore (ENST)

Dr. G. Caire (Politecnico di Torino)

Dr. B.H. Fleury (ETHZ)

Prof. J. Mosig (EPFL)

Prof. Ch. Wellekens (Eur´ecom)

Lausanne/Sophia Antipolis

EPFL/Institut Eurécom
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Summary

The field of wireless radio communications is undoubtedly one of the most active and econom-

ically rewarding sectors in technology today. Existing terrestrial cellular networks already offer both

voice and data services at reasonably affordable prices and there will soon be satellite networks which

will offer communication services to and from any point on the globe.

This thesis takes a fundamental look at the communication problem over so-called fading chan-

nels which are the types of channels encountered in many radio communication systems. The main

obstacle that the radio system designer has to cope with is the channel’s underlying time-varying and

time-dispersive nature. We strive towards a better understanding of the fundamental limits for the com-

munication process over such channels and at the same time, wherever possible, indicate ways for ap-

proaching these limits with practical devices. Moreover, in many cases we use channel models which

accurately describe the physical media, at the expense of giving up the possibilityof presenting analytical

solutions.

We show that the channel is prone to outages, in the sense that there is irreducible probability

that reliable communication is impossible. These outages can only be avoided if there is some form of

channel state feedback from the receiver to the transmitter. We discuss issues such as coding and power

control and how they can be used jointly to improve performance both for long-term and short-term

measures. Spread-spectrum systems are treated in a general sense and different coding alternatives are

compared for such applications.

We examine coding schemes for a particular class of fading channels, known as block-fading

channels and show that very practical codes can come close to fundamental limits on performance.

Moreover, we have shown that there is a bound on the fundamental performance of such codes which

depends on several design factors. We have found a series of block and trellis codes for moderate spectral

efficiencies and present computer simulation of their performance.

The last part of this work is concerned with the multiple-access problem over such channels, which

is the problem of sharing a common radio medium between a collection of user terminals wishing to

communicate with a single base-station. We show that by performing a certain type of dynamic channel

allocation using channel state information at the user terminals, we can achieve performances which

surpass those of a non-fading environment. The development is simple and relies on the time-varying

nature of the fading channel.



Résuḿe

Les télécommunications par transport hertzien constitue certainement un des domaines des plus

actifs et lucratifs de la technologie moderne. Les r´eseaux cellulaires terrestres offrent d´ejà des services

de transfert de parole et de donn´eesà des prix abordables et il y aura bientˆot des réseaux de satellites qui

offriront des services vari´es.

L’obstacle principal que doit surmonter l’ing´enieur radio est que l’att´enuationélectromagn´etique

du signalémis est souvent une fonction des positions du transmetteur et du r´ecepteur ´etant variables.

D’autant plus, la g´eométrie de l’environnement introduit un effet dispersif du signal dans le temps. On

essaiera de mieux comprendre les limites fondamentales du processus de communication sur cescanaux

à évanouissementet, autant que faire se peut, d’indiquer des m´ethodes pratiques afin de s’y approcher.

On démontre que la probabilit´e de perte pour ces canaux est born´ee par une valeur non-nulle, qui

ne dépend pas de la complexit´e du codeur de canal, ce qui rend impossible une communication fiable.

Ces pertes peuvent ˆetreéliminées seulement s’il existe un moyen de mettre le transmetteur au courant

de l’état du canal `a tout moment. On indique comment des syst`emes de codage du canal et contrˆole

de puissance peuvent ˆetre combin´es pour am´eliorer la performance selon des mesures `a court età long

terme.

Le problème de codage du canal pour la famille des canaux `a évanouissement en bloc est ex-

posé. On démontre qu’il existe une borne fondamentale sur la performance qui d´epend des choix

d’implantation du syst`eme (modulation, taux de codage, d´elai de décodage, largeur de bande). Dans

certains cas, on peut s’approcher de cette borne avec des codes tr`es simples pour des efficacit´es spec-

trales mod´erées. On donne des exemples de codes en blocs et en trellis et on pr´esente des simulations

par ordinateur pour ´etudier leurs performances.

Dans la derni`ere partie de ce travail on traite l’acc`es-multiple sur les canaux `a évanouissement,

c’est-à-dire les m´ethodes pour partager le canal radio parmi un ensemble d’utilisateurs qui veulent com-

muniquer simultan´ement avec une station de base centralis´ee. On d´emontre qu’en utilisant un m´ethode

d’allocation dynamique du spectre qui exploite des mesures de l’att´enuation de tous les canaux en paral-

lèle, on peut atteindre des niveaux de performance qui d´epassent mˆeme ceux du canal sans ´evanouisse-

ment.
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Chapter 1

Introduction

The field of wireless radio communications is undoubtedly one of the most active and economically

rewarding sectors in technology today. Over the last decade we have all grown accustomed to seeing

people walking in city streets with hand–held portable phones. Whether we are ready to accept it or not

at this point, it is inevitable that we will all soon make use of some form of wireless communication. The

existing terrestrial cellular networks already offer both voice and data services at reasonably affordable

prices and there will soon be satellite networks which will offer communication services to and from any

point on the globe.

The technology breakthroughs inVery Large Scale Integration (VLSI)have made this explosion

we are witnessing today possible since they have paved the way for the implementation of all–digital

signal processing in the radio transmitters and receivers. This, in turn, allows for very sophisticated

communication techniques, such as digital modulation, equalization, error control coding and others

which were very difficult and expensive to implement until now. With this powerful tool at our disposal,

we can really take advantage of the enourmous wealth of knowledge that communication theorists have

amassed since the pioneering work of Claude Shannon [Sha48a][Sha48b] first appeared. The result of his

ideas has pushed digital communications over the telephone channel to the limit and there is no reason

why the same cannot be accomplished on the mobile radio channel. The latter seems to be formidable

task however, because of the underlying physical nature of the medium.

The goal of this thesis is to take a small step towards a better understanding of the fundamental

limits for the communication process over a mobile radio channel and at the same time, wherever pos-

sible, indicate methods for approaching these limits with practical devices. We will see that the mobile

radio channel is quite difficult to characterize, in comparison to wired channels, and as a result we often
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have to resort to heuristic models to analyse certain situations.

1.1 Thesis Outline

The main obstacle that the radio system designer has to cope with is the channel’s underlying time–

varying and time–dispersive nature. This type of channel is commonly refered to as afadingchannel.

We have chosen to focus our study on the communication problem over such a channel. We have tried

to keep our treatment as close to practical systems as possible without dwelling too much on theoretical

details. We use propagation models from systems in use today to apply the theories we develop, with our

primary objective being to gain insight into practical system design issues.

In order to better understand the physical nature of the medium we begin with a short chapter

dealing with basic issues in radio propagation. It goes without saying that a sufficient understanding of

the underlying physics is a prerequisite for achieving performance approaching fundamental limits. This

is at the same time necessary todefinethe fundamental limits. We stress, however, that our treatment of

radio propagation is by no means complete and is only meant to introduce the reader to the subject. At

the same time, we define the propagation models used in the remainder of the work. We describe the

three–scale model for the fluctuations of the radio signal strength as the receiver moves in space, which is

composed of very short and very long–scale time–varying phenomena. We show that the time–dispersive

nature of the channel also causes strong variations in the frequency spectrum of the radio signal, which

is an important issue for wideband systems. We describe basic statistical models which characterize the

time–varying and time–dispersive nature of the channels.

Chapter 3 deals with issues in signal design for fading channels for the different types of system

alternatives. No new results are presented, but we treat many topics which are not included in standard

texts on the subject but which have appeared in the litterature. This chapter is crucial for understanding

the models and approaches for analysing fundamental limits in subsequent chapters. We define the notion

of signaldiversityand how it is related to the number of degrees of freedom needed to characterize the

underlying channel process. We consider three basic ways of achieving diversity

1. Multireceiver Diversity

2. Time Diversity

3. Frequency Diversity
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We show that each is due to a different phenomenon but all three are analysed in the same way and are

essentially equivalent.

The fourth chapter defines the basic information theoretic quantities needed to determine the fun-

damental limits for communication over point–to–point fading channels. On wired channels, such as

the telephone channel, which are practically time–invariant, the basic quantity defining the fundamental

limit on the amount of information that can be transmitted is thechannel capacitydefined by Shan-

non [Sha48a][Sha48b]. The channel capacity is the maximum information rate in bits/second at which

reliable communication is possible. In his theory, reliable communication was taken to mean that by

appropriately coding the information at the transmitter, arbitrarily low probability of decoding error can

be achieved. There is no guarantee, however, that the complexity of the decoding process is low, and

generally it is not. We show that on a fading channel, no such maximum limit need exist and it is often

the case that reliable communication, in Shannon’s sense, is impossible. This fact is solely due to the

time–varying nature of the channel.

If the transmitter has noa priori knowledge of the state of the channel at any given time and he is

subject to some processing delay constraint, the communication is always corrupted by outages. These

are due to the times when the signal strength drops to an unacceptable level during the transmission of

the “short” message. By short we mean relative to the speed at which the channel fluctuates. Another

explanation for the presence of outages in the communication process is that when insufficient processing

time is available, we are not able to average (or spread information) over the different realizations of the

channel.

In the fourth chapter we look at practical coding schemes for approaching the fundamental limits

for a certain class of channels. These are called block–fading channels and from a practical point of

view can represent a variety of systems. We are interested in finding error–control codes and bounds

on the ultimate performance of practical codes with reasonable complexity which perform close to the

fundamental limits defined in Chapter 4. We show that in some cases, this can be done without too much

effort.

We then examine the case when channel state information is available at the transmission end in

Chapter 5. We demonstrate that outages can be avoided in some cases using power control, or utilized

effectively to conserve power and increase long–term information rates. We give simple examples of

variable–rate schemes which can potentially come very close to optimal performance.

Chapter 6 deals with multiple–accessing. Simply put, this is a problem of allocating the energy

of several independent users on the same physical channel. This can be done in various ways, and we
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examine the achievable performance for the different alternatives on the fading channel. We focus our

treatment on themany–to–onecommunication problem, which in cellular communications is called the

uplink. Here many users share a common medium and transmit their information to the same receiver.

We show that the achievable performance over a fading channel can actually surpass that of a non–

fading channel because of the time/frequency–varying nature of the channel coupled with the fact that the

medium has to be shared. The key lies in using an allocation strategy which forces the users to transmit

only when their respective channel conditions are favourable, or equivalently, at points in time/frequency

where reliable communication is more likely to take place.



Chapter 2

Mobile Radio Channels

This chapter gives a small introduction to the propagation characteristics of typical mobile radio chan-

nels, such as those encountered in today’s personal communications systems (e.g. theGlobal System for

Mobile Communications (GSM)[GSM90]). It is not a complete treatment of the subject and it is only

meant to define the necessary propagation effects and models which will be used in the remainder of this

thesis. More complete treatment of the subject can be found in classic books such as Lee [Lee82] and

Jakes [Jak74]. Many of the recent advances in the characterization of the mobile radio channel has come

out of European research, and the success of the GSM system came to a great extent as a result of it.

A recent article which gives a very complete description of the the past and current European research

results is Fleury [FL96].

In our treatment, we begin with a general description of the electromagnetic spectrum and the

different bands in which today’s and future systems lie. We then go on to explain the three scale models

for the attenuation effects on typical land–mobile radio channels. Each effect is then treated in turn with

an emphasis on the short–term attenuation characteristics, since the main goal of this thesis is to find

communication methods which are robust in the presence of these characteristics. The basic statistical

models for predicting signal fluctuations are described using a framework suitable for the analyses of

later chapters. We describe a few generic propagation models for urban, rural and hilly terrain which we

use for numerical computations throughout this thesis.

2.1 A Basic Overview of Radio Communications and Propagation Effects

Radio communications occupy a large part of the electromagnetic spectrum. As a result of international

agreement the radio frequency spectrum is divided into the bands shown in Table 2.1 The VLF band
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Frequency band Frequency range

Extremely low frequency (ELF) < 3kHz

Very low frequency (VLF) 3-30kHz

Low frequency (LF) 30-300kHz

Medium frequency (MF) 300kHz-3MHz

High frequency (HF) 3-30MHz

Very high frequency (VHF) 30-300MHz

Ultra high frequency (UHF) 300MHz-3GHz

Super high frequency (SHF) 3-30GHz

Extra high frequency (EHF) 30-300GHz

Table 2.1: Radio Frequency Bands

is used only for very special applications such as communication with submarines and some navigation

systems. In general, the bands below MF have limited application due to the large size of the transmitting

antennas. The MF band is used for commercial AM broadcasting. The HF band is not used for land–

mobile communications even though long–distance communication is possible due to reflections off the

different layers of the ionosphere [Par92]. The unpopularity of this band is mainly due to the fact that the

height of the different layers varies greatly as a function of the time of day, the season and the geograph-

ical location. The most common bands for mobile radio as well as FM radio and television broadcasting

are the VHF and UHF bands. Communication is achieved mainly by a direct path and a ground reflected

component. What makes these bands most challenging from the point of view of the system designer

is that he must cope with the possibility of signal reflection, refraction and diffraction from natural and

man–made obstructions. The SHF band is used mainly for satellite communications, point–to–point ter-

restrial links, radar and short–range communications. The EHF or millimeter–wave band is receiving

considerably more attention recently in theliterature because of the enormous amount of spectrum avail-

able for use. The main problems with this band, again from the point of view of the system designer, are

scattering due to rain and snow and the strong absorption lines at 22GHz (water–vapour) and 60 GHz

(oxygen). There are bands between these lines (absorption bands) which are currently being considered

for mobile communications [BR97].

Let us take a closer look at the propagation effects on mobile radio channels by considering the

outdoor communication scenario depicted in Figure 2.1. The antenna at point 1 radiatess an electromag-
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netic wave which is the result of modulating a chosen carrier frequency by an information–bearing signal.

The electric and magnetic fields for any given location (e.g. at receivers 2 and 3) at any given instant of

time are a superposition of the fields of many waves resulting from reflections, refractions and diffrac-

tions of the transmitted wave off nearby and far–off objects referred to asscatterers. Scatterers may

be buildings, mountains, trees or even mobile objects such as cars or trains. The name stems from the

fact that these objects are not ideal reflectors due to the roughness of their surfaces which tends to cause

diffuse scattering. Similar effects also occur in indoor and satellite channels. There is often no direct

1

2 3

Figure 2.1: Outdoor Scenario

or line–of–sight (LOS)path between the transmitter and receiver or this path may be heavily attenuated

or shadowedby a large object so that the received wavefront is due mainly to the diffuse components

which are heavily location–dependent. This is especially true in built–up urban areas where the received

energy at the mobile station is mostly results from diffraction. Since this is a worst–case situtation, the

system designer must attempt to devise methods for dealing with non–LOS location dependent signal

power fluctuations, orsignal fading. The use of the term fading arises from the fact that the signal power

varies in time as the mobile station moves. We remark, however, that in indoor environments the received

signal power may vary in time even if the receiver is not in motion. This is because the scene can change

to a great extent due to the presence of walking people or the opening and closing of doors or windows.

This can also happen to a certain extent in outdoor systems due, for example, to trucks.

Signal fading also occurs in the frequency–domain. Because of the presence of multiple time–

delayed replicas of the transmitted signal, we will see that the mobile radio channel may often be seen

as a linear time-invariant filter for each location. As a result, there are some frequencies where the signal
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power at the receiver is higher than others, so that the signal powerfadesin frequency.

One often models the location dependent propagation effects statistically. This allows the system

designer to predict system performance, usually by averaging over the statistics of the received signal

power or, equivalently, over all possible relative positions of the receiver/transmitter pair. The use of

statistical models is not solely for mathematical convenience, since they were, for the most part, based

on the results of empirical data. Later, different physical explanations for these measurements were used

to develop the statistical descriptions. In a very simple sense, the source of randomness can be explained

firstly by the fact that attenuation due to scattering off rough surfaces are random due to the position

and electromagnetic properties of the objects. Secondly, the location of the mobile station has a certain

degree of uncertainty.

One can distinguish three levels of signal attenuation which are due topropagation path loss,

shadowingand multipath propagation. The first can sometimes be explained physically and can be

accurately measured. The other two are usually modeled statistically.

Propagation path loss is dependent on the distance between the receiver and transmitter and is

random only due to the position of the mobile station. For practical systems where the processing time

of information bursts is not very long, the path loss, even for quickly moving objects, changes very little.

Moreover, many systems are designed to offer the same quality of service independently of the distance

between the mobile user and the basestation so that some form of power control is needed to counter the

path loss and usually shadowing too.

Fading due to shadowing is slow, in the sense that it changes little over fairly large regions. The

degree of variation is an issue which is constantly being debated. Some believe that it can be noticeable

when the mobile moves only a few meters, as some paths are blocked by large objects such as trees or

buildings. Shadowing and path loss can be seen as slow fluctuations of the mean signal power as the

mobile moves and are virtually frequency–invariant. If we consider Figure 2.2 we see that for a far–off

receiver/transmitter the long–term fading components are more or less constant within the differently

shaded regions.

As we already mentioned, multipath propagation causes rapid power fluctuations as the mobile

station moves, even over very short distances. For this reason, it is calledshort–termor fast fading. Since

these fluctuations are heavily frequency–dependent the bandwidth of the transmitted signal is critical in

describing the effects of multipath.
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Figure 2.2: Long–term fading component

2.2 Models for Path Loss and Shadowing

The most widely employed mathematical models for path loss and shadowing came about from the

results of numerous experimental studies in a wide variety of environments. Some more recent studies

for dense urban areas, for example [WB88], are based on approximations using the theory of diffraction

and some empirical corrections.

These models are extremely important for the planning phase during the deployment of a cellular

network. The more accurate the model, the less the need for on–site measurements when placing base

stations. In addition to these models, computer simulations based on optical approximations for electro-

magnetic propagation (ray–tracing [RH92][Kim97]) accurately describing the spatial distributions of the

path loss/shadowing. These software tools are especially powerful for indoor systems, where the basic

geometry of the environment is easily described.

2.2.1 Path Loss in Free–Space

Path loss in free–space can be analytically described by thefree–space transmission formula

PR
PT

=

�
�

4�d

�2
GTGR (2.1)

wherePR andPT are the received and transmitted powers at the respective antennas,� is the wavelength,

d is the distance between the receiver and the transmitter in meters, whileGT andGR are the antenna

gains. This is useful in obtaining a rough idea of the true path loss in an outdoor environment. For
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isotropic antennasGT = GR = 1 so that the path loss can be expressed in decibels as

LFS = 32:4 + 20 log10 d+ 20 log10 f dB (2.2)

whered is now in kilometers andf is the frequency in MHz. We see that the power decays with

20 dB/decade in both frequency and distance. This means, first of all, that path loss is a virtually

time–invariant phenomenon for practical mobile speeds. Secondly, it is also practically frequency–

invariant. As an example, imagine a high data–rate system with carrier frequency 1.25 GHz and sig-

nalling bandwidth 10MHz. The path loss difference at the two extreme points of the signal bandwidth is

20 log10 1:26=1:24 = :139 dB. In reality, the presence of a strong reflection off the ground causes the

power to decay with 40 dB/decade (or inverse4th power) when the distance separating the transmitter

and receiver is much larger than the heights of the two antennas. [Lee82].

2.2.2 Measurement-based Models

We now briefly describe a few classic models for the path loss which were based on measurements.

Okumura’s Tokyo Model

The first empirical model for path loss in an urban area was proposed by Okumura [OOKF68]. It is based

on extensive measurements made in Tokyo. It adjusts the free–space path loss equation with empirical

constants depending on the heights of the fixed and mobile terminals and the type of terrain and area

geometry (hilly, sloping, land–sea, presence of foliage and street orientation with respect to the fixed

terminal). The path loss formula is given by

LOkumura = LFS +Am(f; d)�HB(hB ; d)�HM(hM ; f)�KU(f)�K dB (2.3)

whereLFS is the free–space path loss given in (2.2),AM (f; d) is a frequency and distance dependent

factor indicating the median attenuation with respect to free–space loss in an urban area over quasi–

smooth terrain. His measurements assumed a fixed terminal antenna height ofhB = 200m and mobile

terminal antenna heigh ofhM = 3m. HB(hB; d) andHM(hM ; f) are the distance/frequency–dependent

height gain factors,KU(f) is the so–called urbanization factor (depending on whether the environment

is urban, suburban or an open area) andK is an additional term for taking account certain characteristics

of the terrain (hilly, sloping, land-sea, foliage, etc.) These adjustment factors are all tabulated in curves

for different environmental parameters [OOKF68].
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Hata’s and COST 231 Refinements

The main problem with Okumura’s model is computing the different adjustment factors from tabulated

data. Hata [Hat80] came up with the following formula which yields path–loss predictions which are

almost indistinguishable from Okumura’s without the need for these curves

LHata = 69:55 + 26:16 log10 f � 13:82 log10 hB �Am(hM ; f) + (2.4)

(44:9� 6:55 log10 hM) log10 d+KU(f) dB (2.5)

where

Am(hM ; f) = (1:1 log10 f � :7)hM � (1:56 log10 f � :8) dB (2.6)

is the correction factor for the mobile terminal’s antenna height in a small or medium–sized city and

Am(hM ; f) =

8><
>:
8:29(log1:54hM)2 � 1:1 f � 200MHz

3:2(log 11:75hM)2 � 4:97 f � 400MHz

(2.7)

is the same factor for a large–sized city. The urbanization correction factor,KU(f), is zero in an urban

area. In a suburban area it is given by

KU(f) = �2(log10(f=28))2� 5:4 dB (2.8)

and in an open–area by

KU(f) = �4:78(log10 f)2 + 18:33 log10 f � 40:94 dB: (2.9)

This model is valid in the 150-1000 MHz frequency range and for distances of 1-20km. Also, the fixed

terminal antenna height is 30-200m and for the mobile station 1-10m.

A similar model was proposed within the COST 231 project for the 1500-2000MHz frequency

range for use in analyzing the DCS 1800 and PCS 1900 microcellular systems. We see that these empir-

ical models aim at capturing the effects not predicted by the free–space transmission formula since the

attenuation drops off with around 40 dB/decade and not 20 dB/decade.

Diffraction Models and Ray–Tracing

For microcellular and picocellular systems, the simple models for predicting path loss start to break

down. This is due to several reasons, most notably the reduced height of the base stations. As shown in
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Figure 2.1 , because of the presence of buildings and the fact that base stations are normally placed on

the rooftops, the propagation path to the mobile station often is the result of a diffraction off the edge of

a building. As a result, the empirical formulations based on Okumura’s model had to be modified to take

this new effect into account. We do not go into any details of these models except to make reference to the

work of Walfisch and Bertoni [WB88] and Ikegamiet al [IYTU84]. These methods were also used in the

COST 207 and 231 projects [FL96]. For the case of rural mountainous areas, similar diffraction–based

models are reviewed in K¨urneret al [KCW93].

For indoor channels much less empirical modeling of path loss has been performed. One of the

main problems is that the path loss properties vary greatly from one room to another or one corridor to

another. For this reason, many computer simulation based studies using ray–tracing algorithms have been

proposed [RH92][Kim97]. These algorithms use ray–optical approximations for reflections, refractions

and diffractions to model the electromagnetic propagation within buildings. These are particularly ap-

pealing since the number of base stations required to service the location can be roughly determined and

placed without having to resort to electromagnetic measurement. Their placement can then be adjusted

once the system is in operation based on observed performance. In fact, some wireless companies sell

systems which have signal–to–noise ratio measurement as a built–in feature in the handset to help in the

placement of the base stations. Another possible advantage of Ray–Tracing algorithms is that the next

generation ofintelligentbuildingscan potentially be designed by architects with wireless communication

in mind.

2.2.3 Lognormal Shadowing

The other long–term fading effect, calledshadowingis a result of the fact that waves incident at the

receiver are attenuated or vanish due to the presense of large objects. The characterization of this phe-

nomenon is usually done statistically as for the short–term fading component described in the following

sections. If we examine a typical average received power measurement as the mobile moves as in Figure

2.3, where the average is taken across distances of several hundreds of wavelengths. This averages–out

the short–term fading component and leaves only the components due to path loss and shadowing which

vary insignificantly over these intervals. It was found [ACM88] that the variation around the mean of

this curve on a dB scale, which is the path–loss component, is approximately Gaussian with standard

deviation,�sh, from 6–8 dB. The amplitude factor due to shadowing is therefore a lognormal random
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variable given by

Ash = 10:1�sh� (2.10)

where� is a zero–mean Gaussian random variable with variance 1.
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Figure 2.3: Variation of the mean signal strength

The spatial correlation of the shadowing component receives relativelylittle attention in the lit-

erature. Some authors make conjectures about these statistics [Ker96],[Gud91], however it is not clear

whether there are any physical grounds to support them. Most seem to be chosen to simplify mathe-

matical performance analysis, the goal only being to have a rough idea as to the effect of shadowing

correlation.

2.3 Short–term Fading

2.3.1 An Illustrative Example

Let us first consider the short–term fading characteristics of the received signal for the simple 2–dimensional

example shown in figure 2.4. We have a basestation with antenna heighthT and a mobile station with

heighthM separated byx meters in the horizontal direction. The basestation transmits an unmodulated

carrier with powerPT and frequencyfc. The path lengths are given by
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hT

x
D

hM

dLOS
d2

d1
d3

Figure 2.4: An illustrative example of short–term fading

dLOS =
p
x2 + (hT � hM )2 (2.11)

d1 =
p
x2 + (hT + hM )2

d2 =
p
x2 + 4D2 � 4Dx+ (hT � hM )2

d3 =
p
x2 + 4D2 � 4Dx+ (hT + hM )2

and their corresponding phases are

�i =
2�fcdi

c

wherec = 3 � 108 m/s is the speed of light. We have assumed that the leftmost building is a perfect

absorber so that no received energy is due to a reflection off of it. The ratio of received to transmitted

power is therefore

PR
PT

=

�
c

4�fc

�2 ���� 1

dLOS
ej�LOS +

a1
d1
ej�1 +

a2
d2
ej�2 +

a1a2
d3

ej�3
����2 (2.12)

wherea1 anda2 are the reflection coefficients of the ground and the rightmost building respectively . In

Figure 2.5 we show the variation of the power ratio with distance assuminghT = 30m, hM = 2m,D =

1km, anda1 = a2 = �1(total reflection) andfc =100MHz, 1GHz and 10GHz. We see that the received

power fluctuates greatly as a function of the mobile position, especially as we approach the rightmost

building where it exhibits an almost random behaviour. This behaviour is especially pronounced at higher

carrier frequencies. This is due to the increasing complexity of the interference pattern as the powers of

all paths start to become similar. For real mobile radio channels in urban environments where there are

many paths this randomness is even more evident. In Figure 2.6 we show the frequency response in a

1MHz bandwidth starting at1GHz. Here the fading effect in the frequency domain is evident and leads
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Figure 2.5: Received to transmitted power ratio as a function of mobile position

us to the notion of acoherence bandwidth, which indicates the signal bandwidth where the channel is

practically flat or non time–dispersive. This allows the system designer to quantify the border between

narrow and wideband signals. If we defineflat as a 3dB bandwidth, then coherence bandwidth is on the

order of 200 kHz for this example.

2.3.2 The Gaussian Fading Model

The statistical description of multipath propagation was given by Clarke [Cla68] and further refinements

were done by Jakes [Jak74]. We summarize these results for bothstaticanddynamicmultipath channels.

A static channel is one where the mobile station is stationary or virtually stationary and we are interested

in a statistical description of the received power which does not change in time. A dynamic channel is

one where the mobile station is moving with a specified velocity.

In the following chapters we will mainly be concerned withblockstatic multipath channels. This

is an approximation of a dynamic channel which changes very slowly so that it may be considered as

static over blocks or intervals of time.
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Static multipath channels

Assume we transmit a quadrature signal with complex envelope~s(t) = sc(t)+ jss(t) by modulating the

in–phase and quadrature carriers at frequencyfc. The signal fed to the transmitting antenna is given by

u(t) = sc(t) cos 2�fct� ss(t) sin 2�fct: (2.13)

Considering only the electric field components of the electromagnetic wave at the receiving antenna, we

write the received signal vector for a stationary receiver as

r(t) =

0
@rv(t)
rh(t)

1
A = kRe

(
NX
i=0

G(�i)Aie
j2�fct~s(t � di)

)
(2.14)

wherek is a proportionality factor depending on the antenna characteristic. The angle�i represents the

two angles of arrival (i.e. azimuthal and elevation) of theith wave component at the receiver,Ai is a

column vector holding its horizontal and vertical complex amplitudes anddi its propagation delay. The

2� 2 diagonal matrixG(�i) holds the horizontal and vertical field gains for the given angles of arrival.

If the antenna is polarized in either of the vertical or horizontal direction, one of the diagonal elements is

zero. The path index 0 corresponds to the LOS path, so that in the case where it is not presentA0 = 0.

The complex envelope ofr(t) is given by

~r(t) = k

NX
i=1

G(�i)Ai~s(t � di) (2.15)
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and its corresponding Fourier transform

~R(f) = k ~S(f)
NX
i=1

G(�i)Aie
j2�fdi (2.16)

From this point onward we assume the antenna is omnidirectional and polarized in the vertical direction

so thatG(�) =

0
@1 0

0 0

1
A. For convenience we assume that thedi are in increasing order. Dropping

vector notation we may write~R(f) = k ~S(f)H(f) whereH(f) is a random frequency response (or

filter) given by

H(f) =
NX
i=0

Aie
j2�fdi (2.17)

with covariance between frequency samplesf1 andf2

�(f1; f2) = �(f1 � f2) = EH(f1)H
�(f2) =

NX
i=1

EjAij2ej2�(f1�f2)di (2.18)

In writing this covariance functions, we have assumed that the path gains are independent zero–mean

random variables which is usually known as theuncorrelated scattering assumption. This is justifiable

since they are results of reflections off of rough surfaces [Lee82] whose electromagnetic properties have

a certain degree of uncertainty. Provided that the number of paths is large, which is almost always the

case and that a significant number of these contribute to the total received power, it is permissible to

invoke the central limit theorem [Pap82] and approximateH(f) as a Gaussian random variable for each

f . We must stress, however, that the processH(f) is not a Gaussian process. This follows from the

fact that the Fourier transform is a linear operator and the process defined by the path strengths is not

necessarily Gaussian. This approximation is very strongly corroborated by measurement [Jak74], and as

a result is usually termedRayleigh fadingwhen no LOS path exists since the envelope of a zero–mean

complex Gaussian random variable is Rayleigh distributed as

fRayleighjHj (a) =
2a

�2H
exp

�
� a2

�2H

�
; a � 0 (2.19)

where�2H =
PN

i=1EjAij2 is the total power of the random component of the received wavefront. In

the case of a strong LOS path it is calledRicean fadingsince the mean of eachH(f) is A0 so that the

envelope has a Ricean distribution given by

fRicejH j (a) =
2a

�2H
exp

�
�a

2 + jA0j2
�2H

�
I0

�
2ajA0j
�2H

�
; a � 0 (2.20)
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whereI0(�) is the zero–order modified Bessel function of the first kind. The ratioK = jA0j2=�2H is

commonly referred to as the Ricean factor. The density and distribution functions of the energy at a

given frequencyjH(f)j2 are usually more useful for calculation purposes and are given by

fRayleigh
jHj2 (a) =

1

�2H
exp

�
� a

�2H

�
; a � 0 (2.21)

FRayleigh
jHj2 (a) = 1� exp

�
� a

�2H

�
; a � 0 (2.22)

fRicejHj2 (a) =
K

jA0j2e
�K(a+jA0 j2)=jA0j2I0

�p
a
K

jA0j
�
; a � 0 (2.23)

FRice
jH j2 (a) = 1�Q1

 p
2K;

s
2aK

jA0j2
!
; a � 0 (2.24)

whereQ1(�; �) is the first order Marcum Q–function. Efficient numerical methods for calculating it are

given in [Shn89]. In figure 2.7 we show the density functions of the received energy at a particular

frequency as a function ofK assuming the average received power is unity (i.e.�2H + jA0j2 = 1). We
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Figure 2.7: Ricean probability density for increasingK and normalized received energy

see that asK increases the channel becomes more and more deterministic.K is typically zero in urban

environments but may rise to 6 dB in an indoor setting [Bul87]. If the transmitted signals(t) lies in a

band[fc �W=2; fc + W=2] andW is such that�(u) is almost constant for�W=2 � u � W=2 (i.e.
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W (dN � d0)� 1) then

~r(t) � H(fc)~s(t � d0) (2.25)

This is a narrowband or single–path channel model.

There are other statistical models for fading which combine the shadowing and multipath phenom-

ena. A popular one is theNakagami distribution[Nak60]. The latter model is simply the square–root of

Gamma distributed random variable.

Dynamic multipath channels

Let us now assume that the mobile station is moving with velocityv in the horizontal plane as shown in

figure 2.8. This introduces a Doppler shift at each frequencyf given by

�fDi (f; t) =
vf

c
cos(�i(t)) (2.26)

where�i(t) is the time–varying angle between theith incoming path (assumed to be traveling horizon-

tally) and direction of motion of the mobile station. This 2–dimensional model is due to Clarke[Cla68]

v

�N (t)

�2(t)
�1(t)

PathN

Path1

Path2

Figure 2.8: Two–dimensional Doppler model

and Jakes [Jak74]. An extension in 3–dimensions for which the significant conclusions regarding sys-

tem design remain unchanged is considered by Aulin [Aul79]. If we consider modulating signals with

bandwidths significantly less than the carrier frequency, which is always the case in mobile radio com-

munications, then all frequencies are affected by virtually the same Doppler shift at any instant in time.
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This allows us to write the complex envelope of the received signal as

~r(t) = k

NX
i=0

A(�i(t))e
j2��fDi (fc;t)t~s(t � di(t)) (2.27)

In most cases where processing of~r(t) is done in a short timespandi(t) � di so that the time–varying

nature of the delays may be ignored. This is further justified by the fact that the amplitudes change much

more quickly than do the delays. This assumes, of course, that the mobile speed is not very large, and

therefore may not apply to some aeronautical or satellite channels. For simplicity let us focus on the

narrowband signal case so that

~r(t) � k

(
NX
i=0

A(�i(t))e
j2�fDi (fc;t)t

)
s(t� d0) (2.28)

As before, providedN is large enough and significant number ofA(�i(t)) contribute to the sum, the

samples of the process�(t) =
PN

i=0A(�i(t))e
jfDi (fc;t)t are approximately Gaussian. If the paths are

results of far–off reflections, the Doppler shift for each path changes very slowly (i.e.�i(t) changes

slowly) so that, at least on intervals of a certain length, we may justifiably approximate the process�(t)

as a stationary Gaussian process with correlation function

R�(t; �) = E�(t)��(t+ �) =
NX
i=0

EjA(�i)j2Eej2�fD cos �i � ; (2.29)

where�fD = vfc=c is the maximum Doppler shift. In the classic model by Clarke and Jakes it is

assumed that the angles of arrival are uniformly distributed on[0; 2�) so that

Eej2�fd cos �i � =
1

2�

Z 2�

0
ej2�fd cos �i �d�i = J0 (2�fD�) ; (2.30)

whereJ0(_) is the zero–order Bessel function. In the frequency domain the power spectrum of the fading

process is

S�(f) =

8><
>:

�2
H

2�

q
1

f2�f2
D

jf j < fD ;

0 elsewhere:

(2.31)

This is commonly referred to as theland–mobile power spectrumand is strongly corroborated by mea-

surement [Jak74] in urban environments. It is shown in figure 2.9 where its characteristic peaks at the

maximum Doppler shiftfD are evident. In rural or hilly urban areas the distribution of the angles of

arrival may not be uniform and as a result the power spectrum will be quite different. The actual form

of the Doppler spectrum is not that critical. It is rather its bandwidth which determines the extent of the
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Figure 2.9: Land–mobile power spectrum

time–variation of the fading process. We will see in the following chapter that for performance analysis

of such channels, the bandwidth of the fading process determines the number of degrees of freedom

necessary to describe it statistically.

2.4 Wideband channel models

Up until this point we have not said anything about how different environments are characterized with

respect to the distribution of the multipath energy. In a general sense, we may define the multipath

intensity profile (MIP) as

�(�) =
NX
i=0

EjAi(t)j2�(� � di): (2.32)

This describes the extent of the spread of multipath energy for a given environment. An important

parameter is thedelay–spreadwhich is simplydN � d0. In order to predict the effect of multipath and

to design systems to work well a target environment, there have been scores of models proposed for
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Figure 2.10: Clustering Effect of Multipath Channels

the MIP. These models attempt not to perfectly described a given multipath environment, since this is an

impossible task, but rather to capture the key features from a series of measurements in the desired system

setting (i.e. frequency band and physical environment). At the same time as being representative of a

typical channel, they should be mathematically suitable for performing an analytical/simulation system

performance analysis. Without going into too much detail of the different models, we briefly describe a

few here.

2.4.1 Poisson arrival models

Turin [TCJ+72] considered the static multipath channel for an urban environment and modeled the se-

quence of delaysfdig as a Poisson point process. The simplest approach is to consider a homogeneous

process so that delay differences�di = di�di�1 are i.i.d. exponential random variables. This, however,

does not capture the clustering effect which is typical of real channels. We show this in figure 2.10. Each

cluster corresponds to a series of scatterers closely located to each other. A simple non–homogeneous

process was proposed to model this effect. This technique was later extended by Suzuki[Suz77] and

Hashemi [Has79].
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2.4.2 COST 207 models

In order to analyze the GSM cellular telephone system, a series of propagation studies were performed

as part of the COST 207 project. These studies yielded a series of models for outdoor channels, denoted

by TU(typical urban), RU(rural area) and HT(hilly terrain), which we show in Table 2.2. These are tap

delay line models with regularly spaced taps which have the drawback that they are applicable only for a

limited signaling bandwidth. We will see in the remainder of this thesis that the performance of a system

depends on the degree of randomness of the channel which is closely related to the signaling bandwidth.

For wideband analysis, such as for spread spectrum or slow frequency hopping systems these models are

not necessarily applicable.

Each path has an associated Doppler which is not indicated in this table. For our purposes we will

only use the static fading characteristics of these channels. Paths from local scatterers have been found

to be accurately modeled by the classic land–mobile model given in 2.30. For those caused by distant

scatterers in the BU and HT channels the Doppler spectrum have a particular two–lobe Gaussian Doppler

spread under the assumption of two significant scatterers. We only include the MIP statistics since we

will only use them for frequency–domain computations.

2.4.3 Indoor Models

Saleh and Valenzuela [SV87] consider a ncatenation of two Poisson point processes for describing the

indoor propagation channel. One process defines the positions of clusters of paths and the second the

positions of the paths within clusters. The modified Poisson process models described in section 2.4.1

were extended for typical indoor channels by Ganesh and Pahlavan in [GP89].
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Rural Area (RU6) Hilly Terrain (HT6) Typical Urban (TU6)

di(�s) jAij2 (dB) di(�s) jAij2 (dB) di(�s) jAij2 (dB)

0 0 0 0 0 -3

.1 -4 .1 -1.5 .2 0

.2 -8 .3 -4.5 .5 -2

.3 -12 .5 -7.5 1.6 -6

.4 -16 15 -8 2.3 -8

.5 -20 17.2 -17.7 5.0 -10

Typical Urban (TU12) Hilly Terrain (HT12)

di(�s) jAij2 (dB) di(�s) jAij2 (dB)

0 -4 0 -10.01

.1 -3.01 .1 -8.01

.3 0 .3 -6

.5 -2.6 .5 -4.01

.8 -3 .7 .01

1.1 -5 1 0

1.3 -7 1.3 -4

1.7 -5 15 -8

2.3 -6.5 15.2 -9

3.1 -8.6 15.7 -10

3.2 -11 17.2 -12

5.0 -10 20 -14

Table 2.2: ETSI-COST 207 Channel Models



Chapter 3

Signaling over Fading Channels

Signal fading is arguably the most difficult phenomenon that radio communication system designers have

to cope with. As we saw in Chapter 2, the average received signal strength can drop tens of decibels due

to the destructive interference of delayed reflections of the transmitted signal [Jak74]. This is especially

the case in non line–of–sight communications. Moreover, for slowly moving mobile transceivers, such

“deep fades” result in unacceptably long periods of time where reliable communication is impossible.

In wide-band systems the receivers are sensitive enough to distinguish (or resolve) different faded

replica of the transmitted signal, orpaths, which can be used jointly to improve performance. In spread–

spectrum based systems, such as IS–95 [IS992], where the signal bandwidth is much larger than the

symbol rate, some paths can be combined by what is commonly referred to as a RAKE receiver [Pro95]

to improve performance. Medium–band systems are subject tointersymbol interference(ISI) due to

time dispersion so that the use of an equalizer also benefits from frequency–diversity. This is actually a

situation where ISI is desirable.

In order to operate efficiently in such a hazardous environment, the system designer often opts to

use so-calleddiversitymethods. Simply put, the diversity is the number of independent replica of the

transmitted signal that are made available to the receiver. In the absence of multiple antennas, this calls

for the exploitation of either the frequency or the time-variation properties of the fading signal or both.

The former can be calledfrequency diversity, and makes use of the amplitude of the transfer function

of the channel in different parts of the spectrum. Frequency–diversity schemes are quite popular in

multiuser systems due to the large amount of bandwidth that is available, and can be achieved in different

ways.

Another way of exploiting frequency–diversity is to use coded narrow or medium–band signals
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with slow frequency–hopping. This technique is used in the GSM system and its derivatives DCS 1800

and PCS 1900 [GSM90]. Here, the information is coded and interleaved overF = 4 (half–rate) or

F = 8 (full–rate) blocks of lengthN = 208 orN = 378 symbols, and each block modulates a different

carrier (ideally) according to some predefined hopping pattern. This is achieved by altering the FDMA

allocation of users every block. It has the effect of ensuring that after deinterleaving anyF adjacent

received symbols modulated a different carrier. If the carriers are sufficiently separated, the resulting

received symbols have uncorrelated strengths. It is well known that error–control coding can yield a

significant diversity effect in such cases [Pro95].

Time diversity can also be exploited to some extent using interleaving even without frequency–

hopping. Assuming that the receiver/transmitter is in motion, interleaving spreads the information across

different channel strengths whose correlation depends on the mobile speed and interleaving delay. For

example, the IS54 system [IS592] encodes the information and interleaves it overF = 2 blocks of length

N = 178 separated by 20ms. For low mobile speeds this can result in highly correlated symbols after

deinterleaving. For this reason, systems exploiting frequency diversity are more desirable when reliable

performance is desired at low mobile speeds.

In this chapter we will consider the different ways signaling is performed over the various types

of fading channels. There is nothing really new, but much of the material is presented in a way that is

not found in most classic textbooks on digital communications. More precisely we look at the different

diversity methods and show that performance criteria are computed in essentially the same way in each

case. Once the signal has been characterized statistically, the computation of performance criteria is

a question of performing aneigenvalue analysisof a kernel or quadratic form representing the energy

of the received signal in some observation interval/bandwidth. The number of significant eigenvalues

or degrees of freedomof the channel process in a given frequency band or time interval will play an

important role.

We end with a generic model which is useful for describing many systems which operate with a

small number of degrees of freedom or eigenvalues, which we call theblock–fading model. In practice,

this model is applicable to systems where processing is performed over a few different channel realiza-

tions which can result for instance from afrequency–hoppingmechanism. Chapters 4 and 5 will treat the

fundamental aspects of this model in more detail.
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3.1 Performance Measures

Imagine a communication system where signal blocks or messages of durationT seconds are used to

convey information from the sender to the receiver. We assume that a finite number,M , of message

waveforms exist, which we denote by the setfxm(t); m = 0; � � � ;M � 1g. The amount of information

per message islog2M bits so that the bit rate is

R =
1

T
log2M bits=s (3.1)

For simplicity, we will assume that the receiver requires the entire message in order to make a decision

about which message was sent, so that the processing or decoding delay isT seconds. In many systems,

there is a limit to the tolerable decoding delay. A long decoding delay for voice telephony results in

an unacceptable audible delay. Some data transmission protocols also have stringent decoding delay

constraints due to some quality of service requirement or limited buffer size.

The message orcodeword error–rateis a critical measure of the robustness of a coding scheme

in noise. Under the assumption that messages are transmitted with equal probability it can be bounded

from above using the union bound [Pro95]

Pe =
1

M

M�1X
m=0

M�1X
n=0

Prob(m! n) (3.2)

whereProb(m! n) is the called thepairwise error probability (PEP)between messagesm andn and

indicates the probability of decodingn given thatm is transmitted if they were the only two possible

messages.

The analysis of the PEP for systems working in a fading environment is usually based on charac-

terizing the statistics of the total received energy in the interval[�T=2; T=2]. It is therefore not surprising

that most formulations yield very similar forms for the PEP. The goal of this chapter is to describe differ-

ent narrow and wide-band systems which we will refer to in the remainder of this thesis by defining the

basic receiver structures and their performance measures. We begin by defining the notion ofdiversity

using a simple two–channel receiver which can be seen as a dual–antenna receiver.

Throughout this chapter we express all transmitted and received messages as complex baseband

signals representing the complex envelope of real signals centered at a certain carrier frequency.
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3.2 Diversity Reception

Let us consider transmission of a binary message overtwostatic independent single–path Rayleigh fad-

ing channels. Physically, this could represent a dual–antenna receiver where one antenna is vertically

polarized the other is horizontally polarized and the receiver can process both polarizations. Here the

receiver has access to two faded versions of the same signal which is known asdiversity reception. The

received signals can be written as

y(t) =

0
@y0(t)
y1(t)

1
A =

0
@�0
�1

1
Ax(t) +

0
@z0(t)
z1(t)

1
A ; �T=2 � t � T=2 (3.3)

where�i are the two independent zero–mean complex circular symmetric Gaussian random variables,

x(t) is a binary message taking on valuesx0(t) andx1(t) with equal probability andzi(t) is additive

white complex circular symmetric Gaussian noise with two–sided power spectral densityN0. Let us

assume that the receiver is capable of perfectly estimating the�i. Furthermore we takeEj�ij2 = 1 so

that any average attenuation factor is included in the transmitted signal energyE which now becomes the

average received signal energy. In this case, the optimal receiver, in the sense of minimum probability of

error, is themaximum–likelihoodreceiver [VT68]

m̂ = argmin
m=0;1

Z T=2

�T=2
jy(t)� �xm(t)j2dt

= argmax
m=0;1

Z T=2

�T=2
RefyMR(t)x

�
m(t)g �

1

2

p
j�0j2 + j�1j2jxm(t)j2 (3.4)

where

yMR(t) =
1p

j�0j2 + j�1j2
(��0y0(t) + ��1y1(t)) (3.5)

is thecombinedreceived signal. The receiver in (3.4) is depicted in figure 3.1 and is known as amaximal

ratio combiner. It has been given this name since the front end of the receiver combines the two diversity

branches in such a way as to assure that the resulting signal takes most of its energy from the stronger

branch. The rest of the circuit works as a regular maximum–likelihood receiver with fading strength

equal to�c =
pj�0j2 + j�1j2.

Another sub–optimal receiver structure known asselection combininguses a front end with com-

bined signal

ySD(t) = yi(t); i = argmax
j=0;1

j�j j (3.6)
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so that the combined signal strength is�c = maxfj�0j; j�1jg. The rest of the receiver is maximum–

likelihood as with maximal–ratio combining. We will meet this structure again in Chapter 7 when we

consider multiuser communications.

-

-

Re

Re

CHOOSE

MAX:5
pj�0j2 + �1j2jx0(t)j2

:5
pj�0j2 + �1j2jx1(t)j2

��0p
j�0j

2+j�1j
2

��1p
j�0j

2+j�1j
2

R T=2
�T=2

R T=2
�T=2

x�0(t)

x�1(t)

Figure 3.1: Maximal–ratio combining

Let us assume an antipodal system sox0(t) = �x1(t) with
R T=2
�T=2 jxi(t)j2dt = E . The PEP

conditioned on the fading level for maximum–likelihood reception is given by [VT68]

Pej�c(0! 1) = Q

 r
2j�cj2 E

N0

!
(3.7)

whereQ(�) is the area under the tail of a normalized Gaussian distribution given by

Q(x) =

r
1

2�

Z 1

x
e�u

2=2du (3.8)

In order to calculate the average PEP we must average (3.7) over the density ofj�cj2. Let us first consider

the selection combining case. The distribution function of the maximum of two unit-mean exponential

random variables is given by

FSD
j�cj2

(u) = (1� e�u)2; u � 0 (3.9)

so that its density is

fSDj�cj2(u) = 2e�u � 2e�2u; u � 0 (3.10)

The effect of diversity is clear since the density of the average received power is small around the origin,

so that a lowsignal–to–noise ratio (SNR), �cE=N0 is unlikely. Using the fact that

Z 1

0
aQ(

p
u)e�audu = :5

 
1�

r
1

1 + 2a

!
(3.11)
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we have that the average PEP for selection combining is given by

PSD
e (0! 1) = E

"
Q

 r
2j�cj2 E

N0

!#
= :5

 
1� 2

s
E=N0

1 + E=N0
+

s
E=N0

2 + E=N0

!
(3.12)

Turning to the case of maximal–ratio combining we see thatj�cj is the sum of two unit–mean exponential

random variables so it has a central Chi-square distribution with 4 degrees of freedom. Thus,j�cj2 has

density

fMR
j�cj2

(u) = ue�u; u � 0: (3.13)

It is shown in [Pro95, Chap 14] that

PMR
e (0! 1) = :25

 
1�

s
E=N0

1 + E=N0

!2 
1 + :5

 
1 +

s
E=N0

1 + E=N0

!!
(3.14)

We plot the PEP for both cases as a function of the signal–to–noise ratioE=N0 in Figure 3.2. We also

show the PEP if we use only one of the branches. In this case we have thatfj�cj2(u) = e�u; u � 0 and

Pe(0! 1) = :5

 
1�

s
E=N0

1 + E=N0

!
(3.15)

We see that by having two replicas of the transmitted signal, which are subject to independent channel

realizations, we can significantly reduce the error–rate performance. In what follows we will see similar

effects which are due to coding the information signal in such a way to take advantage of the time and/or

frequency–selective nature of fading channels, without the need for multiple antennas. The number of

diversity branches will become the number of degrees of freedom (either in time or in frequency or both)

needed to characterize the fading process.

3.3 Narrow-band Information Signals over Doppler–Spread Channels

A narrow-band system, as shown in chapter 1, can often be described by the single–path time–varying

fading channel as

y(t) = �(t)x(m)(t) + z(t); jtj < T=2 (3.16)

where�(t) is a circular symmetric zero–mean complex Gaussian process over the vector space of square–

integrable functions over[�T=2; T=2), L2(�T=2; T=2), with autocorrelation functionK�(t; u). This

corresponds to Rayleigh fading which has no LOS path and holds if the bandwidth ofx(t) is much
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Figure 3.2: Diversity reception performance

less than the coherence bandwidth of the channel. We have assumed in (3.16) that themth codeword

is transmitted. For channels of practical interest we may express�(t) in terms of its Karhunen–Lo`eve

expansion [DR58] as

�(t) =
1X
i=1

�i�i(t); (3.17)

wheref�i(t)g is a complete orthonormal basis forL2(�T=2; T=2). The coefficients�i are uncorrelated

zero–mean Gaussian variables with varianceEj�ij2 = �
(�)
i . The functionsf�i(t)g and the non–negative

numbersf�(�)i g are the eigenvectors and their corresponding eigenvalues, respectively, of the linear

mapping with kernelK�(t; u), so that they satisfy

�
(�)
i �i(t) =

Z T=2

�T=2
K�(t; u)�i(u)du: (3.18)

This integral equation can be solved numerically for practical choices ofK�(t; u). We show the eigenval-

ues for theland–mobilemodel with omni–directional antennas which hasK�(t; u) given byJ0(2�(t�
u)) in Figure 3.3. For this example, we see that the kernel is effectively degenerate since it has around

D = d2fDT + 1e significant eigenvalues. This is not surprising since�(t) is a process bandlimited to

[�fD; fD]. The number of significant eigenvalues is definitely the most crucial parameter since it is the

number of degrees of freedom necessary to characterize this process during[�T=2; T=2]. We will see
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Figure 3.3: Eigenvalue spread for differentfDT

that this turns out to be equivalent, from the point of view of performance, to the number of diversity

branches in a multiple antenna system. We consider the types of optimal receivers in Section 3.3.1 and

their performance in Sections 3.3.2 and 3.3.3. Starting with the uncoded binary message case, we move

on to coded systems with a discretized approximation for the fading process.

3.3.1 Optimal Receivers

We consider two possible receiver scenarios, one where the fading process is known perfectly to the

receiver, and one where only its statistics are known. We will refer to the first case as acoherentreceiver

and to the second as anon–coherentreceiver. We use the term non–coherent in a very general sense.

Traditionally, it is reserved for detection without an absolute phase reference, whereas here we include

the unknown signal amplitude as well. If the signal changes very quickly, it is often impossible to perform

coherent detection. Nevertheless, it is still reasonable to consider a performance analysis in this case for

comparison purposes.
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Coherent Receivers

The optimal receiver assuming equally likely messages is the maximum–likelihood receiver we saw in

(3.4) generalized forM–ary signals

m̂ = argmin
m=0;��� ;M�1

Z T=2

�T=2
jy(t)� �(t)x(m)(t)j2dt

m̂ = argmax
m=0;��� ;M�1

Z T=2

�T=2
Re
n
y(t)��(t)x�(m)(t)

o
dt� 1

2

Z T=2

�T=2
j�(t)x(m)(t)j2dt

(3.19)

In the first case, the receiver simply chooses the weighted signal,�(t)x(m)(t)which is closest in terms of

Euclidean distance, whereas in the second case it chooses the message most correlated with the received

signal biased by the energy of the message. Its performance analysis is left to Section 3.3.2.

Non–Coherent Receivers

The non–coherent detection problem is much more delicate, since it is a Gaussian signal detection prob-

lem. The difference between the two problems, in a few words, is that the information in the non–

coherent case is hidden in the correlation function of the received signal and not the mean. We define

the attenuated information signals(m)(t) = �(t)x(m)(t), which is conditionally Gaussian given the hy-

pothesis that themth waveform is transmitted. The conditional mean is zero (Rayleigh Fading) and the

conditional correlation function is

K(m)(t; u) = K�(t; u)x
(m)(t)x(m)(u) (3.20)

We now perform a Karhunen–Lo`eve expansion oneachs(m)(t) as

s(m)(t) =
1X
i=1

s
(m)
i �

(m)
i (t) (3.21)

wherefs(m)
i ; i = 1; � � � ;1g are independent zero–mean circularly symmetric Gaussian random vari-

ables with variancesf�(m)
i ; i = 1; � � � ;1g which satisfy

�
(m)
i �

(m)
i (t) =

Z T=2

�T=2
K(m)(t; u)�

(m)
i (u)du (3.22)

If we project the received signal on the firstK of these basis functions we have

y
(m)
K (t) =

KX
i=1

y
(m)
i �

(m)
i (t) (3.23)
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and

y(t) = l: i:m:
K!1

y
(m)
K (t) (3.24)

The coordinates of themth representation are related by

y
(m)
i = s

(m)
i + z

(m)
i (3.25)

wherez(m)
i are i.i.d. complex Gaussian circularly symmetric random variables with varianceN0 and

Ey
(m)
i y

(m)�
j = (�

(m)
i +N0)�ij so that theK–dimensional density function fory conditioned on themth

input signal is

fY(m)(y(m)) =

 
KY
i=1

1

�(�
(m)
i +N0)1=2

!
exp

 
�1

2

KX
i=1

jy(m)
i j2

�
(m)
i +N0

!
(3.26)

The optimal detection rule under the assumptionof equally–likely transmitted signals and theK–dimensional

approximation is

m̂K = argmax
m=0;��� ;M�1

fY(m)(y(m)) (3.27)

= argmax
m=0;��� ;M�1

log fY(m)(y(m))

= argmax
m=0;��� ;M�1

KX
i=1

jy(m)
i j2

�
(m)
i +N0

+
KX
i=1

log

 
1 +

�
(m)
i

N0

!

LettingK !1 yields

m̂ = argmax
m=0;��� ;M�1

1X
i=1

jy(m)
i j2

�
(m)
i +N0

+
1X
i=1

log

 
1 +

�
(m)
i

N0

!
(3.28)

We would now like to express this in terms of the received signal and some filtering operation. The

inverse kernel of the received signal correlation function under themth hypothesis is

Q(m)
y (t; u) =

1X
i=1

1

�
(m)
i +N0

�
(m)
i (t)�

�(m)
i (u) (3.29)

and is also the solution to the integral equation [VT68]Z T=2

�T=2
Q(m)
y (t; z)K(m)

y (z; u)dz = �(t� u) (3.30)

After expressing the coordinatesfy(m)
i g as integrals, we obtain the decision rule

m̂ = argmin
m=0;��� ;M�1

Z T=2

�T=2

Z T=2

�T=2
y(t)Q(m)

y (t; u)y�(u)dtdu+
1X
i=1

log

 
1 +

�
(m)
i

N0

!
(3.31)
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The rightmost term in (3.31) is the bias term for each decision statistic and is directly related to the

energy of each input signal. Using the fact thatlog(1 + x) � x it is upper bounded byEm=N0 where

Em =
P1

i=1 �
(m)
i is the energy of themth weighted waveform.

The decision rule in (3.31) has a very interesting interpretation in terms of the theory of optimum

linear filtering. After some manipulation [VT72], the decision rule may be cast into a form known as an

estimator–correlatorreceiver. The decision rule now takes on the following form

m̂ = argmax
m=0;��� ;M�1

Z T=2

�T=2
2Re

n
y(t)ŝ(m)(t)

o
� jŝ(m)(t)j2dt�

1X
i=1

log

 
1 +

�
(m)
i

N0

!
(3.32)

= argmin
m=0;��� ;M�1

Z T=2

�T=2
jy(t)� ŝ(m)(t)j2dt+

1X
i=1

log

 
1 +

�
(m)
i

N0

!

whereŝ(m)(t) is optimal realizable point estimator for the attenuated message signals(m)(t) given by

ŝ(m)(t) =

Z t

�T=2
h(m)(t; u)y(u)du (3.33)

The estimate for the instantt is based on the received signal in the interval[�T=2; t] and the symmetric

time–varying estimation filterh(m)(t; u) is the solution to the integral equation

N0h
(m)(t; u) +

Z t

�T=2
h(m)(t; z)K(m)

s (z; u)dz = K(m)
s (t; u); �T=2 � u � t (3.34)

Another by–product of this realization is that the bias term is the estimation error of the filter

1X
i=1

log

 
1 +

�
(m)
i

N0

!
=

1

N0

Z T=2

�T=2
h(m)(t; t)dt (3.35)

which we will meet again when we consider average mutual information in the next chapter. This is also

known as aFredholm determinant.

The practical interpretation of this analysis is that we perform the same operation as in the coherent

case, namely minimum distance or maximum correlation reception using the optimal linear estimate of

the information processs(m)(t). The bias is different, however, and takes into account both the energy

and associated mean–squared estimation error of each signal.

3.3.2 Pairwise Error Probability - Binary Signals

Here we perform performance analyses for the special case of binary message signals. We start with

coherent case and then continue with one example of a non–coherent system. Suppose that there are two

possible information signals,x(0)(t) andx(1)(t). We denote the conditional PEP by

Pej�(t)(0! 1) = Prob(decide on x(1)(t)jx(0)(t) transmitted; �(t)): (3.36)
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Using the decision rule in (3.19) the conditional PEP is given by [VT68]

Pej�(t)(0! 1) = Q

0
B@
vuutR T=2�T=2

j�(t)(x(0)(t)� x(1)(t))j2
2N0

dt

1
CA (3.37)

where
R T=2
�T=2

j�(t)(x(0)(t)�x(1)(t))j2dt is the Euclidean distance between the two weighted information

signals.

Let us now consider a few examples. We start with antipodal signals, namelyx(0)(t) = �x(1)(t) =
p(t) wherep(t) is chosen such that

R T=2
�T=2 jp(t)j2 = E and for simplicity we choose a square pulse shape

p(t) =
pE=T; t 2 [�T=2; T=2]. We have, therefore, that the conditional PEP is given by

Pej�(t)(0! 1) = Q

 s
2E
N0

1

T

Z T=2

�T=2
j�(t)j2dt

!
(3.38)

Another example, which we will use later for comparison with the non–coherent case ison–off

keying (OOK)wherex(0)(t) = p(t) andx(1)(t) = 0. Again we choose a square pulse, but this time with

twice as much energyp(t) =
q

2E
T ; t 2 [�T=2; T=2] so that the average energy is stillE . Here we have

Pej�(t)(0! 1) = Q

 s
E
N0

1

T

Z T=2

�T=2
j�(t)j2dt

!
(3.39)

A final example is another orthogonal scheme using binaryWalsh–Hadamard pulseswherex(0)(t) =

p(t) andx(1)(t) = sgn(t)p(t) andp(t) is as with antipodal. In this case, the conditional PEP is given by

Pej�(t)(0! 1) = Q

0
@
s

2E
N0

1

T

Z T=2

0
j�(t)j2dt

1
A (3.40)

In the three cases, we see that the conditional PEP is a function of the received power of the fading

process over some time interval. This quantity is a random variable which we denote by

PR(T ) =
1

T

Z T=2

�T=2
j�(t)j2dt (3.41)

In the third example, we must remember to cut the time interval in half. In order to compute the average

PEP we need the distributionofPR(T )which is found easily using the KL expansion for�(t). Replacing

thef�ig by their corresponding integrals we have that

PR(T ) =
1

T

1X
i=1

j�ij2 (3.42)
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which is a sum of independent exponentially distributed random variables with means�i = �i=T . It

follows that the moment–generating function forPR(T ) is given by

GP (s) =
1Y
i=1

1

1� s�i
(3.43)

In most cases the�i are distinct so that we may perform a simple partial fraction expansion onGP (s) as

GP (s) =
1X
i=1

Ai

1� s�i
(3.44)

whereAi = (1� s�i)GP (s)js=1=�i =
Q

j 6=i
�i

�i��j
. By straightforward Laplace inversion we obtain the

density function forPR(t)

fPR(p) =
1X
i=1

Ai

�i
exp

�
� p

�i

�
U(p) (3.45)

whereU(p) is the unit–step function. It follows that the average PEP for antipodal signals is given by

Pe(0! 1) =
1X
i=1

Ai

Z 1

0
Q

 r
2E
N0

PR(T )

!
exp

�
� p

�i

�
dp (3.46)

=
1X
i=1

Ai

2

 
1�

s
2E�i=N0

1 + 2E�i=N0

!

The others are calculated in an identical fashion.

We now consider a bound on the average PEP. Using the Chernov bound on theQ(�) function

Q(x) � 1

2
e�x

2=2 (3.47)

we may upper–bound the PEP usingGP (s) as

Pe(0! 1) = E Q

 r
2E
N0

PR(T )

!

� 1

2
E exp

�
� E
N0

PR(T )

�

=
1

2
GP

�
� E
N0

�

=
1

2

1Y
i=1

1

1 + E
N0
�i

(3.48)

� 1

2

�
N0

E�
�D

(3.49)

whereD =
����i : �i � N0

E

	�� and

� =

 
DY
i=1

�i

! 1
D

(3.50)
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The final approximation is valid only if a the total energy of the process is concentrated in a small number

of eigenvalues. The parameterD is the number of significant eigenvalues with respect to the SNR and

� is their geometric mean. The upper bound has the characteristics of aBode plotwhereD is the slope

of the PEP vs. SNR curve on a log–log scale and is traditionally referred to as thediversity orderof the

system.

In Figure 3.4 we show the true PEP for antipodal signals forfDT = 0; :1 and 1 along with

the upper–bound in (3.48). We also show the straight-line approximations from (3.49) which show the

similarity to a Bode plot. In Figure 3.5 we compare the PEP for the three examples. The performance
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Figure 3.4: PEP and its upper–bound for antipodal signals

penalty in using a pulse shape where the energy of the difference signal is not equally distributed in

[�T=2; T=2] is evident, since the Walsh–Hadamard pulse performs much worse than the other two.

This is due to the energy has a smaller number of significant eigenvalues which is seen in the curve for

fDT = 3 which has a smaller slope (i.e. less diversity). This is the first example of the importance of



3.3 Narrow-band Information Signals over Doppler–Spread Channels 39

the diversity order on the performance.

Performance of Non–Coherent Detection

Turning to the non–coherent case we assume from the outset that the number of eigenvalues is limited

to D, in order to simplify the analysis. For antipodal modulationPe(0 ! 1) = :5 sinceK(0)
y (t; u) =

K
(1)
y (t; u), which is typical for non–coherent problems. We should note that the optimal estimator cannot

distinguish between signals which are identical except for a phase shift (i.e.x(0)(t) = ej�x(1)(t)) since

the received process has the same conditional correlation function. In general, a performance analysis
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Figure 3.5: PEP for antipodal, Hadamard and OOK modulation
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of Gaussian signal detection problems is difficult. The OOK example, however, is tractable with the

degenerate kernel approximation. Here,K
(0)
y (t; u) = 2E

T K�(t; u) + N0�(t � u) andK(1)
y (t; u) =

N0�(t� u) so that

Pe(0! 1) = Prob

 
DX
i=1

jy(0)i j2
�
(0)
i +N0

+
DX
i=1

log

 
1 +

�
(0)
i

N0

!
�

DX
i=1

jy(1)i j2
N0

(3.51)

jx(0)(t) transmitted
�

In this case we may take�(0)i (t) = �
(1)
i (t) so thaty(0)i = y

(1)
i which allows us to simply the decision

rule as

Pe(0! 1) = Prob

 
DX
i=1

�
(0)
i

N0
j�ij2 �

DX
i=1

log

 
1 +

�
(0)
i

N0

!!
(3.52)

where�i are i.i.d. random variables with mean zero and variance 1. Normalizing the fading process so

thatEj�(t)j2 = 1, we have that
PD

i=1 �
(1)
i � 2E . This approximation can be made arbitrarily precise by

increasingD. We now define the normalized eigenvalues�i = �
(0)
i =2E yielding

Pe(0! 1) = Prob

 
DX
i=1

�ij�ij2 � N0

2E
DX
i=1

log

�
1 +

2E
N0

�i

�!
(3.53)

=
DX
i=1

Ai

�
1� e�B=�i

�

whereB = N0
2E

PD
i=1 log

�
1 + 2E

N0
�i

�
. This is plotted in Figure 3.6 as a function of the SNR and

compared with the corresponding coherent case, where we see that for low fade rates the loss due to

non–coherent detection is large.

3.3.3 Coded Quadrature Amplitude Modulated Signals

We now consider the possibility of performing non–coherent detection of non–binary messages, where

the detection is performed across several symbols. We quickly realize that implementing the optimal re-

ceiver structures is a more or less an impossible task whenM is large and the channel varies greatly dur-

ing the duration of a message. Unfortunately, this is precisely the case of coded systems withquadrature

amplitude modulation (QAM)on fast–fading channels. As a result, one must resort to some discretized

approximation. We consider a piecewise constant approximation for the fading process as follows

�(t) =

dNs2 �1eX
i=d�Ns

2 e
�iq(t� iT=Ns) (3.54)
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whereq(t) is a rectangular pulse shape orchip

q(t) =

8><
>:
q

Ns
T t 2 [0; T=Ns)

0 elsewhere

(3.55)

andNs can be arbitrarily large. Provided thatfDT � Ns this will be a close approximation to the actual

fading process.

Now consider the QAM signal

x(m)(t) =

dNx=2�1eX
i=�dNx=2e

x
(m)
i p(t� iT=Nx) (3.56)

with Nx being the number of coded symbols orcomplex dimensionsused during the time–interval

[�T=2; T=2]. Thex(m)
i belong to an arbitrary complex alphabet and we assume that the pulse shape

may be expressed as

p(t) =

Ns=Nx�1X
i=0

piq(t � iT=Ns) (3.57)

with
PNs=Nx�1

i=0 jpij2 = 1. The ratiok = Ns=Nx is assumed to be an integer. We show a particular

example whereNs = 8 andNx = 4 in figure 3.7. This formulation allows us to express the detection

T=2
x2

x3

x1

x0
T=2

x(t)

�T=2

T=2

T=2
�(t)x(t)

�T=2

�(t)

Figure 3.7: A QAM example withNs = 8 andNx = 4

problem vectorially as we now show. The received signal is given by

y(t) = �(t)x(m)(t) + z(t) (3.58)

=

�dNs=2�1eX
i=�dNs=2e

�ipi modkxi�kq(t � iT=Ns) + z(t)
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wherei � k is taken to mean integer division. In complex circular symmetric white noise with power

spectral densityN0, the set of statistics

yi =

Z T=2

�T=2
y(t)q(t� iT=Ns)dt (3.59)

is sufficient for the detection ofx(m)(t) sincefq(t � iT=Ns); i = 0; � � � ; Nsg forms a suitable basis for

the signal. We may therefore write

y =

0
BBBBBB@

y0

y1

...

yNs�1

1
CCCCCCA
= X(m)

0
BBBBBB@

�0

�1

...

�Ns�1

1
CCCCCCA
+

0
BBBBBB@

z0

z1

...

zNs�1

1
CCCCCCA

(3.60)

= X(m)
�+ z

wherezi are zero–mean i.i.d. circular symmetric random variables with varianceN0 and

X(m) = diag(p0x
(m)
0 ; p1x

(m)
0 ; � � � ; pk�1x(m)

0 ; p0x
(m)
1 ; � � �pk�1x(m)

Nx�1
) (3.61)

Optimal Receiver Structure

Not surprisingly, this discrete–time system is completely analogous to the exact continuous–time model

outlined earlier. Under hypothesism the correlation matrix ofs(m) = X(m)� is

K(m)
s = X(m)K�X

(m)� (3.62)

whereK(ij)
� = K�(iT=Ns; jT=Ns). The eigenvalues ofK� are a close approximation to those of the

kernelK�(t; s) if Nx is sufficiently large. As before, we perform a KL expansion ony using the basis

of eigenvectors ofK(m)
s = U(m)�(m)U(m)� yielding

y(m) =U(m)�y = U(m)�X(m)�+ z(m) (3.63)

= x0
(m)

+ z(m)

withK(m)
x0 = �(m). The decision rule is identical to (3.28) withK replaced byNs � 1. In terms of the

original observation vector we have

m̂ = argmin
m=0;��� ;M�1

y�
�
N0I+K

(m)
s

��1
y+ log det(N0I+K

(m)
s ) (3.64)

We note the similarity of this decision rule with (3.31).
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Similarly to the continuous case we may express the decision rule in (3.64) in an estimator–

correlator form using innovations. This type of approach is taken in [VT95]. The correlation matrix

of received samples may be factored asN0I +R
(m)
s = L(m)L(m)�, whereL(m) is an upper–triangular

matrix, which is known as aCholesky factorization. We now define the innovations vectori(m) = �(m)y

where�(m) = L(m)�1 =
p
D(m)P(m) andP(m) is theN th

s –order forward linear predictor fory under

hypothesism andD(m) is a diagonal matrix containing the prediction errors for eachyi. The innovations

vector has i.i.d. zero–mean Gaussian components with variance 1. It follows, therefore, that the decision

rule may be written as

m̂ = argmin
m=0;��� ;M�1

i(m)�i(m) +
X
k

log d
(m)
k (3.65)

For practical reasons, this form of the decision rule is convenient since it can be implemented

recursively. We may define the metric�(Ns) =
PNs�1

k=0 ji(m)
k j2 + log d

(m)
k so that�(k) = �(k � 1) +

ji(m)
k j2+log d

(m)
k . If the fading process has very short memory (i.e. very fast fading) sayL samples, then

the computation ofi(m)
k andd(m)

k depend only thefyk�L; � � � ; ykg and therefore the Viterbi algorithm

[For73] with2L states may be used effectively to decode the data sequence. This technique only becomes

useful for fading speeds which do not occur in terrestrial mobile communication systems because of the

slow mobile speed. In the future low–earth orbit mobile satellite systems however, these types of receiver

structures may be interesting. The same holds true for aeronautical channels where fast Ricean fading is

experienced due to scattering off the ocean surface. A difficult practical problem is that the complexity

of the receiver structure is very dependent on the memory of the channel which is directly related to the

mobile speed which changes in time.

We now examine the PEP which in this case is given by

Pe(0! 1) = Prob

 
ji(1)j2 � ji(2)j2 <

X
k

log
d
(1)
k

d
(2)
k

�����X(1) transmitted

!
(3.66)

The random variablez = ji(1)j2 � ji(2)j2 = ��Q� is a quadratic form of the Gaussian random vector

� =

0
@i(1)
i(2)

1
A with correlation matrix

K� =

0
@ I L(1)�(2)

�(2)�L(1)� I

1
A (3.67)

andQ =

0
@I 0

0 �I

1
A. The moment–generating function for a quadratic form of correlated Gaussian
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random variables is derived in [SBS66, App. B] which forz yields

�z(s) =
Ns�1Y
k=0

1

1� s�i
(3.68)

where thef�ig are the eigenvalues of the matrixR�Q. Denotingz12 = log
d
(1)
k

d
(2)
k

it follows that the PEP

is given by

Pe(0! 1) =
1

2�j

Z z12

�1

Z �+j1

��j1
�z(s)e

�szdsdz (3.69)

=
1

2�j

Z �+j1

��j1

�z(s)

s
e�sz12ds

which can be computed numerically using Gauss Chebychev quadrature [BCTV96] or, in some cases,

by the residue method.

Phase–Modulated Signals

For an important class of signals, namely those with phase modulated symbols (i.e.jxij2 = E=T ), the

bias terms may be neglected since they are all identical. When the fading is very slow (i.e.fD = 0) it is

easily shown using the matrix inversion lemma in this case that the decision rule reduces to the classic

non–coherent detection rule

m̂ = argmax
m=0;��� ;M�1

jy�x(m)j (3.70)

Let us consider phase–modulated signals with rectangular pulse shapesp(t). For anM–ary system,

the coded symbols take on one ofM valuesfej 2�aM ; a = 0; � � � ;M � 1g. We assume detection can

be performed on groups ofNx � 2 symbols. For a non–fading channel this type of multi–symbol

non–coherent detection of uncodedM–DPSK modulation was considered in [DS90] and [LP91]. These

results were extended for block–coded systems in [KL94] and for trellis–coded systems in [Rap96a].

Recently, Kofmanet al. [KZS97a][KZS97b] have considered the design of binary convolutional for this

application. We now briefly consider the general fading case where we have multiple fading levels per

symbol, in order to show the difficulty in designing codes for this situation.

It is straightforward to show that the matrixK� depends onX(m) andX(n) only throughX(m)X(n)�

and consequentlyProb(m ! n) = Prob(q ! 0) whereq is the codeword index corresponding to

X(m)X(n)� and 0 is the all–zero codeword. This holds true for any coding scheme where the set of

codewords forms a group under complex component-wise multiplication.
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We show the PEP with respect to the all–zero codeword(1; 1; � � � ; 1) for QPSK modulation

with three codewords of lengthNx = 4 in Figure 3.8. The symbols, therefore, take on the values

f1; j;�1;�jg. We chose fade rates offDTs = 1 and 0 whereTs = T=4 and we used 5 discretization

steps per symbol for the fading process. The three codewords are identical except for the positions of the

non–zero symbols. On the static channel, therefore, the three have identical expressions for the PEP. We

see that the positions of the non–zero symbols within the codeword are critical for the higher fade rate

case. The code design problem is therefore much more difficult than for a static channel.
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Figure 3.8: PEP for a non–coherent QPSK example

A practical solution to this problem would be to consider a concatenated coding scheme using

a binary code and an interleaver (see the following section) whose output drives a simpleM–ary code

which is decoded non–coherently (ideally with a MAP decision rule on the individual bits) and deinter-

leaved. The bits passed to the binary decoder will have been subject to uncorrelated channel strengths

so that traditional codes can be applied. This will become more clear after having read the following

section.
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3.3.4 Interleaved Signals

Let us now assume that the Doppler spread is significantlysmaller than the signal bandwidth (i.e.fDTs �
0) and there is a modest or no time–delay constraint. A common method for achieving diversity is

interleaving. We assume that coherent detection is possible because the channel varies very slowly. The

simplest interleaving scheme is calleddiagonalor periodic interleaving. It is shown in Figure 3.9, where

we also assume a discretized fading process. The coded symbols are placed into anL �N dimensional

array columnwise and are read out rowwise before transmission. The interleaved signal is transmitted

across a single–path channel and processed by a filter matched to the pulse shapep(t). The samples at

the output of the matched filter are fed into a similar array rowwise and read–out columnwise. The width

of the arrayL determines the correlation of the variables�0i at the output of the de-interleaver as well

as the total decoding delay,LN . The depth of the interleaver,N , should be chosen to be larger than

the memory of the code (for a block code, it would be the block length and for a convolutional code

at least as long as the constraint length). This is because we want to avoid strong cyclic correlations,

since two symbols separated byLTs will be highly correlated. In many cases, a strict decoding delay

constraint does not permit this type of arrangement and strong cyclic correlations are inevitable. We treat

this situation in detail in Section 3.6 and Chapter 5.

In addition to coherent detection being possible in this case, it is often simple to achieve perfect

knowledge of the�0i at the receiving end. Under these assumptions, let us examine the PEP between two

arbitrary codewords of lengthNx � N which is given by (using 3.36)

Pej�0i(0! 1) = Q

0
@
sPNx

i=0 j�0ij2jx(0)i � x
(1)
i j2

2N0

1
A : (3.71)

Definingd2i (0; 1) = jx(0)i �x(1)i j2 andz =
PNx

i=0 j�0ij2d2i (0; 1)=2N0 = ��0D�0 where�0 =
�
�00 � � ��0Nx

�
andD = diag

�
d2i (0; 1)

	
we have that the moment–generating function forz is

�z(s) =
Nx�1Y
i=0

1

1� s �i
2N0

(3.72)

wheref�ig is the set of eigenvalues ofK�0D. Consider the simplest case whereL!1 andK�0 = I.

This is known asidealor perfect interleavingwhich assures that the�0i are uncorrelated. In practice, this

is achieved by choosingL to be larger than the coherence time of the fading process�(t). In this case

we have that

�z(s) =

dH(0;1)�1Y
i=0

1

1� s
d2i (0;1)
2N0

(3.73)
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Figure 3.9: Periodic interleaving
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wheredH(0; 1) is theHamming distancebetween the two codewords on the symbol level. The average

PEP can be computed numerically, and as before, we may consider the upper–bound in (3.48) which now

becomes

Pe(0! 1) � 1

2

dH(0;1)Y
i=0

1

1 +
d2i (0;1)
4N0

<
1

2

�
4N0

�

�dH(0;1)
(3.74)

where� =
�QdH(0;1)

i=0 d2i (0; 1)
�1=dH(0;1)

. An important observation is that the main performance indica-

tor,dH(0; 1), is a purely algebraic measure of the code symbols so that in order to maximize diversity we

must simply maximize the Hamming distance. This is quite different from the non–fading case where

Euclidean distance is the quantity to be maximized. The secondary parameter which acts as a gain in

SNR is the geometric mean of the non–zerod2i (0; 1)which must lie between the minimum and maximum

squared Euclidean distances of the underlying constellation.

When we do not have a perfect interleaving situation, which is almost always the case, we will say

that the channel ispartially interleaved. Let us now examine a numerical example to see the effect of

symbol correlation on a partially interleaved channel. We chooseN = Nx = 8 and assumeL is chosen

so thatfDLTs = :1; 1 and1. The symbols are modulated using 8–PSK modulation. Figure 3.10 shows

the PEP for two code sequences with respect to the all–zero codeword which differ only in the positions

of the non–zero symbols. We see, as in the non–coherent case, that the PEP is heavily dependent on
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Figure 3.10: Effect of symbol positioning on the PEP

the positions of the non–zero symbols except in the perfectly interleaved case. The codeword with the
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symbols evenly spaced performs better since the positions become less correlated as their separation

increases. As a result, the code design problem is more complex than simply maximizing the Hamming

distance. Fortunately we will see that by appropriately choosing the interleaver dimensions, we can

turn this correlated channel problem into ablock fading channelfor which code design is simpler. We

consider this in Section 3.6 and Chapter 5.

3.4 Wide-band Direct–Sequence Spread-Spectrum

Now we will consider schemes which exploit diversity in the frequency domain by using wide–band sig-

nals. Let us examine wide-band signals strictly band-limited toW Hz transmitted over a static multipath

channel

h(t) =
PX
i=1

�i�(t� di): (3.75)

We now look at a particular class of wide-band signals known asdirect sequence spread–spectrum

(DSSS)signals. Here, we use more physical bandwidth than necessary to convey the information signal.

A DSSS pulse–shape ideally band-limited toW Hz may be expressed as

s(t) =
Nc�1X
i=0

ci
sin �W (t� i=W )

�W (t� i=W )
(3.76)

which is a bandlimitedversion of a classical DSSS system. Most transmission schemes have bandlimiting

filters before transmission, so even if the original DSSS signal was rectangular, the actual transmitted

signals look more like (3.76). The transmitted signal is given by

x(m)(t) =
X
k

x
(m)
k s(t � kTs) (3.77)

whereNc = WTs is the spreading factor assumed to be an integer andTs is the symbol time. We see that

Nc is simply the number of degrees of freedom for a signal band-limited toW Hz and approximately

time–limited toTs seconds. Theci are calledchipsand are usually chosen to be apseudo–noise (PN)�1
sequence. The vector formed by the chip sequence is therefore the basis vector for a one–dimensional

subspace of the space of signals band-limited toW and approximately time–limited toTs in which

the transmitted signal lies. In essence, we have just described a repetition coding scheme with code-

rate1=Nc. Although not DSSS, we could equally well choose to code several adjacent information

symbols jointly while keeping the same overall code-rate (or bandwidth expansion factor). A much more

elaborate extension of this idea is used on the up-link of the IS-95 CDMA mobile cellular telephone
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system [IS992], and turns out to be a much better way to spread spectrum. The main difference between

the two approaches is that, in the latter case, the waveform for each symbol belongs a subspace with a

dimension greater that one. The advantages of this type of low–rate coding is considered by Viterbi for a

non–fading channel in [Vit90]. The effect in terms of performance on a multipath channel is significant

and will be treated in the next chapter more closely.

There are important reasons to spread spectrum in certain situations. The traditional application

was military communications. The spread signal has alow probability of interceptcharacter; since the

information is spread across a large bandwidth, a narrow-band interfer or receiver interprets it as white

noise. This property is also useful in situations where several systems must coexist in the same frequency

band.

3.4.1 Receiver Structures

Examining a block ofNx transmitted signals, the received signal may be written as

r(t) =
Nx�1X
k=0

x
(m)
k fs(t � kTs) � h(t)g+ z(t) (3.78)

The autocorrelation function of the pulse–shape is given by

�s(�) =

Z 1

�1
s(t)s(t+ �)dt (3.79)

=

Z 1

�1

NcX
i=0

NcX
j=0

cicj
sin �W (t� j=W + �)

�W (t� j=W + �)

sin �W (t� i=W )

�W (t� j=W )
dt

=
NcX
i=0

NcX
j=0

cicj
sin �W (� � (j � i)=W )

�W (� � (j � i)=W )
(3.80)

This is plotted in Figure 3.11 for a few choices of PN pulse shapes with increasingNc. Assuming perfect

knowledge of the channel response and equal energy signals, the maximum–likelihood receiver in this

case can be written as

m̂ = argmax
m=0;��� ;M�1

Re

(Z 1

�1
r�(t)

Nx�1X
k=0

x
(m)
k fs(t � kTs) � h(t)gdt

)
(3.81)

Since all signals are band-limited toW Hz we may express this decision rule in terms of the samples

m̂ = argmax
m=0;��� ;M�1

Re

(
NcNs�1X
n=0

r�(n=W )
Ns�1X
k=0

x
(m)
k fs(n=W � kTs) � hW (n=W )g

)

= argmax
m=0;��� ;M�1

Re

(
NcNs�1X
n=0

r�(n=W )
L�1X
l=0

Ns�1X
k=0

x
(m)
k hW (l=W )s((n� l)=W � kTs)

)
(3.82)
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Figure 3.11: DSSS autocorrelation functions

wherehW (t) is the ideally low–pass filtered version ofh(t) given by

hW (t) =
PX
i=1

�i
sin �W (t� di)

�W (t� di)
(3.83)

andL is the number of significanthW (n=W ) (i.e.
PL�1

l=0 EjhW (n=W )j2 > �). Provided the number of

paths is large thehW (n=W ) are accurately modeled by correlated Gaussian random variables having an

autocorrelation matrixKh with components

K
(ij)
h = EhW (i=W )h�W (j=W )

=
PX
k=1

Ej�kj2
sin �WT ( i

WT � dk
T )

�WT ( i
WT � dk

T )

sin �WT ( j
WT � dk

T )

�WT ( j
WT � dk

T )
(3.84)

where we have used the uncorrelated scattering assumption (i.e.E�i�
�
j = Ej�ij2�ij .) Essentially,

we have reduced the system to the transmission of a discrete–time signalx(i=W ) over a discrete–time

finite impulse response channelh(i=W ); i = 0; � � � ; L � 1. We must stress, however, that the channel
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coefficients are highly correlated. It is common in the literature when using discrete–time multipath

models to assume uncorrelated taps which can yield highly optimistic performance results. To see the

extent of this correlation consider the ETSI TU channel described in Chapter 2 withTs = 104:67�s. The

significant number of taps in the filter response and the correlation matrices for differentNc = WTs for

the first 5 taps are shown in Table 3.1.

WTs Number of significant taps Correlation of taps 1-5

8 2

0
BBBBBBBBB@

0:9671 0:0726 �0:0331 0:0214 �0:0159
0:0726 0:0153 �0:0065 0:0041 �0:0030
�0:0331 �0:0065 0:0028 �0:0018 0:0013

0:0214 0:0041 �0:0018 0:0011 �0:0008
�0:0159 �0:0030 0:0013 �0:0008 0:0006

1
CCCCCCCCCA

32 3

0
BBBBBBBBB@

0:7554 0:1662 �0:0689 0:0423 �0:0307
0:1662 0:1701 �0:0284 0:0197 �0:0145
�0:0689 �0:0284 0:0231 �0:0109 0:0075

0:0423 0:0197 �0:0109 0:0057 �0:0040
�0:0307 �0:0145 0:0075 �0:0040 0:0028

1
CCCCCCCCCA

128 8

0
BBBBBBBBB@

0:3822 0:1321 �0:0627 0:0400 �0:0286
0:1321 0:3040 �0:0066 0:0060 �0:0058
�0:0627 �0:0066 0:1278 �0:0053 0:0055

0:0400 0:0060 �0:0053 0:0586 �0:0056
�0:0286 �0:0058 0:0055 �0:0056 0:0519

1
CCCCCCCCCA

Table 3.1: Significant taps and tap correlation

We now make a critical assumption which holds true in many spread–spectrum applications by

takingL � Nc which means that the channel is practically free of multipath inducedintersymbol inter-

ference (ISI). In the example we just mentioned this is definitely the case since the delay spread is on

the order of 5�s. Under this assumption, the proportion of received energy in[kTs; (k + 1)Ts] due to

symbolsx(m)
i ; i 6= k is neglible so that the decision rule may be approximated by

m̂ = argmax
m=0;��� ;M�1

Re

(
Ns�1X
k=0

Nc�1X
n=0

L�1X
l=0

x
(m)
k r�(kTs + n=W )hW (l=W )s((n� l)=W )

)
(3.85)
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We may define the set of sufficient statistics

rk =
Nc�1X
n=0

L�1X
l=0

r�(kTs + n=W )hW (l=W )s((n� l)=W ) (3.86)

so that the decision rule becomes

m̂ = argmax
m=0;��� ;M�1

Re

(
Ns�1X
k=0

r�kx
(m)
k

)
(3.87)

The operation in (3.86) is known as acoherent RAKEreceiver since it acts like a garden rake on the

multipath components by combining their energies in the same fashion as the maximal–ratio combiner

we considered in Section 2.1.

3.4.2 RAKE Receiver Performance

Let us assume that messagefx(0)k g is sent so that

rk =
Nc�1X
n=0

 
x
(0)
k

L�1X
l=0

h�W (l=W )s((n� l)=W ) + z(n=W )

!
L�1X
l0=0

hW (l0=W )s((n� l0)=W )

= x
(0)
k

L�1X
l=0

L�1X
l0=0

hW (l0=W )h�W (l=W )�s((l� l0)=W ) +
Nc�1X
n=0

L�1X
l=0

hW (l=W )s((n� l)=W )z(n=W )

= x
(1)
k h�Ph+ zk (3.88)

whereEjzkj2 = N0
PL�1

l=0 jhW (l=W )j2 � N0, h =
�
hW (0) � � � hW ((L� 1)=W )

�T
andP i;j =

�s((i�j)=W ). As before, the PEP between arbitrary code sequences conditioned on a particular channel

realization is given by

Pejh(0! 1) = Q

0
@
s
jjx(0)� x(1)jj2

2NcN0
h�Ph

1
A (3.89)

where we have included the normalization factorNc which takes into account the bandwidth expansion

factor. The quadratic form� = h�Ph has moment–generating function

��(s) =
L�1Y
l=0

1

1� s�l
(3.90)

and�l are now the eigenvalues ofKhP. Evaluation of the average PEP is identical to the coherent case

outlined described earlier. In Figure 3.12 we plot the average PEP vs. the signal–to–noise ratio per

information bit for uncoded antipodal signals for different values of the spreading gainWTs. The effect

of spreading on the performance is evident. The number of significant eigenvalues at the SNR shown for

the three spreading bandwidths are 2,3 and 6 which roughly correspond to the slopes of the three curves.
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Figure 3.12: DSSS performance for different spreading gains

3.5 Multitone Signaling

We now consider another wideband approach where the signals are described directly in the frequency

domain. As before, we assume complex baseband band-limited signals with a two–sided bandwidth of

W hertz. Let us expand the transmitted signal in time and frequency as

x(t) =
S�1X
s=0

N�1X
n=0

xs;n�s;n(t) (3.91)

where the time/frequency ormultitonebasis functions are

�s;n(t) =
p
WBe

j�fst sin �W (t� n=WB)

�WB(t� n=WB)
; (3.92)

fs = �W=2 + (s� 1=2)WB andWB = W=S. These basis functions are simply sampling functions for

signals band-limited toWB hertz aroundfs. Although we have chosen the sampling functions as a basis

set, any set of (sufficiently) band-limited time/frequency orthogonal functions will suffice (for instance

raised–cosine pulses). We stress that this is a subset of the set of signals band-limited to[�W=2;W=2],

since we assume that they are flat in any sub-band of bandwidthWB. This is not a significant restriction,

since the sub-bands can be made arbitrarily small. This type of modulation scheme is often also referred

to asorthogonal frequency–division multiplexing (OFDM).
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One of the main practical problems with this type of signaling is the high peak–to–average power

ratio when a large number of sub-bands are used. This is especially problematic in wireless applications

since there is a need for highly linear power amplifiers over the large dynamic range of the signal. A

clever way to reduce the dynamic range of the signal when the number of sub-bands is not too large is to

use specially designed coding schemes which reduce the peak–to–average power ratio [WJ95],[VN96].

3.5.1 Multitone Receiver and Performance Criteria

The received signal may now be written as

y(t) =
S�1X
s=0

N�1X
n=0

xs;nhs(t � n=WB) + z(t); (3.93)

wherehs(t) is the portion of the channel response in sub-bands given by

hs(t) =

Z fs+WB=2

fs�WB=2
ej2�ftH(f)df; (3.94)

andH(f) is the Fourier Transform ofh(t). Projecting the output onf�f;n(t)g yields

ys;n =
N�1X
n0=0

xs;n0hs;n;n0 + zs;n (3.95)

where

hs;n;n0 =

Z fs+WB=2

fs�WB=2
H(f)e

j
2�(n�n0)

WB
f
df (3.96)

We assume thatWB is small enough (or equivalentlyF is large enough) to assure thatdLWB � 1,

wheredL is the delay spread, yielding

hs;n;n0 � H(fs)�n;n0 (3.97)

For this assumption to be valid in practice, we require thatWB be much less than the coherence band-

width of the channel as described in Chapter 2.

The frequency autocorrelation function of the channel responseH(f) was given in Chapter 2 and

denoted�(f1 � f2). We now denote the autocorrelation matrix for the sub-band strengths by

KH =

0
BBBBBBBBBB@

�(0) �(W=S) �(2W=S) � � � �((S � 1)W=S)

�(W=S)
. .. . .. . .. �((S � 2)W=S)

�(2W=S)
. .. . .. . ..

...
...

. .. . .. . ..
...

�((S � 1)W=S) �((S � 2)W=S) � � � � � � �(0)

1
CCCCCCCCCCA (3.98)
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This significant eigenvalues of this matrix are good approximations to those of the corresponding kernel

�(f1� f2) [VT68]. The conditional PEP in this case between arbitrary sequencesx
(0)
s;n andx(1)s;n is given

by

Pejh(0! 1) = Q

0
@
s
d2(0; 1)

2N0

1
A (3.99)

where

d2(0; 1) =
N�1X
n=0

S�1X
s=0

jx(0)s;n � x(1)s;nj2jH(fs)j2

=
S�1X
s=0

jH(fs)j2d2s(0; 1) (3.100)

whered2s(0; 1) is the Euclidean distance between the signal components in sub-bands. The performance

computation is identical to earlier coherent cases and the moment–generating function of the pairwise

distance is given by

�d(s) =
S�1Y
i=0

1

1� s�i
(3.101)

where�i are now the eigenvalues ofKHD withD = diag(d2s(0; 1)). Not surprisingly, this is an analo-

gous result to the partially–interleaved narrow-band channel and similarly with appropriate interleaving

can be cast into the framework the block–fading channel discussed in section 3.6.

3.5.2 Multitone spread–spectrum

As in the case of DSSS, let us now assume that each codewordx(t) lies in aWLT–dimensional subspace

of theWT–dimensional signal space, so that the number of Shannon dimensions is less than the number

of degrees of freedom that the channel has to offer. For simplicity, we takeWL = KWB with K being

some integer so that the spreading factor isS=K. Here we opt to perform spreading in the frequency

domain. This has been considered by several authors such as [Van95]. We denote theK–dimensional

information vector for a given time coordinaten by un and write the correspondingF–dimensional

frequency vector as

xn = Gun (3.102)

whereG =
�
g1 � � � gK

�
is thespreading matrix. In order to preserve the input energy, we take the

gi to have unit–norm.
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For illustration purposes, let us consider the simplest case whenK = 1. We assume further a

simple binary antipodal modulation scheme without any additional channel coding so thatun = �pE .

The maximum–likelihood receiver for eachun is simply

m̂ = argmax
m=�1;1

S�1X
s=0

y�s;nH(fs)g0;s
p
Em (3.103)

This can be seen as the multitone equivalent of the RAKE receiver or a maximal ratio combiner of the

sub-band components [SBS66]. The minimum distance between transmitted sequences conditioned on

the channel state is therefore

d2(0; 1) = 4E
S�1X
s=0

jH(fs)j2 (3.104)

and the PEP is readily calculated.

3.6 Block Fading Channels

We now consider a general model for representing systems with a finite number of degrees of free-

dom which can appropriately be characterized in a block stationary fashion. This will be very useful

for analysing many different types of systems in a generic fashion. It can accomodate both time and

frequency diversity with narrow or wide–band signals.

3.6.1 System Model and Examples

Consider transmission scheme in Figure 3.13. The information bits are coded/modulated intoF blocks

of lengthN symbols so that codewords have lengthNF symbols and are denoted by

c =
�
c0;0 c0;1 � � � c0;N�1 c1;0 � � � cF�1;N�1

�
: (3.105)

In practice the coded symbols are formed by a combination of either a block or convolutional encoder

and an interleaver. The interleaver serves to spread the information evenly over theF blocks so that very

high complexity codes are not needed. Except when explicitly stated otherwise, we will consider the

interleaver as part of the encoder.

Each block is then PAM modulated as

uf (t) =
N�1X
n=0

p
Ecf;ns(t� nT ); f = 0; 1; � � � ; F � 1 (3.106)
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Figure 3.13: Block–Fading System Model

wheres(t) is some unit–energy pulse shape, andE is the energy per coded symbol. The blocks are

transmitted over different time–varying channels, so that the complex baseband received signals before

processing are given by

rf(t) = uf (t) � hf (t; �) + zf (t); t 2 [0; NT ] ; f = 0; 1; � � � ; F � 1 (3.107)

wherehf (t; �) is the channel response at timet to an impulse at time� on thef th channel, andz(t) is

complex white Gaussian noise with power spectral densityN0.

In what follows we will assume that theF channel realizations are correlated, although it may

well be the case in some systems that they can be taken to be uncorrelated. A system where this model

is appropriate is theGlobal System for Mobile Communication (GSM). Here, blocks modulateF = 4

(half–rate) orF = 8 (full–rate) carriers whose spacing is larger than the coherence bandwidth, resulting

in virtually uncorrelated blocks. This is achieved by changing the frequency allocation scheme inF

adjacent TDMA frames and is known asslow frequency–hopping. The number of blocks is determined

by the tolerable decoding delay�T . Such a system withF = 4 is depicted in Figure 3.14(a). For

reasonable mobile speeds, the channel is stationary during the block. The practical advantages of such

a system are firstly that reliable coherent communication is possible. Secondly and more importantly,

the amount of diversity is independent of the rate of channel variation, since it is a result of exploiting

frequency–selectivity. For mobile telephony, this is crucial since the majority of calls are made at low

speed. Another example is the IS54 standard where coding is performed acrossF = 2 TDMA blocks

separated in time by 20ms so they become less correlated for high mobile speeds. In complete anal-

ogy with the frequency–based scheme, we may call thistime–hoppingand an example withF = 2 is

illustrated in Figure 3.14(b).

We now assume that the time–variation of the channel is slow (i.e. that the coherence time is

greater than the duration of a block) so that that the channel path strengths can be taken to be constant
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Figure 3.14: Frequency and time–hopping

over blocks. We therefore express the complex baseband channel response for each block as

hf (t) =
L�1X
l=0

�f;l�(t� df;l); (3.108)

where�f;l anddf;l are the complex attenuation and delay of thelth path in thef th block. As before we

will use the COST 207 models for numerical calculations. The channel realizations are assumed to be

random from block to block but known without error to the receiver. We assume the statistics of the�f;l

to be independent off and further that

E (�f;l � �f;l)
�
�f 0;l0 � �f 0;l0

��
= %f;f 0�

2
l �l;l0 ; (3.109)

where%f;f 0 is the correlation coefficient between blocksf andf 0. We have, therefore, that different paths

are uncorrelated but that the strengths for a given path are correlated, in general, from block to block.

Furthermore, we assume that the path strengths are normalized as
PL�1

l=0 �2l = 1, so that the average

attenuation is included in the transmitted signal strength.
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The received signal is processed by a maximum–likelihood decoding rule as

argmin
m=0;��� ;2FNR�1

F�1X
f=0

Z NT

0

������rf (t)�
F�1X
f=0

u
(m)
f (t�NT ) � hf (t; �)

������
2

dt: (3.110)

Decoding in this fashion is too complex to be carried out in practice, and it is usually done in two

steps, depending on the relationship between the coherence bandwidth of the channel and the bandwidth

of s(t). In medium-band systems like GSM where the multipath induces intersymbol interference, a

sub–optimal approach is taken by first equalizing theF channels with a soft–output algorithm (e.g.

soft–output Viterbi equalization [HH89]). These outputs are then deinterleaved and passed to a Viterbi

decoder to retrieve the information bits. In narrow-band systems such as IS-54, the channel has ISI not

extending over more than one symbol time, so that either a very simple equalizer or none at all is needed

prior to deinterleaving/decoding. In wide-band systems with little ISI, equalization is also not required

and some of the multipath can be exploited with a RAKE receiver prior to decoding as we outlined

earlier.

Many systems which use coding schemes over a fading channel with a finite number of degrees

of freedom can be cast into the framework. We mentioned earlier that this was both the case for the

partially–interleaved narrow-band channel and the static multitone channel. Let us consider this more

closely now that we have defined them precisely. In the partially–interleaved narrow-band case, the

number of degrees of freedom was aroundF = d2fDT + 1e whereT = NLTs was the total decoding

delay. Similarly the number of degrees of freedom for the multitone case was aroundF = dWdL + 1e.
Suppose now we use an interleaver with depthN = F and widthL = T=(FTs). This arrangement is

close to the block–fading channel withF blocks each containingL symbols. Every set ofF adjacent

symbols are virtually uncorrelated at the receiver and symbols separated by multiples ofF symbols (i.e.

belonging to the same block) are strongly correlated. Without this choice for the interleaver, the coding

problem was difficult because the location of non–zero symbols in the error–event was critical in the

expression for the PEP. We will show in the remainder of this section that for the block–fading channel

this is not a problem and in Chapter 5, how high performance codes can be designed.

Denoting the codewords asc =
�
c0 c1 � � � cF�1

�
, the PEP conditioned on a particular set

of channel realizations is given by

Pejhi(t)(0! 1) = Q

 r
d2(0; 1)

E
2N0

!
; (3.111)
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whered2(0; 1) is the squared Euclidean distance between the code sequences given by

d2(0; 1) =
F�1X
f=0

Z NT

0

�����
N�1X
n=0

L�1X
l=0

�
c
(0)
f;n � c

(1)
f;n

�
�f;ls(t� nT � df;l)

�����
2

dt

=
F�1X
f=0

N�1X
n;n0=0

L�1X
l;l0=0

�
c
(0)
f;n � c

(1)
f;n

�
�f;l�

�
f;l0

�
c
(0)�
f;n0 � c

(1)�
f;n0

�
�s
�
(n� n0)T + (df;l � df;l0)

�

=
F�1X
f=0

(c
(0)
f � c(1)f )

8<
:

L�1X
l;l0=0

�f;l�
�
f;l0Pf;l;l0

9=
; (c

(0)
f � c(1)f )� (3.112)

whereP (ij)
f;l;l0 = �s

�
(i� j)T + (df;l � df;l0)

�
and�s(t) is given by (3.79). This can be simplified to the

quadratic form

d2(0; 1) =
F�1X
f=0

��f�f(0; 1)�f

=
h
��0 ��1 � � � ��F�1

i
2
6666666664

�0(a; b) 0 0 � � � 0

0 �1(a; b) 0 � � � 0

0 0
... 0 0

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

0 � � � 0 0 �F�1

3
7777777775

2
6666664

�0

�1

� � �
�F�1

3
7777775 (3.113)

= ����; (3.114)

where�(ll
0)

f (0; 1) = (c
(0)
f � c(0)f )Pf;l;l0(c

(0)
f � c(1)f )�, and�f =

�
�f;0 � � ��f;L�1

�T
. Again we have

a quadratic form of a correlated Gaussian random vector so that the moment–generating function of

z = d2(0; 1) Es
2N0

is

�z(s) =

dFHL�1Y
i=0

1

1� s�iEs=2N0
; (3.115)

wheref�ig are thenon–zeroeigenvalues of the matrix

R�� =

2
6666664

��0(0; 1) %1;0��1(0; 1) : : : %F�1;0��F�1(0; 1)

%0;1��0(0; 1) ��1(0; 1) : : : %F�1;1��F�1(0; 1)

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

%0;F�1��0(0; 1) %1;F�1��1(0; 1) : : : ��F�1(0; 1)

3
7777775
;

(3.116)

anddFH is the number of non–zero�f (0; 1) (or equivalently theHamming distancebetweenc(a) andc(b)

with the symbols taken as the sub–vectorscf ) and� = diag(�20; �
2
1; � � � ; �2L�1).
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For the even simpler case where the blocks are uncorrelated (i.e.%f;f 0 = �f;f 0) (3.115) can be

written as

�z(s) =

dFHY
i=0

L�1Y
l=0

1

1� s�i;lEs=2N0
; (3.117)

where�i;l is thelth eigenvalue of the non–zero matrix�i = ��i(0; 1). For very wide-band systems

without ISI (i.e. the bandwidth ofs(t) is much larger than the coherence bandwidth and the symbol

rate),Pf;l;l0 � �ll0I so that�f;l = j�f;lj2d2
�
c
(0)
f ; c

(1)
f

�
. For narrow-band systems without ISI (i.e.

jdf;l � df;l0j � T ) Pf;l;l0 � I so that�f;l = d2
�
c
(0)
f ; c

(1)
f

�
�l. These are the two limiting cases for

the diversity offered by multipath. The first corresponds to when it can be completely resolved, and the

second when it cannot be resolved at all. The theoretical performance of a system will fall somewhere

between the performance of these two limits which are straightforward to compute. The diversity factor

due to coding isdFH and is completely independent of the extent of multipath, as long as the channels are

independent. This means that from the point of view of code design, it is sufficient to consider only a

narrow-band channel which greatly simplifies the problem. We note, however, in contrast to the perfectly

interleaved case the diversity factor due to coding is limited toF and does not grow with the length of

the codewords. These issues will be the focus of Chapter 5.

The computation of the average PEP is identical to the earlier cases once the eigenvalues have

been determined. We have computed it exactly for narrow, medium and wide-band pulse shapes and

chose examples inspired the IS–54, GSM and IS–95 cellular radio systems which respectively fall into

these three categories. The narrow–band pulse shape is a root raised cosine with roll–off .35 andT =

41:15�swhile the medium–band is GMSK withBT = :3 andT = 3:69�s (see Feher [Feh95] regarding

GMSK.) For the wide-band pulse shape we used an FIR filtered 128 chip/symbol PN sequence with

T = 164:16�s, with the filter coefficients taken from the IS–95 specifications [IS992]. We also compute

the PEP for an un-filtered PN pulse to identify the loss due to filtering. The goal is not to compare the

systems, since this is by no means a fair comparison, but to determine to what degree the multipath can

be exploited on typical channels. In Figures 3.15–3.17 we show the PEP vs.Es=N0 for the TU, RA and

HT responses given in Chapter 2 along with the significant eigenvalue spread. We have assumedF = 2

blocks of lengthN = 100 antipodal symbols withd2(c(0)0 ; c
(1)
0 ) = 4 andd2(c(0)1 ; c

(1)
1 ) = 8, so that there

two sets of eigenvalues corresponding to the two blocks. In all cases the narrow-band system is almost

completely unresolved and has two significant eigenvalues equal to the two Euclidean distances between

the codewords. The medium-band system benefits greatly from multipath, especially on the urban and

hilly channels which have delay spreads extending over several symbols. This shows the effect that



64 Signaling over Fading Channels

equalization can have in a multipath environment. The wide-band pulse exploits the multipath to a great

extent, but it is still far from being completely resolved. Moreover, there is a noticeable loss due to

filtering. In Fig. 3.18 we examine the effect of correlation betweenF = 2 blocks with the narrow–band

pulse shape. Surprisingly, even with a correlation coefficient as high as .5, there is very little degradation.
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Figure 3.15: PEP and eigenvalues for the TU channel
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Significant Eigenvalues
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Significant Eigenvalues

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70
10

−2

10
−1

10
0

10
1

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

Filtered

(filtered)

Es=N0

Delay Spread

t (�s)

Pr(c(a) ! c(b))

Resolved
PN

Medium

PN

Narrow

Res. PN

PN

Medium Narrow

Figure 3.17: PEP and eigenvalues for the HT channel



3.6 Block Fading Channels 67

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

            
  

  

  
  

  
  

  
 

  
 

.1

.01

.001

1

10

% = 1 % = :9 % = :5 % = 0

Significant Eigenvalues

% = 0

Es=N0 (dB)

% = :9

% = :5

% = 1

Pr(c(a) ! c
(b))

Figure 3.18: PEP and eigenvalues for a 2 block example



68 Signaling over Fading Channels



Chapter 4

Mutual Information and Information

Outage Rates

In this chapter we take a fundamental look at the achievable performance for the coded systems described

in Chapter 2 and we restrict our treatment to single–user channels. The multiuser case will be considered

in Chapter 7. To this end we use information–theoretic techniques to analyze the average probability

of codeword error and the achievable information rates under different system model assumptions. We

rely heavily on some previous work and extend their results. First is the classic text by Gallager [Gal68]

which is referenced often in this chapter. Second is the recent work by Ozarowet al.defining the concept

of information outage probability[OSSW94]. We will see that for systems with a time–delay constraint

that this quantity is crucial in defining system performance limits. This is often the case in mobile radio

systems.

We first describe a generic discrete–time model for time–varying channels in order to describe the

role of average mutual informationand how it naturally leads to the information outage probability and

to a lower–bound on the achievable error–rate performance. We then turn our attention to the additive

white Gaussian noise channel with fading described in Chapter 2. We consider the case of systems

operating without channel state feedback and give numerical examples of the information outage rates.
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4.1 A generic time–varying channel model and basic definitions

Consider the discrete–time communication system in Figure 4.1 which operates overNx dimensions and

has code-rate

R =
log2M

Nx
bits=dim; (4.1)

whereM is the number of codewords used by the transmitter. The input symbolsfxk; k = 0; � � � ; Nx�
1g are drawn from a continuous real alphabetSX j R. TheNx input symbols are transmitted across a

channelC : X ! Y with transition probabilityfYjX;H(yjx; h) which depends on an auxiliary random

variableH . This plays the role of the state of the channel during transmission of theNx symbols or

codeword. We denote the distribution function of the channel state byFH(h). The channel output

symbols belong to another continuous alphabetSY j Rwhich need not be the same asSX . We will

assume throughout that the receiver has complete knowledge of the channel stateH , and that, in this

chapter, the transmitter has noaccess to this information.

H;FH(h)

yi 2 SYxi 2 SX
x = fx0; x1; � � � ; xNx�1g y = fy0; y1; � � � ; yNy�1g

X

fYjX;H(yjx; h)

C : X ! Y

Y

Figure 4.1: Generic fading channel model

Since there is no channel state feedback, the transmitter and receiver agree beforehand on accept-

able choices forR andfX and do not modify them during the course of communication. We first recall

an upper–bound on the ensemble average probability of codeword error (i.e. taken over all possible

codes chosen at random) conditioned on the channel stateH . We denote this probability byPensjH .

From [Gal68] we have the following theorem and note that the only deviation from its original form is

the additional conditioning on the channel stateH .

Theorem 1 (Gallager)

An input source withNx–dimensional joint probability densityfX(x) transmitting over a channel with

transition probabilityfYjX;H(yjx; h) depending on an auxiliary random variableH has an ensemble

average probability of codeword error taken conditioned onH which is upper–bounded by

PensjH=h � 2�Nx(E0(�;fX;H=h)��R) (4.2)
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R0

R0 I(Y;X)Rc

Er(R)

R

Figure 4.2: A typical random coding exponent curve

where

E0(�; fX; H = h) = � 1

Nx
log2

Z
� � �
Z

y

0
@Z � � �

Z
x

fX(x)fYjX;H(yjx; h)
1

1+�dx

1
A
1+�

dy;

(4.3)

R is given by (4.1) and� is arbitrary in [0; 1].

The quantity in (4.3) is commonly referred to as theGallager function. The exponent in (4.2) is always

maximized over� to yield the tightest upper bound. The maximum for eachH is denoted

Er(R; fX; H = h) = max
0���1

E0(�; fX; H = h)� �R; (4.4)

When it is maximized over the input distribution,fX, it is known as the random coding exponent. Its

typical shape is shown in figure 4.2 and it can normally only be expressed in parametric form.

There is a straight–line portion between[0; Rc(H)]whereRc(H) is known as thecritical rate and

is given byRc(H) = @E0(�;fX;H=h)
@�

���
�=1

. The random coding exponent in this region isEr(R; fX; H =

h) = R0(H) � R whereR0(H) = E0(1; fX; H = h) is known as thecutoff–rate. The maximum

value ofR for which the random coding exponent remains non–negative isR = @E0(�;fX;H=h)
@�

���
�=0

=

I(Y;XjH = h) = IH is theaverage mutual informationbetween the input and output vectors condi-
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tioned on aparticular realizationH = h of the channel state. It is given by

IH =
1

Nx

Z
� � �
Z

x

Z
� � �
Z

y

fX(x)fYjX;H(yjx; h) (4.5)

log2
fYjX;H(yjx; h)R � �� R

x

fX(x)fYjX;H(yjx; h)dx
dydx bits=dim:

We must stress that this is not a conditional mutual information functional and to avoid confusion we

have used a slightly different notation. The conditional average mutual information betweenY andX is

I(Y;XjH) = EH IH . We will see the importance of this functional later.

The first important observation is thatIH is a random variable. This means that, depending on the

nature of the underlying channel process, it is possible thatIH < R for some realizations ofH . For this

reason, it is more appropriate to express the bound in (4.2) as

PensjH=h �

8><
>:
1 IH < R

2�NxEr(R;fX;H=h) IH � R

(4.6)

We may now bound the code–ensemble average probability of error as

Pens = EHPejH � Pout(R; fX) +

Z
h:IH�R

2�NxEr(R;fX;H=h)dFH(h) (4.7)

where

Pout(R; fX) = Prob(IH < R): (4.8)

Since the code ensemble average error–probability is upper–bounded by the right–hand side of (4.7)

there is at least one code for which (4.7) holds. Unlike the time–invariant channel case, however, the ir-

reducible term in (4.7) (Pout(R; fX)) is independent of the number of code dimensionsNx and therefore

casts some doubt as to whether arbitrarily small error probabilities can be achieved.

To get an idea of the achievable performance we now express the average codeword error proba-

bility for a particular code (i.e. not an ensemble average) as

Pe = PejIH�R (1� Pout(R; fX)) + PejIH<RPout(R; fX) (4.9)

� PejIH<RPout(R; fX)

Practically speaking, this lower–bound onPe is meaningful if we consider what is known as the strong

converse to the coding theorem:
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Theorem 2 ([Wol78])

The probability of codeword error conditioned on the channel state,H whenR > IH is lower–bounded

by

PejH > 1� 4A(h)

Nx(R� I(X;YjH = h))2
� 2�

Nx(R�I(X;YjH=h))
2 (4.10)

whereA(h) is a finite positive constant independent ofNx and the number of codewordsM .

As a result of this theorem, forR > IH we have thatPejH=h must tend to 1 with increasingNx for all

codes. This result can be extended to show [Gal68] thatPejH must tend to 1 exponentially inN . In our

context, this ensures thatPejIH<R � 1 if Nx is large so thatPe ' Pout(R; fX). In the limitNx !1 we

have thatPe = Pout(R; fX) since the inequalities in (4.7) and (4.10) converge. Ozarowet al[OSSW94]

recognized the importance ofPout(R; fX) for systems operating over fading channels but its relationship

with the achievable codeword error probability was not explicitly shown.

The reader may wonder whether why this is an important result since the use of the strong con-

verse says nothing about the error probability of the individual source symbols or thesymbol error rate.

We note, however, that for many practical systems which are burst or block oriented, it is precisely the

codeword error rate that is important. This is true for the transmission of some forms of digitized speech

and in packet data communications. Typically, data is arranged into bursts and then coded for transmis-

sion using both error correction and error detection techniques. At the receiver the information burst is

decoded and then checked for data integrity using the error detection scheme. If the burst is deemed

intact, the data is passed to the next level of the system. On the other hand, if the data is corrupted then

the burst is often discarded or a retransmission is requested. Provided the number of symbols in the burst

(Nx) is large and a sophisticated coding scheme is used,Pout(R; fX) will be a good indicator of the

achievable codeword error rate performance.

The weak converse (Fano’s inequality) yields a less useful lower bound on the codeword error

probability since it only shows thatPejIH>R is bounded away from zero when in an outage state. From

[CT91] we have explicitly that

Pe � 1� 1

NxR
� IH

R
; IH < R; (4.11)

so that the average probability of codeword error is lower bounded by

Pe �
�
1� 1

NxR

�
Pout(R; fX)� 1

R

Z
h:IH�R

IHdFH(h): (4.12)
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It is, however, more useful for obtaining a lower–bound to the bit error probability,Pb. It is shown in

[Bla87] that the bit error probability conditioned onIH > R satisfies

H(PbjIH>R) � 1� IH
R

(4.13)

whereH(�) is the binary entropy function

H(x) = �x log2(x)� (1� x) log2(1� x): (4.14)

The expression in (4.13) is only valid when the information source has maximum entropy. This yields

the lower bound on the bit error probability

Pb �
Z
h:IH�R

H�1

�
1� IH

R

�
dFH(h); (4.15)

whereH�1(�) is taken to mean the smaller of the two roots of (4.13).

4.1.1 Block–Fading Channels

In some cases the information outage probability may be zero. We will see that this can occur when

the transmitter hasa priori knowledge of the channel state and can adjust eitherR or fx accordingly.

Another instance where this is the case is when coding can be performed across many channel states,

sayF , as shown in figure 4.3. Here each block usesN dimensions so thatNx = NF . Under the

assumption that theF channel outputsyi; i = 0; � � � ; F � 1 are independent then the total average

mutual information conditioned on theF channel states is

IfH0;H1;��� ;HF�1g =
1

NF

F�1X
i=0

I(Yi;XijHi = hi) ,
1

F

F�1X
i=0

IHi
: (4.16)

This is simply the block–fading channel we consider in section 3.6 on a more abstract level. This is also

referred to as a block–interference channel by McEliece and Stark in [MS84], who considered different

interference models, including the Rayleigh fading channel. If the set of channel realizations is an ergodic

sequence then in the limitF !1 we fall back on the traditional conditional average mutual information

since

I1 = lim
F!1

1

F

F�1X
i=0

IHi
= EHIH = I(Y;XjH); (4.17)

and consequently

Pout(R; fX) = I(I(Y;XjH) < R); (4.18)
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HF�1

fY0jX0;H0

fY1jX1;H1

fYF�1jXF�1;HF�1
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x1 y1

yF�1

y0

xF�1

x0

Figure 4.3: Block–Fading channel model

whereI(�) is the indicator function. Here the conditional average mutual information is maximum data

rate at which arbitrarily small error–rates can be achieved. The result in (4.17) was first established by

Ericson [Eri70] for the perfectly–interleaved narrow–band channel (i.e.N = 1).

The work of McEliece and Stark [MS84] focused on the relationship between the cutoff–rate and

the average mutual information as a function of the length of the blocksN and whether or not channel

state information is made available to the receiver. Their conclusions are that the cutoff rate (R0) is not

an acceptable performance measure since it tends to zero with increasingN . The conditional average

mutual information, on the other hand, is independent ofN , when channel state information is available.

McEliece and Stark therefore conjecture thatR0 is a more appropriate measure of thedecoding delayas

opposed to decoding complexity. They did not consider the case when only a finite number of channel

realizations are available in the case of very long blocks.

Kaplan and Shamai [KSS95] add to the results of McEliece and Stark [MS84] by specializing

their treatment to the Rayleigh fading channel. They perform a very detailed analysis of the exponential

nature of the ensemble average codeword error probability. In the case of no delay constraint where

F can be arbitrarily large, they show that not only doesR0 decrease withN , but so does the entire

reliability function curve. The conditional average mutual information remains unchanged as was found

in [MS84]. It is noted that no exponential behaviour of the codeword error probability results whenF is

finite and outage probability computations based onR0 and average mutual information are performed.

The former case is defined similarly to (4.8) as

Pout(R; fX) = Prob(R0(H) < R): (4.19)
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The behaviour of this measure is similar to (4.8) except that the outages are noticeably higher. It has

less theoretical justification than (4.8) and may yield pessimistic results. Traditionally [Mas74],[Vit79]

R0 was taken to be the highest rate at which practical coding schemes can be implemented on ergodic

channels. Humblet [Hum85] showed that on a direct detection optical channel there exist reasonably

simple codes whose rates exceed those predicted byR0 with acceptably low error probability. In recent

years, the invention ofturbo codes[BGT93] has given rise to practical evidence thatR0 may not be a

practical limit even on a Gaussian channel. We will see in the next chapter that some practical codes,

which are not even as complex as turbo codes, can come very close to (4.8) when the number of blocks

is small which shows that mutual information outage is sometimes more appropriate in our case as well.

The main reason for this is that when the number of blocks (or degrees of freedom) is small,Pout(R) is

quite high and even fairly simple codes have average error probabilities on the order ofPout(R) when

IH > R (i.e. when the system is not operating in an outage situation.)

4.2 Additive White Gaussian Noise (AWGN) Channels with Fading

We would now like to apply the ideas of the previous section for a communication system modeled by

y(t) =

Z T=2

�T=2
x(�)h(t; �)d� + z(t) = s(t) + z(t) (4.20)

The continuous–time random message sent across the channel by the transmitter,x(t), is time–limited

to [�T=2; T=2] and has correlation functionKx(t; u) . The channel is modeled by a time–variant filter,

h(t; �), which is response at timet to an impulse at time� , and has duration (delay spread)Th. The noise

signal,z(t), is a complex, zero–mean, circular symmetric Gaussian process with correlation function

Kz(t; �) = N0�(t � �) andy(t) is the signal at the receiver. We assume that the channel response is

known perfectly to the receiver.

4.2.1 Calculating the Average Mutual Information

The received signal in the absence of noise,s(t), can be expressed in terms of its Karhunen-Lo`eve

expansion

s(t) =
1X
i=1

si�i(t) (4.21)
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wheresi are independent random variables with variance�i(T;H) which, along with the basisf�i(t :
T;H); �To=2 � t � To=2g, are the solution to

�i(T;H)�i(t : T;H) =

Z To=2

�To=2
Ks(t; u)�i(u : T;H)du (4.22)

withKs(t; u) =
R T=2
�T=2

R T=2
�T=2

Kx(�; �
0)h(t; �)h�(u; � 0)d�d� 0 and whereTo = T+Th. Note that we have

explicitly indicated the dependence of the eigenvalues and eigenfunctions on the codeword duration and

the channel state. This expansion allows us to write (4.20) equivalently as

yi = si + zi (4.23)

whereyi andzi are projections of the received signal and noise on the signal basisf�i(t : H)g given by

[yi; zi] =

Z T=2

�T=2
[y(t); z(t)]�i(t : T;H)dt; (4.24)

where since the noise is white, thezi are independent and have varianceN0. We have assumed that

the channel response is known perfectly to the receiver and thus can, at least in principle, determine the

message which was transmitted froms(t). As a result, we are interested in the quantity

IT;H =
1

T
I(S(t); Y (t)jH(t; �) = h(t; �))

=
1

T

1X
i=1

I(Si; YijH(t; �) = h(t; �)) bits=s (4.25)

We have been rather cavalier in writing (4.25) and this deserves some explanation. In reality it only

holds in a mean–square sense since the KL expansion is a mean–square representation of the process.

It was shown by Kadotaet al [KZZ71] that IT;H is simply the mean–squared error of the optimal point

estimator of the processs(t)

IT;H =
1

T

Z To=2

�To=2
Ejs(t)� ŝ(t)j2dt; (4.26)

where

ŝ(t) =

Z t

�To=2
g(t; u)y(u)du (4.27)

whereg(t; u) is the solution to the integral equation

g(t; u) +

Z t

�To=2
g(t; z)Ks(z; u)dz = Ks(t; u): (4.28)
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If x(t) is a Gaussian process we saw in Chapter 3 when we were dealing with the Gaussian signal

detection problem that

IT;H = � 1

T

Z To=2

�To=2
g(t; t)dt =

1

T

1X
i=0

log2

�
1 +

�i(T;H)

N0

�
bits=s: (4.29)

We quickly run into difficulties using this general approach to solve the problem at hand since in order to

compute the outage probability we need the statistical description ofIT;H . While the numerical compu-

tation ofIT;H for a particular channel realization is straightforward, the computation of its distribution is

a hopeless task. We will now consider different approaches to determine the mutual information between

the input and output signals in (4.20) for specific channel models.

4.2.2 Static Multipath Channels

We begin with an analysis of static multipath channels. We use the term static in the sense that they are

stationary for the duration of a codeword so

h(t; �) =

8><
>:
h(t � �) �T=2 � � � T=2; �To � t � To=2

0 elsewhere

In the limit of large codeword duration (i.e.T !1), the stationarity of the channel response assures that

Ks(t; �) = Ks(t � �). If we assume further that the channel response is band-limited then by invoking

theSzeg¨o eigenvalue distribution theorem[GS83] yields

IH = lim
T!1

IT;H =

Z W=2

�W=2
log2

�
1 +

1

N0
Ss(f)

�
df bits=s (4.30)

whereSs(f) is the power spectrum of the information process at the output of the channel given by

Ss(f) = Sx(f)jH(f)j2; �W=2 � f � W=2: (4.31)

In a simple sense, this theorem just says that the countable set of eigenvalues�i(T;H) approaches the

power spectrum of the random process, if it is stationary. Assuming an input process bandlimited to

[�W=2;W=2], we introduce the average power constraint on the input process asZ W=2

�W=2
Sx(f)df � P: (4.32)

Since average mutual information is a non–increasing function ofT , for a finiteT it follows that

IT;H � IH and consequently thatPout(R; T ) � Pout(R). For largeWT both will practically hold with

equality, since as the number of significant eigenvalues increases they become a very close approximation

to the squared–magnitude of the channel response [VT68].
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Narrow–band channels

We now use (4.30) to determine the information outage probability for a narrow–band channel example.

If the bandwidthW is considerably less that the coherence bandwidth of the multipath channel, then we

showed in Chapter 2 thatjH(f)j2 = �; �W=2 � f � W=2. Let us assume that the transmitted signal

is chosen to be flat in[�W=2;W=2] asSx(f) = P=W . The information outage probability is therefore

given by

Pout(R) = Prob(W�1IH < R)

= Prob

�
� � (2R � 1)

WN0

P

�

= 1� F�

�
(2R � 1)

WN0

P

�
(4.33)

which in unit–mean square Rayleigh fading gives

Pout(R) = 1� exp

�
�(2R � 1)

WN0

P

�
(4.34)

This was found by Ozarowet al in [OSSW94]. For the more general case of Ricean fading with unit

average attenuation we have from Chapter 2

Pout(R) = 1� Q1

 p
2K;

r
2(2R � 1)

WN0

P
(1 +K)

!
(4.35)

We plot (4.35) in figure 4.4 as the Ricean factor increases for an SNR of10 log10

�
P

WN0

�
= 10dB. The

non–fading channel is indicated by a dashed line which is the standard Gaussian channel capacity

CG = W log2

�
1 +

P

WN0

�
bits=s (4.36)

We see that low codeword error–rates are practically impossible even with a significant LOS component.

As we mentioned in Chapter 2, Ricean factors on the order of 6 dB are common in indoor applications

so that severe degradation can still be expected. We only begin to approach a non–fading channel with

a very strong LOS component. For a non–flat channel closed–form solutions such as (4.35) are unlikely

to exist except in very special cases. Ozarowet al [OSSW94] have considered a two–path channel of the

form

h(t) = �0�(t) + �1�(t� d): (4.37)

They showed that ifd is a multiple of1=W , thenPout(R) can be expressed in terms of the Lobaschevski

functions. For other values ofd it must be computed numerically. Nevertheless, important conclusions
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Figure 4.4: Information Outage Probability for Ricean Fading and Narrow–band Signals forP=WN0 =

10 dB

concerning the effect of multiple–paths were drawn. In general, the added diversity significantly reduces

Pout(R). In order to gain more insight we now consider non–flat channels using the multi-tone signal

model from Chapter 3 which allows for simpler numerical computation.

4.2.3 Multi-tone Signals

In order to use the multi-tone system model which was described in Chapter 3, we must drop the as-

sumption of time–limited signals. We now have a situation characterized byWT dimensions. As long

asWT is large, the proportion of signal energy outside of[�T=2; T=2] is negligible so that we may con-

sider codewords as being practically time–limited. The multi-tone model is mathematically convenient

for analysing wide-band systems, even if the actual system does not use multi-tone modulation. This

is especially true if the bandwidth of the sub–bands is small, since the set of multi-tone basis functions

is almost sufficient for characterizing arbitrary band-limited signals. Another possible system which is

appropriately characterized in this fashion is a multiuser orthogonal frequency–hopping system with cod-

ing which allocates sub-bands equally to all users. A wide-bandtime–division multiple access (TDMA)

system with equalization (either in the time domain or via multi-tone) would also be subject to the same

performance limits.
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We recall that the channel input/output relationship is of the form

ys;n = hsxs;n + zs;n; s = 0; � � � ; S � 1; n = 0; � � � ; N � 1 (4.38)

wheres is the sub-band index,n is the time index and thefzs;ng are i.i.d. zero–mean circular–symmetric

complex Gaussian random variables with varianceN0. The number of complex dimensions isNx =

NS = WT . Under the assumption of independentxs;n we have that

IH =
1

NS

S�1X
s=0

N�1X
n=0

log2

�
1 +

1

N0
jxs;nj2jhsj2

�
bits=dim (4.39)

=
W

NS

S�1X
s=0

N�1X
n=0

log2

�
1 +

1

N0
jxs;nj2jhsj2

�
bits=s: (4.40)

The power constraint becomes

S�1X
s=0

N�1X
n=0

jxs;nj2 � PT (4.41)

As before we assume a flat signal spectrum withjxs;nj2 = PT
NS = P

W so that

IH =
1

S

S�1X
s=0

log2

�
1 +

P

WN0
jhsj2

�
bits=dim (4.42)

=
W

S

S�1X
s=0

log2

�
1 +

P

WN0
jhsj2

�
bits=s: (4.43)

The information outage probability corresponding to (4.42) is given by

Pout(R) = Prob

 
1

S

S�1X
s=0

log2

�
1 +

P

WN0
jhsj2

�
< R

!
(4.44)

and its computation must be carried out numerically by Monte–Carlo integration by creating random

S–dimensional Gaussian vectors with correlation matrix given by (3.98). In figure 4.5 we showPout(R)

for an SNR of P
WN0

= 10dB and spectral efficiency .5 bits/dim as a function of the number of carriers

employed in the system. We have assumed that the bandwidth isSWB, and each sub-band has bandwidth

WB = 9:6kHz. The TU12 ETSI channel model was used, so that the flat sub-band assumption holds

(the coherence bandwidth is on the order of 200kHz). We see that for fairly modest spectral efficiencies,

a wide-band system (i.e.S � 16) has a significantly lower achievable probability of error than a narrow–

band system. We will see in Chapter 7 when we discuss multiuser systems that it is for this reason that

multiple–access schemes like TDMA or FDMA/TDMA with slow frequency–hopping where signals

occupy the entire system bandwidth are at a significant advantage over FDMA which uses narrow–band

signals.
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S = 1 S = 4 S = 16 S = 64 S = 128

(9.6kHz) (38.4kHz) (153.6kHz) (614.4kHz) (1.2288MHz)

1 0.9953 0.9357 0.6926 0.5242

0.1961 0.2222

0.1103

0.0614 0.0772 0.0619

0.0493

0.0230 0.0222

0.0047 0.0028 0.0107 0.0094

Table 4.1: Significant eigenvalues for different bandwidths using the TU12 ETSI model
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In spite of the large difference between narrow and wide–band signals, the spectral efficiency for

reasonable outage rates is still only on the order of 1 bit/dim even for a fairly high diversity system. The

system withS = 128 which uses the entire 1.2288MHz still only achieves an outage rate of10�3 at

R = 1 bit/dim. To see the effect of diversity more concretely consider figures 4.6 and 4.7, where we plot

Pout(R) as a function of the SNR. We find that the slopes of the curves in the high SNR region are on

the order of the number of significant eigenvalues for the channel bandwidth which are shown in Table

4.1. We note that the simulation points have been interpolated with a curve of best fit.

Spread–Spectrum Signals

Let us now examine spread–spectrum signals using the multitone model with spreading factorS. The

received signal to be considered here is

yn =

0
BBBBBB@

h0g0

h1g1
...

hS�1gS�1

1
CCCCCCA
un + zn (4.45)

wherefgsg is the spreading–sequence satisfying
PS�1

s=0 jgsj2 = 1. We assume uniform spreading so that

jgsj2 = 1=S and, in turn, the power constraint becomes

N�1X
n=0

junj2 � PT: (4.46)

We may transform the problem using thesingular value decompositionof
�
h0g0 � � � hS�1gS�1

�T
=

U�V�. The matrixV is simply 1,� is anN–dimensional vector with one non–zero entry equal toq
1
S

PS�1
s=0 jhsj2 andU is some unitary matrix. The received signal and noise vectors can be transformed

asy0 = U�y andz0 = U�z so that theF frequency dimensions collapse into one and the channel may

be written equivalently as

y0n =

vuut 1

S

S�1X
s=0

jhsj2un + z0n (4.47)
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wherez0n are still zero–mean circular symmetric complex Gaussian random variables with varianceN0.

The resulting average mutual information is given by

IH = I (fU0; � � � ; UN�1g; fY0; � � � ;YN�1gjfHs = hs; s = 0; � � � ; S � 1g) bits=dim

= I
�fU0; � � � ; UN�1g; fY 0

0; � � � ; Y 0
N�1gjfHs = hs; s = 0; � � � ; S � 1g� bits=dim

=
1

NS

N�1X
n=0

log2

 
1 +

PT

NN0

1

S

S�1X
s=0

jhsj2
!

bits=dim

=
1

S
log2

 
1 +

P

WN0

S�1X
s=0

jhsj2
!

bits=dim (4.48)

=
W

S
log2

 
1 +

P

WN0

S�1X
s=0

jhsj2
!

bits=s (4.49)

From (4.48) we see that the optimal receiver from the point of view of average mutual information is

a maximal–ratio combiner (or RAKE receiver) of the sub–band channels. Moreover,Pout(R) is easily

computed in closed–form since the argument of the logarithm is a quadratic form of correlated Gaussian

random variables. In the case of Rayleigh fading we have

Pout(R) = Prob

 
S�1X
s=0

jhsj2 < WN0

P

�
2RS � 1

�!

=
S�1X
s=0

As

�
1� exp

�
� �2RS � 1

�
�i
WN0

P

��
(4.50)

wheref�sg are the eigenvalues ofKH andAs =
Q

j 6=s
�s

�s��j
. We have assumed, of course, that there are

no repeated eigenvalues. In figure 4.8 we showPout(R) for different spreading gains and signal–to–noise

ratios of P
WN0

= 0 dB. A high noise level such as this is typical in many spread–spectrum applications

such as a fully–loadedcode–division multiple–access (CDMA)system where additive noise is primarily

due to other users sharing the same bandwidth. We will discuss this more in Chapter 7. We also show the

Monte–Carlo simulation of (4.44) for this SNR. The scheme represented by (4.42) is a general coding

scheme which we may choose to have operate at a low rate in spread–spectrum applications. The scheme

represented by (4.48) is low–rate by design, in the sense that it is not ever meant to be used at a high rate.

We note that for spectral efficiencies on the order of1=S bits/dim there is a slight advantage to using a

non–trivial low–rate coding scheme as opposed to PN spreading. This difference is greater in multiuser

applications (i.e. CDMA) as we will show in Chapter 7. The real advantage of low–rate coding in

single–user systems comes when we want to have more spectrally efficient schemes which use the same

total bandwidth. At an information outage probability of10�3 with S = 128 (1.2288MHz) we see that a
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fivefold increase in spectral efficiency is possible using a sophisticated coding/spreading scheme. These

types of low–rate coding systems are discussed for non–fading channels in [Vit90][Hui84].

4.2.4 Block–Fading AWGN Channels

Let us now examine the block–fading AWGN channel where each block is transmitted across a single–

path or frequency–flat channel with signals band-limited toW Hz. This would be the case, for instance,

in a slow–frequency hopping system with narrow-band signals. We devote more attention to this channel

when we consider code design in the next chapter. Generalizing (4.30) to the case ofF blocks each

having indepedent and identically distributed channel responsesHi(f) = �i, we have using (4.16),

IH0;��� ;HF�1 =
W

F

F�1X
f=0

log2

�
1 +

P

WN0
�i

�
: (4.51)

As in the multi-tone case,Pout(R) must be calculated numerically. The independence of the channel

gains in each block allow us to perform this calculation via anF–fold convolution of the density function

of log2
�
1 + P

WN0
�
�

(the derivative of (4.33)). A Chernov upper–bound is also found in [KSS95]. In

figure 4.9 we plotPout(R) for P
WN0

= 10dB for unit–mean Rayleigh fading in each block. We see as

before that coding across several degrees of freedom (in this case the independent block fading levels)

has a significant diversity effect in the outage probability. We showPout(1) as a function of the SNR in

figure 4.10, where we note that the curves have an inverseF th power behaviour in the SNR.

For the case of perfect interleaving or an unlimited number of independent frequency bands and

no delay constraint, the conditional average mutual information (4.17) on an AWGN channel with unit–

mean Rayleigh fading is given by

I1 = W

Z 1

0
log2

�
1 + �

P

WN0

�
e��d�

=
We

WN0
P

ln 2
E1

�
WN0

P

�
; bits=s (4.52)

whereE1(x) is the first order exponential integral [AS65] given by

E1(x) =

Z 1

x

1

u
e�udu: (4.53)

Although Lee [Lee90] showedI1 to be given by (4.52), it was also computed numerically much earlier

by Ericson [Eri70], without explicit mention of the exponential integral function. We also showI1 in

Figure 4.9 along with the non–fading channel capacity in (4.36). Even for a fairly high diversity system,

the practical information rates are very far from those of an ergodic or perfectly–interleaved system.
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Figure 4.9: Information outage probabilities for Rayleigh fading for increasingF

This shows that ergodic channel measures are very optimistic when only a small number of degrees of

freedom characterize the fading process.

4.3 Chapter Summary

This chapter examined fundamental limits for systems operating over fading channels. We began with

a general discussion of the achievable probability of codeword error for fading channels which cannot

be treated in an ergodic stationary manner. This is typically the case when the system is subject to a

decoding delay as well a finite–bandwidth constraint. The main problem with such channels is that the
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fading process cannot be sufficiently averaged during the decoding process, and as a result a channel

capacity does not exist. It was shown that the probability of codeword error is bounded away from zero

by a quantity called theinformation outage probability. This is the probability that the instantaneous

average mutual information between the transmitted and received codeword is less than the information

rate agreed upon by the communicating parties. When channel ergodicity cannot be exploited, it becomes

a lower–bound to the achieveable codeword error–rate.

Using models for static multipath fading channels, we showed that theinformation outage proba-

bility exhibits a diversity effect similar to the pairwise–error–probability analyses we performed in Chap-

ter 2. The codeword error–rate performance cannot be made arbitrarily small and decreases as theDth
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power of the signal–to–noise ratio, whereD is the number of degrees of freedom or eigenvalues needed

to characterize the fading process during the transmission of the codeword. We used the TU12 ESTI

channel response model with the multitone representation of a wide–band transmission system to evalu-

ate achievable spectral efficiency. We showed that with signals with a bandwidth of 1.2288MHz we could

expect spectral efficiencies on the order of 2 bit/s/Hz with codeword error–rates of10�3. Transmission

schemes such as frequency–hopping with coding or wide–band bursty transmission (such as TDMA) can

exploit this bandwidth efficiently. Narrowband signals suffer hopelessly from lack of diversity. Using

the same model, we considered spread–spectrum signals operating at a low signal–to–noise ratio. We

found that when designed to operate at a spectral efficiency which is the inverse of the spreading gain,

there is a slight advantage to using a non–trivial low–rate coding scheme as opposed to PN spreading,

which can be seen as repetition coding. The main advantage for using low–rate coding comes when more

bandwidth efficient schemes are required (i.e. for high data rate spread spectrum applications), where

very large reductions in codeword error–rate can be achieved.

We have not considered the issue of imperfect estimation of the channel at the receiver. This

clearly will have the effect of reducing achievable data rates across the channel. These issues are treated

for time–varying channels in [Med95].
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Chapter 5

Code Design for Block–Fading Channels

In the last chapter we were interested in defining the information–theoretic framework for communica-

tion over general fading channels. We did not, however, give any examples of practical coding schemes

for approaching the performances given in our analyses. We now consider such issues for the particular

class of systems appropriately modeled by the so–calledblock–fading channel. As we already mentioned

in the two previous chapters this is an accurate model for systems where the channel state for blocks of

lengthN symbols, and decoding only be performed on a finite and small number,F , of such blocks. In

applications like GSM or IS54N is quite large (hundreds of symbols) and there is a constraint on the

interleaving depth due to a stringent processing delay requirement. Even in the absence of such delay

constraints, there may be a maximum number of uncorrelated channel realizations (for instance FDMA

slots in GSM). Both amount to the same thing, namely that the number of uncorrelated channel realiza-

tions over which coding is performed,F , is small, so that as we saw in the previous chapter, the channel

may not be treated in an ergodic and stationary manner.

Most work dealing with code design for fading channels assumes an ideal interleaving situation

[Pro95, BDMS91] which, in the context of block–fading channels, is equivalent to lettingF tend to

infinity. On ergodic channels parallel concatenated codes have proven to be effective [BGT93] and offer

astoundingly good performance. For near–optimal performance, however, they can be quite complex for

some applications. In addition, codes designed for ergodic channels need not be effective when applied

to a system whereF is small, which is often the case in PCS applications. Our goal here is to find

coded–modulation schemes using relatively simple constellations and encoders/decoders of reasonable

complexity which are especially well–suited for non–ergodic channels. We will show that there are

reasonably simple codes for low spectral efficiencies (<2 bits/dim) which can achieve close to optimal
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performance. This is appropriate in light of the results of the previous chapter where we showed that

for typical wide–band urban channels (i.e. around 1MHz bandwidth), we cannot expect to be able to

transmit at much more than 1 bit/dim at an SNR of 10dB.

Besides slow frequency–hopping systems, another application of a block–fading model is in fast

frequency–hopping systems whereN is small (on the order of a few symbols). The work of Kaplanet

al. in [KSSK95] considers coding for these systemswithouta constraint on the number of frequencies

over which the signal can hop. This amounts again to an ideal interleaving situation, where the fast

frequency–hopping pattern takes the place of the interleaver. The work of Lapidoth in [Lap94] addresses

the construction and performance of binary codesmatchedto the depth of the interleaver (or number of

blocks) which, as in our case, is assumed to be small. This introduces strong cyclic correlations in the

sequence to be decoded. Lapidoth’s analysis was performed using anerasure–channelmodel of a fading

channel and for various interleaving techniques.

In [LWK93] the coding problem was treated for the block fading channel. They showed that

in order for the diversity order to be maximum (i.e.F ) the code rate (in input/output symbols) must

not exceed1=F . We will extend these results by considering arbitrary diversity orders. For the case

of trellis codes with rate1=F they consider an analytical approach for determining the pairwise error

probability based on a generalized transfer function from the state diagram of the code. Trellis codes

based on linear convolutional codes withM–PSK modulation andF = 2 blocks are considered and a

few low–complexity examples are given. This approach was also recently considered for rate1=F binary

convolutional codes with antipodal signals over Ricean channels by Malkamaki and Leib in [ML97].

The work of Giraud and Belfiore [GB96] and Boutroset al. [BVRB96] examines the coding

problem for fading channels from a different point of view. They both focus of the design of multidi-

mensional lattice constellations which, using sufficient interleaving, are assumed to have an independent

fading strengths in each dimension. The specially designed constellations have the property that the di-

versity order is equal to the number of dimensions. We will discuss these schemes in the context of our

work shortly, since they can be applied directly to the block–fading channel.

We begin with a simplified discrete–time system model for the code design problem and perform

an information outage probability analysis for the case of non–Gaussian discrete signal alphabets. Recall

that in the last chapter we always assumed the transmitter used a continuous Gaussian symbol alphabet.

The goal of this analysis is to gain insight regarding the choice of signal constellation size on the achiev-

able codeword error–rate performance. We then examine the coding problem from the point of view of

the diversity order. We show that the block–fading channel can be considered as a non–binary coding
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scheme with block lengthF with N dimensional symbols. It follows that the diversity order,dFH, can be

upper–bounded using standard techniques, and it turns out that theSingleton boundis the most appropri-

ate of such techniques. We show how it can be used to determine the maximum diversity as a function

of the information rate in bits/dim, the number of fading blocksF and the size of the signalling con-

stellation. A code which meets the Singleton bound is known as aMaximal Distance Seperable (MDS)

code, and therefore any MDS code achieves maximum diversity. Using the Singleton bound as target

diversity order for any coded system, we provide examples for codes which achieve it. We first consider

block codes and multidimensional constellations followed by trellis codes. Results of computer searches

for maximal–diversity trellis codes of varying complexity for binary and non–binary constellations are

given. We end with some computer simulations of some of the reported codes and compare them to

codes already in use at the present time.

5.1 System Model and Outage Probability Analysis

We saw in Chapter 3 that the performance of the block–fading channel, in the case of uncorrelated

blocks, is due to two factors which act independently. This is first the relation between the underlying

signaling pulse shape and the multipath delay spread. The second is the effect of coding, more precisely

the minimum Hamming distance between pairs of signals on a block–basis. Because of this separation

between the two factors, it is sufficient to consider the simplest channel model which allows us to analyse

the effects of coding without having to worry about the pulse–shape/multipath relationship. We therefore

assume a narrow–band pulse shape so that there is no ISI due to multipath and amplitude statistics are

Rayleigh. In addition, we assume the coded symbols belong to a real–valued symbol alphabetS � R(i.e.

each symbol uses 1 signaling dimension.) Extending this analysis to complex symbols is straightforward

and brings no significant additional insight into the problem. Moreover, this allows us to determine

how close we can expect to get to the performance of the continuous Gaussian symbol case with simple

constellations.

We show the discrete–time channel model in figure 5.1. Assuming a system havingF channels

with blocks of lengthN symbols we have codewords occupyingNF dimensions written as

cm =
�
c0;0; c0;1; � � � ; c0;N�1; c1;0; � � � ; cF�1;N�1

�
; m = 0; 1; � � � ;M � 1; (5.1)

whereM is the size of the codebook. Each block is assumed to have a channel gain�f ; f = 0; � � � ; F�1
which is the same for each symbol in the block and independent from block to block. Under the Rayleigh
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assumption each channel gain is exponentially distributed with unit mean as

f�f (u) = e�u; u � 0: (5.2)

The receiver uses a filter matched to the chosen pulse–shape which is sampled at the symbol rate so that

we may may write the continuous–time problem equivalently as

rf;n =
p
�fcf;n + zf;n ; f = 0; � � � ; F � 1; n = 0; � � � ; N � 1; (5.3)

where thezf;k are i.i.d. zero–mean real Gaussian random variables with varianceN0=2. Let theNF–

dimensional vectorsr andz denote the received signal and noise samples andrf , cm;f andzf the samples

in each blockf = 0; � � � ; F � 1. We take for granted that the transmitter and receiver have agreed

beforehand to use a codebook havingM codewords so that the information rate isR = (log2M)=NF

bits/dimension. We denote theF–dimensional vector of signal amplitudes by�, and assume that there

is no feedback path for channel state information so that the transmitter has noa priori knowledge of�.
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Figure 5.1: Discrete–time system model

We begin with an outage probability analysis for general non–Gaussian symbol alphabets in order

to see the effects of using pragmatic constellations. From the results of Chapter 2, in order to compute
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the average probability of codeword error, we must consider the average mutual information functional

IH =
1

NF
I(C;RjA = �) =

1

NF

Z
c2SNF

Z 1

�1
fR;CjA(r; cj�) � (5.4)

log2
fRjC;A(rjc;�)
fRjA(rj�)

drdc bits=dimension:

using which we can compute the information outage probability

Pout(R) = Prob(IH < R): (5.5)

This quantity defines the practical lower–limit to the codeword error–rate in the limit of largeNF . We

recall that under an average power constraint

N�1X
n=0

F�1X
f=0

c2n;f < NFEs; (5.6)

the quantityIH is maximum for independent Gaussian symbols and is given by

IH =
1

F

F�1X
f=0

1

2
log2

�
1 +

2�fEs
N0

�
bits=dim: (5.7)

We have already computed the corresponding information outage probability in this case numerically. In

a practical sense, this quantity is useful for assessing the potential performance gains afforded by the use

of large constellations. For small constellations with equiprobable and independent symbols,Pout(R)

can similarly be computed numerically using [Bla87]

IH = log2 jSj �
1

F jSj
F�1X
f=0

X
si2S

Z 1

�1

1p
�N0

exp

�
� 1

N0
r2
�
� (5.8)

log2
X
sj2S

exp

�
� 1

N0

�
(r� �f(sj � si))

2 � r2
��

dr bits=dimension (5.9)

The simplest modulation scheme to consider is uniformly–spacedAmplitude Modulation(AM), which is

shown in figure 5.2.

In Figs. 5.3–5.7 we show the information outage probability now as a function of the the signal–to–

noise ratio per information bitEb=N0 (whereREb = Es) for both small AM constellations and Gaussian

signals. We see that by doubling the constellation size with respect to the minimum constellation which

achieves the desired information rate, we quickly approach the performance achievable with a continuous

Gaussian input signal. This is similar to the effect of coding with expanded signal sets on the non–fading

AWGN channel [Ung82]. We notice also that the diversity (i.e. the slope of the error–rate curve) is

reduced for small constellations. In other words, constellation expansion can increase diversity. In some



98 Code Design for Block–Fading Channels

2-AM

4-AM

8-AM

16-AM

Figure 5.2: AM Modulation

cases, the increase can be very significant (e.g. 1.5 bits/dim with 4 or 8 AM.) In the following section we

derive a bound on the diversity which allows us to quantify this observation more precisely.

In Figure 5.8 we show the lower bound on the bit–error probability given in (4.15). Again we see

the same effect from constellation expansion but that the error rates are two orders of magnitude lower.

We will see that this bound is much less indicative of practical bit error rates thanPout is for block error

rates.

5.2 Maximum Code Diversity

This section addresses the issue of designing coded–modulation schemes which attain maximum code

diversity (dFH) for a given number of uncorrelated blocks and information rate. Using the techniques from

Chapter 2, we recall that the conditional pairwise–error probability between two arbitrary codewords is

given by

Pej�(c
(a) ! c(b)) = Q

0
@
s
d2(a; b)

2N0

1
A : (5.10)

For the system at hand the Euclidean distance between the two codewords conditioned on the channel

state is

d2(a; b) =
F�1X
f=0

�fd
2
f(a; b) (5.11)

and

d2f (a; b) =
NX
n=0

(c
(a)
f;n � c

(b)
f;n)

2: (5.12)
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Defining the variablez = d2(a; b)=(2N0) we have that its moment–generating function is given by

Gz(s) =
F�1Y
f=0

1

1� s
d2
f
(a;b)

2N0

=

dFH(a;b)�1Y
i=0

1

1� s �i
2N0

wheref�ig are the non–zero block Euclidean distancesfd2f(a; b)g anddFH(a; b) is the Hamming distance

between the codewords on a block basis. The average PEP is therefore

Pe(c
(a) ! c(b)) = E�Pej�(c

(a) ! c(b)) � :5Gz

�
�1

2

�
=

dFH(a;b)�1Y
i=0

1

1 + :5�i
(5.13)

We saw in Chapter 2 that in these cases, the error probability curve decreases as the inversedFH
th

power

of the signal–to–noise ratio, so clearlydFH(a; b) is the most critical performance indicator. Nevertheless,

the secondary parameter

�(a; b) =

0
@dFH(a;b)�1Y

i=0

�i

1
A
1=dFH(a;b)

(5.14)

acts as a SNR gain factor which also must be considered. It is simply thegeometric meanof the Euclidean

distancesd2f(a; b).

From the average PEP we may invoke the union bound on the probability of error for an arbitrary

code as

Pe =
1

M

M�1X
a=0

M�1X
b=0

Pe(c
(a) ! c(b)); (5.15)

and if the code isgeometrically uniform[For91],

Pe =
M�1X
b=0

Pe(c
(0) ! c(b)): (5.16)

This just means that the probability of error is indenpendent of the codeword that is being transmitted and

there is no loss of generality in assuming that any one particular codeword is continuously transmitted.

5.2.1 An introductory example

We now consider a simple illustrative example which shows that the code design problem is different

from the classic approach of maximizing the Hamming or Euclidean distances. In practice, the encoder
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includes an interleaver, although in theory it is not required. The reason for its use is simply to reduce

the computational complexity of the encoding and decoding processes. We require that theF degrees of

freedom appear in the span of a codeword (or memory of a trellis code) which is assured by interleaving

without needed very long codes (many states.) We will assume that the interleaver is of the diagonal

type as described in Chapter 3 with depthF . If we denote the sequence at the output of the encoder

by q = fq0; q1; � � �g; qk 2 S, at the output of the interleaver the coded symbols in each block will be

c0 = fq0; qF ; � � � ; qkF ; � � �g; � � � ; cf = fqf ; qF+f ; � � �qkF+f ; � � �g.
Let us examine the rate 1/2 binary convolutional code with binary modulation (.5 bits/dim) em-

ployed in the full–rate GSM standard shown in Fig.5.9. The output bits are interleaved overF = 8

blocks transmitted on widely spaced carriers, so that the channel strength in each block will be fairly

uncorrelated from those in the other blocks. The minimum free Hamming distance path

q = f0; 0; � � � ; 0; 0; 1; 1; 0; 1; 0; 0; 1; 1; 1; 1; 0; 0; � � � ; 0g (5.17)

hasdfree = 7 (after deinterleaving) and is shown along with the blocks over which each bit were trans-

mitted. As for the symbols ineach block, we have

c0 = f0; � � � ; 0; 1; 1; 0; � � � ; 0g
c1 = f0; � � � ; 0; 1; 1; 0; � � � ; 0g
c2 = f0; � � � ; 0g
c3 = f0; � � � ; 0; 1; 0; � � � ; 0g
c4 = f0; � � � ; 0g

c5 = f0; � � � ; 0g
c6 = f0; � � � ; 0; 1; 0; � � � ; 0g
c7 = f0; � � � ; 0; 1; 0; � � � ; 0g

so that this path achievesd8H = 5. It turns out that this is also the minimum diversity path for this code

and, as we shall soon see, that there is no other code which achieves a higher diversity order with binary

modulation andR = 1=2 bits/dim.

Kaplanet al. [KSSK95] consider a similar trellis coding problem for an uninterleaved binary fast–

frequency hopping system, without a constraint on the number of hopping frequencies. Their system

model assumes that the hopping period extends overJ (J < 3) trellis branches of a rate1=n trellis code

so that by grouping together the output bits over theJ branches, we may see this as aJ=Jn code. This
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Figure 5.9: Minimum diversity/weight error event for full–rate GSM,

code design problem is quite different from the one we treat in this chapter for two reasons. Firstly,

as the code complexity increases, the diversity also increases, since it is not fundamentally limited by

a finite number of degrees of freedom. In fact, Kaplanet al. [KSSK95] give a bound on the diversity

as a function of the number of states of the encoder. Secondly, the code search procedure is simpler

since, although there is no interleaving, the frequency–hopping takes the place of an ideal interleaver

usingJ adjacent bits at a time. In the case we treat here, the cyclic nature of the correlations can

yield very long code sequences with low diversity. We are therefore often required to scan the trellis

to a great depth to assure that these codewords are not in the code. This is easily explained with an

example: consider the 16–state rate 1/2 code with generatorsg1 = (10101) andg2 = (11111)which has

dfree = 6. Let us use it on a channel withF = 8. An input(10 � � �0) yields(11011101110 � � �0) which

hasd8H = 6. Similarly (1010 � � �0) yields (110100000001110 � � �0) with d8H = 5 and(101010 � � �0)
yields(1101000011000001110 � � �0) with d8H = 4. This example shows that it is possible that long low

diversity codewords with highdfree can exist and have to be accounted for. We have found that in some

cases they can be much longer than in this example. Even for this example an input of(1010001010 � � �0)
yields a codeword withd8H = 4.
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5.2.2 Maximum Diversity Bound

We begin by deriving a upper–bound ondFH taken over all codeword pairs as a function ofR and the

constellation size. AlthoughdFH is the principle asymptotic indicator of the PEP for any coding scheme,

we must keep in mind that it does not necessarily accurately indicate the total probability of error for low

signal–to–noise ratios.

In order to determine the minimum pairwisedFH, it is convenient to group together theN symbols

which are transmitted in the same block, and view them as a super-symbol overSN . The codeword is

then a vector of lengthF super-symbols. Using this interpretation,dFH is simply the Hamming distance

in SN . This reduces the analysis to one of non–binary block codes with a fixed block lengthF , and

therefore all traditional bounding techniques apply.

An important first observation is that the highest rate code which achievesdFH = F hasR =

1
F log2 jSj bits/dim. This follows directly from the fact that no two codewords can have identical symbols

in the same position ifdFH = F . We can achieve this, for example, using a repetition code overSN , or

the multidimensional constellations of Giraud and Belfiore [GB96] and Boutroset al. [BVRB96], which

we will consider shortly. This was also remarked in [LWK93].

The question remains, therefore, how close we can get todFH = F with high–rate codes and simple

constellations. The answer lies in the Singleton bound [Sin64] which is proven in this context, for the

sake of completeness, in the following theorem:

Theorem 3 (Singleton Bound)

Any codeC of rateR bits/dim withM codewords consisting ofF blocks of lengthN symbols from a

one–dimensional alphabetS hasdFH satisfying

dFH � 1 +

�
F

�
1� R

log2 jSj
��

: (5.18)

Proof: Let k (0 < k � F � 1) denote the integer value satisfyingjSjN(k�1) < M � jSjNk,

whereM = 2NFR. Consider any set ofk � 1 coordinates, for instancei = 0; 1; � � � ; k� 2. SinceM >

jSjN(k�1) there are necessarily at least two codewords,x;y 2 C such thatxi = yi; 8i 2 f0; 1; � � � ; k�
2g. It follows thatdFH � F � k + 1 and therefore that

M � jSjN(F�dFH+1): (5.19)

Using the fact thatdFH must be an integer yields (5.18).�

We show the bound ondFH as a function ofR= log2 jSj andF in Fig. 5.10, where the value ofF

for each curve is simply the horizontal intercept.
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Figure 5.10: Singleton bound ondFH as a function ofR= log2 jSj

The first interesting result of this analysis is that the shape of the constellation is not important

with regard to the code diversity since it is a completely algebraic measure of the performance. The class

of maximum distance separable codes(MDS) therefore play a large role in this context. An MDS code

is one which meets the Singleton bound, such as theReed–Solomon (RS) codes. There is a downside,

however, which is that the block length of the code is constrained to beF which means that many

existing codes cannot necessarily be used effectively. Shortly, however, we give some examples of

codes which can be used with practical choices forF and guarantee maximum diversity. Secondly, and

more importantly, we see what was remarked earlier in the information–theoretic analysis concerning

constellation expansion. Take for example transmission atR = :5 bits/dimension overF = 8 blocks

as in full–rate GSM . With binary modulation (jSj = 2), the maximum pairwise diversity is 5, which

incidently is what is achieved by the coding scheme used in GSM. With quaternary modulation we see

that it can be increased to 7. Examining the slopes of the information outage curves in Fig. 5.4 we see

that both results agree. On the downside, for high code rates (> 2 bits/dimension) very large symbol

alphabets are required to achieve high asymptotic diversity. For example, withF = 8 andR = 3

bits/dimension, a 16-point constellation can only achieve a diversity ofd8H = 3. To achieved8H = 7 a

constellation with 4096 points per dimension is needed. Since these are only asymptotic results, they

may be somewhat pessimistic at low signal–to–noise ratios. We see from the information outage curves
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that this is indeed the case, since the slopes of the curves start to decrease towards their asymptotic value

as the SNR increases.

5.2.3 Block Codes

Let us first consider some examples of linear block codes of codeword lengthF with k information

symbols, so that the rates of the codes areR = k
F log2 jSj bits/dim. For this case the Singleton bound

assures thatdFH � F � k + 1.

Repetition codes

As we already pointed out, the simplest possible coding scheme for achieving diversityF is repetition

coding. A generalized repetition code for the caseN = 1 has generator matrixG =
�
1 1 � � � 1

�
so that codewords are formed as

c = uG (5.20)

whereu 2 S. The number of codewords isM = jSj and the spectral efficiency islog2 jSj=F bits/dim.

Multidimensional Constellations

The multidimensional lattice codes considered by Giraud and Belfiore [GB96] and Boutroset al. [BVRB96]

are perfectly suited for the block–fadingchannel, since they consider constellationsover a finite and small

number of dimensions. Each dimension has an independent signal attenuation, and therefore in the con-

text of the block–fading model, this is equivalent to lettingF be the number of dimensions andN = 1. In

[GB96] the constructed codes have dimensionality2 � F � 8 andM = 22F points (codewords) which

have diversityF . We show a particular constellation carved out of a hexagonal lattice for the caseF = 2

in figure 5.11(a). If we project the points of the lattice for this example oneach dimension, we obtain a

one–dimensional constellation withjSj = 16 points. The lattice may therefore be considered as a block

code withF = 2 over this one–dimensional alphabet. This code therefore satisfies the Singleton bound

with equality and uses the smallest constellation size to achieved2H = 2. The repetition code forF = 2

using a 16-AM constellation looks different (see figure 5.11(b)), but has the same number of codewords

and spectral efficiency. It makes much less efficient use of the signal space, however, which has a sig-

nificant effect on the Euclidean distance between signal points, and thus on the secondary performance

measure,�. In general, when the multidimensional constellations are projected onto the coordinate axes,
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Figure 5.11: Giraud and Belfiore’s 2-dimensional Lattice constellationvs. repetition coding

they produce non–uniformly spaced AM constellations. Another simple two–dimensional example to il-

lustrate this point is the rotated QPSK constellation shown in figure 5.12 with spectral efficiency 1 bit/dim

which was considered by Boull´e and Belfiore in [BB92]. They showed that by rotating the constellation

by �=8, the inherent diversity of the constellation is 2 and� is maximum, under the assumption, of

course, that both dimensions undergo independent channel realizations. We show the projection of the

constellation on each axis where we note that it is a non–uniform 4AM constellation. In what follows

we will consider the combination of a trellis code with uniform AM constellations, however, in light of

this observation, it may also be appropriate to consider non–uniformly spaced constellations in order to

improve performance. Boutroset al. [BVRB96] applied this rotation idea to known lattices which work

well on the Gaussian channel to yield constellations with high diversity on the fading channel.

The parameter� for these constellations is limited because of the fact thatN = 1. In order to

achieve higher coding gain, therefore, they must be concatenated with an error–control code, which will

reduce the spectral efficiency of the system. Moreover, this places a significant burden on the receiver

if high diversity is sought since the constellation itself is difficult to decode. In section 5.2.4, we take

a different approach by considering simple constellations with binary trellis codes for achieving high

diversity. This has the advantage of yielding larger values for� since coding is performed across a larger

number of symbols per block (i.e.N > 1.)
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Figure 5.12: Rotated QPSK constellation

Short non–binary codes

We now consider MDS code families for systems havingF = 4; 6; 8 formed by either shortening or

lengthening RS codes such that they have block lengthF . Shortening RS codes by removing infor-

mation symbols results in a code with the samedFH as the base code[Wil96]. Similarly, it is shown in

[Wol69] that up to 2 information symbols can be added to an RS code without changingdFH. For the

caseF = 6 we also consider a particular less complex extended Hamming code which is also MDS. The

combination of the constraints imposed by the structure of the codes and the number of blocks in the

system does not assure minimal complexity, nor the flexibility of choosing arbitrary symbol alphabets.

Another negative aspect is that the purely algebraic structure of the codes pays no attention to the other

less critical performance indicator,�.

Example A : F = 4

Consider a family of codes with rateR = k=4 bits/dimension for use with binary modulation.

Assuming we form symbols over GF(4) by forming pairs of bits from the same block, we start with the

(3; k�1)RS code over GF(4) withd4H = 5�k and lengthen it to(4; k). Following [Wol69] the resulting

parity check matrix for this code family is

H =

0
BBBBBB@

1 1 � �2

0 1 �2 (�2)2

...
...

...
...

0 1 �k (�k)2

1
CCCCCCA
: (5.21)
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These codes achieve maximum diversity fork=4 bits/dim with binary modulation. Clearly, we could also

use the same code with a quaternary symbol alphabet to achieveR = k=2 bits/dimension and keep the

same diversity. Here we see the first example of the effect of constellation expansion; if we takek = 2

and binary modulation we haveR = :5 bits/dim andd4H = 3. With k = 1 and quaternary modulation the

information rate is still:5 bits/dim butd4H = 4.

Example B :F = 6

We now examine another family of codes with binary modulation andR = k=6 bits/dim for the

case whenF = 6. Consider the(7; k + 1) family of RS codes over GF(8), havingd6H = 7 � k. The

parity check matrix for a shortened code family(6; k) is given by

H =

0
BBBBBB@

1 � �2 � � � �5

1 �2 (�2)2 � � � (�2)5

...
...

...
...

...

1 �k (�k)2 � � � (�k)5

1
CCCCCCA
: (5.22)

This shortened family achieves maximum diversity for binary modulation andR = k=6 bits/dim. We

can also use this family with 8-ary modulation to yieldR = k=2 bits/dim and the same diversity level.

It is interesting to point out that although the codes are optimal in an MDS (maximum diversity) sense,

there may be other less complex codes which are also MDS. For example, the (6,3) extended Hamming

code over GF(4) with generator matrix

G =

0
BBB@
1 0 0 1 1 1

0 1 0 1 � �2

0 0 1 1 �2 �

1
CCCA ; (5.23)

is also MDS withd6H = 4. It is much less complex than the (6,3) shortened RS code outlined above (64

codewords instead of 512). Moreover, it can be used with a quaternary signal set.

Example C : F = 8

As a final example we consider the case of a code family withR = k=8 bits/dimension when

F = 8 andN = 3. Similarly to whenF = 4, we look at the(7; k � 1) family of Reed–Solomon codes

over GF(8), havingd8H = 9 � k. The parity check matrix for the lengthened code family(8; k) is given
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by

H =

0
BBBBBB@

1 1 � �2 � � � �6

0 1 �2 (�2)2 � � � (�2)6

...
...

...
...

...
...

0 1 �k (�k)2 � � � (�k)6

1
CCCCCCA
: (5.24)

This family achieves maximum diversity for binary modulation andR = k=8 bits/dim. As before, we

can also use this family with 8–ary modulation yieldR = 3k=8 bits/dim and the same diversity level.

5.2.4 Trellis Codes

In the GSM system today, as previously mentioned, rate 1/2 binary trellis (convolutional) codes are

used. This is mainly due to the computational simplicity of implementing the Viterbi algorithm with

soft decisions. The Singleton bound is also applicable to convolutional codes, since they can always be

interpreted as very long block codes. In fact, in systems like GSM the convolutional codes are used in a

block fashion by appending trailing zeros to the information sequence, and a one–shot decoding of the

entire block is performed.

Let us consider two examples of trellis codes withM–ary constellations. We have been unable to

find simple design rules for such codes which guarantee maximum diversity, as well as high values for�.

Similar problems occur when trying to apply Ungerb¨ock’s techniques [Ung82] to perfectly interleaved

Rayleigh channels. The main problem with Ungerb¨ock’s construction is the parallel transitions in the

trellis representation of the codes imply that the diversity order is 1. Divsalar and Simon [DS88] came

up with a way around this problem by describing some multi–dimensional trellis codes for 8–PSK mod-

ulation. They were designed for perfectly interleaved channels, but suffer from very low diversity orders,

and therefore offer very poor performance. Schlegel and Costello [SC89] proposed new 8–PSK trellis

codes for perfectly interleaved channels using such techniques, but these only offer high diversity for a

large number of states (>64). In the multidimensional approach, the trellis still has parallel transitions,

but several output dimensions are associated with each branch. Provided the parallel transitions have

large mutual Hamming distances, diversity is increased.

We can apply the same multi–dimensionalapproach to a block–fading channel if we let the number

of output dimensions in each branch beF . We illustrate this with the two 2–state trellises in figure 5.13

for F = 4, both having .5 bits/dim. The trellis in figure 5.13(a) uses binary modulation and the one in

figure 5.13(b) quaternary AM modulation. We have assumed unit energy constellations and we denote
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the Euclidean distance between points separated byi positions byd2i . Here we have two codes which

-1.3416 -.4472 .4472 1.3416

A B C D

00/ABCD 00/ABCD

01/CDAB 01/CDAB

11/CDCD
00/BABA 01/DCDC

01/BCDA

10/DABC

00/0000 00/0000

01/1111 01/1111

11/0011
00/1001 01/0110

10/1010

11/0101

10/1100 10/ABAB

(a) (b)

0 1

-1 1

� = (4� 4� 8):25 = 3:36 � = [d2AB(d
2
AB + d2AC)(d

2
AC + d2AD)]:25 = 2:27

d4H = 4d4H = 3

Figure 5.13: Two–state trellis code examples

meet the Singleton bound forF = 4, but suffer from small values of�. If we compare the quaternary

code, however, to a repetition code over the AM alphabet, there is an improvement in� since in the latter

case, it would simply be the minimum distance of the constellation�min = d21 = :8. Extending this

approach to larger values ofF and more states becomes an exceedingly difficult and unrewarding task,

since it is unclear how to choose the sets associated with the parallel transitions to jointly maximizedFH

and�. Moreover, using parallel transitions is not a good idea since� will be limited. Another interesting

approach for small values ofF would be to use a trellis code with output oneach branch coming from

a (small) multidimensional constellation with maximal diversity. This would assure that the code has

maximum diversity and� would be significantly higher. We have opted to take a rather brute–force

approach at finding more powerful trellis codes by performing extensive computer searches.

Code search for binary modulation

We have performed a code search usingdFH as a primary performance criterion rather thandfree for binary

rate1=n trellis codes so that the diversity order of the code is maximum. At the same time we determine

the number of states needed to achieve the maximum diversity indicated by the Singleton bound. We

focused on maximum diversity rate 1/4, 1/3 and 1/2 codes for a varying numbers of blocks and states. The
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results are summarized in Tables 5.1–5.3, where we have followed the convention of [LC83] regarding

the octal representation of the generator polynomials. The table lists the codes which maximizedFH first

and then� as a secondary requirement and those marked in bold type meet the Singleton bound. We

should note that searching for these codes is more computationally intensive than for those maximizing

dfree since a simple dynamic–programming approach cannot be used to determine the minimumdFH path

in the trellis because of the finite–depth interleaving. As a result of this and the fact that the trellis must

be scanned to a very low depth to assure that there are no low diversity codewords, it is difficult to

search for low–rate codes with many states. The search procedure was reduced somewhat by ruling out

catastrophic codes.

As a first example, consider the case ofR = :5 bits/dim withF = 8. We can achieve maximum

diversity with an eight–state code, and moreover, it turns out that it does not exhibit maximum free

Hamming distance (dfree = 5, not 6). It is the only such code, so that it is a perfect example of the

danger of using codes designed for ergodic channels. It is interesting to note that the GSM standard

uses a 16–state maximum free Hamming distance code, which offers a slightly larger� than its 8–state

couterpart. The 16–state code listed in the table has a slightly larger� than the GSM code, but we have

found that the performance improvement is negligible. For the case ofF = 4, maximum diversity can

be obtained with a 4–state code, whereas in the GSM standard a 64–state code is used.

There are other important issues requiring the use of more complex codes. For instance, the 16-

state code used in full–rate GSM achieves maximum diversity withF = 2; 4; 6and 8, whereas the 8–state

code achieves maximum diversity only withF = 2; 4; 8. This is important since in a frequency–hopping

system, the number of hopping frequency is left up to the operator. Although we have not considered

this issue, it would be interesting to determine “universally” good codes which achieve acceptable perfor-

mance for many different values ofF . The more important reason for increasing complexity, as we will

see in section 5.3, is that larger values of�min can yield significant coding gain in the frame error–rate

performance.

Binary trellis codes with non–binary modulation

Since the first and most important goal is to maximizedFH we will consider linear binary trellis codes as

before with an appropriate mapping of adjacent output bits to the non–binary constellation,jSj. We have,

therefore, that groups oflog2 jSj adjacent bits are mapped into one symbol fromS. The interleaving is

done on a symbol basis so thatF adjacent symbols at the output of the encoder are transmitted in different

blocks. We show two examples with 4–AM modulation in figure 5.14 which have .5 and 1 bits/dim. The
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F = 2 F = 4

States d2H �min gen d4H �min gen

4 2 17.89 5,7,3,3 4 7.80 5,5,7,7

8 2 24.00 64,64,34,34 4 12.90 64,64,54,74

F = 6 F = 8

d6H �min gen d8H �min gen

4 5 12.26 5,7,7,5 6 7.27 5,6,7,7

8 5 17.77 54,74,74,64 7 7.81 44,70,64,54

F = 10 F = 12

States d10H �min gen. d12H �min

4 7 11.80 2,7,5,7 8 6.14 5,6,5,7

8 8 7.45 44,54,74,74 9 5.04 24,70,64,74

F = 14 F = 16

States d14H �min gen. d16H �min gen.

4 9 4.32 5,7,6,7 9 5.04 5,6,7,7

8 10 5.28 24,54,64,74 10 5.66 44,70,64,54

Table 5.1: Rate 1/4 bits/dim trellis codes for binary modulation
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F = 2 F = 4

States d2H �min gen d4H �min gen

4 2 13.86 6,7,3 3 17.93 6,6,7

8 2 17.89 64,64,74 3 29.27 54,74,64

16 2 19.60 42,76,32 3 37.13 46,76,66

32 2 24.00 61,65,37 3 49.75 51,31,77

F = 6 F = 8

States d6H �min gen d8H �min gen

4 5 5.28 5,6,7 6 4.00 5,3,7

8 5 7.55 44,60,64 6 6.00 44,70,64

16 5 11.30 32,54,76 6 12.00 42,56,62

32 5 14.08 54,65,67 6 15.09 41,67,53

F = 10 F = 12

d10H �min gen. d12H �min

4 6 6.35 5,6,7 7 4.00 5,6,7

8 7 6.93 64,54,74 8 4.00 44,64,54

16 7 11.41 46,52,76 8 6.26 62,66,76

32 7 15.85 66,47,34 9 5.44 54,73,67

F = 14 F = 16

States d14H �min gen. d16H �min gen.

4 7 5.38 7,5,7 8 4.00 5,7,7

8 8 8.54 44,64,74 9 4.00 11,51,71

16 9 5.44 62,72,56 10 4.00 72,62,56

32 9 8.48 54,27,35 10 5.72 51,37,76

Table 5.2: Rate 1/3 bits/dim trellis codes for binary modulation
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F = 2 F = 4

States d2H �min gen d4H �min gen

4 2 9.80 5,7 3 6.35 5,7

8 2 12.00 64,54 3 10.08 64,54

16 2 12.65 62,72 3 13.21 62,46

32 2 16.00 62,72 3 14.54 75,57

64 2 17.89 704,564 3 17.93 724,564

F = 6 F = 8

States d6H �min gen. d8H �min gen.

4 4 5.66 5,7 4 5.66 5,7

8 4 6.26 64,74 5 4.00 44,64

16 4 8.24 62,56 5 5.28 46,66

32 4 11.31 21,75 5 8.19 51,66

64 4 14.65 664,854 5 10.90 444,774

F = 10 F = 12

States d10H �min gen. d12H �min gen.

4 5 4.00 5,7 5 4.00 5,7

8 5 5.28 64,74 6 4.00 64,54

16 5 7.55 62,46 6 4.00 42,76

32 6 5.04 61,75 7 4.42 51,67

64 6 7.27 644,564 7 6.30 724,534

F = 14 F = 16

States d14H �min gen. d16H �min gen.

4 5 4.00 5,7 5 4.00 5,7

8 6 4.00 64,54 6 4.00 64,54

16 6 5.04 62,66 7 4.00 62,66

32 7 5.38 51,67 8 4.00 75,57

64 7 6.30 604,634 8 4.76 704,564

Table 5.3: Rate 1/2 bits/dim trellis codes for binary modulation
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use of binary linear codes simplifies the code search sincedFH preserves the linearity of the code. To see

this letc(a) andc(b) be any two output paths in the trellis. Sincec(a) � c(b) = c(q), wherec(q) is some

other path and� is binary addition, we have clearly that

dFH(ca; cb) = dFH(0; c
(q)): (5.25)

This means that as far as the diversity order is concerned, it suffices to compute the Hamming weight of
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Figure 5.14: 4-AM Coding Example

each path as we did for the binary case, the only difference being that it must be performed on the symbol

level. It is not necessary to consider all pairs of paths, which would greatly complicate the code search.

The secondary performance measure in the PEP,�min depends on theF Euclidean distances between

the sub–codewords transmitted ineach block. If we useGray codingas in figure 5.14, then with 4–AM

we cannot exploit the linearity of the code with respect to�, but we can use it to lower bound� as

�(c(a); c(b)) � �lb(c(a); c(b)) = �(0; c(a) � c(b)) (5.26)

This lower bound is possible since under the Gray mappingd2(a; b) � d2(0; a� b); 8a; b and in order

to maximize it, we do not have to consider all pairs of paths in the trellis. This bound using the Gray

mapping does not hold for larger AM constellations.

At the bottom of Table 5.4 we list some codes havingR = 1=2; 1 bits/dimension forF = 4; 8.

We must note that some of these codes were found with an incomplete search, due to the complexity of

the search process (indicated in italics).



5.2 Maximum Code Diversity 121

F = 4 F = 8

States d4H �lbmin gen. d8H �lbmin gen.

4 3 1.6 5,7 3 2.02 5,7

8 3 2.02 44,64 4 1.60 64,54

16 3 2.78 26,76 5 1.27 26,74

32 3 3.33 51,76 5 1.84 75,23

64 3 4.25 364,574 5 2.21 744,634

Table 5.4: Rate 1 bit/dim trellis–coded 4-AM modulations

F = 4 F = 8

States d4H �lbmin gen. d8H �lbmin gen.

4 4 2.58 5,7,6,7 6 2.02 5,7,6,7

8 4 3.76 44,64,54,34 7 1.77 44,30,50,34

16 4 4.60 62,72,46,56 7 2.55 62,56,50,66

32 4 5.55 65,75,43,57 7 3.27 44,57,67,51

64 4 6.04 644,474,554,534 7 3.79 544,464,704,750

Table 5.5: Rate 1/2 bits/dim trellis–coded 4-AM modulation
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5.3 Computer simulation of various codes

We have found that a union–bound approach for assessing the performance analytically yields quite

unfruitful results for trellis codes. The reason is that as we approach the maximum diversityF , the

number of paths which share a given diversity level increases quickly as we progress through the code’s

trellis and enumerating them becomes difficult since they cannot be discarded. Another by–product of

this effect which we remarked when the simulations were performed, is that error–patterns can be quite

long (several times the constraint length) due to the limited diversity.

In our simulations, we assumed a block lengthN = 100n= log2 jSj coded symbols, wheren is the

number of output bits of a rate1=n binary trellis code. We used a one–shot Viterbi decoder with trellis

termination. The channel is assumed to be a single–path Rayleigh fading channel and soft–decision

decoding is performed with perfect channel state information. The results are shown in figure 5.15–5.26

and cover a wide range of systems. We considered systems withF = 4 andF = 8 blocks, information

rates from .25 bits/dim to 1 bit/dim and simulated both frame and bit–error rates. We remark in general

that for the frame error–rates, performance increases as we increase the complexity since the value of

�min increases. Since the block–length is fairly long, we may justifiably compare these results to the

information outage probabilities we computed earlier. It is rather remarkable that we can come so close

to the theoretical limit with reasonably simple codes. The binary code used in the half–rate GSM standard

is less than one half of a decibel off from the information outage curve. We remark that this code is not

the one listed in the tables since it has a�min slightly less than the optimal code. Their performances are

indistiguishable however. ForF = 8, there is more of a gap between the codes and the theoretical limit.

This can be explained by the fact that the channel is becoming more ergodic than withF = 4 and the

code has to work much harder to get closer to the information outage probability. Examining the 4AM

codes, the increase in diversity is evident. For low SNR, however, the frame–error rate performance is

not significantly better than the binary codes. The performances of the 64–state codes for bothF = 4

andF = 8 fall within two decibels of the information outage curves.

In terms of the bit–error rate performances, increasing complexity has less of an effect, especially

for the caseF = 4. We have observed that although less frame errors occur, the erroneous sequences

tend to be much longer for the more complex codes and as a result contain many bit errors. We see

that constellation expansion yields much more significant gains here than in the frame–error rate perfor-

mance.
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5.4 Chapter Summary

This chapter considered coding for block–fading channels with a small number of blocks. This channel

model has significant practical importance for delay–constrained block–oriented communications, a cat-

egory in which many mobile radio systems fall. The slow frequency–hopping scheme used in the current

GSM mobile radio systems is a prime example. It is reasonable to assume that next generation systems

will also use similar, and perhaps more complex techniques.

We focused our attention on the attainable diversity due to coding. We showed that there is a

upper–limit to the diversity which depends on the number of blocks, the code rate and the size of the

signaling constellation. This was shown in two ways; the first was based on the computation of the

information outage probability for various constellations. We then computed a bound, which turns out

to be a disguised version of the Singleton bound, which indicates the maximum achievable asymptotic

diversity for a code of a given rate and constellation size. Both methods indicate that diversity is limited

and that it can be increased by constellation expansion. A rather unfortunate result is that for high

spectral–efficiency systems, in order to achieve a high asymptotic diversity level, very large constellations

are required.

We gave examples of block and trellis codes, with more of an emphasis on the latter, which achieve

maximum diversity. An important result is that maximum diversity can be achieved with rather simple

codes and that, in terms of bit error–rate performance, increased complexity may not yield significant

gains. This is not true, however, for the frame–error rate performance, which is often important in both

speech and data applications.

We gave a few examples of trellis–coded AM modulation schemes which yield a higher level of

diversity than binary modulation schemes of equal information rate. This is an area for further research,

since similar higher spectral–efficiency schemes should be found with more appropriate modulation

methods.

The channel model and codes covered in this chapter can be applied to several types of situations.

For instance, a coded wideband multitone system or a partially interleaved narrowband channel. The

performance analysis would be different since the blocks may be correlated, but the central conclusions

of this chapter would remain valid.
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Figure 5.15: Frame Error Probabilities forF = 4 andR = :25 bits/dim (antipodal modulation)



5.4 Chapter Summary 125

4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

4-states

16-states

64-states

BER

Eb=N0

Figure 5.16: Bit Error Probabilities forF = 4 andR = :25 bits/dim (antipodal modulation)
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Figure 5.17: Frame Error Probabilities forF = 8 andR = :25 bits/dim (antipodal modulation)
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Figure 5.18: Bit Error Probabilities forF = 8 andR = :25 bits/dim (antipodal modulation)
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Figure 5.21: Frame Error Probabilities forF = 8 andR = :5 bits/dim (antipodal modulation)
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Chapter 6

Systems Exploiting Channel State

Feedback

In this chapter we consider the possibility of havingchannel state feedback(also known asside infor-

mation) available at the transmission end so that outages at the receiver can be avoided. This includes

adjusting the transmit power (fast power control) or the information rate (variable–rate coding). The

IS95 system employs a feedback path for fast power control, which is critical in a CDMA system be-

cause of the near–far problem and fading [GJP+91]. Moreover, the updating is performed 800 times

per second, so that accurate tracking of the channel state is feasible. We note, however, that the avail-

ability of channel state information does not necessarily imply a feedback path. In two–way wireless

communication channels the up-link and down-link are often multiplexed in time. If this is the case and

the channels do not vary too quickly, the signal arriving from the opposite link can be used to measure

the channel(s). TheDigital European Cord-less Telecommunications System (DECT)[Rap96b] and the

Personal Handy phone System (PHS)[PHS95] already use some channel state information in this fash-

ion. The mobile station uses the downlink signal which broadcasts across the entire system bandwidth

to request allocation to the available channel in which his response is strongest. Some indoor cordless

telephone systems also perform similar dynamic channel selection strategies.

We examine the role of fast power–control for both delay sensitive systems (section 6.1) and those

which can tolerate long decoding delays (section 6.2). The average data–rate of a system employing

variable–rate coding is presented. We show that this is completely equivalent to coding over an infinite

number of degrees of freedom, from the point of view of spectral efficiency. We present an example of a

simple two rate scheme which performs reasonably close to an optimal system.
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The last part of this section deals with packet transmission over fading channels with a retransmis-

sion protocol, so that outages are corrected by anAutomatic Repeat reQuest (ARQ)scheme [BG92]. We

examine the maximum average information rate that can be expected on a collision–free channel, where

outages are purely due to deep fades. This type of system is already in use in the data transmission mode

of the GSM standard.

6.1 Variable Power Constant Rate Systems

When the transmitted signal can be tailored to the channel response, its statistics should be chosen to

maximize average mutual information. Normally this maximum is given the namechannel capacity,

since this is the absolute maximum information rate at which communication can take place. Throughout

this section we will assume that codewords are transmitted continuously across static multipath channels

(for the duration of a codeword). The codewords are subject to the following average energy constraint

E Sx;n(f) � P

W
(6.1)

whereSx;n(f) is the power spectral density during the transmission of codewordn. We now adjust the

power spectrum of thenth codeword according the state of the channel,Hn(f), asSx;n(f) = P(Hn(f))

such that the average mutual information at the receiver is constant and maximum for each codeword.

This is known as thedelay–limitedcapacity, defined by Hanly and Tse [HT96], which can be written

explicitly as

Cd = max
P

Z W=2

�W=2
log2

�
1 +

jHn(f)j2P(Hn(f))

N0

�
df bits=s (6.2)

subject toEHP(Hn(f)) � P
W . It was given this name since the tolerable decoding delay is assumed to

be small so that ergodic channel arguments cannot be used.

6.1.1 Multiple Receivers in Single–Path Rayleigh Fading

Let us consider the simplest case, namely frequency–flat channels. We may write the maximization

problem as

Cd = max
P

W log2

�
1 +

P

WN0
�nP(�n)

�
bits=s (6.3)
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subject to
R1
0 P(u)f�(u)du = 1. Clearly the only power control function which yields a constant

average mutual information isP(u) = K=u so that

Cd = W log2

 
1 +

P

WN0

1R1
0 f�(u)

du
u

!
bits=s: (6.4)

This expression was also found by Goldsmith in her doctoral thesis [Gol94]. We see, therefore, that

in this simple case, the optimal delay–limited power control function is nothing but a perfect power

controller, which attempts to keep the received SNR constant. If we use the Rayleigh fading model in

(6.4) we see immediately thatCd = 0 sinceK =
R1
0 e�u duu = E1(0) = 1 and therefore outages are

inevitable. For systems employing some diversity this will not be the case, and outages can be avoided

at the expense of transmitting at a high power when the channel state is weak. Let us examine simple

multiple–antenna diversity schemes with maximal–ratio combining in Rayleigh fading. Assuming a

system withL receivers the density function of the received energy is given by

f�(u) =
uL�1

(L� 1)!
e�u; u � 0 (6.5)

so that

K =

�Z 1

0
f�(u)

du

u

��1
= L� 1 (6.6)

and

Cd = W log2

�
1 + (L� 1)

P

WN0

�
; (6.7)

If there were no fading, the capacity of the multichannel system would be

C(L) = W log2

�
1 + L

P

WN0

�
; (6.8)

so that for largeL, the fading channel with power control loses very little in terms of spectral efficiency.

In order to better appreciate the effect of power control, let us compute the information outage

probability for this example using (4.33) forL = 2 which yields

Pout(R) = 1�
�
1 + (2R � 1)

WN0

P

�
exp

�
�WN0

P

�
2R � 1

��
: (6.9)

The power controlled information rateCd for P
WN0

= 10 dB is plotted alongside (6.9) in Figure 6.1.

We see that power control has a very significant effect since the outage probability is very high (.3) at

R = Cd, which means that rates much less thanCd can be expected for practical outage rates. This outage

rate is even close to a system without diversity which is shown in the second curve. The explanation for
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Figure 6.1: A delay–limited power control example

the effect of power control is that there is a much higher probability of having a signal amplitude above

average in the diversity system. As a result, power is saved for when the signal amplitude falls below

average, which also occurs less frequently than without diversity. We have not considered the selection

diversity case since it will be treated in Chapter 6 when we treat multiuser systems.

6.1.2 Spread–Spectrum

Let us consider the case where we use power control in a spread–spectrum system (i.e. CDMA). This

will be similar to theL receiver case, except that the each channel will be correlated and have different

average strengths. As before we will use the the multi-tone model with maximal–ratio combining of the

sub-bands as in (4.47) so

K =
1R1

0

PS�1
s=0

As
�s
e�u=�s duu

: (6.10)

From (4.48) we have that the capacity with power control is

Cd =
1

S
log2

�
1 +

KP

WN0

�
: (6.11)
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The values forK in dB as a function ofS for the TU12 channel are -1.2860, 7.3224, 15.8094, and

19.6477 forS = 4; 16; 64; 128. If there were no fading,K would be equal to the number of sub–bandsS

so that the losses due to fading in dB are 7.3066, 4.7188, 2.25 and 1.42. As in the multichannel case, the

diversity brings the performance of the system much closer that of the non–fading channel as the number

of degrees of freedom increases.

We compare the information outage rates from (4.50) withCd in figure 6.3 for the ETSI TU12

channel. As before we assume the bandwidth isSWB with WB = 9:6kHz and an SNR of PWN0
= 0 dB.

We see that as the bandwidth increases, the diversity has the effect of bringing the outage curve closer to

Cd, so that power control has less of an effect. The reason for this is that the output of the maximal–ratio

combiner tends quickly to 1 with increasing diversity, so that outages do not occur as frequently. For low

diversity, as in the previous example we see that power control has a dramatic effect, even if the loss with

respect to a non–fading channel is substantial. Even when the channel is more or less flat, for instance for

S = 4, the second eigenvalue, which is almost insignificant (see Table 4.1), forces the density function of

the channel gain to zero at the origin. This is shown in figure 6.2. As a result, outages can be effectively

avoided by power control.
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Figure 6.2: Probability density of channel gain forS = 4

The constraint (6.1) allows the transmit power of each codeword to vary according to the channel

state, so that at certain times it can be quite high, in order to compensate for a poor channel state. If the
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Figure 6.3: Comparison of spread–spectrum outage rates withCd for P=WN0 = 0 dB

transmitter has a peak–power limitation, there will always be times when it will be exceeded, thereby

forcing the receiver into an outage situtation. In such cases, where outages can be controlled, it would be

more wise to halt transmission and conserve power for when the channel state becomes acceptable. We

will consider schemes such as this in section 6.2.

6.2 Variable Rate Schemes

6.2.1 Average Information Rates

Now let us assume that we can allow the average mutual information for each codeword to change, the

goal being to maximize its average value. We saw earlier, that if we relaxed the decoding delay constraint

in the block–fading channel (i.e.F ! 1) we can communicate at any information rate less thanI1 in

(4.17). Suppose now we assume a constant power for each codeword (i.e.Sx;n(f) = P=W ) and because

of channel knowledge at the transmitter we choose the information rate

Rn = IHn =

Z W=2

�W=2
log2

�
1 +

P

WN0
jHn(f)j2

�
df bits=s (6.12)
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for codewordn. This assures that we never have an outage at the receiver. In practice, outage–like

events still occur since when the channel is very weakRn would be close to zero. The resulting average

information rate is

R = lim
N!1

1

N

NX
n=0

Rn = W log2

�
1 +

P

WN0
jHn(f)j2

�
= I1 (6.13)

which in Rayleigh fading is also given by (4.52). The integral in (6.12) can be removed since the statistics

of Hn(f) are invariant with frequency. We see, therefore, that a variable–rate system has the same

average performance as a system which codes over an infinite number of degrees of freedom (i.e. infinite

interleaving). As a result, the effects of frequency–selectivity are also averaged–out. The amount of time

needed to achieve the average data rateI1 in a variable–rate scheme is equivalent to the depth of the

interleaving (or number of uncorrelated carriers in frequency–hopping systems) needed to achieveI1 in

a fixed rate scheme.

6.2.2 Water–Filling

Realizing the equivalence of variable–rate and long–term coding with interleaving, let us now consider

the case when we can change the power spectrum for each codeword (block) according to the average

constraint in (6.1). The goal is to chooseSx;n(f) to maximize the conditionalaverage mutual information

(or the average information rate.) We refer to the maximum value as theaverage channel capacity,C1,

which is solution to following maximization problem

C1 = max
Sx;n(f)

W log2

�
1 +

P

WN0
Sx;n(f)jHn(f)j2

�
bits=s (6.14)

subject to (6.1). The solution for a frequency–flat channel was found by Goldsmith [Gol94] and is com-

pletely analogous to the water–filling solution for time–invariant non–fading channels [Gal68]. Gen-

eralizing this result, we have that the form of the optimal power spectrum for each block (codeword)

is

Sx;n(f) =

8><
>:
B � �WN0

P

�
1

jHn(f)j2
jHn(f)j2 � WN0

BP

0 otherwise

(6.15)

whereB is the solution to

Z 1

WN0
PB

�
B �

�
WN0

P

�
1

�

�
fjHj2(�)d� = 1 (6.16)
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The corresponding average channel capacity is therefore

C1 =

Z 1

WN0
B

log2

�
B

P

WN0
�

�
fjHj2(�)d� bits=s: (6.17)

The general form of the optimal power spectrum is shown in figure 6.4. We see that more power is

allocated when the channel is strong and less when it is weak and, moreover, outages are created. This is

completely opposite from the delay–limited case with frequency–flat fading. Since no delay constraint is

imposed on the problem, we are willing to wait forever for the channel to becomeacceptable. The best

thing to do, therefore, is to save energy when the channel is weak so we can use more when it is strong.

We effectively blast information through the channel when the fading state is favourable and turn it off

when it is not. The namewater–fillingstems from the fact that the amount of energy allocated to each

frequency can be calculated by inverting the channel response and pouring water on top of the curve

until its level reachesB. Since this optimization is over all possible power spectra, it includes the one

corresponding to the delay–limited case and consequentlyCd � C1.

jHn(f)j
2 1=jHn(f)j

2

B

Sx;n(f)

f f

Sx;n(f)

f

Figure 6.4: Graphical interpretation of water–filling
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Using [GR80] it can be shown that (6.17) in Rayleigh fading can be expressed as

C1 =
W

ln 2
E1

�
WN0

PB

�
bits=s (6.18)

whereB is the solution to

Be�
WN0
BP � WN0

BP
E1

�
WN0

BP

�
= 1: (6.19)

Sincelima!0E1(a)=a = 0, we have that for large SNRB � 1 and consequentlyC1 � We
WN0
P Ei

�
WN0
P

�
=

I1. This means that fast power control has almost no effect on an ergodic Rayleigh fading channel which

is quite contrary to what we found for the non–ergodic case in section 6.1. This result is true for coded

systems but we will see later that without coding, power control can have a noticeable effect. In figure

6.5 we show the constantB as a function of the SNR in Rayleigh fading. This is the peak–to–average

power ratio which we see is not excessive for practical values of the SNR. In figure 6.6 we showC1,

I1 andCG as a function of the SNR. As we mentioned, fast power control has little effect in terms of

capacity, except at very low SNR where it actually exceeds that of the Gaussian channel.
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6.3 Simple two–rate schemes with and without power control

Let us now consider a simple two–rate scheme with narrow–band signals, so we can assume the channel

is frequency–flat. This would be the case for systems a large amount of narrowband channels which

are allocated dynamically. We will consider these issues more in the following chapter. The channel

response is characterized by two states, good and bad. We say the channel is good when the response,

�, is greater than some nominal value�min and otherwise it is bad. When in the good state, we transmit

with rateR and in the bad state we turn the transmitter off. We consider two different such schemes.

The first transmits with a constant power when in the good state, so there is no power control. The
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second, described by Goldsmith [Gol94], uses power control to keep a constant received power when

transmission takes place.

Chua and Goldsmith[CG96][CG97] have considered variable rate schemes with more than two

rates and find that average spectral efficiencies very close toI1 can be expected with and without addi-

tional coding. These results are also obtained with reasonable outage rates (on the order of10�2). The

need for additional coding depends on the target bit–error rate of the system. Here we will show that the

same is possible with uncoded two–rate transmission, if the system can spend large amounts of time in

the outage state.

Scheme 1: Constant Transmit Power

In this scheme, the transmitter chooses to use the channel it knows that there will not be an outage at the

receiver. The power control is of the form

P(�) =

8><
>:

1
1�F�(�min)

� > �min

0 � � �min

(6.20)

so that its average value is unity. The transmitter uses an information rate

R = W log2

�
1 +

P

WN0

�min
1� F�(�min)

�
bits=s (6.21)

when in the good channel state, so that as long as� � �min we are guaranteed not to have an outage at

the receiver. The average information rate is therefore

R = R(1� F�(�min)) (6.22)

and the peak–to–average power ratio is1� F�(�min). We now maximize (6.22) with respect to�min by

setting@R=@�min = 0 yielding the non–linear equation

P
WN0

e�min(1 + �min)

1 + P
WN0

�mine�min
= ln

�
1 +

P

WN0
�mine

�min

�
(6.23)

for Rayleigh fading.

Scheme 2: Constant Received Power

Now we assume a power controller of the form

P(�) =

8><
>:

K(�min)
� � � �min

0 � < �min

(6.24)
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so that the received power is constant when the channel is in the good state. This was considered by

Goldsmith in her thesis [Gol94]. The information rate in the good state is given by

R = W log2

�
1 +

P

WN0
K(�min)

�
(6.25)

and the average information is again given by (6.22). As in earlier sections, we chooseK(�min) to yield

a unit average power control level as

K(�min) =

�Z 1

�min

f�(u)
du

u

��1
: (6.26)

The peak–to–average power ratio isK(�min)=�min. Again we maximize (6.22) with respect to�min

which in Rayleigh fading yields the non–linear equation governing the optimal�min

P

WN0

e��min

�min (E1(�min))
2 =

�
1 +

P

WN0

1

E1(�min)

�
ln

�
1 +

P

WN0

1

E1(�min)

�
(6.27)

We note that in Rayleigh fading

K(�min) =
1

E1(�min)
: (6.28)

We compare the two schemes in figures 6.7–6.9 for Rayleigh fading. We see that with power con-

trol and moderate SNR, the two–rate scheme comes very close to optimal performance, which in terms of

implementation complexity is an important result. Without power control there is a more significant loss.

The peak–to–average power of scheme 2 is higher, but at the same time is rather invariant with respect to

the average SNR. If we consider the peak–to–average power ratio for scheme 2,1=(�minE1(�min)), as

shown in figure 6.10 we see that the optimized scheme operates in the vicinity of the minimum, 5.5 dB.

If we consider the optimal threshold level for both cases in figure 6.10, we remark the two schemes work

quite differently. With scheme 1, the variation of the threshold with the average SNR is significant, and

more importantly the transmitter is turned off more often than with scheme 2. Scheme 2, on the other

hand, has a more or less constant threshold and transmits around 75% of the time.

6.3.1 BER Comparison for Uncoded Transmission

The previous results on average information rates assumes the use of some form of error–control coding.

Let us now consider the same two–rate channel control schemes without any coding at all. We will use

different size QAM constellations to achieve average information rates of 1 and 2 bits/s/Hz and compare

their performance to uncoded BPSK and QPSK.
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We choose 4 different modulation schemes for numerical computations: BPSK (R = 1 bit/s/Hz),

QPSK (R = 2 bits/s/Hz), 8-PSK (R = 3 bits/s/Hz) and 16-QAM (R = 4 bits/s/Hz). The BER condi-

tioned on the channel strength� for the these QAM modulations are (from Proakis [Pro95])

PBPSK
bj� = PQPSK

bj�
= Q

 r
2P(�)� Eb

N0

!

P 8�PSK
bj�

� 1

3
Q

 r
:8787P(�)� Eb

N0

!

P 16�QAM
bj�

=
3

8
Q

 r
:8P(�)� Eb

N0

!"
1� 3

8
Q

 r
:8P(�)� Eb

N0

!#
(6.29)

We take three values for�min such that1� F�(�min) = 1=2; 1=3; 1=4, which in Rayleigh fading

are�min(1=2) = ln 2 = :6931; �min(1=3) = ln 3 = 1:0986; �min(1=4) = ln 4 = 1:3863. These are

simply the proportion of time communication is allowed. In order to calculate the average BER we use

the density

f 0�(�
0) =

8><
>:

1
1�F�(�min)

f�(�0); �0 � �min

0 otherwise

which is the density of� conditioned on� � �min, or equivalently the time when transmission takes

place.

Under scheme 1, the peak–to–average power ratios (1 � F�(�min) for the three choices of�min

are 3 dB, 4.77 dB and 6 dB. Using QPSK with�min(1=2) and 8–PSK with�min(1=3) for an average

spectral spectral efficiency of 1 bit/s/Hz we have the BERs

PQPSK
b = e�min

Z 1

�min(1=2)
Q

 r
2e�min(1=2)

Eb
N0

�0

!
e��

0
d�0

= Q

 r
2:7724

Eb
N0

!
� 2

s
Eb=N0

:5 + Eb=N0
Q

 s
1:3862

�
1 + 2

Eb
N0

�!
(6.30)

P 8�PSK
b � 1

3
e�min(1=3)

Z 1

�min(1=3)
Q

 r
:8787e�min(1=3)

Eb
N0

�0

!
e��

0
d�0

=
1

3

"
Q

 r
2:8960

Eb
N0

!
� 3

s
Eb=N0

:7587 + Eb=N0
Q

 s
2:1972

�
1 + 1:3180

Eb
N0

�!#
(6.31)

We have used the fact thatZ 1

�
Q
�p

�x
�
e�xdx = e��Q

�p
�x
�
�
s

�

� + 2
Q
�p

(� + 2)x
�
: (6.32)
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We note that the uncoded BER for BPSK/QPSK can be found from (6.32) by setting� = 0 and� =

2Eb=N0 yielding

P
B=QPSK
b = :5

 
1�

s
Eb=N0

1 + Eb=N0

!
: (6.33)

For 16–QAM with�min(1=4) and�min(1=2) for average spectral efficiencies of 1 bit/s/Hz and 2

bit/s/Hz respectively, the BERs must be computed numerically.

Examining now scheme 2 in Rayleigh fading, we have that the power control constantK for

the three values chosen for�min isK(1=2) = 2:6406; K(1=3) = 5:3644; K(1=4) = 8:4274. These

correspond to peak–to–average power ratios (K=�min) of 5.80 dB, 6.89 dB and 7.83 dB. For transmission

at an average spectral efficiency of 1 bit/s/Hz we have the three average error probabilities of

PQPSK
b = Q

 r
2K(1=2)

Eb
N0

!
= Q

 r
5:2812

Eb
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!
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and similarly at 2 bits/s/Hz we have

P 16�QAM
b = Q
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:8K(1=2)

Eb
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!
= Q

 r
2:1125

Eb
N0

!
(6.37)

We plot the BER for the two schemes at 1 and 2 bits/s/Hz in figures 6.11 and 6.12 where we

notice that both have comparable performance, with a slight advantage for scheme 2 at 1 bit/s/Hz. The

most important practical conclusion to be drawn from this analysis is that exploitation of channel state

information is a very efficient means for achieving acceptable performance on a fading channel, when

we do not have decoding delay constraints. We see that we can even achieve an SNR gain with respect

to a non–fading channelwithout coding. This is possible by taking advantage of the time–varying nature

of the fading channel by transmitting with a higher rate constellation when the attenuation is greater than

unity. We will meet this effect again in Chapter 6 when we treat the multiuser channel. In that case, we

do not even require constellation expansion to achieve an SNR gain without coding. Provided channel

state information exploitation is feasible for given system parameters, it is a much simpler solution than

using error–control codes with interleaving.

Here we have achieved an SNR gain at the expense of transmitting very infrequently on a single

channel. In future (and already in some current) wireless systems, the transmitter may haveaccess
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to many channels, sayL, over which to transmit information. These on/off schemes would be very

attractive in this type of scenario. Suppose we choose some proportion of time,p, where the transmitter

remains silent on any given channel and that when transmitting on a given channel we use rateR. The

total average rate would beLR(1 � p) and the instantaneous number of channels in use, assuming all

channels had uncorrelated strengths (i.e. carrier spacings much greater than the coherence bandwidth),

is a binomial random variable with density

Prob(Cn = c) =

�
L

c

�
(1� p)cpL�c: (6.38)

By choosingL to be large enough andp small enough, we have a variable–rate scheme withL rates and

outage probabilitypL, which is small. We will come across these types of allocation strategies in the

following chapter.

6.4 Average information rate with retransmissions

We now consider a single–user system with anAutomatic Repeat reQuest (ARQ)mechanism as shown

in figure 6.13. The transmitter generates packets continuously which are stored in a buffer of unlimited

size. We interpret each packet as a separate codeword which, after having been transmitted, remains in

the buffer until an acknowledgment of successful decoding is returned by the receiver. Furthermore, we

assume that the feedback path is error–free which is somewhat unrealistic on wireless channels. Using

the information outage probability we have, for reasonable packet sizes, that the probability of correctly

decoding the packet is1�Pout(R). In a mobile environment where the channel state changes from packet

to packet it is reasonable to assume that it is independent for each transmission of the same packet. Under

this assumption, the average number of transmissions necessary to transmit the packet is

(1� Pout(R))
1X
i=1

i[Pout(R)]
i�1 =

1

1� Pout(R)
(6.39)

yielding an average data rate of

R = R(1� Pout(R)) bits=s: (6.40)

This type of system is very similar to scheme 1 in the previous section. The main difference is that

instantaneouschannel knowledge at the transmitter allows for power conservation by detecting the outage

before it happens. Here the transmitter only learns of the outage by virtue of the repeat request. In a

multiuser system this difference would be more important, since thea priori channel knowledge would
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Figure 6.13: System model with repeat requests

also reduce the number of collisions as well as allow for a higher transmit power. We do not consider

this effect here.

We plotR vs.R for single–path Rayleigh fading withPWN0
= 10 dB in figure 6.14 where we see

that there is an operating information rate at whichR is maximum. By straightforward maximization we

find using (4.34) thatRopt is the solution to

Ropt2
R =

P

WN0
ln 2: (6.41)
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Figure 6.14: Reliable throughput as a function ofR in Rayleigh fading

We now consider a system which employs some diversity. This can be achieved via slow–

frequency hopping for instance, where a packet is split and transmitted in different parts of the spec-
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trum. The multiple–access protocol considered by Humbletet al in [HHR96], which we depict in figure

6.15, uses a similar approach. Here the packet is transmitted with a sweeping carrier frequency in or-

der to exploit diversity. This has the effect of turning a frequency–selective channel into a narrowband

time–selective channel. It also has the advantage that several users can transmit concurrently without

collisions, provided their sweeps do not overlap at the outset. This situtation is reduced by introducing

a header at a given frequency which indicates when a user is about to begin transmission of the packet.

As long as users do not initiate transmissions within a time–period equal to the header length they will

t

f

T

W

Figure 6.15: Frequency–sweeping transmission scheme

not collide. The bandwidth of the wideband system, either with a frequency–sweep or with frequency–

hopping will be characterized by a certain number of degrees of freedom, but we simplify the problem

by considering it as a block fading channel withF independent blocks, whereF will be proportional

to the available bandwidth. The optimal information ratesRopt can be calculated numerically using the

results of section 3.6. In figure 6.16 we showRmax as a function of the SNR andF and in figure 6.16

we show the information outage rate which yieldsRmax.

We see that the average data rate increases as a function of the diversity order, except it does so

rather slowly. If we consider the optimal information outage rates, we see that they are all quite high, and

they decrease with increasing diversity. This means that we are effectively using the channel at a very

high information rate when it is favourable. This result was shown by Knopp and Humblet in [KH96].

This is not surprising, since it is exactly the same effect as with variable–rate coding. The merits of

variable–rate coding and long decoding delays (i.e. interleaving) are clear, sinceI1 is noticeably higher

than any of the diversity–based systems with ARQ. Nevertheless, an ARQ–based system in Rayleigh

fading can still offer spectral efficiencies exceeding 2 bits/s/Hz for reasonable signal–to–noise ratios.
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6.5 Chapter Summary

In this chapter, we considered the exploitation of channel knowledge at the transmission end, either in the

form of fast power control or variable–rate coding, in order to eliminate or exploit information outages.

This can be achieved in practice in two–way systems either by a feedback mechanism or by measuring

the channel response of the opposite link when time–division duplex is used. We first considered the

delay–constrained case for narrow–band signals with optimal perfect power control, under an average

power constraint. Using the definition ofdelay–limited capacitywe showed that when some form of

diversity can be exploited, not only can outages be eliminated, but significantly higher information rates

can be expected. The price to be paid for using such a scheme is an unlimited peak–to–average power

ratio. We then considered the case where the information rate of each codeword could be adjusted to

avoid outages. We showed that this is completely equivalent to coding over a very large number of

independent channel states, which in practice can be achieved by interleaving. When the power of each

codeword can also be tailored to the channel response, the optimal power allocation scheme iswater–

filling in time and frequency, which effectively uses a high power when the channel is in a favourable

state (so that a large amount of information can be transmitted) and halts transmission when the channel

is weak. The optimal strategy suffers from outages, in the sense that no information is conveyed, but

uses them to conserve energy for future transmissions, which occur at a much higher rate. It does not

suffer, however, from an excessive peak–to–average power ratio. In Rayleigh fading an optimal power

allocation scheme has little advantage over one which keeps the transmit power constant, and therefore

over an optimal ideally interleaved coded system, since they offer practically identical average spectral

efficiencies.

We considered simple two–rate sub–optimal power control schemes for narrow–band channels

which work along the lines of the optimal scheme. They use a fixed information rate when the channel

response is above a certain threshold and halt transmission when it falls below this threshold. We have,

therefore, a system which controls outages.

The first scheme keeps the transmitter power constant when not in a outage state, has an average

data rate which depends on the information rate agreed upon by the communicating parties. This rate

is chosen to maximize the average spectral efficiency, which is on the order of 2 bits/s/Hz at an average

SNR of 10dB. The second scheme keeps the received power constant when transmitting using a perfect

power controller, and the outage threshold is chosen to maximize the average information rate. Such a

scheme becomes possible in Rayleigh fading for peak–to–average power ratios which exceed 5.5 dB,
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and the optimal operating point is always around this value. For average signal–to–noise ratios on the

order of 10 dB it is possible to achieve average spectral efficiencies on the order of 2.5 bits/s/Hz which

are only slightly less than optimal. For higher average signal–to–noise ratios the loss is more significant.

We considered the bit error–rate of the two simple schemes with uncoded QAM modulation. The

main conclusion is that significant performance gains can be had in comparison to an uncoded system

without channel state feedback without the need for channel coding/interleaving. Practically speaking,

this says that by exploiting channel state feedback we can avoid complex coding/interleaving schemes

altogether.

Finally we considered an ARQ–based single–user scheme, as is already used in the data transmis-

sion mode of the GSM standard. We showed that this scheme is identical to the second of the two–rate

coding schemes considered previously, except for the fact that the power cannot be conserved during an

outage event since the transmitter does not have this information at its disposal. The only means to avoid

outages is by requesting retransmissions. The maximum average data rate is also found by choosing

an optimum information rate which is effectively used only when the channel state is favourable. We

computed these rates for block–fading channels, usingF = 1; 2; 4; 8 blocks, and results indicate that

average spectral efficiencies on the order of 2 bits/s/Hz in Rayleigh fading could be expected even with

ARQ, and that diversity (i.e. number of independent blocks) increases the average spectral efficiency

slowly. The outage rates are quite high ranging from 40% (F = 1) down to 10% (F = 8) at an SNR of

10 dB.
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Chapter 7

Multiuser Channels and Multiuser

Diversity

In the multiuser cellular systems in use today, there are two primary communication links between the

users located in the cell and the cell’s central base station as shown in Figure 7.1. Theup-linkrefers to the

information flow from the users to the base station and is an example of a classicmultiple–access channel

(MAC), or a many–to–one communication problem. The down-link refers to the opposite situation,

namely the flow of information from the base station to the users. This is an example of abroadcast

channelor a one–to–many communication problem. There has been much recent interest in determining

which types of multiple–access methods are best, and this chapter we examine such issues, albeit in a

rather general sense. Here we will concern ourselves only with case of the MAC. Another important

aspect of multiuser cellular systems which we do not consider here is adjacent cell interference. Our

results, therefore, apply mainly to single–cell systems (i.e. when there is only one base station) or also

for systems where inter-cell–interference can be ignored. An information–theoretic treatment of Cellular

systems without fading are given in [Wyn94]

We begin this chapter with a discussion of the Gaussian MAC without fading to familiarize our-

selves with the different types of multiple–access schemes. One of the main goals of this is toillustrate

that a multiple-access scheme is simply a way of sharing dimensions and distributing energy in such

a way that the receiver can distinguish between different users. We introduce the basic information–

theoretic tools needed to handle these systems and and we use them to analyze a specific example with

multipath fading.

We then turn our attention to the average information rates that can be expected with different
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Basestation Basestation

Figure 7.1: Communication Links in Cellular Systems

multiple–access schemes over fading channels. In the case where the system has access to channel

state information either via feedback path or in time–division duplex, the users can allocate the power

according to their channel and the channels of the other users. We show that when this is feasible, we

have an inherent diversity effect that is due the nature of the time/frequency–varying MAC which was

not present in the single–user channel we treated in Chapter 3. This effect can yield significant increases

in the achievable data rates.

7.1 Multiple–Access Channels without fading

In order to familiarize the reader with the basic ideas in multiple–access communications we begin

with a short treatment for a non–fading Gaussian channel. Consider the simple discrete–time channel

x0

x1

xL�1

z

y

Figure 7.2: Gaussian Multiple–Access Channel (MAC)
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model in Figure 7.2 which is known as theL–user Gaussianmultiple–access channelwith input output

relationship

y =
L�1X
i=0

xi + z: (7.1)

We assume that each user signalfxi; i = 0; � � � ; L�1g occupiesN dimensions and belongs toRN. The

noise is Gaussian and white with varianceN0=2 in each dimension. The information rate for useri is

denoted byRi bits/dim. We may write the users signals as

xi =

Di�1X
j=0

uj�i;j (7.2)

whereDi is the dimension of the subspace in which useri’s signal lies andf�i;jg is an orthonormal basis

for this subspace. Each user’s signal is constrained in energy as

N�1X
i=0

x2i =

Di�1X
i=0

u2i � NPi: (7.3)

It may sometimes be the case that users are distinguishable by the subspace in which they lie. In this

case, decoding amounts to projecting the received signal on each subspace and decoding each users

signal independently of the others. This is important since the coding and decoding processes need not

be done jointly between users signals. We now consider two cases where this is possible.

7.1.1 Orthogonal Multiplexing

The first way of allocating dimensions to different users isorthogonal multiplexingwhich is achieved by

making the subspaces orthogonal to one another. We have, therefore, that�Ti;j�k;l = 0; 8j; l; i 6= k and

consequently the achievable data rate of useri is bounded by

Ri � 1

2N

Di�1X
j=0

log2

�
1 +

2NPi
N0Di

�
=

Di

2N
log2

�
1 +

2NPi
N0Di

�
bits=dim: (7.4)

We have expressed the information rates in terms of the total number of dimensions of the signal space,

and not the number of dimensions which the user actually uses. This allows for a fair comparison

between systems in which all users use all the dimensions or those where the users share the total number

of dimensions. By choosingDi subject to
PN�1

i=0 Di = N we can change the achievable rates allocated

to each user. For example consider the two–user case with equal transmit powersPi = P . We have the
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following pair of bounds

R0 � �

2
log2

�
1 +

2P

�N0

�
bits=dim

R1 � (1� �)

2
log2

�
1 +

2P

(1� �)N0

�
bits=dim (7.5)

where� = D0=N is a parameter varying between0 and1. If we plot the upper–bounds in theR0; R1

plane as a function of� we obtain a region,R, where every rate pair is achievable. This is shown in

Figure 7.3 for a signal to noise ratio ofP=N0 = 10 dB. It is known as anachievable rate regionor cases

where the transmitters havea priori information about the states of the channels, acapacity region.
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Figure 7.3: Achievable Rate Region with Orthogonal Multiplexing

In practice, orthogonal multiplexing can be achieved in the ways shown in figure 7.4. The first

option isFrequency–Division Multiple Access (FDMA)where each user transmits in a frequency–band

of bandwidthW=L all the time with powerP . Another isTime–Division Multiple Access (TDMA). If

we assume a certain system bandwidthW then each user is allocated2W=L dimensions per second

and transmits with powerLP . It is also possible to combine the two schemes. The third option is

synchronous Direct–Sequence Code–Division Multiple Access (DS-CDMA)on frequency–flat channels

where each user is assigned a wide-band spreading sequence which is orthogonal to those of all the other
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users. This is more difficult to illustrate since users occupy all frequencies and all times and is therefore

not included in the figure. It can be achieved using orthogonal spread–spectrum pulse shapes and can be

defined either in the frequency–domain using a multi-tone approach [Van95] or in the time–domain with

a classical direct–sequence approach.
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Figure 7.4: Orthogonal Multiplexing Schemes

7.1.2 Non–Orthogonal Multiplexing

When orthogonality cannot be achieved, or is avoided on purpose then the inter-user interference must be

handled in some fashion. The simplest way is to have a bank ofL decoders where each user is decoded

separately treating the others as part of the background noise. We will refer to this type of decoding as

single–user decoding. The received signal treated by decoderi is

y = xi + zi (7.6)
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with

zi =
X
j 6=i

xj + z: (7.7)

Let us first consider the case where all users occupy the entire signal space so that�i;j = �k;j ; 8i; k,

which is the most general type of coding scheme. If users transmit Gaussian signals, then in this case the

achievable rate of each user is bounded by

Ri � 1

N
I(Y;Xi)

=
1

2
log2

 
1 +

2Pi
N0 + 2

P
j 6=i Pj

!
: (7.8)

We note that a Gaussian input distribution is not optimal. As the number of users increases, however,

the statistics of the interference term quickly approach a Gaussian distribution, so that Gaussian signals

are asymptotically optimal. Finding the best input distribution for this channel is essentially the same

problem as with the Gaussian interference channel [CT91]. We notice in (7.8) that ifPi = P; 8i then as

L increasesRi ! 0 but the total rate sum

Rsum =
L�1X
i=0

Ri (7.9)

tends tolimL!1 L1
2 log2

�
1 + 2P

N0+2(L�1)P

�
= 1=(2 ln 2) = :7213 bits/dim which was first remarked

in [Hui84]. With single–user decoding, therefore, we can never expect high spectral efficiencies.

Let us now consider the case of a completely synchronous DS–CDMA where each user signal is

of reduced dimensionality as shown in figure 7.5. We will assume the system uses a spreading factorS

g0;n

gS�1;n

g1;n

z0;n

z1;n

ynun

zS�1;n

Figure 7.5: A Synchronous DS–CDMA System

which is not necessarily equal to the number of users,L. The received signal for everyS dimensions can
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be written as

yn =
L�1X
i=0

gn;iun;i + zn; n = 0; � � � ; N=S � 1; (7.10)

wheregn;i is a zero–mean�p1=S random sequence which is independent between users and from one

input symbol to the next. In practice, this is normally chosen from a pseudo–noise sequence with a very

long period [IS992]. The receiver for useri correlates the received signalyn with gn;i yielding

yn;i = un;i +
X
j 6=i

gTn;ign;jun;j + zn: (7.11)

wherezn is Gaussian with varianceN0=2. For simplicity we assume that all users have the same power

so thatu2i = SPi = SP (see (7.3) withDi = N=S.) Since the receiver knows the spreading code for

each user and the spreading sequences are truly random from symbol to symbol, the achievable data rate

for each user assuming Gaussian input symbols (un) is bounded by

Ri � lim
N!1

1

2N
I (fYn; n = 0; � � � ; N=S � 1g; fUn; n = 0; � � � ; N=S � 1gjfQn = qn; n = 0; � � � ; N=S � 1g)

=
1

2N

N=S�1X
n=0

I(Yn;UnjQn = qn)

=
1

2S
Eqn log2

�
1 +

2SP

N0 + 2SPqn

�
bits=dim (7.12)

where

qn =
X
j 6=i

�
gTn;ign;j

�2
=
X
j 6=i

qn;j (7.13)

andqn;j has density (forS even)

fqn;j (a) =

�
S

S=2

�
2�S�(a) +

S=2X
k=1

�
L

L=2 + k

�
21�S�

�
a� 4k2

S2

�
: (7.14)

The density ofq can be computed easily from (7.14) using numerical methods which can be applied to

(7.12) to computeRi.

As an approximation for largeLwe may invoke the central limit theorem [Pap82] and approximate

the interference term in (7.11),
P

j 6=i g
T
n;ign;jun;j by a Gaussian random variable with mean zero and

variance(L� 1)P=S. The achievable information rate for each user is therefore bounded by

Ri � 1

2N

N=S�1X
i=0

log2

�
1 +

2SP

N0 + 2(L� 1)P

�
=

1

2S
log2

 
1 +

2P

N0=L+ 2
�
L�1
L

�
P

!
:

(7.15)
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We see right away that ifS is finite, in the limit of largeL, the total rate sumLRi also tends to .7213

bits/dim. If, on the other hand,L=S = K thenLRi tends to:5 log2 (1 + 1=K)K � :7213 bits/dim.

In the special case whereK = 1 (i.e. the spreading gain is equal to the number of users), we see that

the total rate sum tends to .5 bits/dim. In figure 7.6 we plotRsum for both types of systems with and

without the approximation forP=N0 = 10dB for the special caseK = 1 in the DS–CDMA system. We

see that both decrease to their asymptotic values quite quickly. The central limit theorem approximation

is only slightly pessimistic for reasonableL. We may conclude, therefore, that on a Gaussian channel

there is an advantage to using a low–rate coding scheme as opposed to simple DS–CDMA. We note also

the non–optimality of Gaussian signals when the number of users is small, since the DS–CDMA system

has a larger total sum rate. The transmitted signal foreach user for each symbol isun;ign;i which is not

Gaussian.

The issue of spreadingvs. low–rate coding was first considered by Hui [Hui84] and later by

Viterbi [Vit90]. Hui suggested that users should each use different low–rate convolutional codes with

no (or very little) PN spreading. Viterbi’s approach uses the same low–rate code foreach user whose

output modulates a very–long period and user–dependent PN sequence which may or may not provide

additional bandwidth expansion. The PN sequences distiguish the users and allows each to use the same

code. The coding scheme is based on mapping the output of a convolutional code to large set of Walsh–

Hadamard sequences. We will soon see that the advantage of using such low–rate coding schemes is

even greater on a multipath channel.

7.1.3 Joint Detection on the MAC

When the receiver can decode the signals jointly, Liao [Lia72] and Ahlswede [Ahl71] showed that the

achievable rate region for two users is defined by

R0 � I(Y;X0jX1) � max
k

I(Y;X0jX1 = x1;k)

R1 � I(Y;X1jX0) � max
k

I(Y;X1jX0 = x0;k)

R0 +R1 � I(Y;X0;X1) (7.16)

which generalizes forL users as

R =
\
U�U

(X
i2U

Ri � I(Y; fXi; i 2 UgjfXj; j 2 Ug)
)
; U = f0; 1; � � � ; L� 1g

(7.17)
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Figure 7.6: Total Sum of Rates Comparison for Low–Rate Coded CDMA and PN Spreading

This region is shown forL = 2 in Figure 7.7 and is known as theCover–Wyner pentagon. We remark

that its shape is quite different from the region for orthogonal multiplexing. For a Gaussian MAC the

achievable rate region can be shown to be [CT91]

\
U�U

X
i2U

Ri � 1

2
log2

 
1 +

2

N0

X
i2U

Pi

!
(7.18)

This results from the fact that the conditional mutual information functionals in (7.17) are maximum

when the power of all the conditioned users is zero. The region in (7.17) corresponds to the case where

all users occupy the entire signal space so that the region of a DS–CDMA system, which is a special case,

will necessarily lie within. The practical interpretation of the corner points of the region is important,

since it can be shown that they can be achieved by single–user decoding. The basic idea is that the

codeword for a given user is decoded considering the other users as part of the noise, as we did earlier.

His codeword is recreated and subtracted from the received signal and the next user is decoded in a similar

fashion. The different rates achieved by these corner points depends on the order in which the successive

decoding algorithm is performed. By changing the decoding order periodically, any point on the rate

region boundary can be achieved. This assumes, of course that the users change their transmission rates
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I(Y;X0jX1)

R0

R1

I(Y;X0)

I(Y;X1jX0)
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Figure 7.7: The Cover–Wyner Pentagon

according to the decoding order used at that time instant.

Another recent and promising technique for achieving any point on the rate region was developed

by Rimoldi and Urbanke [RU96]. Here each user but one splits his source into two separate sources

whose outputs are added before transmitting across the channel. By controlling the relative rates of the

split sources, any point on the achievable rate region lying between the corner points can be used with

single–user successive decoding. Practically speaking, this is very important since neither the decoding

order nor the code rates need to be changed during transmission. The disadvantage of this technique,

however, is that the decoding complexity is twice as high.

We show the Cover–Wyner pentagon compared to orthogonal multiplexing for equal signal–to–

noise ratiosPi=N0 = 10 dB in Figure 7.8. We see that orthogonal multiplexing is optimal at the equal–

rate point when we have equal transmitter powers. The total rate sum also increases without bound with

the number of users which was not the case when single–user decoding was performed.
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Figure 7.8: Comparison of the Optimal Rate Region with Orthogonal Multiplexing

DS–CDMA with Joint Detection

If we consider the perfectly symmetric power case, we can compute the total rate sum for joint detection

of a synchronous DS–CDMA system. We may write (7.10) equivalently as

yn =
�
g0;n g1;n � � � gL�1;n

�
0
BBBBBB@

u0;n

u1;n
...

uS�1;n

1
CCCCCCA

+ zn; n = 0; 1; � � � ; N=S � 1

=Wn

p
�nV

T
n

0
BBBBBB@

u0;n

u1;n
...

uL�1;n

1
CCCCCCA

+ zn; (7.19)

whereWn andVn are unitary matrices and
p
�n is a diagonal matrix containing the singular values of

theL � S matrix,Gn = Wn

p
�nV

T
n , whose columns are the spreading sequences for symboln. We

may therefore consider the equivalent decomposed channel

y0n;i =
p
�n;iu

0
n;i + z0n;i; n = 0; � � � ; N=L� 1; i = 0; � � � ; L� 1 (7.20)
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whereu0n;i
2 = LP . The total rate sum (for largeN=S) is

Rsum =
1

N

N=S�1X
n=0

I(Yn;UnjGn = Gn)

=
1

2L
E�n;i

S�1X
i=0

log2

�
1 +

2�n;iP

N0

�
: (7.21)

This can be computed numerically by Monte–Carlo averaging. We show the comparison between the

total rate sumRsum for the two non–orthogonal approaches with joint detection in Figure 7.9 for an SNR

of P=N0 = 10 dB and assumingS = L. As was the case for single–user decoding, we can achieve

higher data rates with low–rate coding than with DS–CDMA.
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Figure 7.9: Comparison of Joint Detection of DS–CDMA and Low–Rate Coding Systems

There has been a great deal of research in the last ten years on joint detection schemes for the mul-

tiuser channel, the majority of which deal with the DS–CDMA case. A recent review of these techniques

is given in [BJK96]. These were sparked by the work of Verd´u in [Ver86] who considered the optimal

joint detection of asynchronous DS–CDMA on a Gaussian channel.
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7.2 Outage Probability Analysis of Single–User Decoding in the Multiple–

Access Channel with Multipath Fading

In this section we consider three possible multiplexing strategies over multipath channels

1. Coding all users over all dimensions simultaneously (i.e. general CDMA)

2. A combination of spreading and coding (DS–CDMA )

3. Orthogonal multiplexing whereeach user’s signal occupies each part of the spectrum equally so as

to exploit all the degrees of freedom the channel has to offer (pure TDMA or frequency–hopping).

We will assume single–user decoding.

In general, since TDMA uses the entire bandwidth the available diversity significantly reduces the

outage probability. Moreover, by adding guard intervals which slightly lowers the average information

rate, orthogonality can be maintained even in the presence of multipath and slight user asynchronism. It

has the disadvantage that the peak–to–average power ratio is high since it is inherently bursty. FDMA

transmits with a constant power but does not benefit as much from frequency–selectivity. Perfect or-

thogonality is also difficult to achieve since the passband filters are never perfect and adjacent channel

interference is inevitable. Some systems such as GSM combine FDMA and TDMA in order to lower the

peak–to–average power ratio. In addition, one can perform slow–frequency hopping to take advantage

of frequency–selectivity using the coding techniques we considered in Chapter 4 without losing orthog-

onality. This is also shown in figure 7.4. The price to be paid for this approach is a slightly longer

decoding delay. Orthogonal DS-CDMA suffers to a certain extent on wireless multiple–access channels

since multipath and user asynchronism removes perfect orthogonality between the signals.

Here we examine only the case of single–user receivers without any channel state feedback. In

order to simplify the analysis we will use the multi-tone signal model described in Chapters 2 and 3.

This allow us to capture several important characteristics of multiuser systems, most notably the reduced

dimensionality of spread–spectrum waveforms and user asynchronism.

Recall that under the model we haveNS = WT dimensions where signals are approximately

time–limited to[�T=2; T=2] seconds and strictly band-limited to[�W=2;W=2]Hz. The multiuser case

is simply a combination of (4.38) and (7.1) so that its input–output relationship for each dimension is

ys;n =
L�1X
l=0

hl;sxl;s;n + zs;n; (7.22)
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wherel,s andn are the user,sub-band and time indices respectively and thefzs;ng are i.i.d. zero–mean

circular–symmetric complex Gaussian random variables with varianceN0. The power constraint for

each user is
S�1X
s=0

N�1X
n=0

jxl;s;nj2 � PT (7.23)

so that under the assumption of independentxl;s;n and that users transmit Gaussian signals, the mutual

information conditioned onall of the channel realizations for user 0 is

IH =
1

NS

S�1X
s=0

N�1X
n=0

log2

 
1 +

jxs;nj2jh0;sj2
N0 +

PL�1
l=1 jxl;s;nj2jhl;sj2

!
bits=dim (7.24)

=
W

NS

S�1X
s=0

N�1X
n=0

log2

 
1 +

jxs;nj2jh0;sj2
N0 +

PL�1
l=1 jxl;s;nj2jhl;sj2

!
bits=s: (7.25)

As in the single–user case, we assume a flat signal spectrum withjxl;s;nj2 = PT
NS = P

W so that

IH =
1

S

S�1X
s=0

log2

 
1 +

P jh0;sj2
WN0 + P

PL�1
l=1 jhl;sj2

!
bits=dim (7.26)

=
W

S

S�1X
s=0

log2

 
1 +

P
WN0

jh0;sj2
1 + P

WN0

PL�1
l=1 jhl;sj2

!
bits=s: (7.27)

Now let us consider the DS–CDMA case, where we now choose a spreading factorS and spreading

sequences of the form

gl;n =

r
1

S

�
ej�l;n;0 ej�l;n;1 � � � ej�l;n;S�1

�
(7.28)

where�l;n;k are independent uniformly distributed random variables between[0; 2�). This is the fre-

quency analog of classical DS–CDMA and is much simpler to analyze on multipath channels. The

received signal for each time dimension is therefore of the form

yn =
L�1X
l=0

ul;ng 
 hl;n + zn (7.29)

whereg 
 hl;n =
�
gl;0;nhl;0 gl;1;nhl;1 � � � gl;S�1;nhl;S�1

�
.

Similarly to the simple case described section 7.1.2, the receiver decodes each user by first correlat-

ing the received signal by thecombinedspreading sequence channel response (i.e. a frequency–domain

RAKE receiver) for the user in question followed by conventional single–user decoding. We have for

user 0

y0;n =
1

S

S�1X
s=0

jh0;sj2u0;n +
L�1X
l=1

S�1X
s=0

g�0;n;sgl;n;sh
�
0;shl;sul;n + z0;n (7.30)
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wherez0;n is a complex circular symmetric Gaussian random variable with mean zero and variance

1
S

PS�1
s=0 jh0;sj2. We have, therefore, that the average mutual information conditioned on the channel

realizations and the spreading sequences is

IH =
1

S
log2

 
1 +

P
WN0

Sk0

1 + P
WN0

j0

!
bits=dim (7.31)

wherek0 = 1
S

PS�1
s=0 jh0;sj2 andj0 =

PL�1
l=1

PS�1
s=0

PS�1
s0=0 e

j(�l;s;n��0;s0 ;n)h�0;sh
�
l;s=k0. The basic dif-

ference between (7.31) and (7.27) is the type of averaging which is performed. In the DS–CDMA case,

both the averaging over fading (k0) and over interference (j0) are achieved by lowering the information

rate in a rather brute–force fashion. Note the presence of1=S outside the logarithm. The averaging effect

is reduced since it is inside the logarithm. In the general low–rate coding case, the achievable code rate is

raised/lowered by the extent of the fading and interference and not by an imposed by a particular coding

scheme.

The information outage probabilities in both cases must be calculated by Monte Carlo integration.

This has been done using for the same system parameters as in Chapter 3 (i.e.S = 128, W = 1:2288

MHz, ETSI TU12 channel) for different numbers of users and an SNR ofP=WN0 = 10 dB. The results

are shown in Figure 7.10 where we plot the information outage probabilityvs. the total rate sumLR. We

see that fairly low spectral efficiencies can be expected but that those where low–rate codes are used as

opposed to PN spreading are significantly higher. We note that as the number of users increases, the total

sum rate increases in the DS system. This is because the signal space is being used more efficiently as

the number of users increases (i.e. the factor1=F in front of the mutual information functional gradually

disappears.)

Let us now use the IS-95 CDMA system as a means for comparison. The data rate is 9.6kb/s

and the maximum number of users per 1.2288MHz is 64. With a voice activity factor of .5 (i.e. at any

given time about half the users are actually transmitting and the signals for the others are squelched)

this corresponds to a total rate sum spectral efficiency of 9.6*32/1229 = .25 bits/s/Hz. The information

outage rate curve for 32 users crosses .25 bits/s/Hz at aroundPout(:25) = 10�2 which is an acceptable

frame error rate for modern vocoders1. This shows that our analysis is not that far off from reality.

We also plot the single–user information outage we computed in Chapter 3 which corresponds to

the total rate sum for an orthogonal multiplexing system which uses the entire bandwidth. We see that it

is noticeably lower (i.e. that higher spectral efficiencies can be expected.)

1the GSM vocoder is designed to operate at this speech frame error rate
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For a single–cell system such as this we really must question the use of a non–orthogonalapproach

such as CDMA. Even if we could perform joint detection which would be a difficult task in a multipath

fading environment, the amount that has to be gained to catch up to an othogonal scheme (with diversity)

is huge. The real advantage of CDMA comes in cellular systems where co–channel interference is a

significant problem [GJP+91]. Here the orthogonal scheme is at a real disadvantage since frequency–

reuse must be used which significantly reduces system capacity. The effect of co–channel interference in

CDMA is simply a slight reduction of the signal–to–noise ratio so that it does not suffer to a great extent.

It has recently been shown [PC95][CKH97] that orthogonal schemes need not be limited by co–channel

interference and that frequency–reuse may not be necessary. Moreover, they can offer system capacities

comparable with CDMA, at the expense of increased decoding delay.

7.3 Average Information Rates - Multiuser Diversity

In Chapter 3 we considered average information rates and showed that they can be achieved in two ways.

The first was by coding over a long time-scale (i.e. over an infinite number of degrees of freedom of

the channel process) without the need for channel state information at the transmission end. The second

was by variable–rate coding when channel state information is available. These results relied on the fact

that the channel was block stationary, and that coding or channel control was performed over many such

blocks. As a result, ergodic arguments could be used to determine the average or long–term information

rates at which reliable communication is possible. We now generalize these ideas to the Gaussian MAC.

7.3.1 Generalizing the Single–User Average Mutual Information for the Fading MAC

We generalize the single user waveform channel from Chapter 3 to theL–user channel as

yn(t) =
L�1X
l=0

Z T=2

�T=2
xn;l(�)hn;l(t; �)d� + zn(t); t 2 [�To=2; To=2] (7.32)

wherehn;l(t; �) is now the response of userl’s channel at timet to an impulse at time� . The subscript

n in all the signals denotes thenth realization or block of the corresponding process. We assume that the

difference between the durations of the output signal and input signalsTo�T is larger than all the delays

due to multipath propagation and user asynchronism. The noise process is again a zero–mean, circular

symmetric, white complex Gaussian process with power spectral densityN0 and the channel responses
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are assumed to be stationary during the transmission of each block as

hl(t; �) =

8><
>:
hl(t� �) �T=2 � � � T=2; �To=2 � t � To=2

0 elsewhere

(7.33)

For the Gaussian MAC we are interested in the average mutual information functionals

IT;H;U =
1

T
I(Y (t);BU(t)jBU(t); fHl(t; �) = hl(t; �); l = 0; � � � ; L� 1g)); 8U 2 U bits=s

(7.34)

wherebU(t) =
P

l2U

R T=2
�T=2

xl(�)hl(t; �)d� . We now perform a Karhunen–Lo`eve expansion on the

bU(t) as

bU(t) =
1X
i=0

bU;i�i(t : U; T;H) (7.35)

where theE jbU;ij2 = �i(U; T;H) and�i(t : U; T;H); �To=2 � t � To=2 are the solution to

�i(U; T;H)�i(t : U; T;H) =

Z To=2

�To=2
Kb(t; u : U; T;H)�i(u : U; T;H)du (7.36)

and

Kb(t; u : U; T;H) =
X
l2U

Z T=2

�T=2

Z T=2

�T=2
Kxl(�; �

0)hl(t; �)hl(u; �
0)d�d� 0: (7.37)

We have assumed that the users signals are independent. In a mean–square sense we have with Gaussian

signals that

IT;H;U =
1

T

1X
i=0

log2

�
1 +

�i(U; T;H)

N0

�
bits=s (7.38)

As was the case in Chapter 4, in the limit of largeT we obtain, via the Szeg¨o eigenvalue distribution

theorem [GS83], the following lower–bound for (7.34)

IT;H;U � IH;U =

Z W=2

�W=2
log2

 
1 +

1

N0

X
i2U

Si;n(f)jHi;n(f)j2
!
; 8U 2 U bits=s

(7.39)

and, under the assumption of bandlimited transmitted signals, the corresponding average power con-

straint is

E

Z W=2

�W=2
Si;n(f)df = Pi: (7.40)

The signals are band–limited to[�W=2;W=2] andSi;n(f) is the power spectrum of useri in blockn. If

the time–bandwidth product is large, as in the single–user caseIT;H � IH .
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7.3.2 Systems Without Fast Power Control

Let us now compare two alternative systems. The first is orthogonal multiplexing whereeach user uses

shares bandwidth/time equally. For FDMAeach user would use a bandwidthW=L and transmit all the

time. TheF block average mutual information conditioned on the channel realizations for useri with

FDMA is

Iorthi;H =
1

F

F�1X
n=0

Z W=L

�W=L
log2

�
1 +

1

N0
Si;n(f)jHi;n(f)j2

�
bits=s: (7.41)

Let us assume that the users have flat input spectra soSi;n(f) = LPi=W and thatF is large so that the

rate sum for anyU � U tends to

IorthU;H =
X
i2U

W

L
Ehi log2

�
1 +

LPi
WN0

hi

�
bits=s (7.42)

wherehi is the random variable describing the channel strengthjHi;n(f)j2 which is assumed to be

identically distributed at each frequency and in each block and independent from user to user. This

allows us to remove the integral in (7.41). Note that (7.41) holds for slow–frequency hopping as well as

long as the statistics of the different frequency bands where the signal hops are identical. The TDMA

case is also given by (7.42) since each user would use bandwidthW with powerLPi a fraction1=L of

the time.

Now consider the general non–orthogonal approach which has the rate sum taken over a large

number of blocks and using uniform power spectra

IoptU;H = WEfhi; i2Ug log2
 
1 +

1

WN0

X
i2U

Pihi

!
bits=s: (7.43)

By virtue of the concavity of the logarithm and Jensen’s inequality [CT91] we have that

IorthU;H � W jU j
L

Efhi; i2Ug log2

 
1 +

L

jU jWN0

X
i2U

Pihi

!
bits=s (7.44)

which, using the fact thatx log2(1 + b=x) is increasing for anyb > 0, can be bounded further as

IorthU;H � WEfhi; i2Ug log2
 
1 +

1

WN0

X
i2U

Pihi

!
= IoptU;H bits=s (7.45)

with strict inequality unlessjU j = L.

These important results are due to Gallager [Gal94] and show that the achievable rate region for

orthogonal multiplexing (when users share the dimensions on an equal basis) always lies within that of an
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optimal scheme which codes users over all the dimensions. Moreover, they are valid for TDMA,FDMA

or slow–frequency hopping systems. Let us examine the implication of these results with a numerical

example, by assuming that the fading process is Rayleigh distributed andPi = P; 8i. This symmetric

situation arises in practice if we have a perfectslow power controller which assures that the average

received SNR remains constant and equal for every user. This is important since it assures an equal

quality of service (on a long–term basis) for all users. In this case, all the channel strengthshl are

exponentially distributed as

fh(�) = e��; � � 0 (7.46)

so that the rate sums are

IoptU;H = W

Z 1

0
log2

�
1 +

P

WN0
a

�
f�jU j(a)da bits=s (7.47)

where�jU j =
P

i2U hi is the sum of the channel strengths inU , which is anErlang random variable

with density

f�jU j(a) =
ajU j�1

(jU j � 1)!
e�a; a � 0: (7.48)

The rate sums in (7.47) can be expressed in terms of theMeijer G-function[GR80] but are simpler to

calculate via numerical integration. The orthogonal rates are just the single–user rates as in Chapter 3

IorthU;H =
W jU j
L ln 2

eWN0=(LP )E1

�
WN0

LP

�
: (7.49)

In figure 7.11 we show the achievable rate regions for three two–user systems, the two we just described

and an orthogonal scheme where we can adjust the proportion of the total dimensions allocated to each

user. This was described in section 7.1.1 and for the fading case, we simply have

R1 � (1� �)W

ln 2
exp

�
(1� �)

WN0

P

�
E1

�
(1� �)

WN0

P

�

R2 � �W

ln 2
exp

�
�
WN0

P

�
E1

�
�
WN0

P

�
(7.50)

We chose a signal to noise ratioP=(WN0) = 10 dB. We see that there is a significant increase in

spectral efficiency for the non–orthogonal scheme even at the equal rate point, which shows that the

fading channel behaves quite differently than the non-fading channel. As pointed out by Gallager

a rather peculiar result is thatL users transmitting overL different channels can transmit more total

average information than a single user transmitting over one channel usingL times as much power. This
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Figure 7.11: Two–user Rate Regions in Rayleigh Fading
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is due to an averaging effect inside the logarithm in the multiuser case since the sum signal has a total

received energy which hasL degrees of freedom and not a single one as would be the case with one user.

This can be made more clear if we consider the special case where the bandwidth is proportional to the

number of users, sayW = LWB , whereWB can be thought of as the bandwidth per user. If we focus on

the total rate sum (i.e. whenU = U ), the orthogonal schemes with equal transmitted powers will have

IorthU;H = LWBEh log2

�
1 +

P

WBN0
h

�
(7.51)

and the optimal scheme will have

IoptU;H = LWBE�L log2

�
1 +

P

WBN0

�L
L

�
: (7.52)

We note that forL!1, the random variable�L=L is 1 with probability 1 since thehi are independent

and consequently the total rate sum tends toL times the Gaussian channel capacity given by

CG = LWB log2

�
1 +

P

WBN0

�
bits=s: (7.53)

If we now compute the difference in spectral efficiency on a per user level between the Gaussian channel

capacity and orthogonal multiplexing on a Rayleigh fading channel, we have that [AS65]

(LWB)
�1(CG � IorthU;H ) = log2

�
1 +

P

WBN0

�
� exp

�
WBN0

P

�
E1

�
WBN0

P

�
= ln 2

= log2

�
1 +

P

WBN0

�
�

exp

�
WBN0

P

�0@�
 � ln

�
WBN0

P

�
�

1X
n=1

(�1)n
�
WBN0
P

�n
nn!

1
A = ln 2� bits=s=Hz

(7.54)

which for large P
WBN0

tends to�
= ln 2 = :8327 bits/s/Hz, where
 = :57721 is Euler’s constant. This

shows that the most that can be gained by using a non–orthogonal scheme such as CDMA on a multipath

channel as opposed to any type of orthogonal multiplexing is .8327 bits/s/Hz. It assumes, of course, that

we have a coding scheme with no delay constraint and that some optimal successive decoding scheme,

such asonion peeling[RU96] can be used.

7.3.3 Channel State Feedback and Multiuser Diversity

We now move on to the case when channel knowledge is available at the transmission end and some

form of channel control can be performed. When we considered this possibility for the single–user case

we were only able to control the transmitter power and the code rate. On the multiuser channel we have

one more possibility, the allocation strategy. We begin with a simple example.
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A Two–User Frequency Flat Channel

Let us assume we have a two–user system and that we wish to allocate users equally in time using TDMA.

We know that each user will transmit half the time with a peak–to–average power ratio of 2. Normally,

we would alternate between the users everyT seconds as shown in figure 7.12(a). Now let us assume

that the transmitters have knowledge ofbothchannel responses at any instant in time and the user with

the stronger received signal strength is allocated to the channel. This is shown in 7.12(b). We no longer

have a regular allocation strategy, but if both users have equal average received strengths then they will

share the channel equally just like with regular TDMA, and will transmit with the same peak–to–average

power ratio. Again we will assume that the channel stays constant for reasonably long periods of time

USER 1 USER 2 USER 1 USER 1 USER 1USER 2 USER 2 USER 2

Regular TDMA

(a)

(b)

TDMA with Multiuser Diversity

User 1’s signal strength
User 2’s signal strength

User 1’s signal strength
User 2’s signal strength

USER 1 USER 2 USER 1

Figure 7.12: Illustrating Multiuser diversity

so that we can use the block–fading assumption. The average mutual information for regular TDMA is
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given by

ITDMA
H =

W

2
Eh log2

�
1 +

2P

WN0
h

�
bits=s=Hz: (7.55)

In the second case, when a given user is transmitting, we are sure to have a channel attenuationh =

maxfh0; h1g so that its statistics are quite different. Its average mutual information is still given by

(7.55) but with a different distribution function forh. We see that this channel allocation strategy has

given us a form of diversity which does not exist in the single–user case. We have given it the name

multiuser diversityalthough it is simply selection diversityperformed at the transmission end. This has

the effect of a power boost at the receiver since the mean ofh will be greater than the means ofh0 and

h1 (for this example the mean channel strength is 1.5 and not 1). Let us see what effect this has on the

average mutual information. We saw in Chapter 2, that the density function of a 2–channel selection

diversity system was given by

fH(u) = 2e�u � 2e�2u (7.56)

so that the average mutual information in Rayleigh fading is given by

ITDMA�div
H

W

ln 2

�
exp

�
WN0

2P

�
E1

�
WN0

2P

�
� exp

�
WN0

P

�
E1

�
WN0

P

��
bits=s:

(7.57)

We plot (7.57) and (7.55) along with the Gaussian channel capacity for a two–user TDMA system

CTDMA
G =

W

2
log2

�
1 +

2P

WN0

�
(7.58)

in figure 7.13 as a function of the signal–to–noise ratioP=WN0. We see that not only is an improvement

over the regular TDMA case, but the performance even surpasses that of a non–fading Gaussian channel.

The reason for this is the power boost from the selection diversity, which forces the transmitter to operate

only when the channel strength is above average. Unlike the single–user case, there is no penalty in using

the channel only part of the time since it must be shared between the two users.

7.3.4 The Fading Channel Capacity Region

In order to explain the effect of multiuser diversity more carefully, we must compute the capacity region

of the multiple–access channel with fading, since this will tell us the optimal channel–control policy, in

the sense of maximum average information rates. In Chapter 5 we saw that there were two basic types

of channel capacity and they were achieved by adjusting the power spectra of the user according to the

channel state.
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Figure 7.13: Mutual Information for Different 2-User Multiuser Channel Allocation Strategies

The first was thedelay–limited capacitywhere the power was adjusted such that the average mu-

tual information was constant and maximum at the receiver. This idea was also very recently generalized

to the multiuser channel by Hanly and Tse in [HT96], where they define adelay–limited capacity region

in the same way, which insures that the receiver is operating at a fixed set of data rates at any given time

instant. They show that any point on the delay–limited capacity region can be achieved by a successive

decoding strategy whose decoding order depends on the channel states of the different users, but their

rates remain fixed in time. This is a particularly appealing result since as in Rimoldi’s rate–splitting

approach to the Gaussian MAC [RU96], no variable rate coding schemes are necessary.

The other type of capacity was theaverage capacity, where either the code rate was variable or

the code extended across the different channel realizations. We will focus on this case and show that

under some circumstances the optimal channel control scheme is orthogonal multiplexing with dynamic

allocation as in the simple example we just outlined. In general, we are interested in letting the users

adjust their power spectra assuming they havea priori knowledge ofall the channel responses.

The complete capacity region for this problem has recently been found by Tse and Hanly [TH96].

They generalized the techniques of Cheng and Verdu in [CV93] who solved the problem for the non–
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fading two–user Gaussian MAC with intersymbol interference. Tse and Hanly’s result exploits the poly-

matroidal structure of the capacity region and describes the power control policies for an arbitrary number

of users. An important result is that it is a convex region traced out from all possible combinations of

power control strategies satisfying the energy constraints in (7.40). For each set of power control policies,

the achievable rate region will be a Cover–Wyner pentagon, so that the capacity region will be the supre-

mum of all the corner points from these pentagons. We illustrate this for two users in figure 7.14. They

R0

R1

R0 = R1

Figure 7.14: Fading Channel Capacity Region

also show that any point on the boundary of the region can be achieved by successive decoding without

having to change the decoding order, the averaging effect achieved by timesharing on the Gaussian MAC

is taken care of by the variations of the channel in the fading MAC.

In most cases, we are interested only in the situation where all users have the same average power

at the receiver, which would be accomplished in practice using some form of slow power control. As

we already mentioned, this would be to assure the same long–term quality of service foreach user. If

this is the case, all the power constraints in (7.40) will be the same and under the reasonable assumption

of identical channel statistics, all power controllers will also be the same. In terms of the capacity

region, we see that it is symmetric [TH96] around the equal rate line. If we focus on this case, the only

quantity to maximize is the total rate sum which corresponds to the equal rate point on the capacity region

boundary (i.e.R0 = R1 = � � � = RL�1). This maximization was first done by Knopp and Humblet
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[KH95a][KH95b]. Here we must maximize

Rsum =
L�1X
l=0

Ri =

Z W=2

�W=2
EfH0;��� ;HL�1g log2

 
1 +
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Si;n(f)jHi;n(f)j2
!
df

(7.59)

subject to (7.40), withPi = P; 8i. Introducing a single Lagrange multiplier (since the problem is

symmetric)1=B and by applying the Kuhn–Tucker conditions for the maximization of a concave cost

function [Gal68], we have the following set of inequalities governing the optimalSi;n(f)

@

@Si;n(f)
log2
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�
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(7.60)

with equality if and only ifSi;n(f) > 0. Rearranging terms we have that the solution must be of the form

Si;n(f) =

8><
>:
B � N0

jHi;n(f)j2
jHi;n(f)j2 � N0

B ; jHi;n(f)j2 � jHj;n(f)j2; j 6= i

0 otherwise

(7.61)

whereB satisfies the power constraints and is the solution toZ 1

N0=B

�
B � N0

�

�
f�(�)d� =

LP

W
(7.62)

andh = maxfjH0(f)j2; � � � ; jHL�1(f)j2g. The total rate sum is therefore

Rsum = W

Z 1

N0=B

log2

�
B

�

N0

�
fh(h)dh: (7.63)

This power control scheme is nothing but a generalization of the water–filling scheme described in

Chapter 5 but has a very important practical implication. It says that at any given frequency in any given

block, the only user who should be transmitting is the one with the strongest response at that frequency,

provided his channel strength is greater than a thresholdN0=B. We illustrate this for a two–usersystem in

figure 7.15. This scheme is another form of orthogonal multiplexing combined with dynamic frequency

allocation. As in the Gaussian MAC, the equal rate point is achieved by orthogonal multiplexing,when

channel knowledge is available at the transmitters. This is critical since no joint decoding is required to

operate at this point. It can be seen as a TDMA system for each frequency where the allocation method

is virtually the same as the simple example we used to introduce this section, except for the water–filling

power allocation similar to the single–user case. This type of time–varying TDMA would be difficult to

achieve if the channel changes too rapidly for accurate estimation to be performed.2 The latter would

2In the IS-95 standard [IS992], channel state estimation is performed 800 times/sec in order to update the power control.
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Figure 7.15: Illustrating the Optimal Power Controllers for a Two–User System

cause problems since as the number of users increases, the amount of time any one user remains in a

given frequency would decrease. In addition, it should be evident the fading must not be too slow, so as

to insure that the average time any user accesses a given frequency band is not too long so that others

waiting for service do not get back-logged. This scheme may not be suitable for voice transmission

because of the uncertainty in the channel access time. For bursty data, however, this may pose less of a

problem.

Optimal bandwidth partitioning based on channel state information being available at the trans-

mission end would be hard to achieve in practice. A more realistic alternative would be to divide the

entire bandwidth intoN equal size sub-bands and allocate a single user to each of these sub-bands based

on the instantaneous frequency responses of all the users. The DECT system employs a technique along

these lines. In this system, the available bandwidth is divided into several sub-bands, which we assume

to be frequency flat. The users measure the strength of each sub-band, and choose the best available

sub-band on which to transmit. In our case, the user with the best channel response in a particular sub-

band uses that sub-band alone. This need not require too much effort to put into practice. As we already

mentioned in Chapter 3, two–way systems which operate in a time–division duplex fashion can estimate

the strengths of their channels via the opposite link, provided the channel responses do not change too

quickly. This could be used in the following fashion: the users waiting for service would measure their
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own channels from the down-link signal and compare the strengths to those of the currently active users

which could be broadcast by the base-station on some control channel. Once they have detected a sub-

band where their channel strength is maximum they request allocation to that band, and the base-station

decides.

If the subbands are not flat, as is the case in a system like GSM, a time/frequency allocation

strategy such as this would still benefit from multiuser diversity but to a lesser extent. The diversity

factor gained from using a medium or wide–band signal would tend to reduce the variance of the set of

channel strengths over which the selection is performed. At the same time, the average power of each

users signal when transmitting would be reduced since the channel strength with diversity would have

a much lower probability of being above average. This has a very important practical implication: if

the system designer’s goal is to maximize the average data rates, we must use narrowband signals with

dynamic time/frequency allocation in order to benefit from multiuser diversity.

The type of system is very similar to the on/off multiple channel scheme briefly described in the

last chapter. Suppose a user hasS uncorrelated frequency bands at his disposal and multiuser diversity

amongL users is performed on each. The probability of a given user occupying a particular band is1=L.

The number of bands,Nb, occupied by this user at any given time is binomial with density

Prob(Nb = nb) =

�
S

nb

��
1

L

�nb
(1� 1=L)S�nb : (7.64)

The outage probability is(1 � 1=L)S which is approximatelye�S=L if L is large. Thus, whenS � L

we have effectively no outages.

Numerical Results in Rayleigh Fading

Let us now compute the total rate sum for Rayleigh fading statistics. We have, therefore, that each of the

channel responses are exponentially distributed. It follows that the random variable

h = maxfjH0(f)j2; � � � ; jHL�1(f)j2g (7.65)

has a probability distribution function given by

Fh(u) = Prob (h < u) = (1� e�u)L (7.66)

so that its density is

fh(u) = Le�u(1� e�u)L�1 =
LX
k=1

(�1)k�1
�
L� 1

k � 1

�
e�ku; (7.67)
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which is nothing but traditional selection diversity [WJ65]. The total sum of rates is therefore
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and the constantB is the solution to
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If we make the substitutionA = BW=P then we have
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andA is the solution to
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We see that as the signal to noise ratioP=WN0 increasesA tends toL. If we again consider the case

when the bandwidth is proportional to the number of users,W = LWB, we may compare the spectral

efficiencies on an equal footing. This is shown in figure 7.16.

We see two things as the number of users increases. First, for the case of no channel state feedback,

the sum capacities for the optimal non–orthogonal scheme in (7.52) quickly rise to the Gaussian channel

capacity. The difference between their performance and that of orthogonal multiplexing is also around

.8327 bits/s/Hz as predicted. The second observation is that multiuser diversity has an enormous effect at

increasing achievable data rates. WithL = 16 users we are around 1.5 bits/s/Hz higher than the Gaussian

channel which is quite remarkable. For low SNR the sum capacity is double that of the Gaussian channel.

Moreover, the curves will continue to rise, although slowly, with the number of users since the mean of

the channel strength with multiuser diversity is unbounded.
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Figure 7.16: Comparison of Different Spectral Efficiencies with and without Channel Control
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7.3.5 Multiuser Diversity with Perfect Power Control

Let us now examine the achievable rates for a system which employs multiuser diversity and keeps

the received signal–to–noise ratio constant while transmitting (i.e. no water–filling). We considered such

schemes for the single–user channel in section 6.1. We will assume that sub–bands in which users signals

lie are small enough to be considered frequency–flat.

If we denote the signal attenuation for each user byhi, the attenuation for the user currently active

in a given sub–band ish = maxfh0; h1; � � � ; hL�1g. We employ a perfect power controller

P(h) = K(L)

h
(7.72)

so that the instantaneous transmit power isPT = PK(L)=h. As before, we chooseK(L) such that

P(h) = 1. The constant received power isPR = K(L)P so thatK(L) becomes the gain/loss with re-

spect to a non–fading channel Gaussian channel. For Rayleigh fading with multiuser (selection) diversity

we have [GR80]

K(L) =

�Z 1

0
Le�u(1� e�u)

du

u

��1
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L(�1)L(u� 1)L�1

du
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��1

=
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l=1

(�1)l
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L

l

�
l ln l

!�1

; L > 1: (7.73)

which we plot in figure 7.17. We see that the gain increases withL but not linearly as was the case for

the multichannel maximal–ratio combining in Chapter 4. This is due to the fact that the mean channel

strength for selection diversity does not increase linearly withL. We must keep in mind, however, that

multiuser diversity can be exploited without multiple receivers, if we are willing to wait for adequate

channel conditions in order to perform optimal allocation.

Peak–Power Outage Probability

We saw in Chapter 4 that power controllers were subject to outages due to peak–power violations. The

same will be true of a system exploiting multiuser diversity. For a maximum peak–to–average transmit

powerPmax the peak–power outage probability will be

Pout(L; Pmax) = Prob

�
h � K(L)

Pmax

�
(7.74)
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which for unit–mean square Rayleigh fading is

Pout(L; Pmax) =

�
1� e�

K(L)
Pmax

�L
: (7.75)

We plotPout(L) as a function ofPmax in figure 7.18.

Bit Error–Probability for Uncoded BPSK with Multiuser Diversity

As an example of using multiuser diversity with common signaling schemes, let us consider uncoded

BPSK with and without power control. When no power control is employed, we have that the error

probability conditioned on the maximum channel stateh is

Pbjh = Q

 r
2h
Eb
N0

!
(7.76)

whereEb is the energy per information bit. Averaging overh in (7.67) yields

Pb = EhPbjh = :5
LX
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�0@1� 1q
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1
A (7.77)

For the case with power control we have the following average error probability

Pb = (1� Pout(L; Pmax))Q

 r
2K(L)

Eb
N0

!
+

Z K(L)=Pmax

0
Q

 r
2u
Eb
N0

!
fh(u)du

(7.78)

The bit–error–rates are shown in figures 7.19 and 7.20 for a varying number of users and peak–to–average

power ratiosPmax. We see that in the case of no power control, we have performance superior to that of

a non–fading channel forL � 8 at practical signal–to–noise ratios. In the case with power control, even

better performance is possible. Moreover, forL � 4 we notice that peak–power constraints do not pose

a significant problem.

The important conclusion to be drawn from this analysis is that channel state feedback, as in the

single–user case, has a dramatic effect and that it may be a simpler option than sophisticated coding

schemes for achieving acceptable performance on fading multiuser channels. Moreover, with multiuser

diversity we do not need large QAM alphabets to improve performance as for single–user channels.

7.4 Chapter Summary

This chapter was concerned with multiuser communications and we focused on the up-link direction,

which is appropriately modeled by a Gaussian multipleaccess channel. We began with a general discus-

sion about the Gaussian MAC without fading and described the different dimension allocation strategies
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that are available. These were orthogonal multiplexing, which includes TDMA, FDMA and combina-

tions of the two. We also considered a simplified CDMA systems and the two main types of coding

strategies, namely PN spreading or low–rate coding. An approach based on decoding a particular user’s

signal while considering other users as background noise was examined for the two cases and we showed

that the low–rate coding alternative has some advantage.

We described the achievable rate region for the Gaussian MAC. In order to operate at an arbitrary

set of rates on the boundary of this region one is forced to decode the users signals jointly, which is an

arduous task. In the special case of equal transmitter powers, orthogonal multiplexing achieves the equal

rate point on the region, and for this point is optimal.

We then moved on to the fading channel by first considering a comparison of single–user decoding

for CDMA. We used the multi-tone model with the TU12 channel to compare a DS–CDMA approach to

a general low–rate coding scheme. We found that much higher spectral efficiencies are attainable with

low–rate coding. The results we obtained are comparable to the performance of the IS95 system in use

today, indicating that our analysis approach is not that far off from reality.

The last section dealt with average information rates, which as in the case of the single–user

channel can be achieved by either tolerating a long decoding delay or by performing variable–rate coding.

In both cases, the quantities of interest are long–term average rates. We showed that the achievable

rate region for an optimal joint coding scheme without channel control lies strictly outside the region

of orthogonal multiplexing schemes, unlike the Gaussian MAC. Furthermore, for Rayleigh fading we

showed that the total sum rate for a large number of users and a high signal–to–noise ratio exceeds that

of orthogonal multiplexing by .8327 bits/s/Hz.

We then turned our attention to systems employing channel control. We showed that there is

another inherent feature in multiuser systems which allows for very efficient exploitation of channel

state information at the transmission end. This aspect is called multiuser diversity and arises from the fact

that the medium must be shared by the users. With channel state information for all channels available

at the user terminals, they can choose to transmit when their channels are stronger than all the rest.

This is an inherent form of selection diversity and yields significant increases in the achievable data

rates. In Rayleigh fading, the data rates even exceed a non–fading Gaussian channel. While schemes

employing this form of diversity may not be suitable for delay constrained traffic, such as voice, some

data communication systems may be able to benefit greatly from such schemes. An important result is

that even without any error–control coding, the bit–error–rate of systems employing multiuser diversity

is comparable to a non–fading channel. If, in addition, we employ power control, significantly lower
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BER can be expected with respect to an uncoded non–fading channel. The performance is also rather

insensitive to peak–power constraints.
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Chapter 8

Conclusions and Areas for Further

Research

8.1 Conclusions

We now summarize the main results of this thesis. In Chapter 3 we showed that the communication

problem over fading channels with a small number of degrees of freedom, or stated otherwise, indepen-

dent realizations of a random process, is fundamentally limited by a quantityPout(R), or the information

outage rate. This quantity defines the minimum achievable probability of codeword error. We have ap-

plied these ideas to practical situations and have drawn a number of conclusions regarding what can be

expected in terms of attainable performance. Even for high diversity systems, we should not expect to

be able transmit at more than 1 bit/s/Hz for modest signal–to–noise ratios ( on the order of 10 dB). We

demonstrated that for spread–spectrum signals there is a large performance difference between using a

direct–sequence and a very low rate coding technique. The latter approach benefits greatly in terms of

spectral efficiency.

In chapter 4 we tackled the coding problem for channels with a small number of degrees of free-

dom by modeling them as block–fading channels. We have shown that diversity is limited not only by

the number of degrees of freedom, but also by the size of the signaling constellation and the desired

code rate. The Singleton bound turns out to be the tool which gives us this information. We found that

both the Singleton bound and the information outage probability are linked in the sense that they predict

the achievable diversity for any coding system over a finite number of degrees of freedom. Examples

of block and trellis codes were given which attain maximum diversity. We have found, by computer
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search, a wide variety of practical coding schemes for spectral efficiencies less than or equal to 1 bit/dim

which, in some cases, achieve close to optimal performance. Their performance has been verified by

computer simulation, both in terms of bit and frame error rates. It seems that the bit error rate is much

less sensitive to the complexity of the coding scheme than the frame error rate. An important conclusion

is that information outage probability is a good indicator of practical frame error rates.

Chapter 5 treated systems which employ channel state information at the transmission end in order

to control or eliminate outages. This can be achieved either by fast power control or variable rate coding.

We showed that systems with some diversity, such as multiple receivers or spread–spectrum signaling,

can benefit tremendously with fast power control. Not only are outages eliminated but performance

quickly approaches that of the non–fading channel with increasing diversity. For systems employing

variable–rate coding, we found that simple two–rate schemes with power control can provide close to

optimal performance. In the case of uncoded transmission, these simple schemes achieve performance

comparable (or even better) than the uncoded AWGN channel without fading. This is important since

it shows that channel state feedback can play the role of sophisticated coding/interleaving schemes over

ergodic fading channels. We ended the chapter with a demonstration that the use of ARQ protocols

on fading channels can achieve high average data rates, although slightly lower rates than for systems

exploiting a priori channel knowledge. The key is to operate at a high spectral efficiency and high

information outage rate (on the order of 50The downside is that the ARQ protocol has to work very hard

to achieve these average rates.

Finally, in Chapter 6, we considered single–cell multiuser channels. After an introduction where

we treated non–fading AWGN channels we examined different multiple–access approaches for single–

user decoding of a wide–band (1.2288MHz) multiuser channel. We found, using the information outage

probability, that a low–rate coding based CDMA system is far superior in terms of spectral efficiency to

a direct–sequence based system. Moreover, we showed that our analysis is very accurate at predicting

the spectral efficiency of practical CDMA systems such as IS95. In a single–cell system, the spectral–

efficiency of an orthogonal scheme such as TDMA or FDMA/TDMA with frequency–hopping is much

higher than CDMA. We then turned to average information rates, where it was found that the spectral

efficiency of an optimal jointly–decoded CDMA system exceeds than of any orthogonal multiplexing

system by .8723 bits/s/Hz for a large number of users and signal–to–noise ratio. For systems exploiting

channel state feedback, we demonstrated that there is an inherent feature in multiuser systems which

allows for significantly higher average data rates than even a non–fading channel. We have called this

effect multiuser diversity, although it is simply selection diversity at the transmission end. Schemes
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employing are potentially optimal for symmetric multiuser channels (i.e. where the average received

power of all users is equal.) It allows for a completely orthogonal dynamically allocated FDMA/TDMA

multiplexing so joint detection is not required. While systems employing this type of diversity may not

by suitable for delay–constrained traffic, such as voice, some data communication systems may be able

to benefit greatly from it. An important result is that even without any error–control coding, the bit error–

rate of systems employing multiuser diversity is comparable (or even lower) than a non–fading channel.

This is true both with and without power control.

8.2 Areas for further research

We have been unable to find construction methods for coding schemes with higher spectral efficiencies

for the block–fading channel model and a small number of degrees of freedom. This is an important area

for further research, since data systems working at higher signal–to–noise ratios (e.g. wireless local–area

networks) will definitely require such coded–modulation schemes. The codes found in Chapter 4 should

be analyzed for both partially–interleaved and multi-tone systems. In addition, for fast–fading chan-

nels, concatenation of these codes with multiple–symbol non–coherent detection would be an interesting

problem to pursue.

We have completely ignored multiuser cellular systems where interference from other cells is an

important issue. In some cases these can also be characterized using information outage techniques. An

initial step in this direction has been taken in [CKH97]. As far as coding is concerned, the techniques

from Chapter 4 should be applied to systems such as those described in [CKH97] and [PC95].

For the results on channel state feedback exploitation, we have not considered the channel estima-

tion problem which, of course, is critical. At the same time practical protocols for exploiting multiuser

diversity should be found and analyzed. These ideas must also be applied to interference–limited sys-

tems.
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