
Platform Support for Development
and Deployment of Multipoint

Multimedia Applications

PRÉSENTÉE À LA SECTION DE SYSTÈMES DE COMMUNICATION

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

CHRISTIAN BLUM

Ingénieur électricien diplômé Université de Stuttgart de
nationalité allemande

Composition du jury:

Prof. J.Y. Le Boudec, président du jury
Prof. R. Molva, directeur de thèse

Dr. G. Coulson, corapporteur
Prof. J.-P. Hubaux, corapporteur
Prof. B. Merialdo, corapporteur

Prof. M. Mühlhäuser, corapporteur

Sophia-Antipolis, Eurécom
1997

Acknowledgements

This thesis is the result of research performed in the Corporate Communications Department
of Eurécom, a subsidiary of the École Nationale Supérieure des Télécommunications (ENST)
Paris and the École Polytechnique Fédérale de Lausanne (EPFL). I would like to thank Claude
Gueguen, the director of Eurécom, for having received me at this fine institute that may well
serve as a model for other pan-european efforts in research and education. I equally would like
to thank Jacques Labetoulle, the head of the Corporate Communications Department, who
made my research possible, and who was a constant source of advice and help throughout my
thesis. I owe special thanks to Refik Molva, my thesis advisor, for his support and his critical
observations in many discussions that helped me advance in my work. I am indebted to him
and to Erich Rütsche for having had the initial idea for APMT, the multimedia platform archi-
tecture that is now at the core of this thesis. I then need to thank Ernst Biersack for the initial
contact with Eurécom, and his constant interest in the progress of my thesis.

Many people merit credit for having contributed to the APMT architecture and prototype.
Laurent Gautier and Henning Schröder implemented a first version of the prototype. Marcus
Schmid developed the connection management framework of the prototype, and here most
notably the Conference Configuration and Connection Manager. Robert Haas and Bernhard
Suter developed a first version of the audio transmission framework. Based on that, Frank
Gerischer developed the audio components of the APMT prototype. Antonio Suarez, Rodolphe
Kraftsik, Nicolas Durville and Christophe Stegmann implemented the APMT video on-
demand application.

This thesis has profited to quite some extent from the experience that I have gained in the
teleconferencing project BETEUS. I need to thank Philippe Dubois, Olivier Schaller, Didier
Loisel and Refik Molva for more than one year of exciting team-work. I owe special thanks to
Olivier Schaller, with whom I designed the BETEUS API that is described in this thesis.

This thesis would not have been possible without the countless discussions I had with my
office mates Christoph Bernhardt, Alaa Dakroub, Mahmoud Nazeman, Erich Rütsche and Raul
Oliveira, and more recently, Jamel Gafsi and Lassaad Gannoun. The same needs to be said for
the lunch-time discussions with Christian Bonnet, Stéphane Decrauzat, Alain Enout, Raymond
Knopp, Karim Maouche, Constantinos Papadias, Didier Samfat and Nicolas Tavier, and the
coffee-time discussions with Jakob Hummes about Java-RMI and CORBA.

For their warm welcome and constant support I would further like to thank the people work-
ing in the administration of Eurécom, among them Catherine Betrancourt, Lina Chrin, Jean-
Christophe Delaye, Nathalie Richardin and Agnès Rougiers. Many thanks to Remy Giaccone
for the organization of the thesis defense.

I am grateful to Karim Maouche, Jörg Nonnenmacher, Jamel Gafsi and Jakob Hummes for
the organization of numerous unforgettable festivities that indirectly contributed to this thesis.

I need to thank Sylvie Géra for her love, her support, and her patience.

Abstract

Multipoint multimedia applications are often developed as standalone applications without the
support of a development and deployment platform. Such applications have to implement basic
functionality like the transmission and processing of digital audio and video from scratch.
They do not profit from a deployment platform for their dissemination, and tend to require
skilled personnel for installation and operation. Standalone applications are typically found in
research environments where new application features need to be evaluated with prototypes.
However, applications that need to be deployed as services on large networks to a large number
of users must be built on top of a platform. Such a platform must not only support the deploy-
ment of applications, it must also offer means that facilitate their development. A platform is
an investment that can only be justified if it satisfies the interests of many users. It must there-
fore foster application diversity, which it does best by supporting application development on a
high level.

The investment a development and deployment platform represents also requires it to be
long-lived, with the key to longevity being extensibility. Early platforms like Bellcore’s Tour-
ing Machine feature a monolithic application programming interface that is hard to extend,
because every extension requires considerable modifications to the infrastructure. Such mono-
lithic platforms must be replaced by platforms based on the component framework paradigm
which allows the platform to be extended by third-parties. The high-level abstractions exhib-
ited by the application programming interfaces of monolithic platforms remain nevertheless
valuable, and can be reimplemented as toolkits on top of low-level components.

A platform for multipoint applications is necessarily distributed, and should therefore be
constructed on top of an existing platform for distributed processing. The most adequate plat-
form for this purpose is the Common Object Request Broker Architecture (CORBA) of the
Object Management Group (OMG). CORBA is language-independent, object-oriented and
open, which makes it superior to alternatives like Java RMI, OSF DCE and Microsoft DCOM.

This thesis proposes an extensible platform for multipoint multimedia applications based on
CORBA that supports application development with high and low-level component frame-
works, and that supports application deployment with mobile code techniques. Applications
reside in so-called application pools from where they download applets into static multimedia
terminals. A multimedia terminal consists of a terminal control and an extensible set of high-
level components called terminal servers. A special kind of terminal server is the applet han-
dler which houses the applets sent by the application. The multimedia middleware of the termi-
nal is also encapsulated in a terminal server. It consists of low-level components called devices
that can be plugged together to form device graphs. Device graphs can be controlled over the
network by the application, or locally by downloaded applets. Many applications require a
higher level of programming support than devices or terminal servers. These applications profit
from high-level components in the application pool called application pool utilities. Applica-
tion pool utilities relieve applications from dealing with multiple terminals. An example appli-
cation pool utility is a connection manager that allows an application to create and connect
complex device graphs in multiple terminals with a few programming instructions.

The platform proposed by this thesis is tailored to IP networks. It uses the Internet Inter-
ORB Protocol (IIOP) for control communication, and the transport protocols TCP/IP, UDP/IP
and UDP/IP multicast for the transport of multimedia data. The platform does not require any
changes to the existing IP network infrastructure, which makes it possible to deploy it today on
the Internet, or on corporate intranets. This is in contrast to the Telecommunications Informa-
tion Networking Architecture (TINA), which has to be considered as the major effort in the
area of telecommunications to provide platform support for distributed multimedia applica-
tions. TINA is rooted in the network, and its introduction will require considerable investments
by network operators.

A first version of the platform has been implemented in a prototype in order to evaluate its
feasibility. The platform, as it is presented in this thesis, builds on the experience gained with
this prototype. The thesis discusses the platform in general, its application management archi-
tecture, its multimedia middleware, and the prototype. The thesis also develops a set of
requirements that platforms should fulfill, and evaluates a certain number of platforms with
respect to these requirements. The platforms that are evaluated are Bellcore’s Touring
Machine, Eurécom’s Beteus platform, IBM’s Lakes platform, Olivetti’s Medusa, the Multime-
dia System Services (MSS) of the Interactive Multimedia Association (IMA), and TINA.

Résumé

La plupart des applications multipoints multimédia sont développées sans le support d’une
plate-forme de développement et de déploiement. Par conséquent ces applications doivent
implémenter beaucoup de fonctions de base, comme par exemple la transmission et le traite-
ment du son et de la vidéo. Elles ne peuvent pas être déployées automatiquement, et elles
nécessitent un personnel expérimenté pour leur installation et exploitation. Souvent on trouve
ce type d’application dans les environnements de recherche où la faisabilité d’une application
nouvelle doit être validée par un prototype. Cependant, des applications qui vont être
déployées comme services dans un réseau publique avec un grand nombre d’utilisateurs ne
peuvent pas renoncer au support d’une plate-forme. Une telle plate-forme doit non seulement
rendre possible le déploiement d’applications, mais doit aussi faciliter leur développement.
Une plate-forme est un investissement qui ne peut être justifié que si celle-ci satisfait les inté-
rêts d’un grand nombre d’utilisateurs. Par conséquent elle doit promouvoir la diversité des
applications, ce qui demande un support à haut niveau pour le développement d’applications.

L’investissement que représente une plate-forme se justifie aussi par une durée de vie éten-
due de celle-ci. La clé de la longévité de la plate-forme est son extensibilité. Les premières
plate-formes, comme la Touring Machine de Bellcore, implémentent une interface de program-
mation monolithique dont chaque extension nécessite des modifications importantes dans
l’infrastructure. Les plate-formes monolithiques doivent être remplacées par des plate-formes
qui sont basées sur des composants configurables, ce qui permet une extension de la plate-
forme par des tiers. Les abstractions à haut niveau des plates-formes monolithiques restent
cependant valable, et peuvent être réimplémentées sous forme de toolkit au-dessus de compo-
sants à bas niveau.

Une plate-forme pour des applications multipoints est nécessairement distribuée, et a elle-
même besoin du support d’une plate-forme pour des applications réparties. La plate-forme qui
est la plus adéquate pour cela est la Common Object Request Broker Architecture (CORBA)
de l’Object Management Group (OMG). CORBA ne dépend pas d’un langage de programma-
tion, est orienté-objet et ouvert, ce qui le rend supérieur à des alternatives comme Java RMI,
OSF DCE et Microsoft DCOM.

Cette thèse propose une plate-forme pour des applications multipoints multimédia qui est
basée sur CORBA. Cette plate-forme facilite le développement d’applications avec des compo-
sants configurables de bas et de haut niveau, et le déploiement d’applications avec des techni-
ques de code mobile. Les applications résident dans des serveurs centraux appelés application
pools d’où elles téléchargent du code sous forme d’applets dans des terminaux multimédia. Un
terminal multimédia consiste en une entité de contrôle et en un nombre extensible de compo-
sants de haut niveau appelés terminal servers. L’exemple d’un terminal server est le applet
handler qui héberge les applets téléchargées. L’infrastructure multimédia du terminal est aussi
encapsulée par un terminal server. Elle consiste en composants à bas niveau appelés devices
qui peuvent être inter-connectés à volonté pour former des graphes. Un device peut être con-
trôlé par l’application à travers le réseau, ou en local par une applet téléchargée. Beaucoup
d’applications demandent un support de programmation plus élevé que celui fourni par les
devices et les terminal servers. Ces applications peuvent se servir de composants de haut

niveau appelés application pool utilitities. Les application pool utilities facilitent pour l’appli-
cation le contrôle de plusieurs terminaux. L’exemple d’une application pool utility est le mana-
ger de connexions qui permet à l’application de créer et de connecter des graphes de devices
dans plusieurs terminaux avec seulement quelques lignes de code.

La plate-forme proposée par cette thèse est adaptée aux réseaux IP. Elle utilise l’Internet
Inter-ORB Protocol (IIOP) pour la communication de contrôle, et les protocoles de transport
TCP/IP, UDP/IP et UDP/IP multicast pour le transport des données multimédia. Elle ne
requière pas des modifications dans l’infrastructure existante d’un réseau IP, ce qui permet de
la déployer aujourd’hui sur Internet, ou sur un réseau d’entreprise. Cette propriété la distingue
de la Telecommunication Information Networking Infrastructure (TINA), qui doit être consi-
dérée comme l’effort principal dans le domaine de télécommunications de créer une plate-
forme pour des services multimédia. TINA est ancrée dans le réseau, et son introduction va
nécessiter des investissements importants par les opérateurs.

Un premier prototype a été développé afin de vérifier la faisabilité de la platforme. La thèse
décrit la plate-forme en général, son architecture pour l’administration des applications, son
infrastructure multimédia, ainsi que le prototype. La description de la plate-forme est précédée
par la discussion des conditions qu’elle doit remplir, et l’évaluation d’un certain nombre de
plate-formes qui sont considérées comme des réferences importantes: la Touring Machine de
Bellcore, la plate-forme Beteus d’Eurécom, la plate-forme Lakes d’IBM, la plate-forme
Medusa d’Olivetti, les Multimedia System Services (MSS) de l’Interactive Multimedia Asso-
ciation (IMA), et TINA.

ix

Table of Contents

Chapter 1: Introduction 1

 1.1 Multipoint Multimedia Applications 1

 1.2 Platforms for Multipoint Multimedia Applications 1

 1.3 Component Frameworks 3

 1.4 CORBA 3

 1.5 Objectives of this Thesis 3

 1.6 Structure of the Document 4

Chapter 2: Platform Requirements 5

 2.1 Introduction 5

 2.2 Major Aims 5

 2.3 Required Platform Properties 7
Open 7
Extensible 8
Programmable 8
Scalable 9
Deployable 9
Simple 10

 2.4 Required Platform Functionality 10
User Session Management 10
Connection Management 11
Multimedia Data Processing 12
Multipoint Control Communication 13
Resource Management 13
Synchronization 14
Mobile Code 15
Presentation Environment 16
Federation of Applications 17
Security 17
Mobility 17
Directory Service 18
Platform Management 18
Accounting 18

 2.5 Distributed Processing Environment 18

 2.6 Platform Evaluation Criteria 20

 2.7 Conclusion 21

Chapter 3: Distributed Processing Environment 23

 3.1 Introduction 23

 3.2 CORBA for the DPE 24

Table of Contents

x

 3.3 OMA, CORBA, CORBAservices and CORBAfacilities 25
Object Management Architecture 26
Common Object Request Broker Architecture 27
CORBA Interoperability 31
CORBAservices 34
CORBAfacilities 37
Stream Support in CORBA 38
CORBA and RM-ODP 39
Problems and Tendencies 41
Assessment 43

 3.4 Other Platforms 43
Distributed Computing Environment 43
Distributed Component Object Model 45
Distributed Object Computing in Java 46

 3.5 Conclusion 47

Chapter 4: Monolithic MMC Platforms 49

 4.1 Introduction 49

 4.2 Touring Machine 50
Assessment 52

 4.3 The Beteus Platform 53
The Beteus ATM Network 54
Platform Architecture 55
Site Architecture 57
Major Connection Abstractions 58
Application Programming Interface 60
Example Application Scenario 63
Implementation 64
Assessment 66

 4.4 IBM Lakes 68
Assessment 69

 4.5 Other Platforms 71

 4.6 Conclusion 71

Chapter 5: MMC Component Frameworks 73

 5.1 Introduction 73

 5.2 Medusa 74
Assessment 76

 5.3 IMA Multimedia System Services 77
Properties and Capabilities 79
Connection Establishment 80
Synchronization 81
Resource Management 81
Interface Hierarchy 82
Assessment 83

 5.4 TINA 84
Business Model 85
Computing Architecture 86
Service Architecture 87
Connection Management Architecture 88

xi

Table of Contents

Assessment 89

 5.5 Other Frameworks 91
Frameworks Based on a Standard Object Model 91
Frameworks Based on a Proprietary Object Model 92
Frameworks Based on Rudimentary Object Models 93

 5.6 Component Framework Design Considerations 95

 5.7 Conclusion 99

Chapter 6: APMT Overview 101

 6.1 Introduction 101

 6.2 Application Pools and Multimedia Terminals 102
Architecture Overview 102
Overview of the Multimedia Terminal 106
Overview of the Application Pool 107
Overview of Additional Components 109

 6.3 Session Model 110

 6.4 APMT Specification 111

 6.5 Multimedia Terminal Interfaces 111
Terminal Control 111
Applet Handler 113
Stream Agent 114

 6.6 Application Pool Interfaces 115
Application Pool Control 115
Applications and Utilities 116

 6.7 User Agent Pool Interfaces 117

 6.8 Application Model and Major Application Scenarios 118

 6.9 Deployment Scenarios 120

 6.10 APMT and TINA 121

 6.11 Conclusion 122

Chapter 7: APMT Platform Architecture 123

 7.1 Introduction 123

 7.2 Usage of CORBA in APMT Definitions 123

 7.3 Overview of APMT Modules 125

 7.4 Major Types 126
Basic Types 126
Advanced Types 127

 7.5 Terminal Control Interfaces 129
Interface Tc::Terminal 130
Interface Tc::PanelTerminalControl 130
Interface Tc::ApplicationControl 132
Interface Tc::UserSession 133
Interface Tc::TerminalControl 134

 7.6 Terminal Server and Applet Handler Interfaces 136
Interface Ts::TerminalServer 137
The Tcl/Tk Applet Handler 137

Table of Contents

xii

The Java Applet Handler 140

 7.7 Application Pool Control Interfaces 141
Interface Pc::Pool 141
Interface Pc::SessionControl 142
Interface Pc::PoolControl 144

 7.8 Application Interfaces 145
Interface Pc::ApplicationControl 145
Interface App::Application 146

 7.9 Utilities and the Participation Control 146
Interface Put::Utility 146
Participation Control Interfaces 147
Interfaces Pac::SessionAccess and ParticipationRequest 147
Interfaces Pac::SessionControl and Application 148
Interfaces Pac::Participant and ParticipationControl 150
Interface Pac::SessionInformation 150

 7.10 Scenarios 151
Application Startup Scenario 151
Session Join Scenario 152
Session Invitation Scenario 154
Child Application Startup Scenario 155

 7.11 Conclusion 155

Chapter 8: APMT Multimedia Middleware 157

 8.1 Introduction 157

 8.2 Overview of the Multimedia Middleware 158

 8.3 Graph Objects 161

 8.4 Devices 163
Formats and Ports 164
Device Interfaces 171
Device Introspection 173
Device Granularity 175
Device Interface Hierarchy 175

 8.5 Transport Devices 176

 8.6 Device Connectors 179

 8.7 Graph and Stream Agent 183
Graphs 183
Stream Agent 187
Graph Creation Scenario 187

 8.8 A Connection Manager 189
Connection Management Session, Graph Models and Terminal Sets 189
Bridges 192

 8.9 Open Issues 194

 8.10 Conclusion 194

Chapter 9: APMT Evaluation 197

 9.1 Introduction 197

 9.2 APMT Prototype 197

xiii

Table of Contents

Multimedia Middleware Interfaces 199
Implementation of the Multimedia Middleware 201
CCCM 202
Devices 202
The Videoconferencing Test Application 205
The Video On-Demand Application 206

 9.3 Evaluation of APMT 209
Platform Properties 209
Platform Functionality 210

 9.4 Conclusion 214

Chapter 10: Conclusions 215

 10.1 MMC Platforms 215

 10.2 APMT 216

 10.3 Further Work 218

References 221

List of Acronyms and Abbreviations 233

Appendix A: APMT Platform Interface Definintions A1

A.1 Remarks A1
A.2 Module Typ A1
A.3 Module Ftyp A2
A.4 Module Ex A3
A.5 Module Atyp A3
A.6 Module Tc A5
A.7 Module Ts A8
A.8 Module TclTk A8
A.9 Module Java A9
A.10 Module Pc A9
A.11 Module Put A11
A.12 Module App A12
A.13 Module Pac A12

Appendix B: APMT Multimedia Middleware Interface Definitions B1

B.1 Remarks B1
B.2 Module Bas B1
B.3 Module DevMan B4
B.4 Module Trans B5
B.5 Module Port B7
B.6 Module Cont B8
B.7 Module Tgraph B9
B.8 Module Strag B11
B.9 Module Cccm B11

Table of Contents

xiv

xv

List of Figures

Figure 2.1. Possible relationships between application, MMC platform and DPE. 20
Figure 3.1. The Object Management Architecture. 26
Figure 3.2. Structure of the Object Request Broker. 29
Figure 3.3. OMG stream architecture proposal. 39
Figure 3.4. An example for OMG-ODL usage. 40
Figure 4.1. The Touring Machine software architecture. 50
Figure 4.2. The Beteus ATM network. 54
Figure 4.3. Node mapping example. 55
Figure 4.4. The Beteus application model. 56
Figure 4.5. The Beteus site architecture. 57
Figure 4.6. API procedure calls during a session with two participants. 61
Figure 4.7. Lakes architecture. 68
Figure 5.1. The Medusa architecture. 75
Figure 5.2. Interaction between MSS objects. 78
Figure 5.3. MSS interface inheritance diagram. 82
Figure 5.4. An example for TINA-ODL usage. 86
Figure 5.5. Overview of the TINA service and connection management architecture. 88
Figure 5.6. The computational environment of a device. 96
Figure 6.1. APMT example scenario. 103
Figure 6.2. Terminal components. 106
Figure 6.3. Application pool components. 107
Figure 6.4. Layered view of the APMT architecture. 108
Figure 6.5. Terminal control interfaces. 112
Figure 6.6. Applet handler interfaces. 113
Figure 6.7. Selected multimedia middleware interfaces. 114
Figure 6.8. Application pool control interfaces. 115
Figure 6.9. Application and application pool utility interfaces. 116
Figure 6.10. Interfaces of the user agent pool. 117
Figure 6.11. Interactive presentation scenario. 118
Figure 6.12. Centralized and distributed variants of the conference scenario. 119
Figure 6.13. Broadcast application scenario. 120
Figure 7.1. Interfaces of the child and parent session. 143
Figure 7.2. Interfaces of the participation control utility. 147
Figure 7.3. Event trace of the application startup scenario. 151
Figure 7.4. Event trace of the session join scenario. 153
Figure 7.5. Event trace of the session invitation scenario. 154
Figure 7.6. Event trace for the child application startup scenario. 155

List of Figures

xvi

Figure 8.1. Example for a device graph. 159
Figure 8.2. Graph object interface inheritance diagram. 160
Figure 8.3. Components of the APMT multimedia middleware. 161
Figure 8.4. The computational environment of a device. 163
Figure 8.5. Port interfaces. 169
Figure 8.6. Device interface template. 171
Figure 8.7. Transport device interface hierarchy. 177
Figure 8.8. The RTP header and header extension. 178
Figure 8.9. Two device connection configurations. 181
Figure 8.10. Ternary relationship between two devices and a device connector. 182
Figure 8.11. Graph creation and control scenario. 188
Figure 8.12. CCCM interfaces. 191
Figure 9.1. Interface hierarchy of the APMT prototype. 200
Figure 9.2. Distribution of objects over processes. 201
Figure 9.3. Video device interface hierarchy and graphs. 204
Figure 9.4. Three example audio device graphs. 205
Figure 9.5. The graphical user interface of the videoconferencing application, 206
Figure 9.6. Components and control flows of the video on-demand application. 207
Figure 9.7. Sender and receiver graphs of the video on-demand application. 208

xvii

List of Tables

Table 2.1. The platform evaluation table. 21
Table 3.1. Standardized CORBAservices. 34
Table 4.1. Evaluation of the Touring Machine. 53
Table 4.2. The API call for bridge definition. 62
Table 4.3. Example bridge definitions. 63
Table 4.4. Evaluation of the Beteus platform. 67
Table 4.5. IBM Lakes platform evaluation. 70
Table 5.1. Evaluation of Medusa. 77
Table 5.2. Evaluation of IMA-MSS. 83
Table 5.3. Evaluation of TINA. 90
Table 7.1. APMT platform architecture modules. 126
Table 8.1. APMT multimedia middleware modules. 158
Table 9.1. Implemented devices. 203
Table 9.2. APMT evaluation. 213

List of Tables

xviii

1

1 Introduction

1.1 Multipoint Multimedia Applications

Multimedia applications reach people today mainly via CD-ROM. The enormous amount of
data that can be stored on optical disks together with the ever-increasing computation power of
personal computers allows to build highly interactive applications with synchronized audio,
video, text, graphics and animation as principal building blocks. CD-ROM’s are ideally suited
for applications that give immediate access to large amounts of stored data, but they are not an
economical vehicle for the delivery of timely information of any kind. Here it is the World
Wide Web (Web) that is dominating the scene. The Web allows to access dynamically chang-
ing hyperlinked multimedia content on a global scale. The share of network bandwidth avail-
able to a user of the Web is still by far lower than what he has on the backplane bus of his
personal computer, but this is a minor problem considering that the main attraction of the Web
is the immediate access it offers to specific pieces of timely information. While the Web, since
the advent of Java, is catching up on the CD-ROM with respect to interactivity, it is only slowly
starting to integrate digital audio and video. An interesting development in the Web is the
advent of groupware applications written in Java that use the Web as deployment platform.
Such applications can, as soon as the network permits this, evolve to full-fledged multimedia
applications accessible by anyone who has a Web browser installed on his desktop computer.

One of the most interesting properties of the Web is that content development and dissemi-
nation is easy. Even computer illiterate people are able to create their own Web pages, with the
result that the amount of content available on the Web is growing explosively. A similar devel-
opment, although certainly to a lesser extent, and not for the immediate future, can be foreseen
for multipoint multimedia applications. Such applications are characterized by the exchange of
multimedia data among a set of cooperating application endpoints, with examples being video
conferences, tele-teaching applications, computer-supported collaborative work (CSCW), or
distributed games. If development and deployment of multipoint multimedia applications is
easy they will appear in large numbers on the network. People will be able to tailor such appli-
cations with limited effort to very specific requirements. Just like it is no problem today to add
a photograph to a personal Web page it will be no problem to add multipoint digital video to a
groupware application. In order to reach this stage there has to be a standard infrastructure for
multipoint multimedia applications that is in scope well beyond the current Web infrastructure.

1.2 Platforms for Multipoint Multimedia Applications

Most of the multipoint multimedia applications described in literature are developed as standa-
lone applications without the support of a development and deployment platform. Such appli-
cations have to implement basic functionality like the transmission and processing of digital
audio and video from scratch. They do not profit from a deployment platform for their dissem-
ination, and they tend to require skilled personnel for installation and operation. Standalone

Introduction

2

applications are typically found in research environments where new application features need
to be evaluated with prototypes. However, applications that need to be deployed as services on
large networks to a large number of users cannot renounce on the support of a platform. Such a
platform must not only support the deployment of applications, it must also offer means that
facilitate their development. A platform is an investment that can only be justified if it satisfies
the interests of many users. It must therefore foster application diversity, which it does best by
supporting application development on a high level.

Infrastructures and platforms for networked multimedia applications in general have been
addressed by research since the beginning of this decade. It has been recognized that the long-
term goal of research in the area of networked multimedia applications must be to see today’s
standalone prototypes integrated into tomorrow’s service provision environments. The larger
part of the platforms for networked multimedia described in literature concentrates on facilitat-
ing application development. Fewer care about the deployment of applications, or the deploy-
ment of the application platform itself. Platform support for multipoint multimedia
applications is still in its infancy. Only two examples for deployed platforms can be cited here:

• T.120/T.130 videoconferencing via ISDN [ITU94]: videoconferencing via ISDN
is today the only commercially viable form of multipoint multimedia service
provision. The lack of multicast support will nevertheless limit the scope of
ISDN applications in the long run.

• MBone [Mace94]: the MBone provides a minimalistic but robust framework for
multipoint applications running on the Internet. The main focus of MBone
application development is for the moment on getting the most out of scarce
bandwidth. As for now there is no tendency to prepare an advanced infrastruc-
ture for multipoint applications.

An advanced infrastructure for multipoint multimedia applications has been conceived by
the Telecommunications Information Networking Architecture (TINA) consortium [Barr93].
The TINA architecture provides a complete multimedia service provision environment and
addresses about every important issue within this context. However, the problem with TINA is
that it necessitates important modifications to the telecommunications network infrastructure.
It will therefore require considerable investments by network operators, which in turn will
hamper its deployment.

None of today’s approaches for multipoint multimedia applications platforms is likely to
experience a breakthrough success in the future. It is possible that this void will lead to an ad-
hoc extension of the Web architecture by one of the major browser vendors, for instance by
offering an audio and video connection management interface to downloaded Java applets.
Such a development would be regrettable because it would hinder the advent of a platform
based on sound and future-proof concepts.

 The investment a development and deployment platform represents requires it to be long-
lived, with the key to longevity being extensibility. A platform for multipoint multimedia
applications that cannot accommodate new functionality will become obsolete shortly after its
deployment. Platforms must be actually more than just extensible - they must be extensible by
third parties. This requires the opening of platform interfaces that would otherwise remain hid-
den, and the definition of rules for the usage of these interfaces. This leads to the use of the
component framework paradigm.

3

Component Frameworks

1.3 Component Frameworks

A component framework consists of a set of interfaces that a component can access, or that it
has to implement itself, and a set of rules to which the component has to conform in order to be
usable within applications. Platforms based on component frameworks are extended with every
component that is developed for them. Applications do not program components, they custom-
ize them and plug them together with other components to a larger whole. Example component
frameworks are toolkits for graphical user interfaces (GUI) where applications use a scripting
language to build a graphical user interface from generic widgets. The functionality of a GUI
toolkit is augmented with every widget that is developed for it. Other examples are compound
document frameworks like Microsoft’s OLE/COM [Micr95], the plug-ins that can be devel-
oped for the Netscape browser [Nets97], and the Java component framework JavaBeans
[Sun96a]. Platforms for multipoint multimedia applications are very broad in scope and
require the use of components at multiple places. The most straightforward example are multi-
media data processing devices, but components are also required at a higher level. An example
for a high-level component is the application itself that can become part of a composite appli-
cation. The components used by multipoint multimedia applications must be able to communi-
cate with each other across address spaces and networks. This requires the use of a
communication platform that makes address spaces and networks transparent. A communica-
tion platform that is adequate for this is the Common Object Request Broker Architecture
(CORBA) of the Object Management Group (OMG).

1.4 CORBA

A communication platform is needed by the platform infrastructure, by platform components,
and by applications. Among all communication platforms that exist today, CORBA is the most
adequate for the use in a platform for multipoint multimedia applications. CORBA is lan-
guage-independent, object-oriented and open, which makes it superior to alternatives like Java
RMI [Sun96d], OSF DCE [Bran95] and Microsoft DCOM [Brow96]. A platform for
multipoint multimedia applications that is based on CORBA will not only profit from transpar-
ent distributed object computing, but it will be augmented with whatever functionality is added
by OMG to CORBA and the Object Management Architecture (OMA), OMG’s ambitious
framework for future component-based applications. On the network, CORBA relies on a sin-
gle protocol that may experience in the future a success comparable to the Hyper-Text Transfer
Protocol (HTTP) of the Web: the Internet Inter-ORB Protocol (IIOP) [OMG95c]. There are
tendencies in the World Wide Web Consortium (W3C) to build the next generation of HTTP
(HTTPng) on top of IIOP.

1.5 Objectives of this Thesis

The objective of this thesis is to invent a platform architecture based on CORBA and the com-
ponent framework paradigm that fosters the development and deployment of multipoint multi-
media applications. The thesis targets applications that in one way or another serve human
communication purposes and that can be accessed via a user terminal, not considering those
that treat multimedia data in a non-interactive and fully automated way. The platform must
accommodate multipoint applications, with asymmetric client-server applications or even
completely local applications as special cases. The data that are exchanged between the distrib-
uted components of a multipoint application can be of any format. The thesis denominates

Introduction

4

these data as multimedia data without imposing any restrictions on them. The thesis concen-
trates nevertheless on providing platform support for the exchange of high-volume and time-
critical data which are the most difficult to handle.

The platform proposed by this thesis must not only provide high-level support for the
deployment of multipoint multimedia applications, it must itself be deployable. This means
that the architecture of the platform must not contain features that make its deployment eco-
nomically or technically difficult. A platform must be deployed as a simple kernel that can be
extended as user demand crystallizes. The success of such a proceeding has been demonstrated
by the Web which started as a simple hypertext document platform and is now a client-server
application platform.

The thesis shall set forth the reasoning that leads from standalone applications to applica-
tion platforms, and from non-extensible platforms with a proprietary control middleware to
extensible platforms with standard middleware. Considerable space will therefore be dedicated
to the discussion of existing approaches that will then be used to demonstrate the advantages of
the CORBA-based platform that is in the center of this thesis.

For the purpose of this thesis, the acronym MMC for Multipoint Multimedia Communica-
tion is introduced. The thesis denominates multipoint multimedia applications for human com-
munication and interaction as MMC applications. It also denominates platforms for MMC
applications as MMC platforms.

1.6 Structure of the Document

Chapter 2 develops a set of requirements for MMC platforms. Requirements are on one hand
properties the platform must exhibit, and on the other hand functionality that it has to imple-
ment. One of these requirements is the use of a communication platform. Chapter 3 presents
CORBA, Java RMI, OSF DCE and Microsoft DCOM as possible candidates for the communi-
cation platform, and justifies the choice of CORBA. Chapter 4 starts the discussion of MMC
platforms with monolithic platforms. Monolithic platforms exhibit a single application pro-
gramming interface, and are hard to extend. They remain interesting because they define high-
level abstractions that can be recycled in toolkits for component-based platforms. The plat-
forms that are discussed in Chapter 4 are Bellcore’s Touring Machine, Eurécom’s Beteus plat-
form, and the IBM Lakes platform. The description of the Beteus platform is part of the
contribution of this thesis. Chapter 5 is dedicated to component-based platforms. The plat-
forms that are discussed are Olivetti’s Medusa, the Multimedia System Services (MSS) of the
Interactive Multimedia Association (IMA), and TINA. Chapter 6 starts a series of chapters that
describe the component-based platform proposed by this thesis. Chapter 6 presents the archi-
tecture in general and the reasoning behind it. A basic characteristic of this architecture is that
applications are logically and perhaps geographically separated from the terminals that they
control. Applications reside in application pools (AP), from where they download applets into
multimedia terminals (MT). The thesis refers to this architecture as APMT (AP+MT). Chapter
7 discusses the application management architecture of APMT. Chapter 8 presents the multi-
media middleware of APMT, and an example connection manager. Chapter 9 is dedicated to
the evaluation of APMT. It describes the APMT prototype, and evaluates APMT with respect
to the requirements that were developed in Chapter 2. Chapter 10 contains the final conclu-
sions.

5

2 Platform Requirements

2.1 Introduction

The previous chapter introduced the notion of multipoint multimedia applications for human
communication (MMC applications) that is going to be used throughout this thesis. It also gave
the motivation for developing platforms and infrastructures for MMC applications. Platforms
facilitate and foster the development of MMC applications and are a necessary condition for
their wide-scale deployment. This chapter continues with some general reflections about the
requirements a platform for MMC applications has to fulfill. It starts off by defining four major
aims that are considered to be of utmost importance for the design of the platform. These aims
are at the basis of a set of properties the platform must exhibit. Platform properties do not
describe any specific functionality. They are defined as adjectives that must be applicable to the
description of the platform as a whole. Following that comes a comprehensive discussion of
the functionality that has to be provided by the platform. It is reasoned that this functionality
cannot be provided by a single design effort, and that the overall MMC platform should best be
provided by an existing platform for distributed applications that is augmented with MMC spe-
cific functionality. At this point it is possible to develop the criteria that are used in the follow-
ing chapters to assess existing MMC platforms and to evaluate the platform that is proposed by
this thesis.

2.2 Major Aims

Before stepping on to a discussion of specific requirements it seems adequate to formally state
the major aims to be attained by the MMC platform. Four aims are identified that underly the
requirements developed later in the text. The platform shall

• foster the development of MMC applications

• facilitate the deployment of MMC applications

• be ubiquitous

• be long-lived

The first two aims define the basic functionality that is to be provided by the platform. The
use of the verbs foster and facilitate instead of for instance supports indicates that the platform
has to not only enable development and deployment, but also to provide considerable comfort
for this. A user experiences a platform mostly via the applications that are running on top of it.
It is therefore the developer rather than the user that has to deal with the platform itself. Offer-
ing a comfortable and attractive development environment has the benefit that it is easier for
developers to respond to user demands or to solicit new user demands by proposing new appli-
cation features. The degree of development comfort provided by a platform has therefore a
direct impact on the quality and diversity of the applications running on top of it, which is
important to keep in mind considering that the success of the platform is intimately linked with

Platform Requirements

6

the success of its applications. Once developed an application has to be made available to pro-
spective users as fast as possible. Fast deployment is just as important as fast development as it
permits the rapid reaction of service providers to user demands. Application deployment con-
stitutes a considerable problem in case the number of users and applications is high, as is
envisaged for the MMC platform. One of the reasons that lead to the introduction of Intelligent
Network (IN) platforms into telecommunication networks was to reduce the enormous effort
that had to be spend on the deployment of new services [Thoe94]. IN platforms allow to con-
trol services on network level, making instantaneous and network-wide installation and
removal of a service a feasible task. The standard user terminal in telecommunication net-
works, which is the telephone handset, is static and is not affected by the installation of a new
service. This is different in the case of MMC applications where terminals are similar in com-
plexity to network equipment and where it is likely that application specific code has to be exe-
cuted on them. Since manual installation of application software on user terminals is not a
reasonable solution to this problem there have to be mechanisms provided by the MMC plat-
form that allow transparent downloading and installation of application-specific terminal soft-
ware via the network. Ease of application deployment is therefore synonymous with support
for mobile code.

As third aim the MMC platform has to strive after ubiquity. The platform should not be tai-
lored to the needs of specific user groups, but should instead be useful for as many domains
and user groups as possible. Most importantly, the platform should be as interesting for enter-
prises as it should be for private users. The design, implementation, deployment and continu-
ous extension and revision of an MMC platform architecture is such an enormous task that it is
against everybody’s interest to have more than one such platform on a global scale. Having
multiple platforms for different user communities or different platforms competing against
each other within the same user community is clearly an undesirable situation. As user com-
munities usually do not exist in isolation there will be immediately the need for gateways that
allow users belonging to different communities to communicate with each other. Gateways are
already quite complex when they have to mediate between administrational domains. Gate-
ways that have to mediate in addition between complex platform technologies are probably not
feasible. A single ubiquitous platform avoids the interworking problem, but raises the problem
of consensus. If no consensus can be found on a single platform and if multiple platforms are
competing against each other it can be expected that the platform reaching the largest number
of user communities and users will prevail. An MMC platform must therefore try to be as ubiq-
uitous and universal as possible, otherwise it is bound to disappear. The key to ubiquity is
adaptability - the platform must be adaptable to different environments.

The lifetime of a platform may also turn out to be short if it is not explicitly designed for
longevity. The platform must be able to rapidly incorporate new developments in multimedia
and networking or even ride on the wave and be the target of new developments. If the platform
is not able to keep pace with the times it will soon be replaced, resulting in a considerable
waste of investment. The key to longevity is extensibility - the platform has to be deployed as a
kernel that is then gradually extended as user demand crystallizes.

Fostering application development, facilitating deployment, ubiquity and longevity must be
the major aims underlying the design of an MMC platform. These aims are finally a conse-
quence of the enormous dynamics the field of multimedia communication and computation
exhibits. Standardization efforts that do not take these dynamics into account risk to be out-
dated even before they are finished. The four aims defined in this section are the basis of a

7

Required Platform Properties

more elaborate, but still qualitative set of platform properties which in turn shall dominate the
design of the platform.

2.3 Required Platform Properties

The qualitative requirements imposed on the platform architecture are defined as a set of prop-
erties. The platform must be

• open

• extensible

• programmable

• scalable

• deployable

• simple

These properties have all a very concrete impact on the shape the platform has to take. The
following provides a discussion of the required platform properties along with their implica-
tions.

2.3.1 Open

An MMC platform architecture has to be open, meaning that its interfaces and computational
behavior are well-defined and published in form of a standard. Clients that conform to the stan-
dardized mode of interaction with the platform can access its services. The three principal
types of platform clients that can be identified are the user, the platform provider and the ser-
vice provider that develops and deploys applications. The MMC platform must have open
interfaces wherever client interests meet, most importantly between the user terminal and the
platform, between the platform and the application, and between parts of the distributed plat-
form that are under different administration. In addition to that, platform extension must be
open, requiring that internal platform interfaces have to be standardized.

Openness is directly linked with standardization. The standardization of an MMC platform
has to be in the hand of a single organism upon which all interested parties agree. The stan-
dardization must come up with a globally accepted architectural framework that, while defin-
ing all important interfaces, leaves considerable room for competition. Important areas of
competition are applications and platform extensions. The MMC platform architecture must
make maximum use of existing standards and concentrate on architectural issues. Relevant
standards are for instance multimedia data encoding and transmission standards, or control
middleware standards, but it can also be envisaged that the platform encapsulates existing sys-
tems similar to the way the Web provided access to Gopher [Liu94].

As the computational interactions among platform components are likely to be complex
there is a need for formal methods in the definition of the interfaces that reduce the ambiguity
plain text often exhibits. The application of formal specification methods should nevertheless
be done with moderation, and care should be taken to keep interaction complexity at a level
that can be handled with a limited amount of specification.

Openness fosters application development and is a necessary condition for ubiquity.

Platform Requirements

8

2.3.2 Extensible

An MMC platform has to be extensible if it is to be long-lived. Extension should be possible
on architecture level and on component level. New components that are built on top of plat-
form extension interfaces may become part of the platform following a light-weight standard-
ization process. It can also be envisaged that new components are introduced without any
standardization, with their integration into the platform being linked with the success of appli-
cations that are using them. Apart from extension on component level it must also be possible
to extend the architecture itself as new developments in MMC demand this. The key to this
second kind of extensibility is modularity. Low-level platform components have to be grouped
into modules that can be added to and removed from the platform without affecting the plat-
form as a whole. This allows to adapt the platform to the needs of new application classes, or to
simply improve existing modules. Different versions of the same module may coexist, with
older versions being removed as the applications that are using them become obsolete or are
ported to the new versions. The advantage of this is that the size of the platform may remain
manageable over time. The phenomenon that will be observed after the platform has been in
use for some years is that the platform is mutating rather than growing. It is clearly more desir-
able to have a platform that is mutable than a new platform every once in a while. An example
for platforms that are not mutable are today’s monolithic operating systems. Considerations
similar to the ones presented here led to the development of modular micro-kernel operating
systems like Chorus [Rozi91] that are able to go with the times.

2.3.3 Programmable

Programming on top of the platform, be it for applications or platform extensions, must be
comfortable. Most importantly, the platform must help the application developer in dealing
with the problems that arise out of distribution, providing for instance solutions for location
transparency, partial failure and concurrency. The platform must also provide an application
model, i.e., an explicit programming paradigm that guides application design and develop-
ment. An application model allows the development of a standard proceeding for application
design, and helps structuring application code. A good application model may further lay the
ground for a compiler that generates application skeletons based on formal application descrip-
tions. Tools like an application compiler help automatizing the application development pro-
cess and hide the complexities of low level application programming interfaces. A platform
should provide the possibility to program on toolkit level while leaving the door open for low-
level programming. This allows application developers to rapidly include standard functional-
ity and to concentrate on the features that distinguish their application from others. Standard
functionality may for instance be included in the form of active components that are orches-
trated rather than programmed by the application.

MMC applications are hard to test and to debug because it is difficult to emulate the condi-
tions under which they are deployed. An MMC application may for instance be exposed to the
statistically combined input of a large number of users, something that is difficult to check on a
test-bed. Another problem is high-speed data transfer and processing where conceptual mis-
takes or programming errors are hard to trace down, especially when they are timing-related,
resulting in programs that seem to work correctly when checked with a debugger, but that mis-
behave when running at normal speed. An MMC platform must provide solutions for testing
and debugging. A good application model already helps to structure an application, allowing to
debug different application parts separately. The separate debugging of application parts is
only possible if the platform services that are used by an application part can be run indepen-

9

Required Platform Properties

dently from the rest of the platform. If this is not the case the complete platform software has to
be run whenever a newly coded feature needs to be tested. There is a clear need for develop-
ment platforms that allow to streamline the process of designing, implementing and testing an
MMC application. Besides that an MMC platform must be deployable on small test-beds that
allow to run applications with reasonable effort in a real-world environment.

2.3.4 Scalable

A platform is scalable if it can grow without running into performance problems. The MMC
platform has to scale well on several levels:

• number of platform nodes: the platform shall perform equally well when
deployed on a small private network or on a large public network like the Inter-
net.

• number of applications: the platform should not put any restriction on the num-
ber of installed applications.

• number of platform extensions: the platform should accommodate a large num-
ber of extensions. Not all extensions need to be installed on all platform nodes.

• number of platform users: the platform should be able to serve large numbers of
users.

• number of concurrent platform users: the platform should allow large numbers
of users to use the platform and its applications in parallel.

• number of application users: the platform should support applications having a
large number of users.

• number of concurrently active applications: the platform should allow to run a
large number of applications in parallel.

Scalability is a prerequisite for ubiquity. If an MMC platform cannot scale with the number
of users or the number of concurrently running applications, its availability will suffer, result-
ing in frustrated users. Scalability is a property that mostly concerns the platform architecture,
and not so much its implementation. It is naturally desirable that a given implementation scales
on many levels, but it is not required that it scales on all the levels mentioned above. There is
no single implementation of the platform that can fit all possible deployment scenarios.

2.3.5 Deployable

An MMC platform must be deployable in the sense that its introduction into a network is eco-
nomically feasible. An MMC platform that requires drastic changes in the network infrastruc-
ture even before its initial deployment is bound to disappear in favor of a platform that makes
the best out of the existing infrastructure. Once deployed such a platform may justify infra-
structure changes and other investments with the appeal and usefulness of its applications. The
architecture of the MMC platform must support this kind of deployment scenario by defining a
small and easily deployable platform kernel that can then be extended following the lines of a
partly predefined migration path. A good migration path is necessary to keep ad-hoc exten-
sions from leading the platform architecture into an early dead end. Designing a platform to be
deployable is a constraint that is hard to impose on a team of enthusiastic designers because it
implies that technically elegant solutions cannot be considered if they are economically doubt-
ful.

Platform Requirements

10

2.3.6 Simple

The architecture of the MMC platform must be simple in the sense that it provides a lot of
functionality with a small number of concepts. Economy of concepts reduces platform com-
plexity and increases usability. The platform must be simple to use, to program, to install and
to maintain. People using the platform in one way or another should at no time have the
impression of dealing with a complex and clumsy system.

2.4 Required Platform Functionality

The properties open, extensible, programmable, scalable, deployable and simple constitute a
set of qualitative requirements on the platform architecture that shall influence all design deci-
sions. An important decision concerns the range of functionality that is to be integrated into the
platform. The integration of a certain function into the platform makes sense only if it will be
used by a considerable number of applications. In general it is more difficult to integrate func-
tionality into the platform than to implement it within an application. One reason for this is that
platform functionality must be wider in scope than the functionality needed by a single appli-
cation, requiring a sound design rather than an ad-hoc solution to a specific problem. Function-
ality implemented by the platform must also be significantly more reliable than a single
application given that possibly many applications will depend on it. The decision whether to
integrate a given function into the platform or to leave its implementation to applications will
often be difficult. Opting in favor of platform integration whenever there is a doubt about the
usefulness of a function is the wrong way to go - too much functionality increases complexity
and is just as undesirable as lack of functionality.

The following subsections give a list of functions an MMC platform may implement. The
description of a function is accompanied by pointers towards related research or existing sys-
tems that may be relevant for the MMC platform. From the list of functions only three are con-
sidered to be mandatory: session management, connection management, and multimedia data
processing. Session management provides standard support for the establishment, modification
and release of user sessions. Connection management supports the exchange of multimedia
data between the application endpoints that form the session. Multimedia data processing is
required to mediate between a representation of multimedia data that is meaningful to a user,
and a representation that is adequate for transmission over the network. Together these three
functions represent a platform on top of which an already wide range of MMC applications can
be implemented. They are nevertheless not sufficient for the kind of large scale MMC plat-
forms that are targeted by this thesis. A platform that satisfies the major aims discussed in Sec-
tion 2.2, namely ubiquity, longevity and ease of programming and deployment, has to
implement all of the functions that are discussed in the following.

2.4.1 User Session Management

An MMC platform must provide a user session management function, i.e., a standard way for
users to start, join, leave and terminate an application. This relieves applications from having
to implement the procedures that are associated with session membership changes, and has
also the advantage that users are not confronted with a myriad of ways to access an application.
The user session management function can be seen as an antechamber where the user has to
pass through when entering or leaving an application. Standard procedures implemented or ini-
tiated by the user session management function are for instance authentication of users, access

11

Required Platform Functionality

control, compatibility check, invitation of users, and accounting. The session management
function keeps also state about session membership, but it can be expected that applications
that have to keep context specific user state will have to double this function. User session
management may provide advanced session types such as asynchronous sessions, persistent
sessions and subsessions, or advanced features like merging, splitting, moving and copying of
user sessions [Rang91] [Raja95]. It is not necessary and probably not desirable that the user
session management offers all of this advanced functionality, but care has to be taken that it
does not prevent applications from implementing it.

User session management is often directly linked with connection management, resulting in
applications or platforms that define multimedia connection endpoints in terms of human users
rather than in terms of computational objects. This provides advantages for the development of
certain conferencing applications, but is not adequate for general multipoint applications
where an implicated network node does not need to have a user attached to it. A multimedia
data server is a simple example for a node that may be implicated in an application as an inde-
pendent entity. Trying to force multimedia servers into a session participant abstraction in
order to be able to establish connections among servers and normal user terminals is not a via-
ble solution. What is needed is a clear distinction between the user session and other possible
sessions, as for instance connection management sessions. The user session takes a special role
simply because MMC applications are user centric, i.e., there will always be a user terminal
somewhere in the application. It should nevertheless be kept in mind that an MMC application
is above all a distributed application, and as such a collection of cooperating computational
objects. A session models a relationship among a subset of the computational objects that con-
stitute the application. Since there are different kinds of relationships among computational
objects there are also different kinds of sessions. The concept of a user session is justified
because the association of a user to an application has a significant computational impact on
the application. Other session types should be decoupled from the user session, and they
should be based on computational abstractions rather than the abstraction user.

2.4.2 Connection Management

Connection management deals with the establishment, control and release of connections for
the transfer of multimedia data among computational objects. The connection management
function must be able to establish connections among objects regardless of their location, i.e.,
it should be able to connect objects that are in the same address space, on the same machine, or
scattered over an internet. Up to now the focus of connection management architectures has
been on the establishment of network connections. The reason for this is that the transmission
of high-volume and time-critical data over the network is problematic, firstly because band-
width is still a scarce resource, and secondly because the necessary network technologies and
transport protocols are still immature. Once this situation has improved the focus of connection
management will shift from network connections to end-to-end connections, and connection
management will deal with the complete transmission chain from multimedia data acquisition,
transmission and processing to presentation. It cannot be expected that connection manage-
ment can make data transmission over a network as transparent and as save as a local memory
copy, but it can become much more transparent than it is today.

The connection management function must be organized into at least two sublayers, one
that is network independent and that provides a standard connection management interface
towards applications, and another that interfaces to the network and that maps standard con-
nection management requests onto network specific functionality. The establishment of con-

Platform Requirements

12

nections over different provider domains requires the federation of connection managers. This
suggests a further structuring of the upper connection management layer into a possibly cen-
tralized high-level connection manager that communicates with low-level connection manag-
ers in different domains. A centralized high-level connection manager allows to optimize
communication over the network. Having a single access point for connection management is
also likely to ease application development.

The connection management function must provide extensive support for multipoint com-
munication. It will interface to multicast protocols like IP Multicast [Deer91] for the transmis-
sion of high-volume isochronous data and to reliable multicast protocols like RMP [Mont95]
and Scalable Reliable Multicast (SRM) [Floy96] for the transmission of data with integrity and
sequencing requirements.

2.4.3 Multimedia Data Processing

The MMC platform must provide standard functionality for the processing of multimedia data.
This covers for instance the acquisition of multimedia data by analog devices, conversion from
the analog to the digital domain, coding and transcoding, storage and replay, filtering and mix-
ing, conversion back to the analog domain, and presentation again via an analog device. The
implementation of multimedia data processing functionality tends to be an enormous task and
should not be imposed on application developers. Applications use existing functionality and
configure it for their purposes.

Multimedia data are typed. Two computational objects that want to exchange multimedia
data have to agree on a common medium format. A format is given by a format identifier plus
a set of format specific parameters. The following media types can be identified [Gibb94]:

• text: although still the most important medium, text tends to be neglected in the
context of multimedia. Example formats are ASCII, PostScript [Ado90] and
HTML [Grah96].

• image: the digital representation of a real-world object, for instance of a photo.
Example formats are the Graphics Interchange Format (GIF) [Kay92], the Tag
Image File Format (TIFF) [TIF88], and the Joint Photographic Experts Group
(JPEG) format [Wall91].

• graphics: graphics data represent a computer generated artifact that can be made
visible with a rendering operation. Example formats are the Computer Graphics
Metafile (CGM) [ISO87], and again PostScript.

• video: based on the image data type. Video can be analog or digital. An example
digital video format is MPEG [Gall91]. An example analog format is PAL
[Jack93].

• audio: the digital representation of real-world sound. Example formats are
CCITT G.721 that is known from digital telephony, and MPEG audio [Pan95].

• music: similar to graphics, music data represent a computer artifact that can be
made audible with a rendering operation. An example format is the Musical
Instrument Digital Interface (MIDI) [Rona87].

• animation: a temporal media type that is based on graphics.

These are the most widely used media types today. Other media types exist, but are not as
important as the ones mentioned above. Most of the media types allow transcoding from one

13

Required Platform Functionality

format into another within the same media type category. Many media types can also be
transcoded to a medium type belonging to another category. It is for instance possible to
transcode text into audio, graphics into image, and animation into video.

2.4.4 Multipoint Control Communication

The MMC platform has to offer multipoint control communication services to the applications
that run on top of it. MMC applications can be centralized, for instance when user terminals do
not run application-specific code, but in general they are distributed. The distributed parts of an
application need to communicate with each other for control purposes. Control communication
may be complex in the case of multipoint applications, requiring for instance the ordered and
reliable delivery of a control message to multiple recipients. The design and implementation of
control communication cannot be imposed on application developers. Instead of that, the plat-
form must provide a rich palette of control communication services that covers all possible
application needs. This prevents application programmers from resorting to control communi-
cation protocols the platform wants to hide from the application because they compromise
application portability.

The MMC platform is itself distributed and needs a multipoint communication function for
its own control purposes. It makes sense to provide a single multipoint control communication
service that is used for all control communication within the platform, within the distributed
application, and between application and platform. A multipoint control communication ser-
vice together with a standard connection management service for multimedia data helps isolate
application and platform against the network. Both services can eventually be provided by a
common infrastructure that offers various kinds of communication among computational
objects, ranging from remote procedure calls to isochronous multimedia streams.

2.4.5 Resource Management

MMC applications consume a considerable amount of network and endsystem resources. They
require a lot of bandwidth and CPU time and they impose stringent upper bounds on transmis-
sion delay for multimedia data and on remote method invocation delay for control communica-
tion. Since multiple MMC applications are competing for limited resources there has to be a
management function that allows applications to reserve resources and to protect reserved
resources against misbehaving applications. Resource management has to be end-to-end
because a multimedia stream has to be protected not only on the network, but also within the
endsystem. What is therefore needed is a resource management or Quality of Service (QoS)
architecture that integrates network and endsystem resource management [Camp93]
[Camp96].

Older network technologies like Ethernet and network protocols like IP do not provide any
QoS support. Newer technologies, and here mainly ATM [Pryc93], are designed for the trans-
mission of multimedia streams and provide adequate resource management functionality. The
access point to ATM resource management is the UNI signalling protocol [AF93] that allows
to specify QoS on connection setup. However, as it cannot be assumed that network connec-
tions are end-to-end ATM, there is a need for a resource reservation protocol that is indepen-
dent from any specific network technology. The Resource ReSerVation Protocol (RSVP)
defined by the IETF is such a protocol [Brad96].

Platform Requirements

14

Endsystem resource management is not possible if the operating system does not support a
scheduling algorithm that is adequate for the processing of isochronous data [Stei95]. There is
a lot of research in the area of end-system QoS architectures, but few of these architectures
have actually been implemented in prototypes, and there is no commercial operating system
that can claim that it implements a full-fledged QoS architecture. Promising research is being
done at Lancaster University where the Chorus micro-kernel operating system has been
extended with QoS support [Coul95].

MMC applications must have access to a resource management interface that is independent
from operating system or network peculiarities. Resource management is a platform function
that is accessed via the connection management service. Research in resource management
focuses for the moment on multimedia data stream support, with resource management for
control communication being a research topic that is gaining momentum [IWQ96].

2.4.6 Synchronization

The timing properties of multimedia objects that are stored or transmitted have to be reestab-
lished when these objects are presented to the user. The process of reestablishing timing rela-
tionships among multimedia objects is called multimedia synchronization. Early work in the
area of multimedia synchronization was based on the experience gained with thread synchroni-
zation in operating systems and parallel programming languages [Stei90]. This work is still
relevant given that multimedia synchronization in a computer system is likely to be imple-
mented on top of a threads package. Three kinds of synchronization can be identified [Sree92]:

• intra-stream synchronization: the reestablishment of timing relationships among
the samples of a stream. An example is the regeneration of the frame rate of a
video stream.

• inter-stream synchronization: the reestablishment of timing relationships among
different continuous streams. An example is the synchronization of a video
stream with a related audio stream, also referred to as lip-synchronization.

• event-based synchronization: events trigger the presentation of samples or other
activity. Example events are timer events, user interactivity events, or media
stream related events, like start or stop of presentation.

The final target of all synchronization activity is the timely presentation of multimedia data
to the user. Before multimedia data can be presented they have to be acquired, computed or
retrieved from storage, and they may have to be transmitted over a network. Since all of these
activities consume time they have to be coordinated with respect to data presentation, requiring
synchronization during all processing steps. The synchronization of multiple streams over the
whole processing chain is so complex that its implementation cannot be imposed on an appli-
cation programmer without providing platform support for it. An MMC platform must offer
support for all three kinds of synchronization. Intra-stream synchronization must be imple-
mented with elastic playout buffers that smooth jitter. The size of these buffers and the maxi-
mum playout jitter are parameters that can be controlled by the application. Inter-stream
synchronization requires a standard protocol for the fine-grained orchestration of computa-
tional objects in related streams [Camp92]. Since the timing relationships between continuous
streams are natural there are few degrees of freedom for an application developer. The applica-
tion starts and stops the presentation of synchronized streams, and may control playout speed if
the streams are stored, but apart from that it controls mostly what is to be synchronized, and
not how this is done. Inter-stream synchronization is therefore, although difficult to implement,

15

Required Platform Functionality

of limited visibility at the interface of the platform towards the application. Event-based syn-
chronization on the other hand allows to create artificial timing relationships among all media
types, including discrete media types like text and graphics as well as continuous media types
like audio and video that may already be synchronized with each other. The best support for
event-based synchronization the MMC platform can offer is a presentation engine similar to
the one of MHEG [MB95]. The presentation engine interprets scripts written in a language that
allows to describe temporal relationships1 among media objects. Developers using this lan-
guage may concentrate on the temporal layout of their application, with the presentation
engine taking care of all retrieval, processing and transmission issues. The advantage of a
scripting language is that it supports the rapid prototyping and testing of a presentation sched-
ule. The scripting language may be based on one of the flavors of the well-established timed
petri-net model [Litt90] [Woo94].

2.4.7 Mobile Code

The user terminal must be able to access a multitude of MMC applications without that the
user is obliged to install application specific software. The French Minitel [Luca95] and the
early Web2 have shown that static terminals can be constructed that access a broad range of
applications. This range can be significantly extended by adding support for mobile code to the
user terminal. Mobile code can make use of the computational power of the user terminal,
transforming it from a dumb sensor into an intelligent peer node. It increases the amount of
functionality offered to users and off-loads computational load from servers to terminals. Serv-
ers will mostly download code and data, process transactions and provide access to databases
that are too large to be downloaded.

One of the driving forces for the development of languages that enable the shipping of code
is mobile agent technology [Wool96] [Wayn95]. Mobile agents are scripts that are sent over
the network to interact locally with servers, for instance to lookup specific information in a
database. They are mobile in the sense that they can move themselves from one host machine
to another. Mobile agents help reducing network load in applications where the size of the
agent code is considerably smaller than the size of the information that needs to be examined.
There are possibilities for the deployment of mobile agent technology in MMC platforms, for
instance for the discovery of sessions, applications and users in the network, but it has to be
noted that in an MMC platform mobile code techniques will be mainly used for the transfer of
intelligence from the network into the terminals, and not vice-versa as is the case with mobile
agent technology.

There are quite a number of languages that enable the shipping of code. All of these lan-
guages are platform independent and interpretable, and they are all augmented with standard
libraries that can be accessed by downloaded scripts. A big problem with mobile code is that it
represents a security hazard for the host system and the user that executes it. Security is there-
fore a prime issue in the design of both the language and its interpreter. Example languages
are:

• Java: a modern object-oriented language developed at Sun Microsystems, fea-
turing among other things byte compilation, a secure interpreter, extensive net-
working support and a class library for graphical user interfaces [Sun95].

1. Such a script must also be able to express spatial relationships and reaction to user input.

2. The Web before the integration of Java.

Platform Requirements

16

• Safe-Tcl: a secure version of Tcl [Oust94] developed by Nathaniel Borenstein
and Marshall Rose to add interactivity to electronic mail [Bore94] [Oust96].
Safe-Tcl is supplemented by Safe-Tk which allows to create graphical user
interfaces at remote locations.

• Telescript: a language developed by General Magic for the programming of
mobile agents. The language contains a go instruction that moves the agent
from one place to another, and a meet instruction that allows agents to commu-
nicate with each other [Magi96]. Telescript targets electronic commerce.

• ScriptX: a language for the development and distribution of multimedia titles
that is similar in spirit to Java. The ScriptX platform, originally developed at
Kaleida Labs, has been abandoned, but its major concepts and its class libraries
are now leveraged on Java as part of Apple’s Biscotti project [Engi96].

ScriptX was not conceived for being shipped over the network, but its integration into Java
shows that there are no significant problems in doing so. There are quite a number of other lan-
guages that are adequate for remote execution, with examples being Python [Watt96], LISP, or
UNIX shell scripts. Given the dynamics of the field an MMC platform should not depend on
the features of a single language for mobile code. It may support multiple languages at a time,
and it must be possible to add support for a new language or to remove support for a language
that has become obsolete.

2.4.8 Presentation Environment

An MMC platform must offer a standard presentation environment. The final target of all activ-
ity in platform and applications is the human user in front of the terminal. This suggests that
extra care has to be taken on the design of user interfaces and the way multimedia objects are
presented to the user. Multimedia objects do not exist in isolation - they have timing, spatial
and other relationships among each other that have to be established when they are presented
to the user. The presentation of multimedia objects will also need to be integrated into applica-
tion-specific graphical user interfaces, and the user must be able to interactively control presen-
tation. All this must be done by a standard presentation environment that mediates between the
user, the application, and the media processing functionality of the platform.

There is an upcoming ISO standard for such a presentation environment, which is the Pre-
sentation Environment for Multimedia Objects (PREMO) [Herm94] [ISO96a]. PREMO
defines an object model that is compatible with the one of OMG, and includes the Multimedia
System Services (MSS) of the Interactive Media Association (IMA) that will be discussed in
Chapter 5. It is strongly influenced by earlier standards for computer graphics that came from
the same ISO subcommittee. It remains to be seen if PREMO can be used as the presentation
environment of an MMC platform. Other presentation related standards that are interesting for
MMC platforms are MHEG [Kret92], ScriptX [Engi96] and document component standards
like OpenDoc1.

1. OpenDoc has been abandoned by the companies that developed it. It nevertheless remains interesting as an
example for a CORBA-based component framework. See [Orfa96] for an overview of OpenDoc.

17

Required Platform Functionality

2.4.9 Federation of Applications

The MMC platform must support the federation of applications. An application shall not only
profit from the platform infrastructure, but also from other applications that are installed on the
platform. This means that the platform must provide interfaces that allow applications to start
and control each other without that a user would need to intervene. The benefit of this is that
existing applications can be combined with minimal effort to new applications that represent a
larger whole. Platform support for federation fosters the development of modular applications.
Application developers are encouraged to decompose complex functionality into small appli-
cations that can then be reused in other configurations and by other developers. Modularity on
application level supplements modularity on platform level. Applications become reusable
components without being part of the platform, i.e., without having to traverse a standardiza-
tion process.

2.4.10 Security

MMC applications have security needs just like any other distributed application. As an exam-
ple, unauthorized users must be prevented from gaining access to applications, user sessions or
multimedia data flows. The MMC platform has to provide security functionality to both appli-
cations and users. Users must be able to override some of the security policies of an applica-
tion. The MMC platform will not be used seriously if it cannot guarantee privacy to its users.
Security is therefore a prime issue in the design of the MMC platform.

2.4.11 Mobility

It cannot be assumed that a user is accessing MMC applications always from the same terminal
that is constantly fixed to the same physical network [IEEE96]. Instead of that, the MMC plat-
form must support various forms of mobility:

• user mobility: the user must be able to use different terminals. User identity
must be independent from terminal identity. User mobility implies that there is
some kind of login procedure that establishes a temporary relation between a
user and a terminal. An important requirement on the implementation of user
mobility is that users find their custom terminal configuration no matter on
which terminal they are logged.

• session mobility: users must be able to detach from sessions and reattach to ses-
sions at a later point in time, possibly from another terminal, and without losing
their session membership status. The platform must help applications in reestab-
lishing the returning user’s role within the session, for instance by automatically
reconnecting him to the multimedia streams to which he was connected when
he detached from the session.

• terminal mobility: the user must be able to move with his terminal, possibly
crossing provider domains. Terminal mobility should be transparently provided
by the transport layer.

All kinds of mobility require the user to be known to the platform. The platform must keep
location information about mobile users to allow them to be called. It must also keep state
about users that are momentarily detached from a session. An MMC platform has therefore to
come up with something similar to the Home Location Registry (HLR) found in GSM net-
works.

Platform Requirements

18

2.4.12 Directory Service

The MMC platform must provide access to a ubiquitous directory service that allows to regis-
ter and distribute information about users, terminals, applications, ongoing sessions and ses-
sion announcements. This information is accessed by both users and applications. Users may
search the directory service via special browsers for interesting applications or ongoing ses-
sions. MMC applications use the directory service for instance to find users that are to be
invited to the session, and other applications they want to start or contact. The platform must
define standard interfaces that hide the actual kind of directory service being used, otherwise it
will be impossible to introduce a new directory service into the platform. Also, the platform
should make use of existing directory services rather than inventing its own.

A directory service of global scale is the Internet’s Domain Name System (DNS) [Mock87].
The DNS is theoretically able to distribute other hierarchically structured information than
name-to-address mappings, but it was not conceived to provide a general white pages service
with potentially huge numbers of users and with a high percentage of short-lived information
records. The Access, Searching and Indexing of Directories (ASID) working group of the
IETF is now working on a general directory service for the Internet, providing access to infor-
mation about people, organizations and services. The ASID working group is looking at differ-
ent directory services for this purpose, among them WHOIS++ [Deut95] and X.500 [CCIT88].
The results produced by the ASID working group are likely to be directly usable by an MMC
platform.

2.4.13 Platform Management

The MMC platform must provide standard interfaces for its management, for instance in form
of Management Information Bases (MIB) that can be accessed via a standard network manage-
ment protocol. This allows the development of management tools that are independent of the
platform implementation itself. Platform management becomes a complex task as the number
of users, applications and platform nodes increases.

2.4.14 Accounting

Many of the MMC applications installed on the platform will represent services for which
users must pay. In addition to that, users may have to pay in one way or another for the network
bandwidth they are consuming. Accounting for MMC applications will be more complex than
in normal telephone networks. As an example, in the case of multipoint applications it is likely
that users want to share the costs of the session, rather than imposing them on the user that
started the session. The MMC platform must support this and other accounting scenarios in a
standard way. The accounting functionality of the platform must interwork with the platform’s
security functionality to protect both users and service providers against fraud.

2.5 Distributed Processing Environment

The range of functionality that is required from the MMC platform is too broad to be provided
by a single design effort. It would be an enormous task to conceive a platform from scratch that
offers all the functionality listed in the previous section, and even more so to implement it. The
MMC platform has to be built on another platform that relieves it from issues that are not par-
ticular to MMC, most notably from issues related to distribution. MMC applications are dis-

19

Distributed Processing Environment

tributed applications, and must therefore overcome problems that arise from distribution.
Distributed applications profit from communication platforms that make the network transpar-
ent and that allow programmers to implement distributed applications similar to monolithic
applications. The communication platform may offer a variety of services to applications,
ranging from synchronous remote procedure calls with a single destination to asynchronous
message passing with multiple destinations. Future communication platforms may also pro-
vide transparent multipoint communication of multimedia stream data, with the result that
applications will be completely isolated from the network.

A communication platform can mitigate negative effects of distribution, but it would be an
illusion to think that application programmers do not have to worry about distribution any-
more. There are four major differences between local computing and distributed computing
that a communication platform cannot hide [Wald94]:

• latency: a remote procedure call will always take orders of magnitude longer to
complete than a procedure call within a single address space.

• memory access: remote memory access is inherently different from local mem-
ory access. A platform that hides this difference prevents programmers from
optimizing their applications.

• partial failure: parts of the distributed application may fail due to system crashes
or failing network links, leaving remaining application parts without knowledge
about what happened. In the case of local computing, failures are either com-
plete or detectable.

• concurrency: the parts of a distributed application are truly concurrent, and there
is no central entity for the synchronization of application parts.

A good communication platform does not try to hide these differences between local and
distributed computing. It will even emphasize them to make application programmers more
conscious about the problematic aspects of distribution. This does not mean that the applica-
tion programmer is let alone with his distributed application - he is just told where the platform
cannot decide for him and where he must intervene.

For the purposes of this thesis we refer to the communication platform as the Distributed
Processing Environment (DPE), a term that is promoted by the TINA initiative and that corre-
sponds more accurately to the kind of functionality needed by the MMC platform. It is stated
that an MMC platform must be built on top of a DPE to fulfill the functional requirements that
are listed in the previous section. A DPE will provide multipoint control communication and
possibly multimedia stream communication, and it will also deal with issues like security, ter-
minal mobility, and possibly mobile code. Figure 2.1 shows different possibilities for the rela-
tion between application, MMC platform and DPE. Relationship A is included for
completeness and shows an unstructured MMC platform that interfaces to the application
above it and to the network below it. Relationship B shows a scenario where the MMC plat-
form hides the underlying DPE from the applications. This has the advantage that the DPE can
be exchanged or modified without that application code would break, but requires the MMC
platform to bridge multipoint control communication between the application and the DPE.
Note also that both the MMC platform and the DPE interface to the network, the MMC plat-
form for multimedia data transmission, and the DPE for control communication. Relationship
C interfaces the application directly to the DPE, resulting in a DPE that provides services to
both the MMC platform and the application. Relationship D finally extends the DPE to provide
all network communication.

Platform Requirements

20

The DPE is so fundamental for the platform itself that it cannot be replaced without making
large parts of platform design and code obsolete. The MMC platform is likely to commit itself
to a single DPE, and once this is done there is no problem in interfacing the DPE directly to the
applications. A realistic scenario is therefore relationship C, with a possible evolution to rela-
tionship D. Note that what is designated as MMC in Figure 2.1 may actually be further struc-
tured when other ready-made functionality is included into the platform. For simplicity reasons
it should be avoided to invent a new name for the resulting collection of modules. The term
MMC platform is therefore used in the following to designate the ensemble of functionality
that is visible to the application, the DPE included.

2.6 Platform Evaluation Criteria

The previous three sections developed a set of qualitative and functional requirements for
MMC platforms. These requirements will be used to assess the platforms that are discussed in
Chapter 4 and 5, and to evaluate the platform that is proposed by this thesis. It has to be noted
that the platforms discussed in Chapter 4 and 5 will only be assessed, and not evaluated or
judged. Every one of these platforms was developed on the basis of a particular set of objec-
tives and requirements that needs to be taken into account when they are evaluated. There is
nevertheless a sometimes significant overlap of the requirements defined for the platforms dis-
cussed in Chapter 4 and 5 and those set forth by this thesis, and it is therefore possible to com-
pare these platforms on the basis of single features with the MMC platform developed by this
thesis.

Table 2.1 is the template for the table that will be used to summarize the assessment of
every platform discussed in this thesis. The table shows in its upper part the qualitative require-
ments that are defined in Section 2.3, and in its lower part the functional requirements devel-
oped in Section 2.4. The bottom of the table shows if the platform is built on top of a standard
DPE. Table rows list from left to right the requirement, the assessment of the platform with
respect to this requirement, and a short remark. Up to three stars (❄) are used to indicate how
well a platform fulfills a given requirement. A function that is not supported is marked with an
n. If a function is not in the scope of a platform it is marked with a hyphen (-). Table 2.1 shows
some examples of how assessment will look like.

Figure 2.1. Possible relationships between application, MMC platform and DPE.

A B C D

Application

MMC
MMC

Application Application Application

MMC MMC

DPE DPE DPE

Network

21

Conclusion

2.7 Conclusion

This chapter first introduced a set of major aims for the MMC platform, namely ubiquity, lon-
gevity, support for development and support for deployment. It is stated that an MMC platform
as defined in Chapter 1 will not thrive if it does not recognize these aims as absolutely funda-
mental to the design of the platform. Based on these aims a set of still qualitative platform
properties was discussed. It is stated that an MMC platform has to exhibit these properties in
order to conform to the previously defined major aims. The required platform properties are in
turn at the basis of a broad range of required platform functionality. It is stated that the func-
tionality required from the platform is too extended to be attainable with a single design and
development effort. Functionality that is not MMC specific, and here especially the distributed
processing environment, should therefore be provided by another platform. The following
chapter looks at different technologies for the DPE of the MMC platform.

Platform Name

Requirement Fulfilled Remark

Open ❄ ❄ ❄ emphasis on standards

Extensible ❄ ❄ fairly well extensible

Programmable ❄ limited support for application programming

Scalable no the platform architecture is not scalable

Deployable

Simple

Session Management ❄ ❄ ❄ extensive session management functionality

Connection Management ❄ ❄ some remarkable connection management functionality

Multimedia Data Processing ❄ limited support for multimedia data processing

Multipoint Control Comm. no no support for multipoint control communication

Resource Management - not in the scope of the platform

Synchronization

Mobile Code

Presentation Environment

Federation of Applications

Security

Mobility

Directory Service

Platform Management

Accounting

Standard DPE

Table 2.1. The platform evaluation table.

Platform Requirements

22

23

3 Distributed Processing Environment

3.1 Introduction

The previous chapter presented a comprehensive list of requirements an MMC platform has to
fulfill. A principal requirement is that the MMC platform must be built on top of a distributed
computing platform that makes the network transparent for control communication. Such a
platform helps overcoming the problems that distributed applications are faced with, and offers
communication services that ease the life of application developers. It would be an enormous
task to build an MMC platform offering all the functionality described in the previous chapter
without a distributed computing platform at the base. The distributed computing platform pro-
vides services beyond basic control communication, as for instance a name service, a security
service, or a distributed file service. These support services are likely to be built on top of the
same control communication services that are offered to applications. Given that the distrib-
uted computing platform offers more than just basic control communication, it makes sense to
refer to it as a Distributed Processing Environment (DPE). Another reason for choosing this
denomination is its use in the context of Intelligent Networks and TINA where it takes the
same architectural role.

Platforms for distributed computing have been based on messages in the 1970s, on remote
procedure calls in the 1980s, and on objects since the beginning of this decade [Wald94]. A
prime objective of such platforms is to hide the network programming interface1 from the
application, and to provide support for the design and implementation of application-level pro-
tocols. There is no more need to design, verify, implement and test one or more message-based
protocols for every distributed application. With remote procedure calls, an application-level
protocol is based on a single request/reply protocol that is implemented by a combination of
standard runtime libraries and automatically generated stub code. The application interfaces to
the four well-known protocol service primitives invocation, indication, response and confirma-
tion directly via function calls. Platforms for distributed computing are therefore linked with
programming languages, which is not the case for normal message-based protocols where ser-
vice interfaces are usually of secondary order. The close relation to programming languages
facilitates the design and implementation of application-level protocols, but it links the lifetime
of the platform with the lifetime of a programming paradigm, or even with the lifetime of a sin-
gle programming language. Until now, platforms for distributed computing tend to not survive
a paradigm shift in computing. This can be accepted as the price that has to be paid for
increased programming comfort, but is clearly undesirable. Historically, progress in the field of
distributed computing has been rather evolutionary than revolutionary. Remote procedure calls
bundle two messages into a protocol. Distributed object computing bundles procedure calls
into object interfaces. The upcoming component framework paradigm bundles objects into
groups of cooperating objects. There is a tendency of new paradigms being layered on top of

1. Examples for network programming interfaces are the Berkeley Sockets and the Unix System V Transport
Layer Interface (TLI) [Stev90].

Distributed Processing Environment

24

older ones. This suggests that platforms that are organized in a modular way and that are flexi-
ble enough to form an intermediate layer will have the chance to survive paradigm shifts, with
the advantage that legacy applications may run on the same distributed computing platform as
modern applications.

The previous chapter introduced longevity as one of the major aims for the MMC platform.
Since the DPE will be at the heart of the MMC platform it has to be just as future-proof as the
MMC platform is required to be. The trend at the time of writing is clearly towards distributed
object computing (DOC) [Orfa96]. It is difficult if not impossible to predict the lifetime of this
paradigm, but since it is the most modern, and since it offers the most in terms of programma-
bility, it is the natural choice for the DPE. The following section shows that at the moment
there is only a single DOC platform that satisfies the requirements developed in the previous
chapter - this is CORBA. The choice of CORBA is justified with a first quick look at possible
alternatives. Following that comes a comprehensive description of CORBA with an emphasis
on those features that are used by the MMC platform proposed in this thesis. It is then possible
to have a closer look onto alternative distributed computing platforms and to discuss them with
respect to CORBA.

3.2 CORBA for the DPE

The distributed computing platform that is chosen to be the spine of the MMC platform has to
exhibit the properties that were developed in the last chapter; just like the MMC platform as a
whole it must be open, extensible, programmable, scalable, deployable and simple. It is
required to offer services beyond basic control communication, and since it must be future-
proof to a certain extent it is required to be language-independent and object-oriented. The
platforms that are taken into account are:

• CORBA: the Common Object Request Broker Architecture1 is a DOC platform
that is being standardized by the Object Management Group (OMG) [OMG95c].
CORBA is language-independent and offers a rich set of services in horizontal
and vertical domains.

• DCE: the Distributed Computing Environment [Lock94] is a platform based on
remote procedure calls that has been standardized by the Open Software Foun-
dation (OSF), now part of the Open Group. DCE offers a rich set of services and
has been in use for a couple of years in large enterprises.

• DCOM: the Distributed Component Object Model is defined by Microsoft to
extend the reach of its Object Linking and Embedding (OLE), Component
Object Model (COM) and ActiveX architectures over the network [Brow96].
The evolution and standardization of ActiveX has recently been given into the
hands of the Open Group. DCOM has been submitted to the IETF.

• Java RMI: Java Remote Method Invocation is a DOC platform that is tailored to
Sun Microsystems’ Java language [Sun96d]. Together with the component
framework Java Beans [Sun96a] it is sure to become an interesting platform for
distributed applications.

The four platforms are chosen because they all play a significant role in distributed comput-

1. It is more correct to refer to OMG’s overall architecture as the Object Management Architecture (OMA), but
the acronym CORBA is widely used as a synonym for OMA, although it is actually a part of it.

25

OMA, CORBA, CORBAservices and CORBAfacilities

ing and they are all intended to be deployed on a global scale. It would have been possible to
add more RPC platforms to this list, most notably Sun Microsystems’ Open Network Comput-
ing (ONC) [Sun88], but since these platforms are not based on the DOC paradigm they are not
considered here. The exception to this is DCE which is included on one hand because it pro-
vides interesting services, and on the other hand because it is the foundation for Microsoft’s
DCOM.

The selection of CORBA for the DPE of the MMC platform is quickly justified. CORBA is
eligible because it is open, object-oriented and language-independent. It is actually not neces-
sary to get much deeper into platform properties at this point because these properties already
exclude the other candidates. DCE is excluded because it does not support distributed object
computing, and because it is too closely linked with the C programming language. This does
not prevent DCE from being used as the RPC layer of a DOC platform, as can be seen with
DCOM and some CORBA implementations. Java RMI is excluded because it is completely
language specific, and also because it is proprietary. However, Java RMI may become a de
facto standard, or may even be standardized along with Java itself. DCOM finally is excluded
because it is still proprietary, although steps have been undertaken by Microsoft to transform
DCOM into an open standard. The strength of Microsoft architectures like OLE and COM is
clearly the endsystem. As for now, DCOM appears to be a patch that allows OLE/COM to
become accessible via the network. It is clear that DCOM will become a strong competitor to
CORBA once it is standardized, and once it has become as mature as CORBA is now. The
choice for one or the other must then be based on arguments that are more technical than those
used here.

Right now CORBA is the only viable solution for the DPE. This picture may change as time
goes by, but for the moment there is no alternative DOC platform that is as open, mature and
widely accepted as CORBA. The following section provides an overview of CORBA that justi-
fies its choice on a technical level. It is subsequently compared to DCE, DCOM and Java RMI.

3.3 OMA, CORBA, CORBAservices and CORBAfacilities

A general discussion of CORBA has to comprise the Object Management Architecture
(OMA), which is the overall architectural framework, the Object Request Broker (ORB) itself,
the common CORBAservices1 and the common CORBAfacilities2. CORBA is standardized by
the OMG3, an international organization founded in 1989 with the objective to establish object
management specifications and a common framework for object-oriented application develop-
ment. At the time of writing, OMG has about 700 members, including most of the major play-
ers in information technology. The OMG standardization process is initiated with a Request for
Information (RFI) issued by an OMG Task Force that produces some ideas about the require-
ments the future standard has to fulfill. A Request for Proposal (RFP) is then issued that con-
tains the requirements imposed on standards proposals, and a deadline for submission. What
follows is an adoption process during which companies that submitted individual proposals try
to merge their submissions into a single proposal that is then considered by the Task Force for
standardization. Companies that submit proposals commit themselves to provide a commer-
cially available implementation of their proposal within one year of adoption. The OMG stan-

1. Formerly known as Common Object Services (COS).

2. Formerly known as Common Facilities (CF).

3. See http://www.omg.org for substantial information about OMG, its members, activities and specifications.

Distributed Processing Environment

26

dardization process should make it possible to get from the RFP to the implementation of the
resulting standard within less than two years. This has worked out for some of OMG’s stan-
dards, but is not the general rule.

In the following it is tried to give a critical presentation of CORBA, and also to present
some of the problems with it. Room is given to the discussion of future developments in
CORBA and their impact on an MMC platform.

3.3.1 Object Management Architecture

OMA is OMG’s architectural vision of the future component software environment. The role
of CORBA within OMA is the one of a bus that provides for transparent communication
among objects, as can be seen in Figure 3.1. Grouped around this bus are the CORBAservices,
the CORBAfacilities, and application objects. CORBAservices are standard services that are
useful for any kind of object, with examples being naming, event, or transaction services. All
CORBAservices rely on the services of the ORB, and some of them rely on the services pro-
vided by companion CORBAservices. The combination of CORBA and CORBAservices
already provides an environment in which applications can be developed with significant com-
fort. Beyond that, OMG wants to standardize the CORBAfacilities, which are high-level com-
ponents that are ready to be integrated into applications. There are horizontal and vertical
CORBAfacilities [OMG94]. Horizontal facilities are domain independent, with examples
being facilities for graphical user interfaces or system management. Vertical Facilities target
specific domains like the financial sector or the telecommunications sector. Both CORBAser-
vices and CORBAfacilities are thought to be provided by third-party vendors on a CORBA
component market. Up to now it is not possible to develop CORBAservices or facilities that
can be plugged into any existing CORBA implementation. The reason for this is that some
important interfaces have not been standardized yet, with the result that a CORBA component
vendor is obliged to tailor his product to the ORB on top of which it is to run.

Figure 3.1 can be redrawn in form of a hierarchical architecture where every layer has
access to all lower layers. Application objects use CORBAfacilities, CORBAservices and the
ORB. CORBAfacilities use CORBAservices and the ORB. CORBAservices use each other
and the ORB. However, depicting OMA as CORBAservices, facilities and application objects
grouped around a bus is intuitively closer to reality.

Figure 3.1. The Object Management Architecture.

Object Request Broker

Common Facilities

Common Object Services

Application
Objects

User Interface Sys. Management other

Telecomm.Financial

Events TransactionsNaming
other

27

OMA, CORBA, CORBAservices and CORBAfacilities

OMA is an architecture that is based on the component framework paradigm. Applications
can readily integrate an extensive set of CORBAservices and facilities, allowing application
developers to concentrate on application specific issues. However, the integration of COR-
BAservices and facilities happens on a low computational level; application developers must
interact with the objects they integrate via the ORB, which is serious programming. It can be
imagined that the integration of applications happens at a higher level where independent com-
ponents, each possibly with its own graphical user interface, cooperate after having been
plugged together. These so-called business objects are developed independently from each
other, but they have the capability to find out about the environment in which they are running,
and they can cooperate with other business objects to reach the common goal for which they
are configured by the user that plugged them together. At the beginning of 1996, OMG issued
the RFP Common Business Objects and Business Object Facility in a move to standardize a
business object architecture on top of OMA [OMG96a]. Revised submissions to this RFP are
due in November 1997. Related to the business objects RFP is the CORBA Component Model
RFP that OMG issued in June 1997 [OMG97a]. This RFP asks for the development of inter-
faces and mechanisms for a CORBA component model similar in spirit to Java Beans and
ActiveX. Interestingly, OMG requires the CORBA component model to be compatible with
Java Beans. Initial submissions to the RFP are due in November 1997.

3.3.2 Common Object Request Broker Architecture

The CORBA ORB manages all communication between object clients and implementations.
CORBA defines a relatively simple object model with the main constituents being the object
interface and an identifier for the object, the object reference. The object interface is described
with the programming-language neutral Interface Definition Language (IDL). Up to now, IDL
is the predominant formalism for specification in OMA, if not the only one. The following dis-
cusses the object model, the IDL, and the ORB architecture [OMG95c].

Object Model

The services an object can provide are isolated from object clients by well-defined encapsulat-
ing interfaces. An object client refers to a certain object by means of a unique identifier, which
is the object reference. A given object may be identified by more than one such object refer-
ence. An object client interacts with the object via requests. A request carries parameters and
possibly a context to the object where the respective service is invoked, and returns a result
back to the client in case the request could be served as expected, or an exception in case an
error occurred. A request parameter is of type in, out or inout. In-parameters are passed from
the client to the object, out-parameters are filled in by the object and returned to the client, and
inout-parameters are passed from the client to the object where they are modified and returned
to the client. Parameters represent values of one of the basic or constructed CORBA types.
Basic CORBA types are signed, unsigned, short or long integers, short or long floating point
numbers, characters, booleans, opaque 8-bit numbers, enumerations, strings and the type any.
Constructed CORBA types are records, discriminated unions, sequences, arrays and interfaces.
Most of these types are well-known from programming languages like C, with the exception of
the types any and interface. The type interface allows to pass a typed object reference as
parameter of a request. The type any is used as a container for an arbitrary basic or constructed
type.

The execution semantics defined so far in CORBA are twoway1 and oneway. A twoway
request consists of the actual request and a reply that is sent back to the requester. It blocks the

Distributed Processing Environment

28

requester until either a result or an exception is returned. The default semantics of twoway
requests are exactly once if the request is successful, and at most once if an exception is
returned. A oneway operation does not return a result to the requester, but may generate an
exception. The semantics of oneway operations are best-effort, meaning that the delivery of the
request to the object is not guaranteed and that the request will be serviced at most once. This
reduces the utility of oneway operations because they cannot be used for reliable asynchronous
messaging1.

An object interface declares the requests an object can service in form of operations. In
addition to that it exposes a part of the object’s state to the outside in form of attributes. The
value of an attribute can in general be read and modified, but CORBA also supports read-only
attributes. The utility of attributes is controversial given that from a computational point-of-
view an attribute can be substituted with a set and a get operation. Attributes in CORBA seem
to have their origin in object-oriented analysis. Their existence in CORBA facilitates the move
from analysis to design, but they are a potential risk for unexperienced CORBA designers that
tend to use them as a surrogate for operations. Since it is not possible to define exceptions for
attributes it should be avoided to use an attribute if there is the slightest chance that the set or
get operation on the attribute fails.

Interface Definition Language

The interface of a CORBA object is defined in IDL. Interface definitions can be compiled into
programming-language specific client stubs and server skeletons that mediate between a data
format adequate for transmission over the network and the programming languages in which
the object client and the object itself are implemented. IDL is object-oriented, making it some-
what awkward to map it on a language that is not, like for instance C. IDL language mappings
exist for C, C++, Ada, Cobol and Smalltalk. The language mapping for Java is about to be
finalized at the time of writing. The IDL language mapping to Java is of strategic importance
for OMG as it promotes the use of CORBA for Internet applications, namely the Web.

IDL supports multiple interface inheritance. This allows to base architectures defined in
IDL on polymorphism and to design interface hierarchies that can be close to implementation
hierarchies if the programming language supports multiple implementation inheritance. C++ is
an example for a programming language that maps naturally to IDL due to its support for mul-
tiple inheritance. A well-designed IDL interface hierarchy may be reflected one-to-one in a
C++ class hierarchy, laying the ground for code reuse. This does not work out as nicely for
Java which only supports single implementation inheritance. However, Java supports multiple
interface inheritance2, making it straightforward to map IDL interfaces directly onto Java inter-
faces. All IDL interfaces inherit implicitly from the interface Object which contains basic
functionality that is accessible to both the object client and the object implementation.

IDL supports the definition of contexts for operation invocations. A context is a set of
string-value mappings that is passed along with the operation invocation from the client to the
object implementation. This allows to supply information to an operation invocation that
would be inconvenient to pass in the parameter list. A context may contain information that is

1. Twoway operations are the default in IDL operation definitions. There is no special keyword for them.

1. Oneway operations are implemented in different ways. Some ORB’s block the requester until the request is
delivered, others transmit the request asynchronously. The standard is not very clear about the semantics of
oneway requests.

2. Java refers to interface inheritance as interface extension.

29

OMA, CORBA, CORBAservices and CORBAfacilities

transparently passed along with all operations a client invokes. Operation contexts can be com-
pared to the environment variables known from UNIX. IDL supports C preprocessor directives
like #define and #include. The latter is important because IDL definitions are organized
into IDL files. An IDL compiler generates stub and skeleton code on file level, resulting in a
one-to-one mapping between IDL file organization and stub and skeleton object code granular-
ity. This means that the organization of IDL definitions into files has an important impact on
the size of executables whenever they are statically linked. As an example, if an IDL file con-
tains more interfaces than actually implemented by a server, there will be unnecessary skeleton
code in the executable of the server.

There is also a special kind of IDL called Pseudo-IDL that is used to define programming
interfaces in a programming-language independent way. The base interface Object for
instance is defined in Pseudo-IDL.

Architecture Interfaces

The ORB manages communication between object clients and object implementations. The
structure and the major interfaces of the ORB are depicted in Figure 3.2. The ORB consists of
the ORB core and a set of object client or object implementation specific components that are
plugged into proprietary ORB core sockets. The object client interfaces to:

• Client IDL Stubs: this is code generated by the IDL compiler that allows a client
to invoke remote methods in an object implementation. Stub code generates a
proxy-object for every remote object. Client code invokes the methods of the
proxy-object which in turn performs parameter marshalling, result unmarshal-
ling and method invocation over the network. Stubs are programming language
specific.

• Dynamic Invocation Interface (DII): this interface allows clients to interact with
object implementations without using stub code. This is interesting for client
applications that are supposed to interact with object interfaces that are not
known at compile time. Object implementations cannot distinguish if an opera-
tion has been invoked by a stub or the DII.

Most of the client applications will use static client stubs because they provide almost seam-
less integration of remote programming into local programming. The Dynamic Invocation
Interface (DII) on the contrary provides more flexibility, but is tedious to use when operation

Figure 3.2. Structure of the Object Request Broker.

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

Static IDL
Skeleton

Dynamic
Skeleton

Object
Adapter

ORB CORE

Interface

Distributed Processing Environment

30

parameters are of a complex constructed type. The DII offers a synchronous and a deferred
synchronous operation invocation mode. A client using the deferred synchronous invocation
mode is not blocked on invocation, but needs to poll the DII from time to time to see if a reply
has arrived. Deferred synchronous invocation is an alternative to threads and allows to invoke
multiple operations in parallel with the call send_multiple_requests(). However, what
is clearly missing in the DII is the possibility to register callback functions for incoming
replies. This would support an event-based programming style for single-threaded clients.

The object implementation interfaces to:

• Server IDL Skeletons: server skeleton code is generated by the IDL compiler. It
unmarshals the parameters of incoming requests, upcalls the respective method
in the object implementation, and marshals and returns an eventual result. Skel-
etons are programming language specific, and may depend on the object
adapter.

• Dynamic Skeleton Interface(DSI): the DSI on the server side corresponds to the
DII on the client side. It allows an object to receive requests for which it does
not have static skeleton code. The object implementation interfaces to the DSI
via an upcall routine, the Dynamic Implementation Routine (DIR). The DSI is
interesting for interpreted languages and ORB bridges.

• Object Adapter: an object implementation accesses ORB services via a standard
Object Adapter. An object adapter has a public interface to the object imple-
mentation, and a proprietary interface to skeletons and the DSI. Object adapters
are tailored to object categories. Objects that are dynamically created will need
other services than objects that reside in a database. CORBA defines a Basic
Object Adapter (BOA) that must be available in every CORBA implementation.
Standard object adapters are important for the portability of object implementa-
tions.

There is also an ORB interface that offers services to object clients and implementations. It
allows to stringify object references with the Pseudo-IDL operation object_to_string(),
and to transform a string back to an object reference with the operation string-
_to_object(). Strings representing object references can for instance be stored by a client
for later use, or they can be passed to other clients. There is also an is_equivalent() oper-
ation defined in Object that allows to test two object references for equivalence. The opera-
tion is_equivalent() returns TRUE if two object references refer to the same object. It
returns FALSE if they refer to different objects, or if the ORB cannot determine if they are
equivalent1. This means that the result FALSE is actually completely worthless for the
requester of is_equivalent(), something that probably needs to be fixed in a future version
of the standard.

The CORBA 2.0 standard also defines an Interface Repository (IR). The IR helps ORB’s to
find out if the interface definitions known to clients and object implementations are consistent,
and allows clients to find out about the interfaces objects implement. The IR contains the com-
plete definitions of modules, types, interfaces and operations. This information can be browsed
via the standard IR IDL interface and allows a client to dynamically construct and invoke DII
requests. An important point is that the IR supports the versioning of interfaces and other defi-
nitions with unique RepositoryIds. It defines three formats for RepositoryIds: an OMG

1. Identity is difficult to determine because an object may have multiple object references pointing to it.

31

OMA, CORBA, CORBAservices and CORBAfacilities

IDL format that contains a hierarchically constructed name plus major and minor version num-
bers, the DCE Universal Unique IDentifier (UUID) format, and a format for local purposes.

Information about implementations is contained in the Implementation Repository. The
interface to this repository has not been standardized and is vendor specific.

3.3.3 CORBA Interoperability

The first versions of the CORBA specification, CORBA 1.0 to 1.2, did not standardize any
method or protocol for interoperability between different CORBA implementations. CORBA
1.2 provided the foundation for the portability of applications. An application developed on top
of a certain ORB could in principle be ported with limited effort to other ORB’s, but there was
no standard way for object clients to communicate with object implementations across ORB
boundaries. This situation has changed since the advent of CORBA 2.0 in July 1995. CORBA
2.0 specifies a complete interoperability architecture consisting of a set of concepts, a standard
vocabulary for these concepts, an interoperability protocol framework, and two protocols, the
Internet Inter-ORB Protocol (IIOP) and the Environment Specific Inter-ORB Protocol (ESIOP)
for the OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP). The
IIOP is the most important component of the interoperability specification because it provides
for interoperability on TCP networks, which is a necessary condition for the success of
CORBA on the Internet. The following provides an overview of the CORBA interoperability
architecture.

Domains and Bridges

Internets exhibit technological or administrational boundaries and are divided into domains.
The boundary of a technological domain may correspond to the installed base of a certain
CORBA implementation. An example for an administrational domain is the network of a com-
pany that is protected to the outside by means of a firewall. The solution for interoperability
across technological and administrational domains is bridging. ORB communication across
technological boundaries requires bridges that mediate between different transport and ORB
protocols. ORB communication across administrational boundaries requires bridges that inter-
cept the communication between ORB’s for security, policy control, monitoring or accounting
purposes. CORBA 2.0 differentiates between mediated and immediate bridging. Immediate
bridging happens directly at the boundary between two domains and requires a full bridge.
Mediated bridging is done by half bridges that communicate over a backbone ORB, using a
standard interoperability protocol like the IIOP.

Bridge Implementation

CORBA 2.0 identifies two kinds of bridge architectures: In-line bridges and request-level
bridges. In-line bridges are implemented within ORB’s, whereas request-level bridges are
implemented in form of half or full bridges that are not part of the ORB. Request-level bridges
are built on top of the DSI and the DII. They receive client requests via the DSI, process them
and forward them to the object implementation in the case of immediate bridging, or to another
half bridge in case of mediated bridging. Request-level bridges keep state about ongoing inter-
actions via proxy objects that mimic the object implementation towards the client, and the cli-
ent towards the object implementation.

Distributed Processing Environment

32

Interoperable Object References

Different ORB’s use different formats for the object references that identify object implemen-
tations. A bridge must mediate between the object reference formats of the domains that it
interconnects. The proxy object in a request-level bridge is addressed by the client with an
object reference having the format of the client’s ORB, and maps this object reference to the
format that is understood by the ORB of the hidden object implementation. CORBA 2.0
defines a standard format for object references in interoperability protocols, which is the Inter-
operable Object Reference (IOR). IOR’s consist of a type identifier and a list of so called
tagged profiles that identify the object implementation in various formats. The type identifier is
in fact the supposedly unique RepositoryId of the object’s interface in the Interface Reposi-
tory. It gives ORB’s the possibility to dynamically check type consistency between operation
invocations and object implementations. A tagged profile consists of the basic information nec-
essary to identify a certain object within the scope of a certain ORB protocol. It contains a pro-
file identifier (the tag) and a sequence of octets (the profile data). Every interoperability
protocol defines a tagged profile to be used in IOR’s.

General Inter-ORB Protocol and Internet Inter-ORB Protocol

CORBA 2.0 defines the General Inter-ORB Protocol (GIOP) that can be mapped onto various
transport protocols. The GIOP specification consists of the Common Data Representation
(CDR), the GIOP message format, and some assumptions about transport.

The CDR provides a complete network-level representation for IDL and Pseudo-IDL types,
including primitive types, constructed types, the any type, type codes, exceptions, and IOR’s.
The encoding of type codes is the most complex because of their recursive nature. Byte order-
ing in CDR may be big-endian or little-endian and is chosen by the message originator. This
improves performance whenever message originator and receiver share the same internal data
representation.

The GIOP allows to locate objects, invoke operations in object implementations, and man-
age transport connections. It defines a common message header and seven messages, all
defined in Pseudo-IDL. The message header contains the protocol version, the byte order, the
message type and the message size. The messages are:

• Request: sent by a client to invoke an operation in an object implementation.
The header of this message contains among other things the object identifier
that is derived from the IOR, the name of the operation, a value identifying the
requesting principal, and a request identifier. The body contains the in and inout
parameters and the context of the operation.

• Reply: sent in response to Request messages. The header of this message con-
tains the request identifier of the respective Request message, and a reply status
telling if the body of the Reply message contains out and inout parameters, an
exception, or an IOR. The latter case signifies that the client ORB must reissue
the request to the object identified by the received IOR.

• CancelRequest: allows a client to cancel a request. This message may be sent in
case a client is not willing to keep on waiting for a Reply message.

• LocateRequest: allows a client to find out if a server is capable of receiving
requests to the given object identifier. The LocateRequest message contains a
request identifier and the respective object identifier.

33

OMA, CORBA, CORBAservices and CORBAfacilities

• LocateReply: sent by a server in response to a LocateRequest message. The
LocateReply message header contains a locate status telling if the object is
unknown, supported locally, or supported elsewhere. In the latter case the Loca-
teRequest message body contains the IOR of the new location.

• CloseConnection: sent by servers to indicate to clients that the connection is
going to be shut down.

• MessageError: sent in response to erroneous messages.

Clients open initial connections with agents that may not necessarily be able to respond to
requests directed to a certain object. A client may therefore choose to send a LocateRequest as
first message on a newly established connection. The LocateReply of the agent may then con-
tain a new IOR which in turn allows the client to open a connection to a server that implements
the object. Clients may also adopt an optimistic approach and immediately send a Request
message on the connection. An agent that is not capable of serving the request will send a
Reply containing the IOR, and the client is obliged to repeat the request. This proceeding may
have a negative performance impact if the request contains voluminous parameters. Clients
must be prepared to receive IOR replies at any time. This supports the transparent migration of
objects.

An important restriction of GIOP is that connections between clients and servers are asym-
metrical, meaning that a server may never send a Request, LocateRequest or CancelRequest
message on a connection. This restriction has the advantage that it keeps the protocol simple,
and that it avoids race conditions, but it appears to be rather awkward at a time where distrib-
uted computing is evolving from client-server to peer-to-peer communication. A server having
events to communicate to a client is obliged to open a second connection, which is a serious
drawback considering that transport connections consume considerable operating system
resources.

IIOP finally is a mapping of GIOP onto TCP. CORBA 2.0 defines IIOP on two pages, with
the most important definition being a tagged profile for the IIOP IOR. The profile contains the
IIOP version number, an Internet host address in dotted decimal format, a port number, and the
object identifier. IIOP is the most widely used CORBA protocol today. It is already supported
by a couple of firewall vendors, and will also be part of the next generation of Web browsers,
where it will be used by downloaded Java applets to access CORBA servers. IIOP is likely to
become one of the most important Internet protocols.

Environment Specific Inter-ORB Protocol

CORBA 2.0 foresees interoperability protocols other than the GIOP that are based on existing
protocols. Such Environment Specific Inter-ORB Protocols (ESIOP) provide the advantage
that ORB’s may leverage existing functionality that is possibly outside the scope of CORBA.
The DCE-CIOP is an ESIOP that has been defined on top of DCE. There is a single DCE-IDL
interface containing the operations invoke() and locate() that are accessed via DCE RPC.
The DCE-CIOP is the only ESIOP defined until now. Another candidate for standardization
might be the ONC+ RPC. It must nevertheless be said that ESIOP’s are a solution for the inte-
gration of ORB’s into legacy systems. OMG is targeting functionality for standardization that
is way beyond what DCE offers today. This includes a security service, which until now has
been one of the strong points of DCE. Once this functionality is available it is likely that net-
work administrators that are now favoring DCE-CIOP will switch to IIOP, which is anyway
implemented by all CORBA vendors.

Distributed Processing Environment

34

3.3.4 CORBAservices

The CORBAservices [OMG95b] provide functionality that may be commonly used by many
CORBA objects. Table 3.1 lists the services that have been standardized so far. Some of these
services are quite simple, as for instance the time service, whereas others like the security ser-
vice are fairly complex. Not all of the services listed in Table 3.1 are already commercially
available. Most of the CORBAservices were standardized in parallel to CORBA 2.0. CORBA
vendors gave priority to the implementation of IIOP, with the result that the implementation of
CORBAservices was delayed. The first services to be available as products were Naming and
Event Notification. The Naming Service is a necessity because it allows clients to locate object
implementations on startup. The CORBA core interface contains the standard operation
resolve_initial_references() that allows clients to retrieve the object reference of the
Naming Service, which in turn allows them to locate other objects. The third column of
Table 3.1 shows if there are any products implementing a service, and names one or two imple-
mentations as example. The information for this has been taken from OMG’s 1996 CORBA
Buyers Guide [OMG96b].

Service Remark Products

Naming Registration and retrieval of name bindings. A name binding is a name
and an object reference.

HP ORB Plus
Iona OrbixNames

Event Notification Definition of an event channel object to which event suppliers and con-
sumers can connect. Push and pull models for event communication.

Expersoft
Iona OrbixTalk

Persistent Object Framework for access and management of objects stored in databases.
Provides for interworking with standard database protocols.

NEC ORBital
IBM DSOM

Lifecycle Generic create, move, copy and remove operations on lifecycle objects.
Introduces the concept of factories and factory finders.

IBM DSOM
Expersoft

Concurrency Interfaces for the management of read and write locks. This service was
designed to be used by the transaction service.

IBM DSOM
NEC ORBital

Externalization Interfaces that allow an object to serialize its state onto an octet stream,
and vice versa. Allows to send the state of an object across a network.

IBM DSOM
Expersoft

Relationships Interfaces for the management of relationships among objects. Allows
for instance graphs of objects to be copied, moved or externalized.

Sun NEO
Siemens SORBET

Transaction A transaction service supporting nested transactions. Can be integrated
with other standard transaction protocols.

Hitachi TPBroker
IBM DSOM

Query Provides query operations on collections of objects. Supports standard
database query languages.

TCSI OSP

Licensing Standard interfaces for license management. Supports various forms of
licensing and license policies.

-

Properties Objects may have properties beyond their interface. The property
service allows to get and set these properties.

Sun NEO
Siemens SORBET

Security Adds security services to CORBA. Concept of the Trusted Computing
Base (TCB), an ORB infrastructure with various levels of trust.

IBM DSOM
Iona OrbixSecurity

Time Interfaces for obtaining the current time, plus a timer event service that
cooperates with the event service.

Expersoft

Trader Allows objects to export their services, and clients to query exported
services. Aligned with the Open Distributed Processing trader.

Iona OrbixTrader

Table 3.1. Standardized CORBAservices.

35

OMA, CORBA, CORBAservices and CORBAfacilities

Many of the services in Table 3.1 are important for the deployment of CORBA for business
applications. The Query Service and the Persistent Object Service are important for the inter-
action of clients with objects stored in databases. The License Service manages product licens-
ing and allows for usage based accounting. The Transaction Service opens the world of
transaction processing. The Security Service finally protects business activities on the CORBA
infrastructure from fraud. The OMG is revising the existing services as this becomes neces-
sary, and is preparing further services like a Change Management Service that provides ver-
sion support, a Collection Service for compound manipulation of object collections, and a
Replication Service. The following provides a closer look at those services that are directly
integrated into the MMC platform architecture proposed by this thesis.

Lifecycle Service

The Lifecycle Service defines the interfaces GenericFactory, FactoryFinder and Life-
CycleObject. The factory finder interface allows to locate the factory for a certain object.
The generic factory interface defines the operation create_object() that allows clients to
create an object that satisfies some context specific criteria. The LifeCycleObject interface
finally supports the operations copy(), move() and remove(). The interface of objects that
can be moved, copied and removed will be derived from LifeCycleObject. Objects cannot
be transparently moved or copied by a generic Lifecycle service that has no knowledge about
how to perform these operations. This means that the operations of the LifeCycleObject
have to be implemented by the application programmer. Something similar can be said about
the factory and factory finder interfaces. Both of them are too simple to be really useful. Real-
world implementations will derive from these interfaces and provide operations that are tai-
lored to the application domain. The Lifecycle Service is therefore not a component that can be
readily integrated into applications. Its primary raison d’être is that it introduces the concepts
of factories and factory finders into CORBA and that it establishes guidelines for lifecycle
operations on objects. It must therefore be considered as a design pattern.

Naming Service

The Naming Service defines a Name as the ordered sequence of NameComponents which in
turn consist of two attributes, an identifier attribute and a kind attribute. The Naming Service
only interprets the identifier attribute. The kind attribute may be used by applications to add
some more information to a name. A name allows to locate an object in a graph with nodes and
labeled edges - the naming graph. At the nodes of the naming graph are NamingContext
objects relative to which names are resolved or bound. The NamingContext interface sup-
ports various operations for binding and unbinding of objects and other naming contexts.
Object references can for instance be bound to a name with the following operation:

bind(in Name n, in Object obj)

Since NamingContexts are full-fledged CORBA objects it is possible to build a distributed
naming service where individual servers manage subbranches of the naming tree. The Naming
Service can actually be a wrapper for existing name or directory services.

Event Service

The Event Service defines a set of interfaces that decouple event suppliers from event consum-
ers, and event production from event delivery. Events are intercepted by the event channel. The
EventChannel interface allows event consumers to access an ConsumerAdmin interface,
and suppliers to access a SupplierAdmin interface. These interfaces define operations with
which consumers and suppliers connect themselves to the event channel. The Event Service

Distributed Processing Environment

36

defines two models for event communication: push and pull. In the push model it is the event
source that communicates the event to the sink. In the pull model the source is polled by the
sink. Suppliers (event sources) and consumers (event sinks) can choose independently from
each other which model they want to use. The Event Service defines untyped and typed event
communication. In the case of untyped event communication the event is delivered within an
any type. This has the advantage that no special interfaces need to be defined for event produc-
ers and consumers. Typed event communication requires the definition of specific interfaces
for the consumers of pushed events and the suppliers of pulled events.

The Event Service is often considered to be too complex for what it does. However, for the
moment it is the only alternative for asynchronous programming in CORBA.

Relationship Service

The Relationship Service defines interfaces that model relationships between objects. Rela-
tionships can be navigated to locate specific objects in objects graphs, or they can be used to
invoke compound operations on object graphs. There is an extension of the Lifecycle Service
that allows to perform lifecycle operations on object graphs with the support of the Relation-
ship Service. The Relationship Service defines three levels of relationships:

• Base relationships: this involves objects that are not aware of the relationships
that they have. Relationships are modeled with Relationship and Role inter-
faces. There is a Role object pointing to every object involved in the relation-
ship. Role objects in turn are interconnected via Relationship objects.
Relationships may be binary, connecting two Role objects, or n-ary, in which
case they connect n objects. Roles and relationships are typed. The interfaces
via which they are accessed inherit from the generic Relationship and Role
interfaces.

• Graphs of related objects: related objects are derived from the Node interface
which allows to navigate the relationships in which they participate. The Node
interface provides access to the roles the respective object takes. Role objects
in turn point to the relationships in which the object participates. This allows to
build graphs of related objects that can be navigated. Graph navigation is sup-
ported by the Traversal interface.

• Specific relationships: two special relationships are defined which are supposed
to be of common use: containment and reference. The containment relationship
connects a ContainsRole and a ContainedRole. Similarily, the reference
relationship connects a ReferencesRole and a ReferencedByRole.

The Relationship Service can be naturally employed in document architectures. It is useful
wherever graphs of objects need to be manipulated as a whole.

Trading Service

The trading service [OMG96h] represents a market place for services. Servers export their ser-
vice offers to traders where they can be queried by interested clients. A service offer consists of
a service type name, a property list and an object reference. The property list describes the ser-
vice, whereas the object reference provides access to it. Clients constrain the values of the
properties of a service type when they query the trader for service offers. The trader returns a
list of offers that satisfy the constraints imposed by the client. An interesting feature of the

37

OMA, CORBA, CORBAservices and CORBAfacilities

trading service is federation. A trader can have links to other traders and forward client queries
to them. A client can therefore consult with a single query the offers of multiple federated trad-
ers.

3.3.5 CORBAfacilities

The CORBAfacilities [OMG95a] are application specific services layered on top of the ORB
and the CORBAservices. OMG distinguishes between horizontal and vertical facilities. Hori-
zontal facilities target a broad range of applications and markets, whereas vertical facilities are
tailored to a single market. Horizontal facilities are classified into the following categories
[Sieg96]:

• User interface: rendering management, compound presentation management,
user support, desktop management, scripting. OpenDoc has been submitted as
compound presentation management facility.

• Information management: information modeling, information storage and
retrieval, compound interchange, et cetera.

• Systems management: a standard for systems management has been proposed by
X/Open (now the Open Group).

• Task management: workflow, agents, rule management, automation.

At the time of writing the RFP’s for the horizontal facilities have been issued, and submis-
sions have been received, but the only facility that is standardized is the System Management
Facility.

Various OMG Task forces have been formed to work on vertical CORBAfacilities. The tar-
geted vertical markets and respective RFP’s are:

• Healthcare: there is a Patient Identification Services RFP and a Healthcare Lex-
icon Service RFP.

• Telecommunications: there are three RFP’s - the RFP for Control and Manage-
ment of A/V Streams, the Topology RFP and the Notification Service RFP.

• Financial Services: there is the Financial Domain Task Force Currency RFP.

• Electronic Commerce: there is an Electronic Payment Facility RFP.

• Manufacturing: there is the Product Data Management Enablers RFP.

• Business Objects: the Business Object Domain Task Force has issued an RFP
for common business objects and a business object facility [OMG96a]. The
business object facility is the environment in which common business objects
are active. It has to be noted that business objects appear to be an extension of
OMA rather than a CORBAfacility. The RFP depicts the business object facility
as being layered on top of OMA.

As can be seen, the OMG is getting active on diverse markets. Given this it can be imagined
that an MMC platform is standardized as a CORBAfacility. The CORBAfacility standardiza-
tion process is lightweight compared to the one of the CORBAservices. An OMG Task Force
could rapidly standardize a basic MMC platform, and take care of extensions in the following.
The existence of a Telecommunications Task Force shows that OMG is starting to account for
the interest of the telecommunications industry in CORBA. Until now the Telecommunications
Task Force has issued three RFP’s and one RFI. The RFI Issues for Intelligent Networking with

Distributed Processing Environment

38

CORBA is the first step towards an introduction of CORBA into IN. The Topology RFP asks
for an alternative to the Relationship Service that accommodates relationships between
CORBA and non-CORBA objects. Such a service allows to integrate the CORBA object
model and existing network management object models into a single framework. The Notifica-
tion RFP asks for an event notification service that allows event consumers to filter incoming
events. This RFP is again motivated by network management requirements. The third RFP,
Control and Management of A/V Streams, is interesting for MMC platforms and is discussed in
the following.

3.3.6 Stream Support in CORBA

The Telecommunications Task Force proposes in its RFP [OMG96g] and a companion white
paper [Raym95] a model for an architecture that supports audio and video streams. Although
submissions are not required to adopt this model it is very likely that the final standard will
correspond to it. Figure 3.3 depicts the synthesis of the architecture description in the white
paper and the RFP. The white paper proposes a stream extension of CORBA along the lines of
the existing architecture. Streams are composed of data flows which in turn consist of individ-
ual frames. A stream may therefore bundle multiple flows, with an example being an audio and
a correlated video flow. Stream sources and sinks interface to a stream like a client and an
object implementation interface to an operation. The stream source interfaces to a stream stub
that marshals data into frames. Similarly, the stream sink interfaces to a stream skeleton that
unmarshals frames and forwards data. Stub and skeleton code is generated by a compiler that
takes a stream interface definition as input. Communication protocols are either encapsulated
by the stream object adapter, or integrated into the ORB core. Stream sources and sinks can
control stream QoS via the stream object adapter interface. Since different communication pro-
tocols have different QoS parameters, there is the risk that every stream object adapter defines
its own interface to QoS management, with the result that application code must be tailored to
a communications protocol. This can be avoided by defining a standard QoS interface for the
stream object adapter that is independent from any communication protocol.

The RFP addresses the control and management of audio and video streams. This is indi-
cated with the control interfaces in the source and sink objects in Figure 3.3. The outcome of
this RFP will therefore be a set of normal IDL interfaces for the setup and control of audio and
video stream bindings. The RFP requires submissions to address among other things the fol-
lowing issues:

• Various topologies: one-to-one, one-to-many, many-to-one, many-to-many.

• Multiple flows: a stream is a container for multiple flows. Operations on streams
are compound operations on the flows streams contain.

• Stream control: this covers stream setup, release and modification.

• Stream interface reference: the endpoints of stream must be identified with a
stream interface reference. This corresponds to the object reference.

• Quality of Service: framework for the expression and monitoring of QoS.

The interfaces between stream source and sink and the stream object adapters are explicitly
excluded from the scope of this RFP. It can be assumed that they will be addressed by a future
RFP. The Telecommunications Task Force foresees to standardize a selected submission in
September 1997.

39

OMA, CORBA, CORBAservices and CORBAfacilities

This RFP is a first step in the direction of a distributed processing environment that isolates
the MMC platform from the network, as is depicted in part D of Figure 2.1 on page 20. How-
ever, it remains to be seen if the outcome of this RFP is of any practical value. It is regrettable
that the RFP focuses on audio and video, neglecting other media streams like text and anima-
tion. And since OMG is clearly entering the domain of the Open Distributed Processing (ODP)
standard with this RFP, it actually should have harmonized the CORBA object model with the
one of ODP beforehand, rather than in parallel, which is happening now.

3.3.7 CORBA and RM-ODP

ISO and ITU-T have developed the Reference Model for Open Distributed Processing (RM-
ODP) [ISO95a] that shall serve as a framework for the specification of distributed systems.
RM-ODP establishes a vocabulary and principles for open distributed processing and defines
an architecture that supports distribution, interworking, interoperability and portability. RM-
ODP does not specify any architecture component itself, but is thought to be the basis for fur-
ther ODP component standards. CORBA and RM-ODP have both been very much influenced
by the ANSA architecture [Herb94], and there is also much coincidence between the objectives
of OMG and RM-ODP standardization. This explains why OMG and ISO/ITU-T have
approached each other and are now working together on standards, with the outstanding exam-
ple being the CORBA Trader Object Service [OMG96h] that is technically aligned with the
ODP Trading Function [ISO95b], the only ODP architecture component specified so far.
Although it does not look like CORBA is developing itself towards a completely RM-ODP
compliant architecture it is likely that it will adopt more of its principles. This concerns on one
hand the object model of RM-ODP that is superior to the one of CORBA, and on the other
hand the experience that has been gained with formal system specification methods for the
RM-ODP architectural viewpoints.

An ODP object can have multiple computational interfaces, with computational interfaces
being either operation interfaces, stream interfaces, or signal interfaces. An operation inter-
face corresponds to the IDL interface of a CORBA object, with the difference that RM-ODP
defines interfaces for both client and server. A stream interface signature defines a set of sup-
ported data flows, with examples being audio, video or a flow of sensor data. A flow is either
produced or consumed by the interface for which it is defined. The stream interface corre-
sponds quite exactly to what the OMG Telecommunications Task Force is trying to introduce
into CORBA, as was discussed above. A signal interface signature defines the signals that can

Figure 3.3. OMG stream architecture proposal.

Stream Sink

IDL
Skeleton

Stream

ORB CORE

Skeleton
Stream
Object
Adapter

BOA

StreamControl

Stream Source

Stream
Stub

IDL
Skeleton

BOAStream

ControlStream

Object
Adapter

Flow

Distributed Processing Environment

40

be emitted or received by an interface, with signals playing a role comparable to events in
CORBA1. ODP interfaces are identified by interface references.

Unlike an RM-ODP object, a CORBA object does not support multiple unrelated interfaces.
CORBA supports multiple interfaces via interface inheritance, but this does not provide sepa-
rate access points for different clients. In CORBA, the instance of an interface is identified via
the object reference, rather than an interface reference like in RM-ODP. This shows that
CORBA in its present state does not really distinguish between object and object interface.
This is now about to change - OMG has issued the Multiple Interfaces and Composition RFP
[OMG96d] that shall result in an extension of CORBA supporting multiple interfaces per
object, independent client sessions on the same object interface, and the ability for a client to
query the object for the interfaces it supports. Interestingly, the RFP also asks for better support
of Microsoft’s COM, which supports multiple interfaces. This is done with the objective to
improve interoperability between CORBA and COM. The outcome of the RFP is a joint sub-
mission from the Australian Cooperative Research Centre for Distributed Systems Technology
(DSTC) and IONA Technologies that is supported by some members of the TINA consortium
[OMG97d]. The submission defines an object definition language (OMG-ODL) that extends
OMG-IDL with three keywords: object, supports, and initial2. OMG-ODL is a simpli-
fied version of TINA-ODL [Parh96], which in turn is based on ODP principles. Figure 3.4

shows as an example an object Timer that supports the interfaces TimerManagement,
IntervalTimer and AlarmTimer. A reference to the initial interface TimerManagement is
returned on the instantiation of the object template, and allows clients to access the two other
interfaces of Timer. The submission of IONA and DSTC supports the inheritance of object
template definitions. A derived object must support all interfaces of the base object.

The introduction of objects with multiple interfaces into CORBA has almost no impact on
the architecture of the ORB. ORB implementations that do not support composite objects can
interact with the interfaces of composite objects just like with any other interface. Composite
objects become visible in the mapping of OMG-ODL to specific programming languages.
Based on the ODL object template an ODL compiler will automatically generate a collection
of classes that constitute the composite object in the implementation. This concerns only the
server side. The submission of IONA and DTSC does not require any modifications to the cli-
ent side.

1. ANSA Phase III supports streams and signals. See [Otwa95b] for a discussion of streams and signals in ANSA.

2. The submission of DSTC and IONA proposes to replace in all CORBA standards the term object reference with
the term interface reference.

interface TimerManagement;
interface IntervalTimer;
interface AlarmTimer;

object Timer {

supports
 TimerManagement, // the management interface
 IntervalTimer, // access to an interval timer
 AlarmTimer; // access to an alarm timer

initial
 TimerManagement;
 };

Figure 3.4. An example for OMG-ODL usage.

41

OMA, CORBA, CORBAservices and CORBAfacilities

A CORBA object model similar to the one of ODP has two benefits. On one hand it sup-
ports the implementation of objects with multiple interfaces, which until now requires tedious
workarounds. On the other hand it is a starting point for the introduction of formal methods
into the design of CORBA applications, for which a sound object model is a prerequisite.

3.3.8 Problems and Tendencies

Although CORBA is an already quite mature technology, there are some problems the OMG
still needs to solve. The following is a list of now apparent problems1 with the CORBA stan-
dards, of which some have already been addressed by RFP’s:

• server code portability: every CORBA implementation has extended the BOA
with proprietary functionality, with the effect that server code is not completely
portable from one ORB to another. Equally, every CORBA implementation has
its own way of dealing with server threads. The new Portable Object Adapter
(POA) replaces the BOA with an extensive programming interface that is sup-
posed to improve server code portability [OMG97e].

• object identity: the ORB does not provide functionality that allows to determine
if two object references refer to the same object. This is clearly missing given
that identity is one of the major properties of an object.

• unclear semantics for oneway calls: the semantics of oneway calls are best-
effort, leaving the determination of the exact semantics to the implementation.

• problematic object model: it is stated in the CORBA 2.0 standard that ‘Interface
inheritance provides the composition mechanism for permitting an object to
support multiple interfaces’2. CORBA 2.0 does not clearly differentiate
between object and interface.

• asymmetric GIOP connections: bidirectional communication with GIOP
requires the establishment of two transport connections, which is a waste of
operating system resources. OMG will have to revise this GIOP peculiarity once
communication between two peers has become more symmetric than in current
client/server applications.

• lack of formal methods: up to now the only formalism for application analysis
and design in CORBA is IDL. The Object Analysis and Design RFP [OMG96e]
solicits the development of formal methods that are tailored to CORBA. Sub-
missions must define structural models, behavioral models, use-case models
and architectural models and provide a notation for every defined model. In
response to this RFP, Rational Software has submitted its Unified Modeling
Language (UML) [OMG97f] for standardization.

CORBA lacks some of the functionality that is commonly expected from a DOC platform.
The following is a list of additional functions for which RFP’s have already been issued:

• change management: up to now there is only limited support for interface ver-
sioning in CORBA. Interface versions are integrated into the Interface Reposi-
tory, but it is not clear what kind of changes in an interface a client should be
able to overlook. There will at some point be a change management service.

1. Some of the listed problems have already been mentioned previously in the text.

2. See the OMG CORBA 2.0 specification [OMG95c], Subsection 1.2.5.

Distributed Processing Environment

42

• objects by value: until now objects can only be passed by reference. The
Objects-By-Value RFP [OMG96f] solicits proposals for CORBA extensions
that allow objects to be passed by value. Due to performance considerations an
application may prefer to transfer objects from servers to clients, rather than
having these objects be accessed by clients over the network.

• asynchronous messaging: as for now, communication with CORBA is mostly
synchronous. The Messaging Service RFP [OMG96c] solicits CORBA exten-
sions that allow clients to asynchronously transmit requests and register call-
backs for replies, or to send so-called persistent requests for which the reply
may not arrive during the lifetime of the client, in which case it must be stored
or processed by another entity. The Messaging Service RFP is a move towards a
message-oriented middleware (MOM).

• quality of service: the Messaging Service RFP asks for interfaces that allow
applications to control the quality of service with which the ORB services an
invocation. Example QoS properties are acknowledgment level, time-to-live,
priority, reliability and client request ordering.

• realtime support: OMG has issued an RFI that shall help in assembling a list of
requirements to be imposed on proposals for a realtime ORB. Realtime exten-
sions shall help extending the scope of CORBA to systems for which it now
appears to be too heavy. There are already a couple of ORB’s that have realtime
extensions, with an example being ANSAware [Li95].

Although the CORBA standard and CORBA implementations have been around for a cou-
ple of years, interest in CORBA has only recently reached the dimensions that are envisaged
by OMG. CORBA implementations are now being deployed for a wide range of sometimes
mission-critical applications, which effectively puts them onto a test stand. The following lists
some of the problems that have become apparent:

• proliferation of transport connections: current CORBA implementations estab-
lish at least one transport connection between every pair of communicating pro-
cesses. Client processes that communicate with many server processes, or
servers that serve many client processes, will not be able to have as many trans-
port connections active in parallel as is required, simply because there are oper-
ating system limits on this. What is needed is ORB support for the concept of
dormant bindings where the lifetime of a binding is not linked with the lifetime
of the underlying connection. This allows clients or servers to release transport
connections of a momentarily inactive binding without releasing the binding.

• DII and IIOP performance problems: early implementations of the DII and the
IIOP had performance problems due to presentation layer, memory manage-
ment and data copying overhead [Schm96b]. The focus of the first IIOP imple-
mentations has been on interoperability rather than performance. ORB
implementers are now spending more effort on optimizing performance.
CORBA performance is an active research area at Washington University, St.
Louis [Gokh96].

• large footprints: current CORBA implementations tend to be gourmand with
respect to system resources. The size of the stub and skeleton code generated by
an IDL compiler is often enormous, resulting in excessive compilation times

43

Other Platforms

and inflated executables. There are ways to minimize stub and skeleton code
size, for instance by avoiding duplicate code generation in the case of identical
types.

One shall not be mistaken by this list of problems to believe that CORBA is an immature
technology. Given the enormous scope of the CORBA standardization effort it is clear that it
cannot be completely errorfree. However, it should be noted that up to now no major flaw has
been identified within the standard1.

3.3.9 Assessment

CORBA is a mature platform for distributed object computing. It qualifies for the DPE of the
MMC platform because it satisfies the requirements that were developed in the previous chap-
ter - it is open, extensible, programmable, scalable, deployable and simple. It is open since it
supports portability and interoperability, and extensible because new language mappings, ser-
vices and facilities can be added to it. It is programmable because it makes the network trans-
parent, and deployable because it can be implemented as a daemon process and a library and
does not need to be integrated into the operating system. It is simple because it is based on a
limited number of well-devised concepts. Domain-specific complexity is encapsulated by
CORBAservices and CORBAfacilities. It is scalable because none of its features prevents an
implementation to be scalable.

What is missing at the moment is support for multipoint communication. The only support
available is the event service, which is of limited utility, firstly because there is no multipoint
support in IIOP from which it could profit, and secondly because it does not guarantee the
delivery of events. One of the reasons for the limited support of multipoint communication in
CORBA is certainly the lack of standard protocols for reliable multicast.

3.4 Other Platforms

The four platforms that Section 3.2 identified as possible candidates for the DPE of the MMC
platform are CORBA, DCOM, DCE and Java RMI. Following the introduction into CORBA in
the preceding section it is now possible to have a closer look on alternatives to CORBA and to
justify the decision for CORBA with more technical arguments than those used in Section 3.2.

3.4.1 Distributed Computing Environment

The Distributed Computing Environment (DCE) [Lock94] is a distributed computing platform
that has originally been standardized by the Open Software Foundation (OSF)2. DCE standard-
ization is now in the hands of the Open Group, which is a recent merger of OSF and X/Open.
DCE is based on a procedural programming model; it defines a basic RPC mechanism for the
C programming language and a set of services that run on top of it. Related remote procedures
are grouped into interfaces that are described with the DCE Interface Definition Language

1. Defenders of Microsoft’s COM claim that CORBA’s interface inheritance is a dangerous feature. They refer to
the "fragile base class problem", meaning that modifications in a base class tend to break subclass code. While
there is a some truth behind this, it appears strange that the principle of inheritance should be abandoned alto-
gether just because of a potential pitfall for unexperienced designers.

2. Version 1.0 of DCE appeared in 1992. The actual version of DCE is 1.2.2.

Distributed Processing Environment

44

(DCE-IDL). Interface definitions are compiled into client and server stubs that are linked with
application code written in C or C++. A client can dynamically bind to a server and call remote
procedures without being aware of the location of this server. A remote procedure is automati-
cally executed in a thread, forcing the application programmer to make sure that the remote
procedure is thread-safe. An important concept in DCE is the Universal Unique Identifier
(UUID) that is generated based on the current time and the hardware address of the network
adapter. Every DCE interface is identified with a UUID and a version number, insuring type
compatibility between clients and servers. In addition to that, UUID’s are used to identify ser-
vices, making it possible to distinguish between services that are accessed via identical inter-
faces. Besides the basic RPC, DCE provides the following platform services:

• directory service: in DCE, administrational domains are called cells. A Cell
Directory Service (CDS) provides for name resolution and resource location on
cell level. Global name resolution is provided by a Global Directory Agent
(GDA) in collaboration with a Global Directory Service (GDS) based on X.500.

• security service: DCE supports authentication, authorization, message integrity,
and message encryption. The security service is the most acclaimed feature of
DCE.

• distributed time service: synchronizes the hardware clocks on all hosts in a DCE
cell and across cell boundaries. Synchronized clocks are required by every dis-
tributed application that bases decisions on absolute time. An important exam-
ple is DCE’s security service.

• distributed file service: provides, besides the basic distributed file system, global
naming, data replication and caching at the client. File access is secured with
the DCE security service.

The specifications for the RPC service, the threads service and the platform services are
complete and mature. They have all been implemented by multiple vendors and are in daily use
within a large number of corporations. OSF enforces interoperability between different imple-
mentations of DCE by distributing a reference implementation. Vendors are obliged to license
DCE from OSF if they want to label their implementation OSF DCE.

Assessment1

DCE is based on a procedural programming model that is now being superseded by distributed
object computing. DCE has limited support for objects via its server interfaces, but it does not
support interface inheritance like CORBA. It also offers way less platform services than
CORBA, and does not reach as far up into vertical domains as CORBA. It is intertwined with
the C programming language, which is the main argument against using it as the basis for the
MMC DPE. The main arguments for DCE are the completeness of its specifications, its matu-
rity, and its security service, which is currently unrivaled. DCE is a standardized CORBA
ESIOP, as was already mentioned in Section 3.3.3. There is also an RFP for the interworking
between CORBA and DCE [OMG97b], with initial submissions being due in November 1997.
An interworking standard will provide a smooth migration path from DCE to CORBA. This is
also how DCE is now perceived by the DCE community itself: a temporary solution that
bridges the gap until CORBA is ready to take over. DCE is therefore no valid alternative to
CORBA for a MMC DPE that needs to be future-proof.

1. See [Bran95] for a detailed comparison between DCE and CORBA.

45

Other Platforms

3.4.2 Distributed Component Object Model

Microsoft introduced its Object Linking and Embedding Technology (OLE) in 1990 to provide
a cut-and-paste utility for the Windows operating system. This utility was later extended to
provide general communication among objects in different applications on a machine. To this
purpose, OLE was split into a low-level communication architecture, which is the Component
Object Model (COM) [Micr95], and a high-level component architecture called OLE2. Com-
ponents based on OLE and COM are called OLE controls (OCX). The component architecture
consisting of OLE and COM has recently been streamlined by Microsoft with the goal to
deploy it on the Internet. The streamlined version of OLE and COM is called ActiveX and is
pushed by Microsoft to become the dominant component technology of the Internet. The
deployment of OLE and COM on the Internet is made possible by COM extensions that allow
clients to reach server objects over the network. Microsoft refers to this new version of COM
as Distributed COM (DCOM) [Brow96].

COM Objects have multiple interfaces. Interfaces are defined in an IDL that is based on
DCE-IDL. COM relies on globally unique identifiers (GUID) for the identification of classes
(CLSID) and interfaces (IID). Every COM object implements the interface IUnknown, which
contains the functions QueryInterface(), AddRef() and Release(). A COM client calls
QueryInterface() to retrieve pointers to the other interfaces of an object. The remaining
functions are used to manage the life-cycle of an object. COM does not support interface inher-
itance, but it provides two mechanisms for code reuse, namely containment and aggregation.
In the containment mechanism, an inner object that is to be reused is simply encapsulated by
an outer object. The outer object forwards invocations on functions in externally visible inter-
faces to the interfaces of the inner object. In the aggregation mechanism, the interfaces of the
inner object are directly exposed to the outside along with the interfaces of the outer object.

It has to be noted that COM is a language-neutral binary standard. The functions imple-
mented by a server are accessed via a table of pointers that is similar to the vtable generated
by C++ compilers. COM clients and servers may therefore be implemented in different lan-
guages. The most important languages that are supported are C, C++, Java and VisualBasic.

DCOM extends COM over the network. A COM interface that is to be accessed over the
network is compiled with the Microsoft IDL compiler (MIDL), with the result being proxy
code for the client side and stub code for the server side. DCOM uses DCE RPC for the com-
munication between clients and servers, and the Network Data Representation (NDR) for the
marshalling of the data types that are supported by Microsoft IDL.

Assessment

OLE, COM, DCOM and ActiveX are still proprietary technologies. Microsoft has submitted
parts of the DCOM specification to the IETF, and it is cooperating with the Open Group on the
transformation of ActiveX into an industry standard. However, this does not mean that
Microsoft is willing to loosen its grip on DCOM and ActiveX. First of all it is hard to imagine
that the IETF starts a standardization process for DCOM. And then it is already clear that
ActiveX will be standardized as is, i.e., without taking input external to Microsoft into account.
The only benefit of the standardization of ActiveX will therefore be a good documentation of
its features. Another problem with DCOM is that it is currently only available on Microsoft
operating systems. UNIX and Apple Macintosh versions are being implemented, but they will
not be released before the end of 1997.

Distributed Processing Environment

46

Programming with DCOM is more tedious than programming with CORBA, which is
mostly due to a lack of standard language mappings. However, Microsoft supplies a consider-
able number of tools that hide the low-level details of DCOM, and that make distributed pro-
gramming comfortable. A major drawback of DCOM is the lack of object identifiers similar to
the object references to CORBA. The relation between a client and a server object is always
temporary, meaning that once this relation is released there is no way for a client to reconnect
to the same object instance. OLE and DCOM provide workarounds for this problem, but no
sound solution. Other drawbacks of DCOM that can be cited are lack of interface inheritance,
lack of exceptions, an inflexible version control, and most importantly, lack of object services.
All these disadvantages are outweighed by Microsoft’s market position and a large base of
OLE component developers for which DCOM is the natural choice.

It is possible to build an MMC platform based on ActiveX components that communicate
via DCOM. Such a platform could use both Java and ActiveX for mobile code, with Java being
given preference wherever security is important, and ActiveX given preference wherever
advanced functionality has to be provided. However, the immaturity of DCOM and its propri-
etary nature dissuade from using it in an architecture that is required to be stable, long-lived
and ubiquitous, and it is therefore not a real alternative to CORBA for the MMC platform
envisaged by this thesis1.

3.4.3 Distributed Object Computing in Java

Sun Microsystems has added a native DOC facility to Java called Java Remote Method Invoca-
tion (Java RMI) [Sun96d]. Java RMI supports seamless invocation of methods in objects resid-
ing in different virtual machines. Java RMI servers implement so-called remote interfaces that
must extend the (empty) interface Remote. In Java RMI 1.0, the implementation class must
extend the class java.rmi.server.UnicastRemoteObject which provides basic func-
tionality for singleton servers. Future versions of Java RMI will provide other server base
classes, for instance one that supports replicated servers. A remote interface must be compiled
with the rmic interface compiler, which generates client stub and server skeleton code. The
client stub contains the definition of a proxy class with a name identical to the one of the
remote interface. Java RMI clients create proxy objects and bind them via a name service to
remote implementations before accessing their methods. The methods of the proxy object for-
ward invocations to the respective implementation of the remote interface. Clients may pass
both local and remote objects as parameters in remote invocations. Passing a local object as
parameter results in a copy of the object from the virtual machine of the client to the one of the
server. This is only possible if the local object is serializable, i.e., if it implements the (empty)
java.io.Serializable interface or the java.io.Externalizable interface2. It is pos-
sible that the class code for the copied object is not available at the server side. In this case the
server may dynamically load this code from the client via the so-called RMIClassLoader. Pass-
ing a remote object as a parameter results in a copy of the client stub and the creation of a
proxy at the remote side. The automatic transfer of client stub code and class code is one of the
strong points of Java RMI. Given this possibility there is no need in Java RMI to define some-
thing like CORBA’s Dynamic Invocation Interface.

1. This does not preclude the use of OLE and COM. OMG is about to issue a standard for the interworking
between COM and CORBA, which allows to access OLE controls via the CORBA object bus. Major CORBA
vendors already offer proprietary gateways to COM.

2. These interfaces are defined in the Java Object Serialization Specification [Sun96c].

47

Conclusion

Java RMI may play an important role in Java Beans [Sun96a], Sun Microsystems’ compo-
nent framework for Java. Java Beans defines a set of interfaces that allow the Java classes that
implement them to be integrated into visual application builder tools. These interfaces provide
support for introspection, customization, events, properties and persistence. The most impor-
tant features of a Java Bean are the methods it provides, the events it generates, and the proper-
ties it allows to set. Every Java Bean may be accompanied by a BeanInfo class that allows to
introspect the Bean, and a customizer class that can provide substantial comfort for the cus-
tomization of the Bean. The upcoming Java Media API [Sun96b], which will provide standard
programming interfaces for 2D and 3D graphics, audio and video, collaboration, telephony,
speech and animation, will probably be based on Java Beans. Future versions of the Java
Abstract Window Toolkit (AWT) will be compatible with Java Beans.

Assessment

Java RMI 1.0 does not provide much more than remote method invocation, object passing and
dynamic class loading. Additional features that need to be mentioned are distributed garbage
collection, and the definition of a basic name service for client bootstrapping. Java RMI is
therefore far from providing a distributed computing environment similar in scope to CORBA.
However, what really keeps it from being the DPE of choice for the MMC platform is its
dependency on a single programming language. This relieves it from a lot of ballast and makes
programming with it easy, but it has to be realized that it can only be used for distributed appli-
cations that are entirely written in Java. It can nevertheless be imagined that Java RMI is used
in a MMC platform for communication on application level, i.e., in addition to CORBA. An
MMC platform that integrates mobile code written in Java will profit from the Java Beans com-
ponent framework, and may therefore also support Java RMI for communication among Beans
in Java applets and applications.

OMG has issued an RFP for the transparent use of IIOP in Java applets and applications that
want to access CORBA servers, or that want to make objects available to CORBA clients
[OMG97c]. The basic idea behind this is to take a Java interface definition and to compile it
into an OMG IDL definition, from which stub and skeleton code can be generated in a second
step. The result of this is that it will be as easy for a programmer to use CORBA as it is to use
Java RMI. Proposals to the RFP are required to provide the same amount of functionality as
Java RMI. Initial submissions are due in September 1997, with the adoption of a standard
being scheduled for the beginning of 1998.

3.5 Conclusion

This chapter introduced CORBA, and justified the choice of CORBA as the DPE of the MMC
platform proposed by this thesis. CORBA is not perfect, but it is unrivaled at the time of writ-
ing, and with its integration into the Web it may well become as ubiquitous as HTTP is today.
In the MMC platform it will be used for all control communication among platform compo-
nents. Interfaces defined in IDL and a single network level protocol, IIOP, provide the func-
tionality that in the past would have required a multitude of message-based application-level
protocols. In the long run, CORBA may also provide for the transparent streaming of multime-
dia data over the network.

Distributed Processing Environment

48

49

4 Monolithic MMC Platforms

4.1 Introduction

In Chapter 2 it was stated that an MMC platform must be built on top of a general distributed
processing environment (DPE) so that platform design and implementation may concentrate
on MMC specific problems. Chapter 3 presented OMG’s CORBA as the distributed computing
platform of choice for the DPE. CORBA is object-oriented and language independent and
offers a wide and ever growing range of distributed processing functionality that can be readily
integrated into applications. Object-orientation is the key to component frameworks, which are
in turn the key to extensible application platforms. The suitability of CORBA for component
frameworks has been demonstrated with the OpenDoc component model that is based on
IBM’s System Object Model (SOM), a CORBA-compliant ORB. An application platform
based on a component framework has the advantage that it is extended with every component
that is developed for it. Applications developed on top of such a platform communicate with a
multitude of objects that behave according to some predefined rules, rather than with a single
entity that implements an extensive programming interface. This thesis distinguishes between
MMC platforms that are based on a component framework, and others that export a monolithic
programming interface. The internal structure of platforms that export a monolithic program-
ming interface is usually static, which means that the objects of which it is composed are put
into a static relationship, making it difficult if not impossible to plug in new functionality.
Component frameworks on the contrary promote dynamic binding and have to be regarded as a
meeting place for objects that are able to discover themselves and to collaborate. In the follow-
ing, MMC platforms with monolithic programming interfaces are simply referred to as mono-
lithic MMC platforms, alluding to both the monolithic API and the static internal structure of
such platforms. Monolithic MMC platforms are being superseded by platforms based on com-
ponent frameworks, but they are still relevant given that the platform approach for MMC appli-
cations has not yet prevailed over the stand-alone application approach. Platforms in general,
and therefore also monolithic MMC platforms, have to be considered as a substantial progress
with respect to the stand-alone application.

This chapter presents examples for monolithic MMC platforms, and exposes some of the
problems with them for which component frameworks are a natural solution. This chapter is
thus a motivation for the remainder of this thesis, which is dedicated to component frame-
works. The platforms that are discussed here are Bellcore’s Touring Machine, Eurecom’s
Beteus platform, and IBM’s Lakes platform. The Touring Machine was the first platform with
an API that was deployed on a large scale. The Beteus platform is the contribution of this thesis
in the area of monolithic platforms. It features a high-level connection management API that
significantly facilitates application development. The Lakes platform finally offers some fea-
tures that place it at the border between monolithic MMC platforms and component frame-
works.

Monolithic MMC Platforms

50

4.2 Touring Machine

The Touring Machine System [Aran93] is a platform for teleconferencing applications that has
been developed at Bellcore in the early 1990’s. The first version of the Touring Machine, com-
pleted in 1990, only supported point-to-point desktop audiovisual communication. The second
version, which was finished in 1992, added multipoint communication and an API, and is dis-
cussed here. A third version [Coan93] based on ODP and IN principles was partially designed,
but never completed, probably because it would have competed with TINA. The Touring
Machine has to be understood as an attempt to explore how a multimedia infrastructure in a
large public telecommunications network may look like. It tries to provide multimedia tele-
communications services, from which stems its emphasis on resource management and robust-
ness. The Touring Machine is object-based in the sense that it encapsulates functionality within
entities that can communicate with each other. All of the Touring Machine objects are mapped
one-to-one onto processes. This adds some robustness to the system, because the failure of one
process affects only one object, and possibly only one user session, but it might actually also
be due to limitations of the C programming language in which the Touring Machine is imple-
mented. The applications developed on top of the Touring Machine have been in daily use by
more than a hundred people, and over a period of almost three years [Wein94]. The Touring
Machine could only be deployed on such a large scale because audio and video communication
was analog.

Figure 4.1 shows the software architecture of the Touring Machine. The platform is divided
into a session control level and a transport control level. Session control objects deal with log-
ical representations of connections that are physically established and maintained by the trans-
port control objects. Platform objects are either permanent or transient, with transient objects
being dynamically created or deleted when needed. The API is implemented via the permanent
station object that exists on every Touring Machine terminal. The station object receives API
calls directly from client processes, or indirectly via a station manager that intercepts the com-
munication between client and station object in order to introduce specific policies for the
coordination of multiple clients. The station object deals mainly with client authentication and

Figure 4.1. The Touring Machine software architecture.

Station
Object

Station
Manager

Session
Object

A/V Switch
Object

Trunk Group
Object

Bridge
Object

Resource
Manager

Transport
Object

Station
Object

Data Switch
Object

Client Client

ClientClient

Name
Server

Session
Control
Level

Transport
Control
Level

API
permanent
object

transient
object

relation

51

Touring Machine

registration, and inter-client communication. It creates a transient session object when asked
by a client, and forwards all connection and session related requests to it. The session object
keeps state about session membership, session policies and existing connections. It establishes
connections with the help of a transient transport object that maintains a mapping between
logical and physical connections. The transport object requests end-to-end connections from
the resource manager which establishes them in collaboration with low-level resource objects.
The Touring Machine includes four types of resource objects. The A/V switch object estab-
lishes analog audio and video connections. The data switch object establishes digital connec-
tions for inter-client communication. The trunk group object establishes trunks between
different A/V switches. The bridge object finally allocates audio and video bridges for multi-
way communication. The transport object talks directly to the data switch object and the A/V
switch object when it needs to act on local connection endpoints. Figure 4.1 also shows a name
server that can be browsed by every platform object. The name server is a repository for static
and dynamic information about the system, like for instance authorized users, registered cli-
ents, ongoing sessions, or Touring Machine stations.

The Touring Machine defines the connection related abstractions connector, endpoint and
port. A connector is a medium specific bridge that can be of type audio, video or data and that
has source and sink endpoints from participating clients attached to it. Connectors can repre-
sent point-to-point as well as multipoint connections. Clients access connector endpoints via
ports that are typed with medium and flow direction. The port abstraction allows clients to
switch locally between different sources or sinks for the same connector endpoint. Audio and
video ports exist statically, whereas data ports can be created dynamically. A multipoint data
connector is realized with a data switch object that establishes TCP connections with every
attached client.

The API of the Touring Machine [Mak93] is message-based. An API message consists of a
length field and a set of message fields, which are either integers, strings enclosed by double
quotes, or API keywords. The format of a message is described by means of a simple propri-
etary syntax. Messages that require a reply contain a token that allows to match a reply with
the original request. The functionality provided by the API can be divided into six categories:

• client registration: a client process registers with its name and the configuration
of the station, and receives a client ID to be used in all consequent messages.

• session establishment and modification: a session is created with an initial set of
participants and connections that can later be modified. Session establishment
and modification requires prior negotiation with all concerned clients.

• network access control: the mapping between ports and endpoints can be con-
trolled, and data ports can be dynamically created or deleted.

• name server query: the name server may be queried for users, clients, stations,
ports, sessions, connectors and endpoints. Queries may contain wildcards. Cli-
ents may register triggers in order to be notified when certain events occur.

• inter-client message forwarding: a client can send a string to one or more other
registered clients.

• error notification: an error notification is returned to a client if the message pre-
viously sent by the client contains syntax errors.

The API defines all in all 46 messages. The number of real procedures is smaller because
the Touring Machine defines for every procedure a request, an accepted and a denied message.

Monolithic MMC Platforms

52

Two applications have been developed on top of the Touring Machine: the Cruiser telecon-
ferencing application, and the Rendezvous shared workspace application. Both applications
can be run on top of the same session. This is possible because there can be more than one cli-
ent per station within the same session1. This is a powerful feature because it allows to create
new applications by combining existing applications that were developed independently from
each other2.

4.2.1 Assessment

The use of analog audio and video cannot be considered as a limitation of the Touring
Machine, for it is this feature that made a large-scale deployment of the platform possible. A
consequence of the analog media transmission is that the platform does not need to support
inter-stream synchronization. A drawback is maybe that an application cannot control media
presentation, which would be possible with digital audio and video.

The API of the Touring Machine is monolithic. Any addition of functionality to the API
requires modification of the station object, and probably other platform objects. The platform
itself is closed in the sense that internal interfaces are hidden, making it impossible for third
parties to develop platform extensions. The Touring Machine would have greatly profited from
a distributed object computing platform like CORBA. The six categories into which the API
functionality is split would immediately be represented by six major CORBA interfaces. Every
interface would be implemented by the object that provides the respective functionality, with
the advantage that requests do not need to be routed through unconcerned platform objects. As
an example, the name service would be accessed directly, possibly via the CORBA name or
query services, and name service requests would not need to pass through the station object, as
is happening in the Touring Machine. A problem with the API is that it is based on a propri-
etary protocol. It defines a PDU format and message exchange rules that are rather complex
whenever negotiation among multiple parties is involved. The message-based API could easily
be reformulated in terms of RPC’s. None of the publications about the Touring Machine
explains why this was not done, and it can only be assumed that the hardware infrastructure
was too heterogeneous for this, meaning that there was no single RPC available on all of the
involved hardware architectures. Application developers must consequently code the marshal-
ling and unmarshalling of parameters by hand, which is not only additional work, but also a
source of programming mistakes. Since internal communication is also based on messages it is
likely that a considerable part of the 125K lines of C code that make up the Touring Machine
could be generated automatically by a CORBA IDL compiler or ONC’s rpcgen.

Inter-client communication in the Touring Machine is completely provided by the platform.
Clients are not supposed to open direct TCP connections with any peer. They use multipoint
data connectors for the communication of application data, and the inter-client messaging fea-
ture of the API for the construction of application-level control protocols. Both kinds of inter-
client communication could be readily provided by the CORBA event service, or the future
messaging service. Table 4.1 provides a summary of the features of the Touring Machine with
respect to the requirements on MMC platforms developed in Chapter 2.

1. Note that a Touring Machine client is not the user. A user may have multiple clients on his station running on
his behalf.

2. This feature bears some resemblance to the component framework paradigm. It would have been possible to
formalize this feature, which requires inter-application signalling, but this was not done.

53

The Beteus Platform

4.3 The Beteus Platform

The platform described in the following was developed at Eurécom in the course of the Euro-
pean teleconferencing project Beteus (Broadband Exchange for Trans-European USage)
[Blum97c]. The project definition of Beteus focused on network communication aspects rather
than applications. It required the development of at least two applications, with one of them
being a tele-teaching application, but apart from that it only said that Beteus applications must
make the best use of the high bandwidth available on the ATM network that interconnected the
project partners in France (Eurécom in Sophia-Antipolis), Switzerland (CERN in Geneva,
EPFL in Lausanne, ETHZ in Zürich) and Germany (TUB Berlin). Two applications were
vaguely envisaged, a tele-meeting application for informal group meetings, and a distributed
classroom application that would allow to give a lecture at one site to a virtual classroom that is
the combination of classrooms at several Beteus sites. Since there was no clear vision for the
applications at the beginning of the project, it was decided to build an application platform
rather than stand-alone applications for everyone of the envisaged application scenarios. The

Touring Machine

Requirement Fulfilled Remark

Open no uses proprietary protocols for API and internal communication

Extensible no every extension requires platform modifications

Programmable ❄ tedious due to message-based API

Scalable ❄❄❄ was deployed on a large enterprise network with many users

Deployable ❄ needs to be embedded into the network

Simple ❄❄ clearly structured platform, relatively simple API

Session Management ❄❄ sessions support multiple clients per user; session policies

Connection Management ❄❄ powerful abstractions (connector, endpoint, port)

Multimedia Data Processing ❄❄ analog audio mixers and video bridges

Multipoint Control Comm. ❄❄ provided by the API (inter-client message forwarding)

Resource Management ❄❄ resource management for analog audio and video connections

Synchronization no not necessary because audio and video are analog

Mobile Code no client code is installed on the endsystem

Presentation Environment no no audio or video presentation control

Federation of Applications ❄❄ possible due to sharable session object. No formalization.

Security ❄ user authentication and rudimentary access control

Mobility ❄❄ supports user mobility via the name server

Directory Service ❄❄ information about users, stations, clients, sessions, et cetera

Platform Management no -

Accounting no -

Standard DPE no -

Table 4.1. Evaluation of the Touring Machine.

Monolithic MMC Platforms

54

platform should constitute the highest common denominator between the envisaged applica-
tion scenarios and should allow to implement and to incrementally improve an application sce-
nario with significantly reduced effort as compared to an approach based on stand-alone
prototypes.

The Beteus platform and the initial application scenarios were designed and developed in
the period from August 1994 to April 1995. In May 1995, the Beteus field trials started on the
European ATM pilot network. Two application scenarios were demonstrated to a commission
of the European Union in July 1995. The field trials continued until the beginning of December
1995, with the second major event being the coorganization of a distributed conference on
November 16 and 17 between a main site in Madeira and attached sites in Madrid, Brussels
and Sophia-Antipolis (IDC‘95).

4.3.1 The Beteus ATM Network

At the beginning of the project there was not only uncertainty about the applications, but it was
also not clear how exactly the project partners would be interconnected with each other. It was
assumed that the majority of project partners would have access to the European ATM pilot
network [Geib96], but at least in the case of Eurécom it looked a long time as if access would
be Switched Multi-Megabit Data Service (SMDS). It was a clear objective to have ATM access
for all project partners since such an access was supposed to be favorable for multipoint com-
munication. The network configuration that was finally reached is qualitatively depicted in Fig-
ure 4.2. All Beteus project partners had ATM LAN’s. The ATM LAN’s of all partners but
ETHZ connected to the ATM pilot via 34 Mbit/s E3 interfaces. ETHZ is the only project part-
ner that had a 155 Mbit/s STM 1 link to the ATM pilot. The ATM pilot itself was a collection
of ATM cross-connects in various European countries. Beteus ran over cross-connects in Paris,
Cologne, Geneva and Zürich as far as can be judged from the scarce information provided by
the network operators. Although the resulting network was a pure ATM network, it was never
seriously considered to use any network protocol for the application platform other than the
Internet Protocol (IP over ATM), and any network programming interface other than the Ber-
keley sockets. The use of proprietary ATM programming interfaces was not considered, first
because this would have defeated platform portability, and then because of the performance
problems that implementations of such interfaces still exhibit.

Figure 4.2. The Beteus ATM network.

CC
Paris

CC

Cologne

ATM Pilot Network

34 Mbit/s
34 Mbit/s

34 Mbit/s

34 Mbit/s

155 Mbit/s

ATM LAN

ETHZ (CH)

ATM LAN

EPFL (CH)

ATM LAN

CERN (CH)

ATM LAN

EURECOM (F)

CC

Zürich

ATM LAN

TUB (D)

CC

Geneva?

CC = Cross-Connect

55

The Beteus Platform

4.3.2 Platform Architecture

An important objective for Beteus was to support events in which the Beteus sites were
involved as a whole, with examples being distributed lectures, or distributed panel discussions.
This means that an application endpoint is not necessarily a single multimedia workstation, as
is the case for instance in the Touring Machine, but possibly a logical unit that is assembled
from a collection of resources including workstations, screens, cameras, speakers and micro-
phones, with both digital and analog switches being involved in connection setup. It was
assumed that some of these resources, especially workstations and analog switches, would be
shared by many logical application endpoints, making it necessary to have some central con-
nection management entity. The scope of this central connection management entity is limited
to the local network, with the exact composition of an application endpoint being hidden to the
outside. The establishment of a connection between the networks of two sites must therefore
involve some communication between the respective connection management entities. The
resulting Beteus control architecture is thus semi-distributed: control is centralized on the level
of a local network, but distributed on the level of the wide-area network.

Sites and Nodes

For the total amount of tightly coupled equipment within a local network the abstraction of a
site is introduced. The abstraction of a node is introduced as the application dependent map-
ping of equipment onto a logical application endpoint. Connection and session control within a
site is performed by a central entity that knows about the application specific node mapping
from a configuration file. Figure 4.3 shows a possible node mapping for the personal work-
place. The node shown uses different workstations for audio and video processing and for the
actual application process. The GUI of the application is displayed on a terminal rather than a
workstation screen. Video is displayed separately from the GUI on a second screen. The media
input and output devices in Figure 4.3 have the logical names PersMicrophone, PersSpeaker,
PersCamera and PersScreen. Such names are used by the application to denominate connec-
tion endpoints. The site configuration file contains for every node a list of endpoint entries,
with each entry containing a logical name and its mapping onto a physical address. This con-
figuration information is used by the connection management for the establishment of audio
and video connections. Logical device names are in general application specific; they describe
the context in which a device like a camera or a microphone is used within a specific applica-
tion, and they can be as exotic or unique as the application itself. The logical device names

Figure 4.3. Node mapping example.

Host A

Audio

X-Terminal Video Screen

Host B

Video

Host C

ApplicationX11 Protocol

PersMicrophone

PersSpeaker

PersCamera

PersScreen

Network

Monolithic MMC Platforms

56

shown in Figure 4.3 are likely to be employed by more than one application, simply because
the node configuration itself is quite common. To illustrate the concept of logical device
names, it is possible to add to this node a camera that captures the view from a laboratory win-
dow, and call it WindowCamera.

Application Model

The Beteus application model introduces the abstractions of a session, a session vertex and a
session application. A session is the abstraction for one instance of a distributed application
that runs on top of the platform. A session comprises, from a logical point of view, a set of
nodes as session members. From a computational point of view, a session consists of a set of
session endpoints, called session vertices, which are processes that run on the session nodes.
The ensemble of session vertices within a session constitutes the session application. In the fol-
lowing, the term session application will be used interchangeably with application or applica-
tion scenario. Participants are humans or groups of humans that register their name and node
with the platform. Once registered they can participate in sessions. For every session in which
they participate there will be a session vertex running at their node. Note that it is the session
vertex rather than the person that is the actual session participant; the human participant
appears as an attribute of the session vertex.

Figure 4.4 shows three sites with each of them having three nodes defined in the site config-
uration file. An application is indicated that spans all three sites, with three nodes being
involved at site A, one at site B, and two at site C. There is no limitation on the location of the
nodes that form a session; they can all be within a single site, or all within different sites. It is
therefore also completely hidden to the session vertex on a node if the session in which it par-
ticipates spans remote sites or if it is local. Session vertices always interact with their local site
control, but the processing of a session vertex request may trigger inter-site communication,
which is the case whenever connections need to be established in-between sites. The group
communication module indicated in Figure 4.4 provides the messaging services required for
inter-site communication.

Figure 4.4. The Beteus application model.

Site Control A

Group Communication

Site A

SV 4

Node A3SV 3

Node A2

SV 1

Node A1

Site Control B

Group Communication

Site B

Node B2
SV 2

Node B1

Site Control C

Group Communication

Site C

SV 6

Node C3SV 5

Node C2

Node C1

Node B3

SV = Session Vertex

WAN

57

The Beteus Platform

4.3.3 Site Architecture

The three principal layers of the site architecture are depicted in Figure 4.5. The top layer is an
application layer containing a generic control panel and application processes - the session ver-
tices. Below the application layer is the site control layer which comprises the site manager,
the connection manager and the station agents. The site manager implements the functionality
offered at the API, whereas the connection manager performs physical connection establish-
ment in collaboration with the station agents. The communication layer finally contains the
audio, video and application-sharing software as well as the group communication entity that
supports the exchange of control messages between site managers and between connection
managers. The shaded architecture components in Figure 4.5, i.e., the site manager, the con-
nection manager and the group communication entity, have only one instance within a site.
Station agents on the contrary are daemons that are found on every machine on the site net-
work that may be source or sink of audio or video connections or that may run application-
sharing software.

Site Management

The site manager offers the platform services to the session vertices that run on top of it. Some
of the services offered by the platform are only used by the control panel, and others only by
the session vertices, although there is theoretically no such limitation. Participants register with
the platform via the control panel. The site management keeps a list of all registered partici-
pants and of all ongoing sessions. Participants can create new sessions or join ongoing ses-
sions. When a participant creates or joins a session, the control panel forks the session vertex
that corresponds to the session application. In case of session creation, the forked session ver-
tex will automatically become the session master. The session master has certain rights with
respect to the session that other session vertices do not have. This includes for instance the
right to delete nodes from a session, or to kill the session. The session master is also the coor-
dination center for the distributed application; it is the session master which configures the ses-
sion at the beginning and which initiates connection structure changes later on. Other session
vertices communicate with the session master via the messaging services of the platform. Most
of what the session master does will be in direct response to messages received from other ses-
sion vertices, or to input from the local GUI. The session master role can be transferred to
another session vertex, which is especially necessary when the participant whose session ver-

Figure 4.5. The Beteus site architecture.

Site Manager

Connection Manager

Station Agent

Audio Video Share
Group

Session Vertex

User Interface

Control Panel

Comm.

API

Site
Control

Application

Communication

User Interface

one instance per site

multiple instances per site

Monolithic MMC Platforms

58

tex bears this role wants to leave the session. Note that the session master functionality is not
necessarily visible at the GUI of the respective session vertex - this is an application design
choice.

Connection Management

The connection manager receives connection control and endpoint control requests from the
site manager. Connection control comprises connect and disconnect requests and is only per-
formed by the connection control of the session master; endpoint control stands for the setting
of device parameters like audio volume and video saturation. The connection manager maps
the logical endpoint names in site manager requests to physical addresses. Endpoint control
requests can then be forwarded to the corresponding audio or video processes. Connect
requests result in immediate connection establishment if all of the connection endpoints are
local. If an endpoint is remote, the connection manager of the session master asks the remote
connection manager to establish the respective endpoint. The site manager requests only point-
to-point connections from the connection manager, but every connect request is accompanied
by a hint as to whether the respective connection is part of a multipoint connection structure, in
which case the connection manager may use IP multicast [Deer91] if available.

Inter-Site Communication

Both the site manager and the connection manager communicate with remote peer entities, as
is indicated in Figure 4.5. Site managers need to communicate as part of the directory service,
the messaging service and the session management service. The communication between site
managers consists of the reliable transfer of a message from one site manager to one or more
other site managers. Connection managers need to communicate in order to establish inter-site
connections. Connection endpoints are established sequentially: the connection manager sends
for every connection endpoint an establishment request and receives an acknowledgment once
the remote connection manager has established the endpoint.

The communication requirements of the site manager and the connection manager are opti-
mally addressed by the Reliable Multicast Protocol (RMP) [Mont95]. RMP supports the reli-
able delivery of messages to all members of a group with different levels of service ranging
from unreliable delivery to totally resilient delivery. It runs efficiently on IP multicast, but
allows group members that are not multicast capable to be reached via UDP.

4.3.4 Major Connection Abstractions

A major requirement for the Beteus platform was ease of application development. The con-
nection management part of the Beteus API is based on powerful abstractions that allow to
establish and to modify complex audio, video and application-sharing connection structures
with a single call. The major connection abstractions are role, bridge and bridge set.

Roles

An application scenario is implemented within a single executable. The session vertices of an
application are therefore identical in terms of code, but they behave according to dynamically
taken or assigned roles. The already introduced master role and a general participant role are
the only roles which exist by default - all other roles are defined by the application itself. An
application may define as many roles as it wishes, and session vertices may also hold multiple
roles at the same time. A session vertex will adapt the GUI that it produces to the role or roles

59

The Beteus Platform

that it takes. Roles fall into two categories: static roles and transient roles. A static role deter-
mines the main behavior of the session vertex and is usually not transferred to another session
vertex. Examples for such roles would be the professor role and the student role in a tele-teach-
ing scenario. Transient roles are created, assigned and deleted as needed; they model whatever
ephemeral position a session vertex may have with respect to other members of the session. An
example for this would be the role of a momentary speaker in a panel discussion. The applica-
tion programming interface itself does not differentiate between static and transient roles. This
is more a concept that the application designer needs to keep in mind when analyzing an appli-
cation scenario.

Applications use role names rather than session vertex names or IP addresses to define the
endpoints of a connection structure. An application specifies audio, video and application shar-
ing connection structures once on session start-up; later on it will transfer roles inbetween ses-
sion vertices when it wants to change the connection structure. A typical example for this
would be the aforementioned speaker role at the root of an audio and a video multicast connec-
tion. The infrastructure will automatically rebuild this multicast connection whenever the
speaker role is passed from one session vertex to another.

Bridges

The introduction of the role abstraction already provides considerable comfort for application
development in that it allows to group connection endpoints. In addition to this, the platform
provides abstractions for connection structures. A bridge is a single-medium connection struc-
ture among session vertices. A bridge has source and sink endpoints that are given as role
names. The nature of the bridge is determined by the cardinalities of the roles at its endpoints,
and may be anything between a point-to-point and a multipoint-to-multipoint connection struc-
ture. It was not necessary to introduce another endpoint addressing scheme than the role-based
one. The role-based addressing scheme might become awkward when an application scenario
employs an excessive number of point-to-point connections, but no such scenario has been
identified until now.

The concept of a medium bridge hides the underlying network from the application. The
connection management realizes bridges with whatever transport the network offers. It knows
the connection types and is thus able to handle media specific endpoint issues. In a multipoint-
to-multipoint audio bridge it will automatically establish an audio mixer at every sink node,
whereas it will launch separate receiver processes for every stream in the case of an equivalent
video bridge.

The bridge abstraction can also be applied to X11 application sharing. The majority of
shared window systems intercept the traffic between an X11 client and server, which allows
them to replicate the GUI of the application at various displays by duplicating the client’s
drawing requests towards the connected servers and by combining events evolving from these
servers into one event stream towards the client [Gute95]. A bridge models the group of end-
points on which the GUI of an application is replicated, with the client application as source
endpoint and the remote displays as sink endpoints. The actual connection structure it repre-
sents is a combination of point-to-multipoint (drawing requests) and multipoint-to-point
(events).

Monolithic MMC Platforms

60

Bridge Sets

A number of bridges, typically an audio and a related video bridge, can be assembled to form a
bridge set. An application configures the platform on session start-up with a description of the
bridge sets that it uses. During the session, only one bridge set can be active at a time. If an
application changes the active bridge set, the infrastructure will tear down any connection of
the old bridge set that is not included in the new one, and establish the connections that are
missing. The number of bridge sets an application defines corresponds to the number of funda-
mental application states, which in turn corresponds to different temporal phases a session
traverses during its lifetime. The programming interface does not directly support the notion of
application state, but application state is, like static and transient roles, a concept that the appli-
cation designer has to be aware of.

4.3.5 Application Programming Interface

The API is based on synchronous RPC and asynchronous event notifications. The RPC pack-
age chosen for the communication between session vertices and the site manager is Tcl-DP
[Rowe93], the distributed programming package for Tcl/Tk [Oust90]. Since simple applica-
tions will mainly deal with GUI issues, it is possible to implement them completely in Tcl/Tk.
More complex applications may have C or C++ code in addition to the Tcl/Tk GUI script; they
will use the C library of Tcl-DP to call site manager procedures or to register callback func-
tions for event notification.

The API procedure calls are grouped into the following categories:

• registration: user registration and deregistration.

• endpoint handling: audio and video device control.

• session directory: directory service related calls.

• session information: convenience calls.

• session control: session membership and lifetime control.

• bridge set handling: changing the active bridge set.

• messaging: communication among session vertices.

• role handling: role assignment and removal.

• application sharing: X11 application sharing.

The convenience calls allow session vertices to query the session configuration. Session ver-
tices do not maintain records about actual role assignment, actual bridge set or session partici-
pants; they retrieve this information from the site manager as they need it.

The main event notifications are:

• Receive: a message from another session vertex

• Join: there is a new session vertex in the session

• Left: a session vertex left the session

• Kill: the session got killed or disrupted

• RoleAdd: a role is assigned to the session vertex

• RoleDel: a role is removed from the session vertex

61

The Beteus Platform

The specification of the Beteus API can be found in [Blum95].

Interaction Scenario

API procedure call usage and event occurrence are illustrated in Figure 4.6. Two session verti-
ces A and B are shown; A creates a session that is joined by B. This session is killed by A
when B leaves again. The lifetime of a session stretches from the point of time when it is
announced to the point of time when it is killed. The three principal states of the session are
announced, initializing and ongoing. An announced session is a session that is scheduled for a
certain date and time in the future. Announced sessions are visible via the directory service and
help people discover each other’s activities. The announcement phase can be skipped by call-
ing SessionInit right after SessionAnnounce. The SessionInit call marks the begin-
ning of the initialization phase where the creator of the session configures the site manager for
the actual session application. Initialization comprises role, bridge and bridge set definition.
Roles have to be defined before bridges since role identifiers are necessary to specify bridge
endpoints. For the same reason, bridges are defined before bridge sets. With the Session-
Start call the session enters the state ongoing where it can be joined by other session vertices.
This call contains as parameter the initial bridge set identifier. The session creator becomes the
first session member and gets automatically the session master role assigned. If he takes addi-
tional roles he will assign them to himself with AddRole calls. The session master then has to
wait for others to join the session. As is indicated in Figure 4.6, B finds out about A’s session
via a SessionOngoingQuery call. B joins the session with a call to SessionJoin, which is
indicated to A with a Join event notification. Connections other than those defined for the gen-
eral participant role are not established before the session master A assigns a first role to B.
The connection structure that is then established between A and B depends on their respective
roles and the active bridge set. The example in Figure 4.6 continues with a message transfer

Figure 4.6. API procedure calls during a session with two participants.

Register Session
Announce

Session
Init

Session
InitRole

Define Define Session
BridgeSetBridge Start

SV A

announced initializingSession State:

(master)

Beteus Platform

Register
SV B

ongoing

Session
OngoingQuery

Beteus Platform

SessionJoin

Join AddRole

RoleAdd

Change

Send

Receive
BridgeSet

Session
Leave

Leave

Deregister

Session
Kill

Deregister

ongoing

Monolithic MMC Platforms

62

from B to A that prompts A to change the active bridge set. When B leaves the session, the site
management tears down all connections between A and B. The session is formally finished
with A’s call to SessionKill.

API Call Example

Table 4.2 shows as example for an API call the parameter fields of DefineBridge. The first
two parameter fields identify participant and session. The type field marks the bridge as audio,
video or shared application bridge. Information granularity is interpreted as window size in the
case of video and as sample encoding in the case of audio. Similarly, time granularity is inter-
preted as frame rate in the case of video and sample rate in the case of audio. Source and sink
endpoint names define the logical devices that terminate the connections of the bridge. The call
further allows to define a list of role identifiers for sources and one for sinks. The connection
type is determined by the cardinality of source and sink roles within the session:

• no connection: no session vertex holds any of the source roles, or no session ver-
tex holds any of the sink roles.

• point-to-point connection: one session vertex holds one of the source roles, and
one session vertex holds one of the sink roles.

• point-to-multipoint connection: one session vertex holds one of the source roles,
and multiple session vertices hold one of the sink roles.

• bidirectional connection: two roles are given as source and sink roles and are
held by two session vertices.

• multipoint-to-multipoint connection: source and sink roles are held by multiple
session vertices.

• multipoint-to-point connection: only one session vertex holds one of the sink
roles, and multiple session vertices hold one of the source roles.

The DefineBridge call returns an identifier that can consequently be used to include the
bridge in one or more bridge sets.

DefineBridge pid sid type ginfo gtime srcepname rslist sinkepname rrlist

pid Integer participant identifier

sid Integer session identifier

type Enum{1,2,3} 1=audio,2=video,3=sharedXapp

ginfo Integer information granularity [0..100]

gtime Integer time granularity [0..100]

srcepname String source endpoint name

rslist Integer list of source role identifiers

sinkepname String sink endpoint name

rrlist IntegerList list of sink role identifiers

returns: bid Integer bridge identifier

Table 4.2. The API call for bridge definition.

63

The Beteus Platform

4.3.6 Example Application Scenario

An example shall serve to illustrate how application scenarios are translated into role, bridge
and bridge set definitions. A distributed school has to be imagined with professors and students
all geographically dispersed. Professors have application scenarios for all kinds of teaching
purposes at hand, among them a scenario that supports translation work on stage-plays written
in a foreign language. The scenario has four states or phases. In a first phase, the professor
gives an introduction into the translation assignment that was previously distributed by E-mail.
Students see and hear the professor, and they hear each other, which allows them to listen to
questions asked to the professor by fellow students. In a second phase, the students start to
work on the translation of the stage-play. The professor goes from student to student and
answers their questions. The editor of the currently visited student is automatically shared with
the professor. The professor may return to phase one if a question is of general interest. Once
students have finished the translation, phase three begins where individual students present
their results. The professor and the momentarily presenting student are visible to all other stu-
dents and to each other. The editor of the student is automatically shared with all others, and
audio is like in phase one. In phase four, multiple students take roles in the stage-play and
recite them. Their image and voice is distributed to the professor and to the other students. The
professor finishes the course with some remarks, with the application being again in phase one.
During the whole session the professor has as the replacement of a classroom-view an icon-
sized video image with low frame rate from every student.

The roles that can be identified in this scenario are:

• professor: static professor role

• student: static student role

• studentSpeaker: visible students in phase two, three, four

• master: held by the professor

• participant: professor and students

The transient role studentSpeaker is assigned to the visited student in phase two, to the pre-
senting student of phase three, and to the acting students in phase four. The bridges that need to
be defined are shown in Table 4.3 . The first audio bridge is the all-to-all audio bridge of phase
one and three. Audio bridge 2 and video bridge 6 form a bidirectional audiovisual connection
for phase two. Audio bridge 3 and video bridge 7 form the virtual stage of phase 4. The

No. Medium Source Roles Sink Roles

1 audio participant participant

2 audio professor,studentSpeaker professor,studentSpeaker

3 audio studentSpeaker participant

4 video professor student

5 video student professor

6 video professor,studentSpeaker professor,studentSpeaker

7 video studentSpeaker participant

8 sharedX studentSpeaker professor

9 sharedX studentSpeaker participant

Table 4.3. Example bridge definitions.

Monolithic MMC Platforms

64

multipoint-to-point bridge 5 represents the icon-sized classroom view. Four bridge sets are
defined according to the four phases of the application scenario:

• bridge set one (introduction): audio bridge 1, video bridges 4+5. In the introduc-
tory phase, all participants hear each other (1). The professor is visible to all stu-
dents (4), and can see all students (5).

• bridge set two (question): audio bridge 2, video bridge 5+6, sharedX bridge 8.
The professor has bidirectional audio and video connections and a sharedX con-
nection with an asking student (2,6,8), and can see all students (5).

• bridge set three (presentation of results): audio bridge 1, video bridges 5+7,
sharedX bridge 9. During result presentation, all participants hear each other
(1), the student that presents his results is visible to all participants (7), and the
professor can see all students (5).

• bridge set four (recitation): audio bridge 3, video bridge 5+7. During recitation,
the reciting students can be heard and seen by all participants (3,7), and the
professor can see all students (5).

 Connection control during the session consists of changing between bridge sets and assign-
ing the transient role studentSpeaker.

The example scenario illustrates some aspects of application development on top of the
Beteus API. Starting point is the invention of an application scenario. Then comes a problem
analysis phase during which the roles, bridges and bridge sets within the application scenario
are identified. This is an iterative process because the analysis of the scenario will likely influ-
ence the scenario itself. The following design phase comprises the dimensioning of bridge
parameters, the specification of the messages that are exchanged between session vertices, and
the specification of the functionality to be put into GUI’s. The final implementation phase is
mainly concerned with the development of GUI’s. The tight match between scenario analysis
methodology and API functionality greatly reduces the effort needed to implement the connec-
tion management part of a teleconferencing application.

4.3.7 Implementation

The Beteus platform is implemented in C++ and Tcl/Tk and runs on Sun workstations under
SunOs 4.1.3. Communication between applications and site control is based on Tcl-DP. All
other platform components within the site communicate by means of a proprietary RPC-like
protocol that is closely integrated with C++. Three applications have been developed on top of
the platform. The following discusses implementation issues concerning the various platform
components.

Audio and Video Transmission

Audio and video is transmitted via UDP or, if available, via IP multicast. The audio and video
sender components implement simple UDP stream duplication that allows to deploy the plat-
form on networks like the European ATM pilot that do not support IP multicast. Video trans-
mission is built around the XVideo board from Parallax. The compression of the Parallax board
follows the JPEG standard for the compression of still images [Wall91]. On connection setup,
the video sender allows to specify a target data rate that is consequently enforced by means of
a control loop in which maximum and measured data rate are constantly compared, with the
JPEG compression factor being modified according to the result of this comparison. Such a

65

The Beteus Platform

mechanism was necessary in the case of Beteus where there are data rate restrictions per video
stream and traffic policing within the network. The audio component is implemented as a sin-
gle process that contains both sender and receiver. The sender performs silence detection and
transmits audio in the form of talk spurts. The receiving side supports both mixing and stream
selection.

Application Sharing

The application sharing component of the platform is Xwedge from project partner ETH
Zürich [Gute95]. Xwedge is a distributed shared window system that has agents running at all
implicated client and server sites. X11 clients connect to the local Xwedge agent which in turn
communicates via TCP with remote agents and the local X11 server. The Beteus API offers
three calls for application sharing control: a session vertex can get a list of sharable applica-
tions, which are the clients that are momentarily connected to the Xwedge agent, and it can
share and unshare an application. Sharing means that the interface of the chosen application is
replicated at the sink endpoints of the currently active X11 bridge. The platform does not
implement the rich set of floor control mechanisms that Xwedge offers. The platform uses the
default floor control mode where the floor follows mouse clicks and keyboard input.

Site Control

It was planned to implement the site control in two steps. A first version should only support
sessions within a single site, which is effectively a completely centralized platform. A second
version should extend the centralized platform to the semi-distributed platform described in
Section 4.3.2. The first version was finished on time and was presented in July 1995 to a com-
mission of the European Union. In order to be able to operate this first version of the platform
on the Beteus network depicted in Figure 4.2, all Beteus sites had to be configured as a single
logical site. This worked without any problem, but was clearly against the design philosophy of
the Beteus platform. The second version of the platform was almost finished when the first was
presented, but was never made to run, for the problems that were encountered with the ATM
pilot network moved the focus of the project away from the applications to basic audio and
video transmission [Blum96]. However, the existing first version of the site manager imple-
ments the complete API as described in Section 4.3.5. In addition to this runtime version of the
site manager there is a development version that forks a dummy connection manager which
reads the site configuration file and returns positive responses to site management connect and
disconnect requests. This allows to test session vertices in emulated sessions on a single screen
and without establishing audio, video or application-sharing connections.

Applications

The applications that have been developed are the generic control panel, a tele-meeting appli-
cation, a tele-tutoring application, and a test application that allows to dynamically establish
arbitrary connection structures. The originally intended distributed-classroom application was
not implemented because the distributed summer school for which it was intended did not take
place.

The tele-meeting scenario is a simple framework for work meetings that can be used within
many environments. The audio and video connection structure is all-to-all, i.e., everybody sees
and hears everybody else. There are simple GUI’s for a chairman and a normal participant,
with the chairman being able to assign the role of a presenter to one of the session participants.
The presenting person can share one of its X11 applications with the other participants. The
chairman interface allows to transfer the chairman role to another participant, in which case

Monolithic MMC Platforms

66

this participant gets his interface exchanged for a chairman interface. The tele-meeting sce-
nario is implemented with a single bridge set containing an all-to-all audio bridge, an all-to-all
video bridge and a one-to-all application-sharing bridge with the presenter role as source. Con-
nection management only gets active when the presenter role is assigned, or when participants
join or leave the session, in which case their connection endpoints are automatically added or
removed from the audio and video bridges.

The tele-tutoring application features a professor and students that are all geographically
dispersed. The application can be in the states global and talk. In the state global, the professor
has a video window for every student, and can himself be seen and heard by all students. In the
talk state, the professor talks to a single student, but audio and video of both professor and stu-
dent are distributed to all other students so that everybody can follow their discussion. The stu-
dent can also share an X11 application to show his work. The roles, bridges and bridge sets
defined for this scenario resemble the ones described in the example scenario of Section 4.3.6.
The tele-tutoring application is still a simple application, but it already has much more connec-
tion structure dynamics than the tele-meeting scenario.

4.3.8 Assessment

The Beteus platform supports conference-style communication among a small number of sites
that have a static relationship with each other. Examples for such groups of sites are universi-
ties with a common tele-teaching program, or laboratories working on a common project. The
platform is not designed for ad-hoc communication on a network with a large number of sites
like the MBone. Such a deployment is imaginable, but would require a redesign of at least the
directory service.

The principal contributions of the Beteus platform are its connection abstractions (role,
bridge and bridge set) and the API that supports the rapid development and incremental
improvement of collaborative teleconferencing applications. The use of Tcl-DP for the API has
the advantage that applications can be entirely developed in Tcl/Tk, which makes sense given
that GUI code represents the most significant part of the application1. The ease with which
applications can be developed on top of the Beteus platform was proven with the tele-tutoring
application, which was implemented by two Eurécom students as part of a small 1st semester
project. None of the two was familiar with Tcl/Tk at the beginning of the project, and most of
the work was done within a period of a couple of days at the end of the semester. In addition it
has to be noted that the tele-tutoring application is a remake of the Betel application [Pusz94]
that was jointly developed by Eurécom and the EPFL as part of a 1 year European project. The
Beteus platform made it possible to implement the Betel application with significantly reduced
effort and in very short time.

Concerning the drawbacks of the API, the same can be said as in the case of the Touring
Machine. The API is monolithic, and it is not possible to extend it without modifying the site
manager. The now procedure-based API would profit from being reformulated with CORBA
IDL. A Beteus API based on CORBA would for instance have an interface for bridge set con-
trol, a session vertex interface for role assignment, various interfaces for audio and video end-
point control, and interfaces for audio, video and application-sharing bridges that inherit from
a generic bridge interface. A good part of the API call parameters are right now identifiers for

1. Tcl is a controversial language. For arguments against the use of Tcl see Richard Stallman’s 1994 mail to the
Usenet newsgroup comp.lang.tcl ‘Why you should not use Tcl’ [Stal94].

67

The Beteus Platform

what would be objects with CORBA. It can therefore be expected that an API based on
CORBA would be much easier to use. Besides that, CORBA is also likely to simplify the site
manager which is already implemented in C++, and which now contains code that dispatches
Tcl-DP procedure calls onto object methods. CORBA would also improve the internal commu-
nication of the platform. As an example, the modification of the audio volume is now an API
call that traverses the site manager, the connection manager and the station agent before arriv-
ing at the audio process. In the case of CORBA there would be a direct TCP connection
between the Beteus control panel and the audio process, and audio endpoint control would be
implemented directly by the audio process, making it possible to add audio control functional-
ity without modifying the site control. During the Beteus field tests it turned out that people
had difficulties in identifying the video window of the current speaker in a set of video receiver
windows depicting conference participants. A straightforward solution to this problem would
be to visually mark the video window that shows the current speaker. There was no way to do
this in the Beteus platform. In a CORBA-based platform, the video receiver would simply reg-
ister for activity events with the audio process, and receive them directly without any other
platform component being involved.

Beteus Platform

Requirement Fulfilled Remark

Open ❄ uses the de-facto standard Tcl-DP RPC for the API

Extensible no every extension requires platform modifications

Programmable ❄❄❄ API contains high-level connection management support

Scalable no limited number of sites and nodes

Deployable ❄❄ runs on TCP/IP; deployment = editing site configuration file

Simple ❄❄ clearly structured platform; simple API

Session Management ❄❄ users can create or join a session; concept of roles

Connection Management ❄❄❄ powerful abstractions (roles, bridges, bridge sets, nodes,...)

Multimedia Data Processing ❄❄ highly configurable digital audio and video transmission

Multipoint Control Comm. ❄❄ communication between session vertices provided by the API

Resource Management no -

Synchronization no would be necessary

Mobile Code no session vertex code is installed on the endsystem

Presentation Environment ❄ A/V presentation controllable, but not integrated with the GUI

Federation of Applications no -

Security no -

Mobility no -

Directory Service ❄❄ information about users, announced sessions, ongoing sessions

Platform Management ❄ performance monitoring of audio and video [Bess95]

Accounting no -

Standard DPE no -

Table 4.4. Evaluation of the Beteus platform.

Monolithic MMC Platforms

68

The semi-distributed architecture of the Beteus platform supports arbitrary node configura-
tions and accommodates inter-classroom as well as person-to-person applications. If perfor-
mance considerations suggest so it is possible to dedicate resources to single media, as is
indicated in Figure 4.3. It is clear that the central site management becomes a bottleneck as the
number of concurrently active nodes grows within a site. However, the Beteus platform was
neither conceived for a large number of sites nor for a large number of nodes. Table 4.4 sum-
marizes the features of the Beteus platform.

4.4 IBM Lakes

The IBM Lakes platform [IBM 94] is, as a product, the most complete platform presented in
this chapter. Lakes is at the basis of the IBM Person to Person (P2P) product family, and is
available for the OS/2 and Microsoft Windows 3.x platforms. Lakes is designed for collabora-
tive applications that may optionally employ multimedia communication for their purposes.
The Lakes API is still monolithic, but the platform is already much more modular than the
Touring Machine or the Beteus platform. Most importantly, it has a programming interface that
allows third parties to extend the platform with so-called logical devices that can be readily
used by applications. This feature puts the Lakes platform in relation with the MMC compo-
nent frameworks discussed in the next chapter.

The Lakes platform is distributed with one instance of it running at every Lakes node. A
node is actually a multimedia workstation that is associated with a single user. Figure 4.7
depicts the software configuration of a Lakes node along with the major platform interfaces.
The Lakes platform is built on top of a Device Support Interface (DSI) that isolates it against
specific hardware and software devices. The DSI provides access to Link Support Modules
(LSM) that encapsulate different network technologies and that can be dynamically added to
the platform. Typical network technologies supported by LSM’s are TCP/IP, N-ISDN, and
asynchronous hardware interfaces. Lakes exports an extensive API to the Lakes-aware applica-
tions that run on top of it, and provides some features that allow to deploy Lakes-unaware
applications within sessions. A special application is the call manager which implements spe-
cific session policies. The Lakes designers decided not to integrate session management into
the platform because they did not want to impose a particular session policy onto applications.
It is therefore possible to provide different call managers for different application classes, with

Figure 4.7. Lakes architecture.

RLI

DSI

API

Lakes Platform

Device Support and Hardware

Call
Manager

Address
Book

Manager
Lakes-aware
Application

Lakes-unaware
Application

L
o

g
ic

al
 D

ev
ic

e

LDI

A
d

d
re

ss
 B

o
o

k

Profile
Data

Address
Book

P
ro

fi
le

 IF
M

o
d

u
le

A
cc

es
s

M
o

d
u

le

CLI
GUI

API = Application Programming Interface
RLI = Resources Level Interface
CLI = Command Level Interface
DSI = Device Support Interface
LDI = Logical Device Interface

69

IBM Lakes

the limitation that only one call manager can be active at a time. It was nevertheless realized
that few developers will want to develop their own call managers, which is why there is a Com-
mand Level Interface (CLI) that allows to reuse the call management engine of the default IBM
call manager. Another replaceable utility application is the address book manager that provides
access to information about Lakes nodes. The address book access module shown in Figure 4.7
is a directory service that can be supplied by third-party developers. The address book can con-
sequently be as simple as a file or as complex as a distributed database. The address book
access module is accessed via the resources level interface (RLI). Another module accessed via
the RLI is the profile interface module which can be queried for customization data concerning
the node and the networks to which the node is attached.

Applications running at different Lakes nodes may temporarily come together in sharing
sets. Applications within the same sharing set may establish channels among each other, with
channels being unidirectional point-to-point connections among application ports with explicit
QoS attributes. The establishment of a channel may be preceded by QoS negotiation with the
target node, in which case the call manager takes the role of a resource manager. Channels can
be combined to channel sets of type standard, merged, serialized or synchronized. Merged
channels multicast data coming from all incoming channels of the channel set to all outgoing
channels. Serialized channels serialize data from different sources, so that every sink sees the
same ordered sequence of data packets. Synchronized channels finally deliver packets with the
same timing relationship with which they received them. Channels are terminated by applica-
tion ports or logical device ports. Applications realize audio or video connections with chan-
nels between audio and video logical devices. The Lakes platform can be extended with logical
devices that are programmed on top of the logical device interface (LDI). Logical devices are
controlled via their ports, for which the Lakes API provides the call LakSignalPort. The
principal parameter of this call is a command string that is interpreted by the logical device.
This means that logical devices can be added to the platform without any modification of the
API. However, it is clear that command strings are not very comfortable to program with.

Lakes offers multiple mechanisms for applications to exchange data. Applications may add
command strings to many API calls that are transparently forwarded to peer applications. They
may explicitly use the calls LakSignalApp or LakSignalWithReply to send a command
string to arbitrary Lakes applications. They may further use the port signalling facility to
broadcast messages to all applications connected to a channel set. These three mechanisms are
not foreseen for the transmission of volume data, which must be done with normal channels.

Applications communicate with the Lakes platform via a proprietary request-reply protocol
that is hidden behind the API calls. Lakes API calls may either be synchronous or asynchro-
nous. Calls that require negotiation with remote entities are usually asynchronous. They return
immediately, with the outcome of the call being returned as an event.

4.4.1 Assessment

Table 4.5 provides an overview of the functionality provided by the Lakes platform. The func-
tionality provided by Lakes is comparatively low-level because the designers of the platform
wanted to support a broad range of applications. The API is still monolithic, and would also
profit from a reformulation in CORBA IDL, but it is not affected of platform extensions in the
form of logical devices. The comparatively large number of replaceable modules and open
platform interfaces in Lakes indicates the direction that the design of MMC platforms is tak-
ing: towards components with interfaces that can be accessed via an ORB.

Monolithic MMC Platforms

70

One of the major benefits of the Lakes platform is the substantial support it provides for col-
laborative applications. This support goes well beyond what is offered by the Touring Machine
or the Beteus platform. Platform support for collaborative applications is essential because at
one point it will be more important to collaborate over the net than just to communicate. The
attention that digital audio and video transmission receive today is mainly due to the resource
problems they provoke. Once a high-quality multipoint video transmission over the Internet
has become a matter of course there will be more attention on application logic in general, and
therefore also more attention on platform support for collaboration over the network.

IBM Lakes

Requirement Fulfilled Remark

Open ❄ some standards support on transport level (X/Open XTI)

Extensible ❄❄ allows to add logical devices and to replace certain modules

Programmable ❄❄ powerful, but low-level API

Scalable ❄❄ no bottlenecks but the number of applications in a sharing set

Deployable ❄ platform may require considerable customization

Simple ❄ API is complex

Session Management ❄❄ call managers can be supplied by third parties

Connection Management ❄❄❄ merged/serialized/synchronized channels

Multimedia Data Processing ❄❄ logical devices

Multipoint Control Comm. ❄❄❄ API supports point-to-point and multipoint signalling

Resource Management ❄❄ channels have QoS attributes

Synchronization ❄ only delivery of data is synchronized (not presentation)

Mobile Code no application code is installed on the endsystem

Presentation Environment ❄ A/V presentation controllable, but not integrated with the GUI

Federation of Applications ❄❄❄ multiple applications/sharing sets within a call

Security no -

Mobility no user mobility can be added via a special call manager

Directory Service ❄❄ can be provided by third parties

Platform Management no -

Accounting no -

Standard DPE no -

Table 4.5. Evaluation of the IBM Lakes platform.

71

Other Platforms

4.5 Other Platforms

There are much more MMC applications described in literature than MMC platforms. One rea-
son for this is that the development of platforms requires much more effort in terms of design,
programming and testing than stand-alone applications. A new application concept can be val-
idated with the implementation of a prototype that embodies this concept. However, the valida-
tion of a new platform concept requires not only the implementation of the platform, but also
the development of a considerable number of applications on top of it. Applications developed
on top of platforms tend to be less revolutionary and less appealing than stand-alone research
prototypes. The reason for this is that platform functionality is necessarily based on established
concepts, and that platforms are tuned to support application classes rather than special appli-
cations. Research in platforms is therefore not only more costly, but it may also be less reward-
ing than research in application concepts. This may serve to explain why the number of
applications developed on the Touring Machine, the Beteus platform and IBM Lakes is small.

There is other work that can be mentioned in the context of monolithic MMC platforms.
Examples are the Betel platform and the Platinum platform. The Betel project [Pusz94] is a
predecessor of the Beteus project at Eurécom. The outcome of the Betel project is a stand-
alone tele-tutoring application that supports different interaction scenarios [Gros94]. Different
interaction scenarios are defined as entries in an interaction policy database and can be dynam-
ically accessed and interpreted by a central session agent. An interaction scenario is defined in
terms of user roles and simple rules that map user interactivity onto connection establishment
commands. The connection structures established by the Betel application, as well as its
behavior, can therefore be easily modified and adapted to different situations, which was
important in the Betel project. Similar to Beteus, Betel was confronted with many uncertainties
concerning the network and the application scenario. The role abstraction in Beteus was moti-
vated by Betel’s user roles.

The objective of the Platinum platform [Klap96] was to bring advanced ATM features like
multi-party and multi-connection calls to the desktop. In the course of the project a signalling
protocol was implemented that would be B-ISDN signaling release 3 in ITU-T terms. The
functionality of this protocol is accessed via a message-based programming interface that
allows applications to participate in multi-party calls and to establish multipoint connections.
The Platinum platform is an example for a platform that facilitates the development of B-ISDN
telecommunications services.

4.6 Conclusion

This chapter presented three monolithic MMC platforms, namely the Touring Machine, the
Beteus platform, and IBM Lakes. These platforms have to be considered as first generation
platforms, built to explore how a future MMC infrastructure may look like. All three of them
have become obsolete, which is partly due to a lack of extensibility and an inflexible software
architecture. For all three platforms it was shown that they would greatly profit from CORBA.
CORBA allows to considerably improve the structure of a platform and of the API that it
exposes to applications. It shortens communication paths and fosters modularity and extensi-
bility. However, although the software architecture of the presented platforms is outdated it
would be a mistake to forget about them. Monolithic platforms are still revolutionary given that
most of today’s MMC applications are built without platform support.

Monolithic MMC Platforms

72

The API’s of at least the Touring Machine and Beteus remain valuable, but need to be refor-
mulated in OMG IDL. The API of IBM Lakes is situated at a lower level than the ones of the
Touring Machine and Beteus. It is consequently more flexible, but also more complex, and
application development is not as straightforward as on the other platforms. The following
chapter will postulate that an MMC platform must provide various levels of programming sup-
port, allowing developers to develop on a low level wherever they need flexibility, and on a
high level wherever they want to reuse existing functionality. The API’s of the Touring
Machine and Beteus can therefore be reimplemented as toolkits on a low-level API similar in
spirit to the one of IBM Lakes.

73

5 MMC Component Frameworks

5.1 Introduction

The previous chapter discussed the first generation of MMC platforms, which is mainly char-
acterized by a large monolithic API and an opaque internal architecture. The support for appli-
cation development in first generation MMC platforms is already quite good, making it
possible to develop MMC applications in a couple of days, rather than in a couple of months,
as is the case with stand-alone applications. However, the principal problem with monolithic
platforms is that they are not designed to be extended by third parties. At the very most they
have internal interfaces that facilitate extension for those that originally implemented the plat-
form. These interfaces are normally hidden, and even if they were published they would not be
usable by third parties because their usage tends to have side-effects that are hard to document.
This means that third parties can extend such a platform only if the platform code is provided
along with the specification of internal interfaces. The lack of extensibility that monolithic
platforms exhibit goes hand in hand with a lack of openness. Monolithic platforms have more
of a product than of an open platform, with the effect that third parties are not only unable to
extend the platform, but also unable to implement it. Lack of extensibility and openness is tan-
tamount to reduced lifetime. Monolithic platforms are not able to adapt themselves to tenden-
cies in the rapidly moving field of multimedia, and they are consequently bound to disappear.

This chapter looks at MMC platforms that are based on the component framework para-
digm. Component frameworks decompose functionality into self-contained building blocks
that can be customized and plugged together. These building blocks, or components, behave
according to some predefined rules that manage the way they interact with each other. Applica-
tion development on top of a component framework consists of customizing components,
establishing relationships among them, and associating program code with events generated by
them. Components are smart in that they are able to find out about the environment in which
they are running. This allows them to react to many events without that the programmer would
need to intervene. One of the benefits of component frameworks is therefore a certain simplic-
ity in application development. In the case of MMC applications this was already achieved
with the monolithic platforms presented in the previous chapter. The real benefit of a compo-
nent framework in the case of MMC applications is therefore extensibility. Components can be
developed by third-parties and added to a platform without that any modification or recompila-
tion of the platform would be necessary. An MMC platform based on the component frame-
work paradigm is extended with every component that is developed for it.

Components need to interact with each other, and they must also be controllable by applica-
tion code. CORBA comes into the game as the bus that carries all component control commu-
nication. This chapter discusses two MMC platforms that are based on CORBA, and one that is
based on a proprietary communication mechanism. The two CORBA-based platforms are the
Multimedia System Services of the Interactive Multimedia Association (IMA-MSS), and the
Telecommunication Information Networking Architecture (TINA) of the TINA Consortium

MMC Component Frameworks

74

(TINA-C). The platform with the proprietary communication mechanism is Medusa, which
was developed at the Olivetti Research Laboratory (ORL) in Cambridge. Medusa is included
in order to illustrate how an MMC platform based on components can profit from a standard
ORB architecture like CORBA. A remarkable feature of Medusa is that it provides high-level
programming support on top of its low-level components. Medusa can be seen as a link
between the IBM Lakes architecture that has limited support for components, and architectures
like IMA-MSS that define a component framework on top of CORBA. The discussion of
example platforms in this chapter is followed by some general remarks about how a future
standard MMC component framework may look like. This leads over to the next chapter,
which presents, as the main contribution of this thesis, a platform that is based on CORBA and
the component framework paradigm.

5.2 Medusa

Medusa [Wray94] was developed at ORL to address some of the limitations experienced with
Pandora [Jone93], which was a joint project between Olivetti and the Cambridge University
Computer Laboratory. Multimedia data transmission and processing in Pandora was done by a
peripheral, Pandora’s Box, that was directly attached to an ATM network. This means that
applications running on the workstation associated with Pandora’s Box were not able to access
multimedia streams and to do any application-specific processing on multimedia data. The
concept of ATM direct peripherals was retained in Medusa, but one of the requirements was
that there should be no more limitations as to where multimedia streams are generated and
consumed. Applications should still be able to delegate multimedia processing to components
(the hands-off approach), but they should also be able to process data on their way from source
to sink (the hands-on approach). Additional objectives for Medusa were support for security,
support for application reuse, and support for a heterogeneous computing environment consist-
ing of systems running UNIX, Windows NT and ATMOS, ORL’s in-house operating system
for direct ATM peripherals.

 A Medusa terminal consists of a standard workstation plus multimedia devices that are
grouped around a small ATM switch which is itself connected to an ATM backbone. This so-
called desk area network (DAN) architecture allows to add an arbitrary number of ATM direct
peripherals to the workstation switch without affecting the performance of the workstation.
The software architecture of Medusa hides the existence of peripherals behind the module
abstraction. Modules are objects that encapsulate multimedia processing functionality. Every
active object in Medusa, including the application itself, is a module. Modules usually repre-
sent some clearly defined function like video compression or audio source and are intended to
be chained together to form pipelines from source to sink. Every module defines attributes that
model its behavior. Applications can set or get the value of an attribute, and they can ask to be
notified via an event whenever the value of the attribute changes. Existing modules are identi-
fied by unique capabilities. A capability contains the information that is necessary to localize a
module. Modules have ports, and the ports of different modules can be linked via oneway con-
nections. Connections are untyped, but carry messages which in turn contain data segments
that can be of type audio, video, command, reply and event. Connections are thus used for both
control and media data. As can be seen in Figure 5.1, an application needs to establish two con-
nections for a complete control association with a module, one on which commands are sent to
the module, and another on which the module returns replies and events to the application.
Since connections are used for control they have to be reliable. Unreliable connections over a
network are represented as special modules.

75

Medusa

Medusa defines eight commands that are understood by all modules:

• create module and delete module: these commands are used to ask a factory
module to create or delete other modules.

• connect and disconnect: the connect command tells a module to establish a con-
nection between one of its ports and a port belonging to another module. The
target module is identified by a capability. The disconnect command asks to dis-
connect a module port.

• get attribute and set attribute: these commands allow to set and get the values of
multiple module attributes at a time.

• watch attribute and unwatch attribute: these commands are used to control the
monitoring of attributes. When a watched attribute changes its value the module
will issue an event to the applications that registered for notification.

Applications that want to control a module need to know the capability of this module, oth-
erwise they are not able to establish a command connection with it. Medusa protects important
resources, like for instance factory modules, with proxy modules that intercept the control traf-
fic between an application and the resource. The application knows the capability of the proxy
object, but not the one of the resource. This means that an application has access to a resource
as long as the proxy module for this resource continues to exist. Access rights to resources can
therefore be granted by creating proxy modules, and revoked by deleting them.

The Medusa developers have written an extension to Tcl that allows to put together module
pipelines within Tcl scripts, which in turn supports applications that are completely imple-
mented in Tcl [Staj94]. They have developed an application that allows to assemble and con-
figure pipelines in realtime. This application, called Sticks and Boxes, queries modules for their
attributes, creates a GUI representing these attributes, and allows to modify them on-the-fly.
The Medusa developers realized that many applications were using the same configuration of
modules. They consequently developed a Tcl framework that allowed them to group modules
into molecules that could be reused by applications as a whole [Staj95]. Molecules have their
own methods, and they come with a Tcl/Tk GUI that can be readily integrated into applica-
tions. An application that uses molecules has no direct control over the modules of which the
molecules are composed.

Figure 5.1. The Medusa architecture.

Module X Module Y Module Z

Application Module

command
connection reply

connection

Output Port

Input Port

Message

MMC Component Frameworks

76

5.2.1 Assessment

Medusa is the first platform presented in this thesis that is explicitly designed for extensibility.
Simple Medusa modules can be implemented with a few lines of C++ code. Every application
developed for Medusa will enrich the platform by increasing the number of modules available
to factories. Second generation applications will then have access to a rich library of modules
that they can assemble in many different ways. The Medusa architecture is a component frame-
work, with the restriction that it does not support the development of platform components by
third parties. This was never an objective for Medusa - Medusa was exclusively designed for
the ATM network at ORL, and it was consequently not necessary to provide open interfaces for
component development. Unlike the platforms presented until now, Medusa does not offer any
support for session management, and it does not have a clear application model. Medusa is in
fact a multimedia middleware on top of which different application frameworks and policies
can be developed.

The way control is handled in Medusa appears to be weird at first, but can be explained with
the ATM direct peripherals. These peripherals run a small operating system that did not sup-
port RPC by the time Medusa was developed, which is why a message-based control protocol
could not be avoided. Meanwhile, an in-house ORB has been implemented for the peripherals
in a move to build a platform similar to Medusa on top of CORBA [Murp96]. CORBA would
simplify the Medusa architecture to a big extent. First of all, the interface of a module can be
defined in CORBA-IDL rather than as a set of attributes. Medusa capabilities can be replaced
by CORBA object references, and command and reply messages by CORBA operations. Mod-
ule interfaces can inherit from a base interface that offers functionality that is uniformly pro-
vided by all modules, like for instance connection establishment. Medusa events can be
provided by the CORBA event service, and the module query feature that is needed by the
Sticks and Boxes application can be provided by the CORBA interface repository.

The perhaps most interesting feature of Medusa for this thesis is its support for module
grouping. The decomposition of functionality into fine-grained components has the benefit that
it allows to build applications simply by interconnecting components, but it also creates the
problem that applications then have to deal with interfaces of multiple components, whereas
before they only dealt with a single API. As an example, in Medusa it does not make sense to
change the size of the video window produced by video converter module if it is not also
changed in the video window module at the receiving side. This is not a problem with mono-
lithic API’s like those presented in the previous chapter. Monolithic API’s control the compo-
nents of an end-to-end connection in a consistent way, and do not require the programmer to
figure out how a video sink must be configured so that it can meaningfully process the stream
produced by a video source. In the case of component frameworks for MMC applications there
is a need to provide further layers of abstractions on top of components in order to achieve the
same ease of programming as with monolithic API’s. There must be higher-level objects that
offer operations for the compound control of component networks. These objects may com-
pletely hide the components from the application, in which case they are typed, or they may
represent a single access point for compound operations that need to be uniformly applied to
every object in the component network, in which case they are generic. Typed higher-level
objects deploying the same component configurations may offer different degrees of program-
mability. As an example, one can imagine an audio object with two operations: add participant
and remove participant. This object would interconnect session participants with an audio
component network containing audio coders, decoders and mixers. There are applications that
do not need more than that. For applications that want to have more control there could be

77

IMA Multimedia System Services

audio objects offering considerably more functionality, for instance choice of audio coding,
control over the number of streams mixed at receiving sides, et cetera.

5.3 IMA Multimedia System Services

The Multimedia System Services (MSS) of the Interactive Multimedia Association (IMA) is
an architecture that shall facilitate cross-platform compatibility of multimedia applications
[IMA94a][IMA94b]. The IMA-MSS standard, or Recommended Practice (RP) in IMA’s ter-
minology, is based on a submission jointly proposed by Hewlett-Packard, SunSoft and IBM
[Picc94]. MSS was never finalized by IMA1, but instead handed over to ISO where it will now

1. IMA worked on MSS until well into 1995. Work on MSS then stopped because "over time industry focus shifted
to other things", as was stated by Steven Mitchell, Director of Systems and Information Management at IMA,
in a mail to the author of this thesis.

Medusa

Requirement Fulfilled Remark

Open no all protocols and interfaces are proprietary

Extensible ❄❄❄ component framework

Programmable ❄❄❄ grouping of modules into high-level reusable molecules

Scalable ❄❄❄ no inherent scalability limitations

Deployable no tailored to the hard- and software environment at ORL

Simple ❄❄ small number of powerful concepts

Session Management - not in the scope of the architecture

Connection Management ❄❄ support for simultaneous module creation and interconnection

Multimedia Data Processing ❄❄❄ flexibility due to component framework

Multipoint Control Comm. ❄ control communication is low-level and point-to-point

Resource Management no -

Synchronization no -

Mobile Code no can be added (Medusa applications are written in Tcl)

Presentation Environment ❄ allows to integrate video into application windows

Federation of Applications - -

Security ❄ some support for access control

Mobility - -

Directory Service - -

Platform Management no -

Accounting - -

Standard DPE no no standard DPE

Table 5.1. Evaluation of Medusa.

MMC Component Frameworks

78

become part of PREMO [ISO96b]. However, the version of MSS discussed here is the last RP
draft published by IMA. This is justified by the fact that until now the ISO committee working
on PREMO has not significantly modified MSS.

MSS should provide abstractions that make it possible for applications to deal with the dis-
tributed processing of multimedia data. Applications should be able to use MSS without being
concerned with particular software or hardware environments, i.e., they should be able to run
on top of heterogeneous software and hardware platforms. MSS should provide support for
resource management, synchronization, and both live and stored multimedia data. MSS was
not supposed to address security, scripting, graphical user interfaces, data sharing or billing.
MSS defines abstractions for time, data flows, processing nodes, connections among process-
ing nodes, and the grouping of processing nodes and connections. MSS is the first architecture
discussed in this thesis that is based on CORBA. MSS defines IDL interfaces within a basic
inheritance tree that can be extended by third parties.

Figure 5.2 shows the major concepts of the MSS architecture. MSS decomposes data pro-
cessing functionality into virtual devices. A virtual device consists of a processing element and
one or more ports through which data are communicated. A virtual device exports the follow-
ing interfaces:

• device-specific interface: a single interface that allows to control device-specific
processing characteristics. This interface inherits from the generic Virtu-
alDevice interface.

• stream control: there is one stream control interface per port, and one on device-
level for compound stream control. Typical stream control operations are
pause(), resume(), prime(), drain() or mute(). The base interface for
stream control is Stream.

• format control: a device port supports one or more media stream formats. The
format of a port is set via an operation in the VirtualDevice interface. For-
mat parameters are then set via operations in an interface that inherits from the
generic Format interface.

Figure 5.2. Interaction between MSS objects.

Stream

Stream

Format

VirtualDevice

Stream

Stream

Format

VirtualDevice

Media Stream Protocol

Stream

Stream

Virtual
Connection

Group

EventChannel

PushConsumer
Client

Processing
ElementPortPortProcessing

Element

Containing
CORBA Object

Contained
CORBA Object

Internal Object

Client Interaction

Internal Interaction

79

IMA Multimedia System Services

Device ports themselves are internal objects for which no IDL interface is defined. Applica-
tions refer to ports with opaque port handles. The ports of different devices are connected via a
virtual connection that can be unicast, in which case it connects a source port with a sink port,
or multicast, in which case it connects one source port with multiple sink ports. The most
important operation of the VirtualConnection interface is connect(). This operation
takes as parameters a source endpoint and a sink endpoint, with an endpoint being given as the
object reference of a virtual device plus a port handle. The VirtualConnectionMulticast
interface inherits from VirtualConnection and adds the operation attach() with which
an endpoint can be added to a virtual connection. A virtual connection contains a Stream
interface that allows to control the connection as a whole. Operation invocations on this inter-
face are propagated to the Stream interfaces of the connected device ports.

The interfaces VirtualConnection and VirtualDevice inherit both from the interface
VirtualResource, as can be seen in the interface inheritance diagram in Figure 5.3. A vir-
tual resource is an object that requires endsystem or network resources for operation. The
resources that are held by a virtual resource are obtained with the call acquire_re-
source(), which takes a QoS value as parameter, and released with the call release_re-
source(). Virtual resources also contain a Stream interface that can be accessed with the
operation get_stream().

MSS supports compound operations on device networks via Group objects. Operations on
interfaces exported by the Group object are propagated to all group members. The Group
interface contains the membership control operation add_resource() that allows to add a
virtual resource to the group. Since Group is itself a virtual resource it is possible to establish
group hierarchies containing virtual devices and connections at the bottom and multiple levels
of group objects further up. As a virtual resource a group object must also implement the oper-
ation acquire_resource(). The QoS requested with this call is end-to-end, meaning that it
has to be provided as a common effort of all group members. Applications will typically add
all virtual devices and virtual connections of a device graph to a group, as is indicated in Figure
5.2, reserve resources for the graph as a whole with a call to acquire_resource(), and con-
trol this graph via operation invocations to the Stream interface of the group.

The first versions of MSS defined a proprietary event service, which was at last replaced
with the standard CORBA event service, as can be seen in Figure 5.2. MSS object clients have
the choice of receiving events via the push or the pull mechanism, whereas MSS objects them-
selves deliver an event to the event channel via the push mechanism. It seems that event chan-
nels can be associated with a client, like in Figure 5.2, with an MSS object, or with a particular
event generated by an MSS object. The MSS RP is not very clear about this.

The following subsections discuss some important features of MSS, namely its use of the
CORBA property service, the way connections are established, and further how it handles syn-
chronization and resource management.

5.3.1 Properties and Capabilities

An important concept in MSS are properties and capabilities. An MSS object may have prop-
erties beyond the operations that it implements, with an example being its location. A property
is defined as a string constant in the interface of the object with which the property is associ-
ated. Clients can read or modify the values of a property via the standard CORBA property ser-
vice. Since the value of a CORBA property is of type any, it is necessary to define for every

MMC Component Frameworks

80

property the type of the value it can take. Capabilities are special properties that describe the
range of values a property can take. MSS renounces on the use of CORBA attributes and takes
instead of that the use of properties and capabilities to the extreme. Capabilities allow clients to
impose constraints on properties. Clients may for instance impose a constraint on the location
of an object that is created by a factory. They may also impose constraints on the QoS to be
allocated by a virtual resource, or on certain parameters of a stream format. The idea behind
this constraint mechanism is that clients will only need to give values for properties they are
interested in, leaving the choice of remaining property values to MSS objects.

Properties and capabilities add a lot of flexibility to MSS, but it is tedious to program with
them, which is why it can be assumed that much of the flexibility gained with properties and
capabilities will remain unused by applications.

5.3.2 Connection Establishment

To arrive at the configuration depicted in Figure 5.2, the application first needs to access a
FactoryFinder object in order to find the factories that are able to create the two virtual
devices, the virtual connection and the group. Once it has the object references of the factories
it will create the virtual devices with calls to GenericFactory::MSS_create_object().
Following that it will create format interfaces at the ports it wants to connect, and possibly con-
strain some of the format parameters via calls to the Format interfaces. It will then create a
virtual connection and have it connect the two ports. The primary task of the virtual connection
object is to establish a physical path between the two ports. The way this is done is hidden to
the client, and consequently not in the scope of MSS. The virtual connection object must also
match the formats of source and sink port. It first retrieves the list of constraints imposed on the
format object of the media master, which is the first of the two endpoints mentioned in the
VirtualConnection::connect() call, and compares these constraints with the capabili-
ties of the other format object. This is done with a call to Format::compare(). This call
returns the intersection of the given constraints and the capabilities that are supported by the
format object on this port. The virtual connection continues to iterate between the format
objects of the two ports until all format parameters are fixed. Following that, the application
creates a group object and adds the two virtual devices and the virtual connection to it. It then
calls the acquire_resource() operation of the group, and once the resources are acquired
it retrieves the object reference of the stream object of the group, and calls resume()to start
transmission.

As can be seen, the establishment of a connection between two virtual devices requires a
large number of operation invocations. Many of these operation invocations will cross the net-
work, especially those coming from the virtual connection object which needs to call the for-
mat objects multiple times in order to match format parameters. Operation invocations over the
network take multiple milliseconds to complete, which is several orders of magnitude more
than it takes for a method invocation within a single address space. With this in mind it can be
expected that it takes several seconds to establish a multipoint-to-multipoint connection among
a set of terminals, especially if there are multiple virtual devices to be chained together on
every terminal. Another problematic feature of MSS is the way format parameters are
matched. The scheme described above works fine for the case that only two ports need to be
connected, but it is not clear how the virtual connection object can match all port formats in a
graph that contains more than two devices. The source and sink port formats of a virtual device
will usually be interdependent, meaning that the choice of a format at a sink port is likely to
constrain the format choices at the source ports of the same virtual device. A first consequence

81

IMA Multimedia System Services

of this is that format matching cannot be done in parallel in a graph because it would be subject
to race conditions. Serial format matching of port pairs will not produce inconsistencies, but it
is likely to fail because it does not take format interdependencies into account. This means that
applications cannot rely on automatic format matching if they establish graphs containing mul-
tiple virtual devices.

5.3.3 Synchronization

The Stream interface contains the operation get_position() that allows to retrieve the cur-
rent time or stream position, and the operation set_position_reporting() that causes the
stream to periodically generate position events. These two operations allow other streams to
synchronize themselves with a master stream by comparing the stream position of the master
stream with the local stream position. MSS defines the VirtualClock interface for use as an
independent source of time. The VirtualClock interface inherits from VirtualResource,
and implements consequently the Stream interface. Applications have therefore the choice to
synchronize data streams with respect to each other by designating a master stream, or to syn-
chronize multiple streams with a virtual clock. A virtual device that is able to synchronize its
streams with an external stream implements the SyncStream interface. This interface con-
tains the operation attach_master() that takes as parameter the object reference of a stream
to which the object implementing the SyncStream interface shall synchronize itself.

MSS also supports the insertion of application-defined markers into streams that cause
events for which applications can register. This together with the possibility to synchronize
streams represents a decent synchronization framework which will suffice for many applica-
tions.

5.3.4 Resource Management

The resources allocated by an MSS virtual resource are described by five QoS characteristics:

• guaranteed level: defines to which extent the requested QoS is maintained by
MSS once it is allocated. Possible values are guaranteed, best effort, or no guar-
antee.

• reliable: defines if the delivery of data on connections is reliable or not.

• delay bounds: minimum and maximum delay experienced by data in a virtual
resource (virtual connection, virtual device, group).

• jitter bounds: minimum and maximum delay variance experienced by data in a
virtual resource (virtual connection, virtual device, group).

• bandwidth bounds: minimum and maximum bandwidth of a stream.

The MSS RP defines the type QoS as a list of capabilities describing value ranges for the
five QoS characteristics above. This allows applications to specify only those QoS characteris-
tics in a resource reservation in which they are interested. Applications are actually not thought
to set the QoS of every virtual device or connection, although they have the possibility to do so.
Applications will rather add all virtual resources of a graph to a group, and set the QoS of the
group. The MSS RP states that "the group does the work of allocating the QoS to individual
objects to meet the overall QoS objective"1. This can be expected to work for the simple case

1. See Section 6.3.5.1 of the MSS RP [IMA94a].

MMC Component Frameworks

82

of bandwidth bounds, but it is not clear how the generic group object can decide about how to
distribute a maximum end-to-end delay over a chain of virtual devices and connections of
which it does not have any knowledge. The same is true for jitter bounds. Another problem
with resource management in MSS is that QoS is requested for virtual resources rather than for
streams, which would make more sense. There is no problem with this in the case of virtual
connections where there is a one-to-one mapping between stream and virtual resource, but it is
not correct in the case of virtual devices, which have to deal with multiple streams whenever
they have more than two ports. A virtual device supporting multiple streams will therefore not
know to which stream it has to apply given bandwidth or delay bounds.

The MSS RP also outlines a resource management architecture consisting of resource man-
agers for individual resources that are accessed by virtual devices, but since the mechanisms of
resource management are hidden from the client it does not define any resource management
interfaces under the hood.

5.3.5 Interface Hierarchy

All MSS objects inherit from the base interface MSSObject, which in turn inherits from the
CORBA property service interface PropertySet. The PropertySet interface contains all
the functionality that is necessary to set or get the values of properties. The most important
component of the MSSObject interface is the definition of the location property. Three inter-
faces inherit from MSSObject: VirtualResource, Format and Stream. The most interest-
ing aspects of the Stream interface and its descendants have already been discussed. The
Format interface is further refined with digital audio and video formats and analog connector
formats. All MSS devices inherit from VirtualDevice, which in turn inherits from Virtu-
alResource. The MSS RP defines virtual video devices for different windowing technologies
and basic microphone and speaker devices for audio. Not shown in Figure 5.3 are the file
device and a compact disk player device.

The design of the interface inheritance tree is sound with the exception of the VirtualDe-
vice hierarchy. The existence of the virtual devices VideoDevice, AVDevice and
AudioDevice appears to be a result of taxomania [Meye96]. The IDL definition of these vir-
tual devices contains only properties and capabilities, i.e., string constants, and no real func-
tionality. The only recognizable function of these interfaces is that they protect the names of

Figure 5.3. MSS interface inheritance diagram.

MSSObject

VirtualResource

Format

Stream

ConnectorFormat

DigitalVideoFormat

DigitalAudioFormat

CATVFormat

VideoConnectorFormat
AudioConnectorFormat

MPEGVideoFormat
JPEGVideoFormat
PseudoColorVideoFormat

DynamicDigitalAudioFormat

ControlledStream

FileStream

SyncStream

VirtualDevice

VirtualClock

Group

VirtualConnection

VideoDevice

AVDevice

AudioDevice MicrophoneDevice
SpeakerDeviceAudio

Video
MSWindowVideoDevice
AVMSWindowDevice
SyncXWindowVideoDevice
XWindowVideoDevice
AVXWindowDevice

PropertySet

83

IMA Multimedia System Services

the defined audio or video properties and capabilities. This however should be rather done by a
CORBA module definition than by an interface definition. Note that MSS does not use
CORBA modules at all, with the result that all MSS interfaces are defined on global scope.

5.3.6 Assessment

MSS is the most important CORBA-based multimedia middleware defined until now. It defines
a complete framework for multimedia processing and transmission and is based on set of
sound abstractions, most notably the virtual device, stream and format abstractions. The most
important problem with it is maybe that it was never finished by the people that originally con-
ceived it. The last MSS RP draft is incomplete and contains many inconsistencies, which is
why it is certainly not easy to recycle it for PREMO. Some important details of the architecture
do not work as they are supposed to, with examples being automatic format matching and
compound resource allocation, and nobody has ever built a prototype for MSS. Maybe MSS

IMA-MSS

Requirement Fulfilled Remark

Open ❄❄ client interfaces open, internal device interfaces hidden

Extensible ❄❄ extensible design, but no implementation framework

Programmable ❄❄ programming with capabilities is flexible, but tedious

Scalable ❄ graphs may only contain a small number of devices

Deployable no no strategy for deployment

Simple ❄❄ small number of powerful concepts

Session Management - not in the scope of the architecture

Connection Management ❄❄ a lot of flexibility at a low level

Multimedia Data Processing ❄❄❄ flexibility due to virtual device and format abstractions

Multipoint Control Comm. ❄❄❄ use of CORBA and the CORBA event service

Resource Management ❄ resource management architecture outlined

Synchronization ❄❄ inter-stream and event-based synchronization

Mobile Code - -

Presentation Environment no does not address integration of objects into GUI’s

Federation of Applications - -

Security no -

Mobility - -

Directory Service - -

Platform Management no -

Accounting - -

Standard DPE ❄❄❄ CORBA

Table 5.2. Evaluation of IMA-MSS.

MMC Component Frameworks

84

came too early with respect to CORBA. The first version of MSS could not use any CORBA
service, and by the time work on MSS stopped the CORBA property service had not even been
finalized yet.

MSS is a framework for the support of application compatibility. As such it is not at all con-
cerned with internal interfaces, and most notably not with the internal interfaces that have to be
implemented by a virtual device or that are accessed by it. It is therefore not possible for third
parties to develop virtual devices. Support for third-party device development requires at least
the definition of the port and resource manager interfaces. It would also be necessary to add
some GUI abstractions to MSS. The technology-prone video devices to be seen in Figure 5.3
would need to be replaced with widgets that can be readily integrated into GUI’s.

5.4 TINA

The Telecommunication Information Networking Architecture (TINA) is a platform for MMC
service provision that is being developed by the TINA Consortium (TINA-C). The TINA con-
sortium was founded at the beginning of 1993 following an initiative of Bellcore in the United
States, British Telecom in the United Kingdom, and NTT Japan [Barr93], and has at the time
of writing 45 members, including 26 telecommunications operators, 11 telecommunications
manufacturers, and eight computer manufacturers and software companies1. TINA is the pre-
dominant effort in the area of telecommunications to come up with an open, next-generation
architecture for the provision of MMC services. It is mainly motivated by the fact that cus-
tomer premises equipment has become more intelligent than network equipment, with the con-
sequence that it will play an important role in future telecommunications systems
architectures. Other factors that lead to the foundation of the TINA consortium were market
trends like the globalization of services and the increasing demand for service diversity. Cur-
rent network and service architectures are complex and difficult to manage. They do not sup-
port the rapid development and introduction of new services, and they are overwhelmed by
service interaction problems. TINA is supposed to solve these and other problems of current
networks by defining a radically new and future-proof architecture along with a viable migra-
tion path to it.

TINA is required to provide architecture support for administrational domains, business
roles and stakeholders. Transport mechanisms shall be transparent to TINA, making it possible
to deploy TINA on top of all kinds of networks including ISDN, B-ISDN, WAN’s, LAN’s and
mobile networks. TINA shall be useful at all stages of the service life cycle, and the range of
services supported by TINA shall be open-ended. The following objectives are defined for
TINA [Brow95]:

• interoperability: platform and application software of different vendors shall be
able to interoperate.

• reusability of application software: support for the reuse of application design,
and the run-time reuse of application software.

• distributed execution of applications: support for the transparent distribution of
application and platform software onto physical nodes.

1. See the Web site of the TINA Consortium (http://www.tinac.com/) for up-to-date information regarding mem-
bers.

85

TINA

• support of new types of service: support for MMC services, mobility, service
customization and the handling of service interaction.

• support for management: support for the management of software and network
resources, version management, replication management, accounting, etc.

• independence from computing environment and hardware: the architecture shall
not rely on specific hardware and software environments.

• support for quality of services: the architecture shall provide QoS management
functionality on multiple levels (network connections, service execution, etc.)

• scalability: implementations of the architecture shall work efficiently in the face
of large numbers of users, nodes, administrational domains, etc.

• security: the platform architecture must address all possible security concerns.

• compatibility with existing telecommunication systems: the architecture must
support interworking with existing telecommunication systems.

• flexibility against regulation: the architecture must be flexible with respect to
specific regulatory environments.

• conformance testing: the architecture must define rules and guidelines for con-
formance testing.

In its present state, TINA does not respond to all of these objectives. Service interaction and
security are examples for important issues that are not sufficiently addressed by the current set
of TINA specifications. However, the scope of TINA is so wide and the number of problems
consequently so large that it would be astonishing if TINA could reach all of its objectives.

The following sections discuss the most important features of TINA, namely the business
model, the service architecture, the connection management architecture, and the computing
architecture on which all processing is based. Figure 5.5 sketches the service and connection
management architecture of TINA, as well as some aspects of the business model.

5.4.1 Business Model

The global TINA system is partitioned into a multitude of administrational domains that
belong to various kinds of stakeholders. Stakeholders take one or more business roles, with a
business role being linked with a certain kind of commercial activity. The business roles
defined so far by TINA are [Jans96]:

• consumer: the consumer is the target of all commercial activity in a TINA sys-
tem, and is therefore the economical basis of a TINA system.

• service retailer: the service retailer offers telecommunications services to con-
sumers, and can be regarded as a supermarket for services.

• broker: a broker helps stakeholders in finding other stakeholders. A prominent
example is the consumer that looks for a service retailer offering a specific ser-
vice.

• third-party provider: third party providers build services or provide content that
is commercialized via retailers.

• connectivity provider: connectivity providers establish transport connections
between computational objects of other stakeholders.

MMC Component Frameworks

86

The provision of services in TINA requires the cooperation of multiple stakeholders, and as
a consequence of that the specification of reference points between their administrational
domains. A reference point consists of a set of interfaces and interaction scenarios that must be
supported by the implementation of a system that claims to be TINA-compliant. Apart from
inter-domain reference points TINA will also specify intra-domain reference points. Intra-
domain reference points allow to build TINA subsystems from components of different ven-
dors. They are irrelevant for stakeholder interaction because they are not visible at the bound-
ary of administrational domains.

Figure 5.5 shows the interaction between a retailer, two customers and a connectivity pro-
vider. The two customers are engaged in a service session hosted by the retailer. As part of the
service the retailer has asked the connectivity provider to establish a bidirectional network con-
nection between the two customers.

5.4.2 Computing Architecture

TINA defines a Distributed Processing Environment (DPE) that is the basis for all communica-
tion between objects. It adopts the RM-ODP object model along with its viewpoint concept for
the specification of distributed systems. It uses the Object Modeling Technique (OMT)
[Rumb91] for information viewpoint specifications, and the TINA Object Definition Language
(TINA-ODL) [Parh96] for computational viewpoint specifications. TINA-ODL is a strict
superset of OMG-IDL, and is the basis for OMG-ODL, as was already mentioned in Section
3.3.7.

TINA-ODL supplements OMG-IDL with stream interfaces, QoS definitions, object tem-
plates and object group templates. Figure 5.4 shows as an example the definition of an object
DigitalPhone that contains a stream interface and an operational interface. Stream inter-
faces define outgoing flows with the keyword source and incoming flows with the keyword
sink. The flow definition consists of the flow type, the flow identifier, a QoS type and a QoS
identifier. The flow type is a normal OMG-IDL type describing the format and possibly other
parameters of the flow. Similarly, the QoS is a type that describes the QoS of the flow. TINA-
ODL supports QoS statements in both flow and operation definitions. Note that no special con-

interface PhoneManagement; // an operational interface

interface TwowayAudio {

typedef short AudioQoS; // end-to-end delay in ms

struct AudioFlow { // audio format description
 boolean stereo; // is audio flow stereo
 boolean alaw; // A-law or u-law coding
 };

source AudioFlow outgoing_flow // outgoing audio
with AudioQoS outgoing_qos; // QoS of outgoing stream
sink AudioFlow incoming_flow // incoming audio
with AudioQoS incoming_qos; // QoS of incoming stream

};

object DigitalPhone { // an object

supports
 PhoneManagement, // the management interface
 TwowayAudio, // audio stream interface

initial
 PhoneManagement;
 };

Figure 5.4. An example for TINA-ODL usage.

87

TINA

struct for the definition of stream interfaces is introduced in TINA-ODL. It is therefore possi-
ble to mix flow and operation definitions within a single interface. Objects are composed of
multiple interfaces, with one of them being the initial interface that is available after object cre-
ation. Similarly, object groups are composed of multiple objects with one of them being the
manager object, i.e., the object that is available after object group creation. Object group tem-
plates define the component objects, the manager object and the interfaces that the object
group exports to the outside.

Up to now there is no way to define synchronization relationships between flows. The
TINA-ODL specification proposes the introduction of the keyword synch for the definition of
synchronization relationships between flows within a stream interface, but this would certainly
be an ad-hoc solution.

The TINA consortium has been rather reluctant in adopting CORBA specifications. With
TINA-ODL it has integrated the basic CORBA ORB into TINA, but it does not use any of the
CORBAservices, nor does it seem to plan on doing so.

5.4.3 Service Architecture

At the foundation of the TINA service architecture [Abar96] is the user/provider paradigm,
which is a qualification of the relationship between two interacting stakeholders. The business
roles taken by stakeholders that interact as user and provider are most of the times different
from each other, with examples being the interaction between customer and retailer or between
customer and broker, but they can also be identical, with an example being the interaction
between two retailers. TINA distinguishes three kinds of users, namely end-users, subscribers
and anonymous users. Subscribers have a contract with the provider. End-users have no con-
tract with the provider, but they are known to the provider and can consequently be invited to
services. Anonymous users are unknown to the provider, which is why they can only request
services, but not be invited to them. Interaction between users and providers in TINA is linked
with a session. TINA defines four kinds of sessions:

• access session: established between user and provider prior to any service request.

• service session: the instance of an active service.

• user service session: the user’s view of a service session.

• communication session: the collection of network resources used by a service.

The computational objects that are defined by the TINA service architecture are shown in
the upper half of Figure 5.5. Users are represented in the provider domain via a User Agent
(UA). Similarly, providers are represented in the user domain via Provider Agents (PA). The
Initial Agent (IA) allows User Applications (UAP) to establish an access session, which corre-
sponds to a binding between the PA in the user domain and the UA in the provider domain.
Once the access session exists, a UAP can start a session. For this it needs to contact the PA,
which in turn asks the UA to create the session via the Service Factory (SF). The SF creates a
Service Session Manager (SSM) representing the service session and a User Service Session
Manager (USM) representing the user service session. The UAP receives object references of
the USM and the SSM and can directly interact with them. Note that both the USM and the
SSM are service specific objects. They implement service specific interfaces in addition to the
generic USM and SSM interfaces defined by the service architecture. Service sessions can be
joined by other users, and users that are already part of the service session may ask their USM
to invite others. The SSM has a single access point for connection management, which is the

MMC Component Frameworks

88

generic Communication Session Manager (CSM). The CSM establishes network connections
between TINA objects. Figure 5.5 indicates a bidirectional connection between the UAP’s of
two customers that is established by the CSM in collaboration with the connection coordinator
of a connectivity provider and a terminal CSM in each consumer domain.

The service architecture supports user and session mobility. Users can establish an access
session with their retailer from any terminal that is connected to the global TINA system. Once
they participate in a service session they can suspend their user session, and resume it later
from another terminal. As for now the service architecture specification does not address ter-
minal mobility, stating that terminal mobility can be transparently provided by mechanisms
that are outside the scope of TINA.

The service architecture dos not support mobile code. It outlines a procedure that allows
provider agents to dynamically download the UAP code that is necessary for a certain service,
but it does not provide any details for this+. The service architecture specification [Abar96]
states that the role of mobile code and Java in TINA is for further study. Another important
issue that is not sufficiently addressed by the current specification is service federation.

5.4.4 Connection Management Architecture

Network connections in TINA are established with management methods, as is indicated in
Figure 5.5, and not with signalling. As a result of this there is no difference in the connection
setup procedure on the source or sink side of a flow. Connection management in TINA has to

Figure 5.5. Overview of the TINA service and connection management architecture.

Consumer
Domain

Retailer Domain

PA

CC

USM

UA

IA

CSM

SSM

Consumer
Domain

PA

USM
UAP

UA

IA

TCSMTCSM

SF

instantiation

UAP

Connectivity
Provider
Domain

LNC

NML-CP

EML-CP

NE Proxy

X

EML-CP

NE Proxy

X

EML-CP

NE Proxy

X

LNC

NML-CP

EML-CP

NE Proxy

X

PA: Provider Agent
UAP: User Application
IA: Initial Agent
UA: User Agent
SF: Service Factory

USM: User Service Session Manager
SSM: Service Session Manager
CSM: Communication Session Manager
TCSM: Terminal Communication Session Manager
CC: Connection Coordinator

LNC: Layer Network Coordinator
CP: Connection Performer
NML: Network Management Layer
EML: Element Management Layer
NE: Network Element

89

TINA

deal with administrational and technological boundaries. It must support the establishment of
end-to-end connections that span the domains of multiple connectivity providers and that cross
multiple technological boundaries. A set of contiguous subnetworks that is based on the same
networking technology is called a layer network. In general, the boundaries of layer networks
and administrational domains do not coincide. Connection establishment across layer networks
is controlled by Layer Network Coordinators (LNC). If a layer network crosses administra-
tional domains, LNC’s of all involved domains have to cooperate in setting up a connection, as
is indicated in Figure 5.5. The actual establishment of connections is done by Connection Per-
formers (CP). A Network Management Layer CP (NML-CP) is responsible for the establish-
ment of a connection across the part of the layer network that belongs to its administrational
domain. To this purpose, an NML-CP orchestrates multiple Element Management Layer CP’s
(EML-CP). EML-CP’s are responsible for the management of single network elements, like
for instance switches.

An SSM that wants to establish a connection between the stream interfaces of a set of
UAP’s creates a CSM via a CSM factory and asks it to establish the respective logical connec-
tion graph. Connection graphs can be point-to-point or point-to-multipoint and are unidirec-
tional. The CSM informs the Terminal CSM (TCSM) within every concerned terminal about
the imminent connection setup. The TCSM receives a token that allows it to match incoming
connection setup requests with stream interfaces. The CSM then creates a Connection Coordi-
nator (CC) which establishes the end-to-end connection in cooperation with one or more
LNC’s. It has to be noted that there is one CC for every active connection, or connectivity ses-
sion, but only one CSM per service session.

 Figure 5.5 only shows the most important connection management objects. The TINA con-
nection management architecture defines significantly more objects, and is much more com-
plex than it appears here. The setup of a simple unidirectional point-to-point connection
requires a multitude of operation invocations, of which a significant part has to be conveyed
over the network. It can therefore be expected that the setup of a multipoint-to-multipoint con-
nection takes a couple of seconds to complete. Most of the complexity of the TINA connection
management architecture stems from the fact that it is tailored to switched networks. The con-
nection management specification states that the integration of connectionless networks, and
here namely the Internet, is an open issue.

5.4.5 Assessment

Table 5.3 shows the overall evaluation of TINA. The ultimate goal of TINA is to provide a
business environment for the provision of advanced telecommunications services. It conse-
quently defines a business model and an elaborate service architecture that allows stakeholders
with different business roles to interact on a computational level. More than half of the mem-
bers of the TINA consortium are telecommunications operators for which the sale of connec-
tivity is a core business. It is therefore clear that their requirements will have a significant
impact on the TINA architecture in general, and most importantly on the connection manage-
ment architecture. The TINA connection management architecture cannot build on a network
layer that hides the heterogeneity of network hardware and protocols, simply because such a
network layer does not exist in the realm of telecommunications. The connection management
architecture must therefore work out details all the way down to the network elements.

The TINA architecture is a framework for the provision of MMC services in the sense that it
defines a service architecture and that it allows services to establish flow connections between

MMC Component Frameworks

90

the stream interfaces of computational objects. It does not provide explicit support for the
development of services, and most notably it does not provide any support for the structuring
of the service session beyond SSM and USM. The SSM appears as a monolithic application
with which the developer of a service is let alone. Architecture support for service federation
will be a big step towards application reuse, but this is not sufficient. What is needed are stan-
dard service building blocks that help assembling a service without being exposed to TINA
details. The only building block defined so far that points in this direction is the CSM.

The TINA architecture does not define any multimedia abstractions beyond the stream and
flow abstractions of RM-ODP. It does not address synchronization and presentation, which
suggests that a multimedia middleware like IMA-MSS would need to be layered on top of
TINA in order to provide an acceptable programming environment.

TINA

Requirement Fulfilled Remark

Open ❄❄❄ Inter-domain and intra-domain reference points in OMG-IDL

Extensible ❄❄ RM-ODP object model, but no explicit provisions for extension

Programmable ❄ would need to be augmented with toolkits

Scalable ❄❄❄ no inherent scalability limitations

Deployable ❄ requires modification to the network infrastructure

Simple no complex connection management architecture

Session Management ❄❄❄ refined session concept

Connection Management ❄❄ CSM offers unicast and multicast connection establishment

Multimedia Data Processing ❄❄ RM-ODP object model, but no special multimedia abstractions

Multipoint Control Comm. ❄❄ point-to-point control communication with CORBA

Resource Management ❄❄ the notion of QoS is omnipresent

Synchronization no mentioned in the specifications, but not addressed

Mobile Code no for further study

Presentation Environment - outside the scope of the architecture

Federation of Applications no foreseen, but not yet provided

Security no no solutions for security provided

Mobility ❄❄❄ addresses user, session and terminal mobility

Directory Service ❄❄❄ information services via the broker business role

Platform Management ❄❄❄ platform consists of various management architectures

Accounting ❄❄❄ defines an accounting management architecture

Standard DPE ❄❄❄ defines a standard DPE based on RM-ODP and CORBA

Table 5.3. Evaluation of TINA.

91

Other Frameworks

5.5 Other Frameworks

TINA is the predominant standardization effort in the area of MMC service provision. It is at
the same time the most important multimedia RM-ODP system architecture, which makes it
the ideal target for all RM-ODP related multimedia research. IMA-MSS is a first standardiza-
tion effort for multimedia middleware. It adds multimedia-specific functionality to the basic
CORBA object model and defines interfaces that facilitate the programming of distributed
multimedia applications. The IMA-MSS virtual device could be expressed in TINA-ODL with
a stream interface for every port, and with separate operational interfaces for device control
and device-level stream control. The IMA-MSS virtual device can therefore be regarded as a
specialization of the RM-ODP object, which can be a basis for the integration of IMA-MSS in
the larger TINA framework. Medusa finally is an MMC framework like it is typically found in
research. The main target of platforms like Medusa is the programming of MMC applications,
and not the openness of platform interfaces, or standardization. This relieves such platforms
from a lot of ballast, and explains the fact that it is much easier to program an exciting MMC
application on the Medusa platform than on IMA-MSS or TINA. Another way to express the
relation between TINA, IMA-MSS and Medusa is to say that an ideal MMC platform could be
composed of these three architectures, with TINA providing the service environment, IMA-
MSS a standard low-level component framework, and Medusa a comfortable programming
environment.

 TINA, IMA-MSS and Medusa were chosen here because they exemplify different develop-
ment directions in the area of MMC platforms. The following sections provide a short over-
view of other frameworks, of which most are similar in spirit to the three that were already
presented. They are classified into three categories depending on their object model. The first
section presents frameworks that are based on a standard object model, which is either the one
of RM-ODP or the one of CORBA. The second section presents frameworks that define a pro-
prietary object model, and the third section presents frameworks that only exhibit a rudimen-
tary object model.

5.5.1 Frameworks Based on a Standard Object Model

One of the first researchers to work on multimedia extensions to ODP was Geoffrey Coulson
from Lancaster University, who proposed a stream interface with QoS functionality and a syn-
chronization service framework in his Ph.D. thesis [Coul93]. The distributed multimedia plat-
form proposed by Coulson was implemented on top of APM’s ANSAware [vdL93], which is
more or less an implementation of ODP. APM itself continues to work on multimedia exten-
sions to the ANSAware as part of the Distributed Interactive MultiMedia Architecture
(DIMMA) project [Otwa95a]. APM is engaged in RM-ODP, CORBA and TINA standardiza-
tion.

Various research groups have started to implement aspects of TINA. An example for this is
for instance the TANGRAM project at DeTeBerkom [Ecke96] in the course of which a TINA-
C compliant DPE has been implemented that integrates various commercially available
CORBA 2.0 implementations. Another example is the European ReTINA project [Bosc96] in
which an industry-quality realtime DPE is going to be developed. APM and Chorus Systèmes
are among the participants of the ReTINA project.

MMC Component Frameworks

92

Xbind

The COMET group at Columbia University is working on a project called Xbind that is moti-
vated by both IMA-MSS and TINA [Laza95]. Xbind recycles some of the abstractions of
IMA-MSS, namely the concept of a virtual resource and a virtual device, and establishes net-
work connections via switch management operations, as is done in TINA. Xbind focuses on
resource management in ATM networks, for which it defines a whole set of new abstractions.
As for now, ATM features like virtual channel or path identifiers are directly visible in the vir-
tual device interface [Laza96]. This would need to be changed in order to make the underlying
ATM network transparent.

5.5.2 Frameworks Based on a Proprietary Object Model

Frameworks that do not build on a standard object model tend to be more interesting from the
point of view of programming. Frameworks based on a standard object model are mostly found
in the area of telecommunications, where the primary concern is to bring large volume media
streams safely from a source object to a sink object. The frameworks presented in this section
do no neglect QoS, but their focus is more on multimedia abstractions and on support for rapid
application development.

Gibbs’ Multimedia Component Kit

The first framework that has to be mentioned here is the C++ multimedia component kit devel-
oped by Simon Gibbs and others at the University of Geneva [dM93]. The media objects
defined by Gibbs are active in the sense that they process multimedia streams in the absence of
method invocations. Gibbs defines three kinds of media objects, namely producer, transformer
and consumer, which are derived from the common base class component. Components have
ports, with ports of different components being linked with connectors. Associated with ports
are formats that describe the kind of media formats a component accepts on a port. Compo-
nents, ports, connectors and formats are abstractions that are similarly found in most of the
frameworks that have been discussed until now. What distinguishes Gibbs’ component kit from
frameworks like Medusa or IMA-MSS is the definition of abstractions for media objects.
Gibbs defines a hierarchy for media classes consisting of a class Media at the root, the classes
Text, Graphic, Image and TemporalMedia derived from Media, and the classes Audio,
Video, Music and Animation derived from TemporalMedia. The primary interest of hav-
ing a media class hierarchy is to bridge the gap between authoring and playback of stored mul-
timedia presentations. The class Media contains the basic methods cut(), copy() and
paste() which are applicable to all media objects. These methods are supplemented by more
specific operations on media values further down the media class hierarchy that all together
provide significant comfort in the authoring of multimedia content. Media classes and compo-
nents share the format abstraction, making it possible to transmit and process media objects
within a network of components, and to present them to users via consumer components. The
multimedia component kit is described in detail in a book by Simon Gibbs and Dionysios
Tsichritzis about multimedia programming [Gibb94]. In this book, Gibbs and Tsichritzis
present many examples for advanced applications based on the component kit. The originality
of these applications is that they deploy components not only for audio and video, but also for
other media types like graphics and animation. This is a proof of concept that most other
frameworks described in literature fail to deliver.

93

Other Frameworks

CINEMA

Another interesting framework is the Configurable INtEgrated Multimedia Architecture (CIN-
EMA) that was developed at the University of Stuttgart [Roth94]. CINEMA defines abstrac-
tions for components and ports similar to those of Gibbs. In addition to that it allows to build
compound components from existing components that resemble the molecules known from
Medusa. CINEMA supports stream synchronization via the clock hierarchy abstraction with
which multiple streams can be synchronized to the same clock. An application editor has been
implemented on top of CINEMA that allows to visually configure component networks in real-
time.

Other Work

Other work that needs to be mentioned is the component-based authoring and presentation
platform described by John Bates and Jean Bacon from the University of Cambridge [Bate94].
Their platform offers a configuration service that supports a simple scripting language for the
setup and control of component networks. Robert Mines and others from the Sandia National
Laboratories describe the Distributed Audio and Video Environment (DAVE) [Mine94]. DAVE
features a connection management API in addition to a simple component model. J. Christian
Fritsche from the University of Frankfurt defines a component model featuring a management
interface in addition to the stream interface and the component control interface [Frit96].
David Tennenhouse and others from the Massachusetts Institute of Technology have realized
the VuNet and VuSystem, a multimedia platform that is like Medusa based on the desk area
network paradigm [Houh95]. All multimedia processing in the ViewStation is done in soft-
ware, which is an optimal environment for component frameworks. The VuSystem defines
simple module, port and payload abstractions, and uses an extended Tcl interpreter for the
composition of module pipelines. Lawrence A. Rowe and Ketan Mayer-Patel describe the Ber-
keley Continuous Media Toolkit (CMT), which is also using Tcl for the composition of appli-
cations from components [MP97]. CMT supports the remote control of components via Tcl-
DP RPC.

5.5.3 Frameworks Based on Rudimentary Object Models

None of the MMC platforms that are already deployed on a large scale is explicitly based on
object-oriented principles. Wide-scale deployment, especially in commercial environments,
requires standardization, and standard or pseudo-standard DOC platforms like CORBA,
DCOM or Java RMI have not yet found a level of maturity that would make them acceptable
for usage in strategically important ITU or ISO standards. There are also no real DOC tenden-
cies to be seen in the various MMC standardization activities of the IETF, let aside the Web.
One reason for this is that the emphasis of MMC application development for the Internet is on
robustness rather than software reuse. It can be expected that interest in DOC for MMC appli-
cations on the Internet will grow along with the available bandwidth.

MBone

The network platform for MMC applications on the Internet is the Multicast Backbone
(MBone) [Mace94]. The applications that are deployed on the MBone correspond in granular-
ity roughly to components found in frameworks like Medusa or IMA-MSS. There is the Visual
Audio Tool (vat) that handles audio, the WhiteBoard (wb) that supports shared drawing and
slide distribution, the VIdeo Conferencing tool (vic), and a number of alternative audio or
video tools. Although these tools are not based on an object model they must be considered as

MMC Component Frameworks

94

components, simply because they can be composed to form different applications. The glue
that holds these tools together for the moment is the session directory (sdr). Session announce-
ments contain a description of the tools that are used for a conference, and when a user joins an
announced conference the respective tools are automatically launched. Once implemented, the
RTP Control Protocol (RTCP) [Schu96b] will allow standard control communication among
the tools that participate in a session. Steve McCanne and Van Jacobson propose in their paper
about vic [McCa95] a lightweight protocol for the coordination of the MBone tools running at
a node. This so-called conference bus defines a small set of standard messages that are
exchanged between the tools participating in a session via IP multicast sockets bound to the
loopback interface. The voice-switched video windows of vic rely on activity messages sent by
vat on the conference bus. Other functionality that can be provided by the conference bus is
floor control, synchronization and hardware device access. Note that the internal structure of
vic is based on module pipelines that are controlled via Tcl.

T.120/T.130 Conferencing

The T.120 and T.130 standards suites are today the dominant framework for multimedia con-
ferencing on telecommunications networks [ITU94][ITU97]. The T.120 standards define the
general conferencing and data exchange framework, to which the T.130 standards add audiovi-
sual capabilities. An inherent assumption in T.120 is that all communication over the network
is point-to-point. All multipoint capabilities of the architecture must therefore be provided by
multipoint bridges, or Multipoint Control Units (MCU) in the terminology of T.120. The T.120
standards define an MMC application platform that supports the development of applications
with features like the Generic Conference Control (GCC) and a Multipoint Communications
Service (MCS). An interesting aspect of T.120 is that it standardizes application protocols.
This shows that the focus of T.120 is more on interoperability than on application portability.
The application protocols standardized until now are whiteboard and file transfer. Also sup-
ported are non-standard application protocols, but T.120 does not specify a standard program-
ming interface that would allow applications developed by third parties to be uniformly
deployed on the terminal infrastructure of different vendors. The Generic Application Tem-
plate (GAT) defined by T.121 might appear as something like a programming interface, but it is
actually only a conceptual model for application protocols [ITU95]. It can nevertheless be
expected that it provides a certain level of application portability between the T.120 toolkits of
different vendors. Application protocols are implemented by Application Service Elements
(ASE). T.120 allows a one-to-one mapping between ASE and applications, with the result that
high-level applications can be constructed from low-level ASE. T.120 may therefore be consid-
ered as a component framework.

InSoft OpenDVE

Insoft’s Communique!TM teleconferencing product is based on the company’s Open Digital
Video Everywhere (OpenDVE) architecture [InSo94]. OpenDVE features an API that allows
third parties to develop plug-ins on top of a generic conference engine. Available plug-ins can
be orchestrated via a toolkit API.

Netscape Plug-Ins

Netscape plug-ins [Nets97] are components that extend the Netscape Web browser with inter-
active multimedia capabilities. Plug-ins make it possible to use the Netscape browser for vide-
oconferencing or other MMC applications. They may expose a control interface towards Java
applets and scripts that are being executed by the browser.

95

Component Framework Design Considerations

5.6 Component Framework Design Considerations

All the constituent parts of an MMC platform have to be extensible. A first mechanism that
supports extension is object and interface inheritance. Object inheritance allows to add new
interfaces to an existing platform object, and interface inheritance allows to add new function-
ality to an existing interface. Inheritance is a way to improve and refine the functionality pro-
vided by platform objects without breaking existing application code. However, inheritance
alone does not support the introduction of a completely new feature into the platform. Since
platform objects do not exist in isolation, it is not possible to add a new object to the platform
without having a framework into which it can be plugged. Such component frameworks do not
come for free. They first require an intensive study of the problem domain, and based on this
the definition of templates for all component interfaces, and a definition of component behav-
ior. A component framework makes sense wherever it can be reasonably expected that an
application would want to orchestrate a set of objects rather than control their behavior individ-
ually via their operational interfaces. In the case of an MMC platform there are multiple places
where a component framework should be defined:

• multimedia data transmission and processing: multimedia data processing func-
tionality can be decomposed into devices that can be plugged together by appli-
cations. Examples for such multimedia middleware are Medusa and IMA-MSS.
An MMC platform must provide a framework that supports third-party develop-
ment of devices.

• graphical user interfaces: MMC applications will build their GUI’s from wid-
gets. An MMC platform has to provide widgets that interface to the multimedia
middleware in order to integrate multimedia data presentation into the GUI.

• tools: there must be a framework that allows applications to be composed of
high-level tools. Example tools are whiteboards, shared editors, or file transfer
utilities. This approach is found in the MBone, in T.120, and in OpenDVE.

• applications: it must be possible to compose new applications from existing
applications. In the terminology of TINA this is called service federation.

A component framework can also be imagined for the session management or service archi-
tecture, where it would allow applications to configure the platform environment on top of
which they are running. Session and service management functionality is nevertheless likely to
be much more static in nature than for instance multimedia data processing, which suggests to
implement it as a set of objects with hardwired interrelationships, as is done in TINA.

The component framework for multimedia data transmission and processing is the most
complex among the ones that can be imagined for an MMC platform. The platforms that have
been described in this chapter show that there is some consensus on a basic object model for
the multimedia device, which is more or less the one put forth by RM-ODP. However, this is
only a starting point, and apart from that there is no consensus at all on how a multimedia mid-
dleware has to look like. The following presents the major issues that the design of a multime-
dia middleware must address.

Design Considerations for a Multimedia Middleware

A component framework for multimedia middleware must allow what is commonly referred to
as plug-and-play. Applications must be able to assemble device networks from single multime-
dia devices, and third parties must be able to add devices to the set of those that applications

MMC Component Frameworks

96

have at hand. This requires the definition of all of the interfaces with which a device is con-
fronted. A device should ideally be portable from one system to another, but this is only possi-
ble if the device code is completely isolated from the particular environment in which it is
running, as is the case with Java Beans. Performance considerations require multimedia
devices to be implemented in a compiled language like C++, which also allows direct access to
operating system functionality and special hardware. Device code is therefore likely to contain
system dependencies that make it difficult to port it to other environments. The situation can be
improved by developing devices on top of standard API’s like POSIX, but it cannot be
expected that devices can be ported from one system to another without any additional work.

Figure 5.6 depicts the computational environment of a multimedia device. A device is an
object with multiple computational interfaces for control and with ports for stream communi-
cation. One of the operational interfaces is a management interface that is hidden from applica-
tions. This interface is accessed by a management function, for instance for device
initialization and device removal. The device itself accesses the management function for
resource requests and fault reports. Other operational interfaces are exposed to the application
that owns the device, and possibly to a generic control panel with which a user can directly
control certain device parameters. A device is not only passively executing operation invoca-
tions, it may also actively invoke operations in other devices that it dynamically discovers. It
also contains one or more event channels via which it communicates events to other objects in
the platform, or to the application. A port is either source or sink of a stream. It supports one or
more closely related media formats, and is actually implemented as an interface containing on
one hand operations via which the format, QoS, and timing properties of the related stream can
be controlled, and on the other hand operations via which raw stream data is communicated
across the device boundary. A device port interfaces to another device port via the multimedia
data that is communicated between them. It further interfaces to a binding object that repre-
sents the stream binding between a set of connected ports, and to a synchronization manager
for the control of stream timing. The binding object is implicated in format matching and QoS
negotiation, and it provides an operational interface to applications for the compound control
of a point-to-point or point-to-multipoint stream binding.

Figure 5.6. The computational environment of a device.

Device

Device

Event
Channel

Application

Device Core

Operating
System

Hardware

Management Libraries

Synchronization
Manager

DeviceBinding

Object

Control
Panel

computational interface

device port

97

Component Framework Design Considerations

The design considerations are listed in the following. This list is not claimed to be complete,
but it contains all the design considerations that underlie the multimedia middleware presented
later in this thesis:

• independence from reference application topologies: A frequent assumption is
that DOC makes the network completely transparent. The result is an architec-
ture like IMA-MSS that neglects the cost of an RPC. There must be reference
control scenarios that underlie the design of the multimedia middleware, i.e., the
multimedia middleware must be optimized for certain application topologies.

• device granularity: The functionality implemented by devices can have different
levels of granularity. Frameworks like IMA-MSS, TINA or Xbind tend to define
devices with coarse granularity, whereas the devices of Medusa have a very fine
granularity. The advantage of fine granularity is more flexibility in device com-
position, but this flexibility does not come for free. Wherever functionality is
separated into two different devices, formats must be matched and QoS negoti-
ated when these devices are plugged together again. Excessive granularity is
therefore just as problematic as the process-level granularity found in TINA. A
rule of thumb is to separate functionality only if it can be reasonably expected
that the resulting devices will be used independently from each other.

• reuse levels: devices are the lowest level of code reuse. This level may be too
low for many applications, which makes it necessary to provide higher-level
components. Two more levels should be supported by the multimedia middle-
ware. There should be the possibility to compose devices into molecules, which
are in fact coarse-grained devices, and the possibility to assemble molecules or
devices into end-to-end device networks that can be readily reused. These
device networks will present themselves to the application like a tool, with pro-
gramming interfaces similar in spirit to the one of Beteus. Components are not
visible to applications at this level. Max Mühlhäuser and Jan Gecsei discuss the
use of low-level multimedia component frameworks within high-level program-
ming paradigms [Mühl96].

• compound operations: the multimedia middleware must support the grouping of
devices at runtime. This should not be confounded with molecules that are
assembled off-line. Device grouping enables compound operations.

• implicit or explicit binding: explicit binding refers to the case where the binding
between object interfaces is represented by a binding object. Such an object is
not present in the case of implicit binding. The binding between client and
server of an operational interface is implicit, whereas the binding between two
device ports needs to be explicit. The binding object relieves the application
from directly dealing with format matching and QoS negotiation. There must be
a hierarchy of binding objects in the case of device pipelines with more than two
devices in order to prevent the situation that the application has to deal with a
large number of binding objects.

• resource management: both devices and stream bindings require resources.
Devices take CPU time or need exclusive access to hardware. Stream bindings
between devices that are both on the same station may take inter-process com-
munication resources, or CPU time for memory copies. Stream bindings
between devices that are scattered over the network take network resources.

MMC Component Frameworks

98

Standard resource management interfaces must therefore be defined via which
devices and binding objects can request resources. A node-level resource archi-
tecture for device pipelines is proposed by Geoffrey Coulson [Coul96].

• format matching: the media formats of ports engaged in a binding must be
matched. Format matching is linked with resource management, given that the
format of a stream has an impact on the associated data rate. One approach is to
have source ports add format information to the streams that they produce, with
sink ports automatically adapting to these formats. Another approach is to com-
pletely match the format of two ports, in which case no format information has
to be conveyed within the stream. This tends to be difficult whenever multiple
devices are linked together. Still another approach is to just fix major format
parameters on all ports, and use dynamic adaptation for minor parameters. A
formal method for type matching of ODP streams is proposed by Frank Eliassen
[Elia96].

• stream identity: streams have a clear identity between a source port and a sink
port. They keep their identity between the source port and the sink port of a
device if they are only transformed into another format. Streams loose their
identity when they are mixed with other streams into a new stream, as is indi-
cated in Figure 5.6. Stream identity is important for synchronization, but it also
plays a role in format matching because it may correlate the formats of the
source and sink ports of a device.

• synchronization: synchronization in a component-based multimedia middleware
can be done like in IMA-MSS with the CORBA event service. Also useful for
synchronization is the CORBA time service. It is important that synchronization
is based on end-to-end delays. This requires devices that source or sink a stream
to be involved in synchronization activities related to this stream. Applications
will want to define synchronization relationships on stream level, and not on
device level. This means that the infrastructure has to locate the devices that are
capable of synchronizing a given stream.

• device categories: the categories commonly found are source, sink and filter.
This modeling is wrong because it has no computational consequence, i.e., the
definition of source, sink and filter IDL interfaces would likely be empty. The
general device can be source, sink and filter at the same time by having a source
and a sink port and using the incoming stream together with other parameters
for the calculation of a completely different outgoing stream. What is more
important is the concept of an addressable device. This can be used to associate
devices with identifiable items like cameras, screens, files, widgets, etc. The
address of a device would correspond to a device property, and would not be an
interface on its own. There could be a special kind of device modeling applica-
tions that source or sink a stream.

• device interface hierarchy: it has to be avoided to define interfaces in the device
hierarchy that only serve to categorize devices. Typical examples are VideoDe-
vice or AudioDevice, which are interfaces that can be found in nearly all
published frameworks that are based on DOC. Too many levels in an interface
hierarchy indicate a design flaw.

99

Conclusion

• analog and digital links: some frameworks, like for instance IMA-MSS, distin-
guish between analog and digital links. There is no need to make such a distinc-
tion visible to the application. Since analog data are just as much associated
with a format as digital data it is not possible to accidentally connect a digital
port to an analog port.

• graphical user interface: the integration of devices into GUI toolkits is impor-
tant because the final goal of all multimedia data processing is the creation of
audiovisual effects. No proposal for a multimedia middleware should neglect
the GUI, or the presentation environment in general.

• hardware: the device abstraction is challenged whenever special multimedia
processing hardware is involved. The functionality provided by hardware of a
given category varies, making it impossible to adapt the device abstractions to
it. Some video boards are just frame grabbers, whereas others do MPEG com-
pression and more. The control of hardware must be transparently assured by
the devices that are concerned, meaning that these devices have to conspire
rather than exchange stream data between their ports.

• data formats: the physical layout of data exchanged between device ports must
be standardized on platform level and on network level. For transmission it is
necessary to specify a standard PDU format.

Most of the component frameworks that have been presented in this chapter are tailored to
live and stored continuous media, mainly audio and video. It has not been sufficiently shown
that it is possible to construct a framework for the interactive presentation of multimedia con-
tent similar in spirit to MHEG on top of such a component framework.

5.7 Conclusion

MMC platforms must be based on low and high-level component frameworks in order to be
extensible. Low-level component frameworks like IMA-MSS help to construct high-level com-
ponent frameworks that are tailored to different application domains and that provide program-
ming comfort comparable to the one of monolithic platforms. Applications may then be built
from both low and high-level components. An application uses high-level components wher-
ever it needs standard functionary, and low-level components wherever it has special require-
ments. Until now, research has mostly concentrated on low-level component frameworks.
Examples for high-level components are the molecules of Medusa and the Communication
Session Manager (CSM) of TINA.

The platform that is presented in the following chapters can be considered as a fusion of
Medusa, IMA-MSS and TINA. It defines an MMC application management architecture that
can be compared with the service management architecture of TINA, a multimedia middleware
that can be compared with IMA-MSS, and high-level utilities similar in spirit to the molecules
of Medusa.

MMC Component Frameworks

100

101

6 APMT Overview

6.1 Introduction

Chapter 2 developed a list of requirements for MMC platforms. One of these requirements was
that the MMC platform must be based on a standard DPE. Chapter 3 presented the distributed
computing platforms that come into question, and designated CORBA as the DPE of choice
for the MMC platform of this thesis. Chapter 4 started the discussion of existing MMC plat-
forms with a description of three monolithic platforms, namely the Touring Machine, Beteus
and IBM Lakes. These platforms are characterized by a high-level API that facilitates the
development of MMC applications. The primary problem with monolithic platforms is that
they are not extensible. Extensibility is optimally supported by the component framework par-
adigm, with examples being the Medusa and IMA-MSS platforms presented in Chapter 5. Plat-
forms based on the component framework paradigm decompose multimedia processing
functionality into building blocks that can be plugged together by applications. A lot of flexi-
bility is gained with this approach, but since there will be many applications that do not want to
be exposed to components there is still a need for high-level API’s as found in monolithic plat-
forms. These API’s must then be provided by layers above the component framework. Also
presented in Chapter 5 was TINA, which is a platform for the provision of MMC telecommuni-
cation services. TINA defines a service architecture and a connection management architec-
ture, but it does not provide a component-based multimedia middleware or API’s that would
ease application development. TINA must therefore be augmented with a component frame-
work similar in spirit to IMA-MSS if it is to foster application development. However, it is not
possible to layer IMA-MSS on top of the TINA connection management architecture without
at least adapting its object model to the one of RM-ODP. But even then it remains questionable
if IMA-MSS could really fit on TINA, or if it would not be better to define an entirely new
multimedia middleware that is tailored to TINA. The example of TINA and IMA-MSS makes
the concept of a general purpose multimedia middleware dubious. It is likely that such a multi-
media middleware has features that conflict with some of the requirements of the MMC plat-
form in which it is to be integrated, or, in other words, it is difficult if not impossible to develop
a multimedia middleware that is completely orthogonal to the policies imposed by different
application models. This means that either the MMC platform has to be tailored to an existing
multimedia middleware, or vice versa the middleware to the MMC platform. The latter
approach is chosen for the MMC platform that is presented in the rest of this thesis.

The most important objective for this MMC platform is to have a static terminal. The aver-
age user will not be able to, or will not want to manually install code for every MMC applica-
tion that he uses. It may also happen that the number of available MMC applications becomes
so large that it is simply not possible to install all of them, or even only the most popular
among them, on a single endsystem. The solution to this problem is a static terminal that can
run a multitude of different MMC applications. This can either be a rather dumb terminal with
graphics capabilities like the French Minitel [Luca95] or the X11 terminal, or it can be a more
intelligent terminal that is able to execute mobile code imported from the network. A fiercely

APMT Overview

102

discussed example for the latter category is the network computer (NC) that is promoted by the
Java community [Appl96]. Such an intelligent terminal is also at the basis of the MMC plat-
form that is proposed by this thesis. The applications that are installed on this platform reside
in so called application pools (AP) from where they control a set of participating multimedia
terminals (MT). A multimedia terminal has a clearly defined and extensible interface that sup-
ports a wide range of applications. Applications download applets into the multimedia terminal
to handle all issues that are local to the terminal. This architecture is discussed in the rest of
this thesis, and will be referred to as APMT (AP+MT).

This chapter provides an overview of APMT. It discusses its major features and motivates
some of the design decisions, but it does not go into any architectural detail. It starts with an
overview of the architecture building blocks that make up APMT, and a discussion of major
APMT characteristics. Following that comes a closer description of the most important archi-
tecture building blocks. The description of an architecture building block is given in terms of
the interfaces that it exposes. The chapter continues with a discussion of the APMT application
model and the major application scenarios, and closes with some remarks about platform
deployment and a comparison between APMT and TINA. IDL interfaces, control scenarios
and other architectural details are given in the following two chapters. Chapter 7 discusses the
basic APMT platform architecture. The APMT multimedia middleware, which must be seen as
an extension of the basic APMT platform architecture, is presented in Chapter 8. Chapter 9 is
dedicated to an evaluation of APMT.

6.2 Application Pools and Multimedia Terminals

APMT provides a complete framework for the deployment of MMC applications in networks
of any scale. This framework is a synthesis of a multimedia middleware with a general applica-
tion management architecture. It can therefore be compared with both IMA-MSS and the ser-
vice architecture of TINA. A fundamental difference between APMT and TINA is that APMT
is not integrated into the network. APMT is an overlay architecture, and an APMT platform is
a normal user of the transport services of the underlying network. Another fundamental differ-
ence between TINA and APMT is the target network, which is a B-ISDN telecommunication
network in the case of TINA, and an IP network in the case of APMT. It is not the ambition of
APMT to redesign the way connections are established across the network. APMT relies on
standard Internet protocols for the communication among platform components, with the ben-
efit that its deployment is possible today. Figure 6.1 depicts an example APMT scenario with
an application in an application pool controlling three multimedia terminals. The following
subsections provide an overview of APMT and its major components and describe the entities
indicated in Figure 6.1. A description of the APMT session model and a summary of the tech-
niques used for the specification of APMT finishes this first overview, and leads over to a more
profound look at the various architecture components.

6.2.1 Architecture Overview

In APMT, application intelligence is distributed between central application pools and termi-
nals in the periphery. An application residing on an application pool will download applets into
the terminals that serve as intelligent sensors and that deal with every issue that is local to the
terminal. Applications access low-level terminal objects as well as high-level application pool
utilities. One such utility is the connection manager that establishes connections among the ter-
minals that participate in a multipoint application. The application pool must be considered as

103

Application Pools and Multimedia Terminals

a center of control and coordination, and will rarely be the source or sink of multimedia data.
Multimedia data transmission and processing is performed by standard hardware and software
devices within the terminals, and multimedia data streams bypass the application pool on their
way from source to sink terminals, as is indicated in Figure 6.1.

Architecture Components

Application pool and multimedia terminal are the principal components of APMT. Other com-
ponents have been identified, but since their role is considered to be secondary they will not be
addressed with the same level of detail as the application pool or the multimedia terminal. The
components of APMT are:

• application pool: all applications are installed on application pools. An applica-
tion pool provides high-level utilities to applications running on it. Applications
can be built from such utilities, and from other applications.

• multimedia terminal: a terminal provides functionality that allows users to start
applications and to join application sessions in an application pool. Applications
download applets into the terminal, and collaborate with the terminal infrastruc-
ture in the establishment of multimedia data connections with other terminals.

• multimedia object server: a multimedia object server is a special kind of termi-
nal. It contains a subset of the multimedia middleware commonly found in ter-
minals, and specializes some of the control interfaces of the terminal.

• user agent pool: a user agent pool contains a set of user agents. A user agent
serves as contact point between user and application. As such it knows for
instance about the whereabouts of a user.

• service gateway: the primary role of service gateways is service localization.
Application pools dynamically register and unregister their applications and
active sessions with the service gateway. Service gateways may help distribut-
ing application startup requests over a range of application pools.

• directory service: the directory service distributes information about users, ter-
minals, application pools and service gateways.

Figure 6.1. APMT example scenario.

Application

Application Pool

Connection
Manager

Miscellaneous
Utilities

A
pp

lic
at

io
nP

oo
l

C
on

tr
ol

Te
rm

in
al

 C
on

tr
ol Stream

Agent
Applet

Handler

Graph

Multimedia
Terminal

MT

MT

MT

MT: Multimedia Terminal

APMT Overview

104

APMT components can be internally distributed. As an example, a multimedia terminal
may consist of a single machine as well as of a cluster of cooperating machines. It is neverthe-
less likely that APMT components are not internally scattered over different administrational
domains. As an example, an application pool will not run applications on machines outside the
network of its owner.

Applications versus Services

The word service is used with care in the specifications of APMT. APMT is first and foremost
an architecture for the development, deployment and execution of MMC applications. It is
possible to commercialize these applications as telecommunication services, but the way this
can be done exactly is outside the scope of this thesis. The name service gateway for the archi-
tecture component that mediates between application pools and users was chosen on purpose
in order to indicate that the APMT application platform can be tuned into a service platform.
This requires most notably support for service subscription and accounting. In its current form,
APMT does not provide any support for service subscription, which means that users are
unknown to the application pools on which they run their applications. Also not supported by
APMT is accounting. It is likely that users will want to pay the majority of services provided
by application pools with electronic money [Neum95], making it maybe more important to
provide support for electronic payment than for classical accounting. However, service sub-
scription and accounting can be added to APMT without any difficulties. The APMT compo-
nent that handles the participation of terminals and users in application sessions is extensible
and may be supplemented by more sophisticated ones. This makes it possible to add new ses-
sion management components to the platform that are tailored to business requirements, and
that interface to an accounting framework.

APMT and Internet Technology

APMT builds on existing Internet protocols for all control and data communication. The trans-
port protocols that are relevant for APMT are TCP for reliable point-to-point transmission,
UDP for unreliable unicast datagrams, and IP multicast in combination with UDP for the unre-
liable delivery of datagrams to multiple receivers. What is still missing is a standard reliable
multicast protocol as a multipoint counterpart to TCP. Applications have widely differing
requirements on multipoint transmission, which makes it impossible to define a single generic
reliable multicast protocol that fits all applications. It may therefore happen that multiple pro-
tocols are standardized by the IETF, or that one generic protocol is standardized on top of
which additional functionality can be layered. There is a special interest group in the IETF
working on the standardization of reliable multicast protocols [Mank96]. The scalable reliable
multicast (SRM) protocol proposed by Van Jacobson and others [Floy96] is a promising candi-
date for standardization.

The Internet in its current form offers a single transport service, which is the best-effort
delivery of an IP datagram. The network does not allow to specify QoS parameters for the
delivery of packets, it does not allow to reserve resources for packet streams, and it does not
support admission control. IP networks are based on the assumption that most of the traffic is
point-to-point and connection-oriented. This allows to implement congestion avoidance and
control in the transport protocol, rather than in the network. Connectionless multimedia traffic
on the other hand poses a problem for the Internet. The source of a high-volume stream of
UDP packets is not aware of the congestion that its packets may cause in network nodes, and is
therefore unable to adapt the data rate it generates to the actual network load. There are three
solutions to this problem, which are congestion control on application level, resource reserva-

105

Application Pools and Multimedia Terminals

tion together with admission control, and overprovisioning of network resources. Congestion
control on application level can be done by more centralized applications that have control
over both senders and receivers. Such an application monitors the transmission characteristics
of its streams and throttles senders when it realizes that the network is congested. However,
congestion control on application level is not a viable solution because it cannot be enforced
that every application implements it. As to resource reservation, the IETF is working on RSVP,
which is a resource reservation protocol for the Internet [Zhan93]. It will still take a couple of
years until RSVP is widely deployed on the Internet, making overprovisioning the only solu-
tion that is at hand today. However, overprovisioning becomes expensive as the number of
users grows, as is for instance shown by Scott Shenker [Shen95]. It is therefore impossible to
renounce on reserve reservation in the long run.

APMT can be deployed on the Internet or on enterprise networks that are based on IP. The
MMC applications running on top of APMT do not necessarily require high-speed networks
for data transmission among terminals. The APMT platform may for instance support modern
low-bitrate audio and video codecs that make it possible to transmit a bidirectional audio and
video stream over a 28.8 kbit/s modem line. What is more likely to be a problem is control
communication, which may suffer from the high roundtrip times commonly experienced on the
Internet. APMT takes this into account, and tries for instance to reduce control communication
over the network as much as possible.

Deploying an MMC platform on the Internet has many advantages. The most important
ones are listed in the following:

• low deployment costs: the infrastructure exists, and there is no need for any fun-
damental modifications to it.

• low communication costs: the usage of the Internet is basically free, making it pos-
sible to develop and deploy applications free from any commercial constraints.

• large user base: a large number of users and potential programmers can be
reached via the Internet.

• joint development: the development of platform and application software can be
a joint effort of many volunteers that require only little central coordination1.

It can also be imagined that the success of an MMC platform on the Internet may justify the
investments to be made for a similar platform on a telecommunications network, i.e., it may
pave the way for TINA.

APMT and CORBA

APMT deploys CORBA as DPE, and tries to profit as much as possible from existing and
future CORBA specifications. The approach of APMT is therefore to make the best out of
CORBA, rather than developing proprietary solutions for problems whenever the respective
CORBA standard is not completely satisfying. As an example, APMT adopts the object model
of CORBA rather than defining its own. Once the RM-ODP object model is adopted by
CORBA it will also be adopted by APMT. APMT is therefore following CORBA standardiza-
tion, rather than preceding it, as does TINA. The benefit of this is again ease of deployment.
APMT can be readily implemented on today’s object request brokers, whereas TINA takes the

1. See the article "Leveraging Cyberspace" by Thomas A. Kalil for examples of problems that were solved by a
large number of networked users [Kali96].

APMT Overview

106

position that CORBA is not completely acceptable in its present state. CORBA profits from
TINA input, but TINA does not profit from CORBA as much as it could if it were ready to
adopt other CORBA standards than just the basic object request broker.

6.2.2 Overview of the Multimedia Terminal

The top-level components of the terminal are depicted in Figure 6.2. The brain of the multime-
dia terminal is the terminal control. The terminal control manages the application life-cycle on
the terminal side: it starts and joins applications in the application pool on behalf of the user, or
on behalf of applications that are already running on the terminal, and processes invitations to
applications. It grants applications access to the major terminal servers and supervises the
activities of applications within the terminal. Every major object created by an application has
an interface to the terminal control which allows it to be queried, monitored, and removed. The
operations defined for the terminal control interface constitute together with related operations
in application pool interfaces an application control protocol. Since this protocol is application
independent it can be expected to remain stable over an extended period of time. Protocol
extensions, and the eventual development of additional protocols for different terminal types,
can be handled via interface inheritance.

Two important terminal servers are the applet handler and the stream agent. An applet han-
dler executes an applet downloaded from the application. This applet generates the graphical
user interface of the application and controls the locally generated device graphs. As a result of
user action it will call operations in callback interfaces implemented by the application. An
adequate programming language for simple applets is Tcl/Tk. If the downloaded applet is to
perform more advanced tasks than to generate a graphical user interface, a strongly typed lan-
guage like Java can be used. The major requirement on the programming language to be used
for applets is the existence of a respective CORBA language mapping. The multimedia termi-
nal has separate applet handlers for every applet programming language that it supports.

A stream agent assembles, controls and modifies stream graphs. A stream graph is an arbi-
trarily structured network of media processing devices similar to the module pipelines of
Medusa or the virtual device graphs of IMA. The procedure of creating a graph consists of
three operation invocations of which the last returns an object reference for every device con-

Figure 6.2. Terminal components.

Terminal ApplicationsTerminal Applications

Stream
Agent

Applet
Handler

Naming
Service

Terminal
Server

Terminal
Control

Generic
Control
Panel

Control Panel
in

Application and Application Pool Utilities

Terminal Boundary

Terminal Applications
Applet Handler

Terminal
Mgr.

107

Application Pools and Multimedia Terminals

tained in the graph. The applet handler can use these object references for local control, as is
indicated in Figure 6.1. The applet handler may get them for instance via the CORBA name
server shown in Figure 6.2, which helps the different objects in a terminal to locate each other.

The applet handler and the stream agent are not the only terminal servers. Every application
running on a terminal as part of an MMC application falls under the terminal server abstrac-
tion. This concerns CSCW applications like shared whiteboards, but also complete frameworks
like MHEG. It is also possible to introduce a new multimedia middleware encapsulated in a
terminal server other than the stream agent.

A terminal may also contain so called terminal applications. These are applications that run
locally on the terminal and that access terminal services in the same way as applications run-
ning in application pools. Terminal applications are a reminiscence of the standalone applica-
tion that is common today. They profit from the APMT terminal infrastructure, but do not
enjoy any platform support beyond the terminal boundary.

A user accesses the terminal control either via a generic control panel that is installed on the
terminal, or via his own control panel application running in an applet handler. The latter
allows users to import their personal control environment into any terminal they are logged on.
The control panel application is downloaded from an application pool in the home domain of
the user.

Also indicated in Figure 6.2 is the terminal management. The terminal management allows
for instance to add new components to the multimedia terminal, and to remove obsolete ones.

6.2.3 Overview of the Application Pool

Figure 6.3 depicts the top-level components of an application pool. The counterpart to the ter-
minal control in the application pool is the application pool control. The application pool con-
trol launches applications on behalf of terminals, grants them access to the application pool
utilities and to other applications, and monitors their activities. Applications can access the ter-
minal interfaces directly or via application pool utilities that reduce the complexity of multi-
user scenarios. One such utility is the participation control that helps applications manage ses-
sion membership. This functionality is provided by a utility rather than the application pool

Figure 6.3. Application pool components.

Other
Utilities
Other

Utilities

ApplicationApplication

Application
Pool

Application
Pool

Management

Terminals

Application Pool Boundary

Control

Service
Broker

Participation
Control

Connection
Manager

Application

Applet
Loader

Other
Utilities

APMT Overview

108

control because it is assumed that session membership is a private matter of the application.
The application pool control is mostly concerned with applications and utilities, and not so
much with terminals or users.

Another important utility is the connection manager. The connection manager provides sup-
port for the establishment of complex connection structures among groups of terminals and
configures the device graphs within these terminals. An application will usually prefer to deal
with one connection manager rather than with many stream agents. Multiple connection man-
agers can be imagined, providing support for different categories of applications.

The applet loader indicated in Figure 6.3 is a server that is accessed by applet handlers in
terminals to retrieve applet code. The way this is done exactly depends on the programming
language. It is therefore necessary to provide an applet loader for every programming language
that is used by applications in the application pool.

Also indicated in Figure 6.3 is the application pool management. The application pool man-
agement accesses the management interface of the application pool control and performs stan-
dard tasks like installation of new applications and application pool utilities or monitoring of
running applications.

The service broker allows users to find out about the applications that are supported by the
application pool, and the public sessions that are currently running on it or that are announced.
The service broker of the application pool advertises a part of its offer to service gateways. It is
based on the CORBA trading service.

Figure 6.4 depicts a layered view of APMT as seen by applications. Applications and appli-
cation pool utilities reside both on top of the services provided by terminal objects. Applica-
tions use in addition the services of the application pool utilities, and they may also be built
from other applications. The ensemble of accessible terminal IDL interfaces represents the
view that the developer of an application or an application pool utility has of a terminal. Simi-
larly, the ensemble of application pool interfaces that are accessible to applications represents
the view that the application has of an application pool.

Figure 6.4. Layered view of the APMT architecture.

Application

Application
Pool

Services

Terminal
Services

Terminal Interfaces

Application Pool Interfaces

Composite Application

Application Interfaces

109

Application Pools and Multimedia Terminals

6.2.4 Overview of Additional Components

Application pool and multimedia terminal are the most important components of the APMT
platform, but they are not sufficient for the kind of MMC platform that is envisaged by this the-
sis. They need to be supplemented with the components that are presented in the following.

Multimedia Object Server

Multimedia terminals are also thought to be consumers and providers of stored multimedia
presentations, with the necessary software being part of the multimedia middleware. Every
multimedia terminal can therefore serve multimedia content to other terminals. Pure multime-
dia object servers consequently reveal themselves as a special kind of terminal. They offer the
same set of multimedia middleware interfaces to the outside, although it can be expected that
the underlying software is different from the one installed on user terminals. The benefit for
application development is that the control interfaces of multimedia object servers and termi-
nals are identical. Multimedia object servers are likely to be combined with an application
pool. The multimedia content stored on a server is then managed by a set of applications that
can be accessed by user terminals. Multimedia object servers may also exist in isolation, in
which case it is necessary to define access control interfaces for them. This can be done by spe-
cializing some of the terminal control interfaces. Multimedia object servers are not covered
any further in this thesis.

User Agent Pool

Terminal mobility is supported by user agents. A user agent represents the user towards appli-
cations and other users. When a user logs onto a terminal he may choose to inform his user
agent about his current location, which in turn allows him to be invited to application sessions,
or to be contacted by other users. A user agent is managed by a user agent pool that is located
in the home domain of the user. The user agent pool is covered in more detail in Section 6.7.

Service Gateway

Application pools may advertise applications and sessions to external service gateways. A user
accesses a service gateway to retrieve a reference to an application pool that supports a certain
kind of application, or that houses a certain public session. Service gateways cooperate with
service brokers in application pools. Both of them are based on the CORBA trading service.
The service gateway is a high-level trader that repeats the offers of multiple service brokers in
application pools. The CORBA trading service supports such configurations with a linking
mechanism. The use of the trading service in APMT requires the definition of APMT-specific
properties like participant list, application name or title name that are used by application
pools to advertise service offers, and by interested clients in query operations. APMT service
offers are installed applications and announced or active application sessions that are public.
The service gateway makes use of the dynamic properties feature of the CORBA trading ser-
vice. As an example, the property participant list could be a dynamic property, for which the
service gateway retrieves the value directly from the application pool whenever it is required.
A service gateway that receives multiple service offers of the same type will perform some sort
of load balancing among the concerned application pools. An application pool that hits a
capacity limitation may dynamically revoke its service offerings, and reregister them once the
situation has improved. Service gateways and service brokers are not covered any further in
this thesis.

APMT Overview

110

Directory Service

The service gateway distributes dynamically changing information about available applica-
tions and active sessions. In addition to that, a directory service is necessary to distribute static
information about APMT resources to users and applications. User agent pools, application
pools and service gateways are named after the Internet host that runs their public access inter-
face. The IP address of this host can be retrieved via the Internet DNS, and transformed into an
IIOP IOR. Once this is done the respective entity can be accessed via IIOP. Users are uniquely
identified by their name together with the hostname of the user agent pool that runs their user
agent. User identifiers in APMT are therefore similar to normal E-mail addresses, which sug-
gests to use the same notation for them. Since the hostname of the user agent pool is part of the
user identifier, it is easy to locate and access a certain user agent.

The Internet DNS solves the basic localization problem, but it requires a user to know the
exact name of the application pool, service gateway or user that he is searching. A directory
service like X.500 offers much more functionality than that, and can be used to perform
searches based on a combination of attributes, with a completely or partially given name being
one of them. A directory service other than the DNS is therefore desirable, although not abso-
lutely necessary. Directory service client functionality can be provided by utilities in the appli-
cation pool or by terminal applications in the terminal. In the case of application pool utilities it
is necessary to hide the used directory service protocol behind a uniform IDL interface in order
to avoid the situation that application code relies on a specific directory service.

6.3 Session Model

A session is an abstraction for a temporary activity that brings together a set of resources in
order to attain a given target. In the case of an MMC platform, some of these resources may
represent human users, while others represent the functionality dedicated by the platform to the
temporary interaction between a set of users, or between users and platform components. An
MMC session is therefore not only defined in terms of the users that are participating in it, but
also in terms of the resources that are activated by the platform for the purpose of this session.
Five major session types can be identified in APMT:

• Terminal Session: a user must explicitly log onto a terminal before he can start
applications. This establishes a temporary relationship between the user and a
terminal.

• User Session: every application in which the terminal participates is modeled by
a user session. A user session is the view that the terminal has of its role within
an application instance.

• Application Session: an application session models the totality of resources that
are allocated in terminals and application pools for an application instance.

• Participant Session: a participant session represents the set of terminals that par-
ticipate in an application session. The participant session is handled by the par-
ticipation control in the application pool.

• Composite Application Session: a composite application session consists of mul-
tiple federated application instances, and can be described in terms of a set of
application sessions.

111

APMT Specification

A terminal cannot distinguish if the application in which it is participating is a composite
application or not. There is consequently no need to model a composite application session on
the terminal side with a session abstraction other than the user session.

APMT does not have a counterpart to the access session known from TINA. The only rela-
tion a user may have with an application pool is participation in an application, which is mod-
eled by the application session. There is no computational object in the application pool
infrastructure representing a user in another way than as participant in an application. Most
notably, there is no object representing a subscribed user.

6.4 APMT Specification

Before embarking on a closer tour of APMT it is necessary to outline the way it is specified.
The major means of specification is CORBA-IDL. All interfaces are defined in CORBA-IDL,
with the exception of language-specific API’s in applet handlers. CORBA-IDL is used for both
local and remote interfaces. Local interfaces are API’s that can be mapped to different pro-
gramming languages. They are defined in a variant of CORBA-IDL called Pseudo-IDL which
may contain pointers. CORBA-IDL definitions are supplemented with OMT object diagrams
and event traces [Rumb91].

APMT is based on the CORBA object model, with the effect that more importance is given
to the definition of interfaces than to the identification of objects. The APMT architecture com-
ponents shown in Figure 6.2 and Figure 6.3 can be regarded as coarse-grained objects. They
encapsulate fine-grained objects that cannot exist in isolation. APMT identifies objects when-
ever they represent components in a component framework. This is for instance the case in the
multimedia middleware. Objects are also defined whenever it is necessary to indicate that a set
of interfaces has a common life-cycle. This is the case with interfaces that are related to the
various session types of APMT.

All APMT definitions are contained in modules in order to avoid name clashes. Module
names themselves can be protected with a leading Apmt, but this is not necessary for the pur-
poses of this thesis. All APMT IDL definitions have been compiled with idldoc, a tool for the
automatic generation of hyperlinked IDL documentation [Whit96]. The APMT documentation
generated by idldoc is available online on the Internet [Blum97a].

6.5 Multimedia Terminal Interfaces

The anatomy of the multimedia terminal can be described in terms of its interfaces. The fol-
lowing introduces the major interfaces of the multimedia terminal, namely the interfaces of the
terminal control, the applet handler and the stream agent. The complete set of interfaces, along
with the most important operations and types, will be presented in the following two chapters.

6.5.1 Terminal Control

Figure 6.5 shows the interfaces of the terminal control. The terminal control interacts with
remote applications and application pool utilities, and with local terminal servers, control pan-
els and terminal applications. The public terminal interface to the outside is Tc::Terminal.
This interface allows applications to invite the currently logged user to participate in an appli-

APMT Overview

112

cation session. Tc::Terminal also contains attributes that allow applications or other users to
retrieve information about the terminal and the currently logged user. More functionality is not
necessary in this interface, because once the terminal participates in an application session it
will offer additional interfaces to the application.

The principal interface visible to control panels is Tc::PanelTerminalControl. This
interface allows users to register with the terminal, to respond to invitations, and to find out
about the applications that are currently running on the terminal. On registration, the control
panel receives an object reference to the interface Tc::ApplicationControl which allows
it to start an application in an application pool, or to join an already existing application ses-
sion. Tc::PanelTerminalControl contains an operation that allows control panels to reg-
ister for terminal control events. Events are conveyed to control panels via the CORBA event
service. This makes it possible to run multiple control panels on top of the terminal control that
are all kept up-to-date about the state of the terminal.

The terminal control creates a user session object for every application in which the termi-
nal participates, as is indicated in Figure 6.5. This object has three interfaces, namely Tc::
UserSession, Tc::ApplicationControl, and Tc::TerminalControl. The interface
Tc::TerminalControl is the terminal control as perceived by an application. This interface
can be accessed by the application in the application pool as well as by its local representatives
running in applet handlers. Its operations allow applications to create terminal servers like
applet handlers and stream agents, to get access to the naming service, to test terminal compat-
ibility, and to synchronize activities in different terminal servers. Applications also use this
interface to communicate important events to the terminal control, with an example being an
imminent application termination. Applications that want the terminal to start or join other
applications can retrieve a reference to a Tc::ApplicationControl interface via Tc::
TerminalControl. An example for this is the yellow page application that allows users to
browse through the offers of a service gateway or application pool. The yellow page applica-
tion is able to start selected applications directly via its Tc::ApplicationControl inter-
face, which means that a user can start an application without ever touching its identifier. The
start and join operations of the Tc::ApplicationControl interface return a reference to the
interface Tc::UserSession. This interface contains operations for the compound control of
applications, and allows to find out about the terminal servers that the application is currently

Figure 6.5. Terminal control interfaces.

Terminal
Server

User

Tc::TerminalControl

Tc::ApplicationControl

Tc::UserSession

Tc::PanelTerminalControl

Tc::Terminal

Terminal
Control

Applications and

Generic Control Panel

Control
Panel

in
Applet

Handler

Terminal Boundary

Tc::Application

or
Terminal

Application

Application Pool Utilities

Session

 Control

Management

Ta::Management

113

Multimedia Terminal Interfaces

running on the terminal. The Tc::UserSession interface of a session object is hidden from
all applications with the exception of the eventual parent application. It is visible to control
panels, which allows them to monitor the activities of an application, and to control them.

Also shown in Figure 6.5 is the Ta::Management interface of the terminal control that is
accessed by the terminal management. This interface is considered to be an integral part of
APMT, but it has not been defined yet.

6.5.2 Applet Handler

Figure 6.6 shows the interfaces of an applet handler. An applet handler is a shell for the applets
that the application executes on the terminal. It is created via the Tc::TerminalControl
interface, and exposes an interface derived from the general Ts::TerminalServer interface,
which contains operations for the compound control of terminal servers. This interface is
accessed by both the terminal control and the application, as is indicated in Figure 6.6. An
applet handler can receive an applet as parameter to an operation in its interface, or it may load
it from a server in the application pool for which the application supplies an object reference.
The exact mechanism depends on the language in which the applet is implemented. Applets
are executed on top of a secure system services API that hides the operating system of the ter-
minal. This API provides ways for the applet to find out about the environment in which it is
running. It allows to retrieve the object reference to Tc::TerminalControl, and may also
allow to retrieve references to objects in the application. Once activated the applet may instan-
tiate objects that it advertises via the naming service to other terminal servers. It creates a
graphical user interface and forwards user input that it cannot process locally to the parent
application in the application pool.

An applet may have a very tight relationship with its parent application, in which case it is
just a sensor, or it may be completely decoupled from its parent application, in which case it is
an application in its own right.

Figure 6.6. Applet handler interfaces.

Terminal
Server

Ts::TerminalServer

Applet
Handler

Applications and

Naming Service

Terminal
Control

Terminal Boundary

Applet

Secure System Services API

Application Pool Utilities

Application
Specific
Object

Application
Specific
Object

APMT Overview

114

6.5.3 Stream Agent

Figure 6.7 shows the stream agent and some of the multimedia middleware objects that it con-
trols. The interface of the stream agent, Strag::StreamAgent, inherits from Ts::Termi-
nalServer and is accessed by both the terminal control and the application, as is the case
with all terminal servers.

The unit of multimedia processing functionality in APMT is the device. Devices have ports
that are interconnected by untyped device connectors. Devices and device connectors have a
public interface towards applications and control panels, and a hidden management interface
towards a graph that controls them. Devices, device connectors and graphs inherit from inter-
faces defined by the CORBA relationship service. This allows applications, control panels, and
devices to navigate the relationships within the graph and to discover its topology. All devices
inherit from the abstract interface Bas::Device. Two different kinds of device connectors are
defined which offer different levels of control. Both of them inherit from the abstract interface
Bas::DeviceConnector. Control over a graph is provided via the interface Tgraph::
Graph. This interface contains operations for the compound control of graphs and for graph
modification. A graph can be created with a call to the create_graph() operation in the
Strag::StreamAgent interface. Devices and device connectors are added to it with calls to
the add_objects() and commit() operations in Tgraph::Graph.

Device connectors can only connect the ports of devices that are situated inside the same
terminal. Their IDL interface does not provide much more functionality to the application than
the possibility to choose the device ports that are to be connected. The way this is done is com-
pletely hidden from applications, and may for instance involve the establishment of network
connections if the terminal consists of more than one network node. The application on the
other hand is responsible for connecting the network ports of devices located in different termi-
nals. This is a task that it will usually delegate to special connection managers in the applica-
tion pool.

Figure 6.7. Selected multimedia middleware interfaces.

Applet
Handler

Strag::StreamAgent

Stream
Agent

Application and Application Pool Utilities

Control Panel

Terminal
Control

Terminal Boundary

Graph

Device

Device

D
ev

ic
e

Bas::Device

Tgraph::Graph

D
ev

ic
e

C
xt

or

Device
Cxtor

Bas::DeviceConnector

115

Application Pool Interfaces

6.6 Application Pool Interfaces

The following introduces the major interfaces of the application pool, namely the interfaces of
the application pool control, of the application pool utility, and of the application.

6.6.1 Application Pool Control

Figure 6.8 shows the interfaces of the application pool control. The application pool control
interacts with terminals, applications and utilities, as well as the service broker and the pool
management.

The public interface of the application pool is Pc::Pool. Terminals use this interface to get an
object reference to the participation control of a running application, or to start a new applica-
tion. This interface also allows to reserve identifiers for application sessions that are scheduled
for the future. The initiator of a session can distribute this identifier to the users that are sup-
posed to participate in the session. There is an operation in Pc::Pool that allows to start a
browser application. This is a special application that helps users to find out about the applica-
tions that are installed on the application pool, and about currently active or announced ses-
sions. The browser may access the service broker of the application pool to this purpose.

It is not possible to launch an application with a single call. The get_application()
operation in Pc::Pool creates the session object that is indicated in Figure 6.8 and returns a
reference to the Pc::SessionControl interface of this object. This interface allows termi-
nals to test if they are compatible with the application, i.e., if they support the interfaces that
are required by this application. Once a terminal has determined that it is compatible it may
start the application, possibly with a previously reserved application identifier. The session
object interfaces with the Pc::PoolControl interface to the running application that it repre-
sents. This interface is used by applications to request services from the application pool, with
the most important services being the start of a utility or another application. The session
object interfaces to the application pool management with the interface Pa::Session. This
interface provides complete control over the application, and is hidden from applications and
terminals.

Figure 6.8. Application pool control interfaces.

Service
Broker

Pc::Pool

Pa::Management

Application
Pool

Terminals

Application Pool Management

Application

Application Pool Boundary

Control

Session

Pc::PoolControl

Pa::Application

Session

Pc::PoolControl

Pa::Application

Session

Pc::SessionControl

Pc::PoolControl

Pa::Session

Application
Pool

Utility

APMT Overview

116

6.6.2 Applications and Utilities

Figure 6.9 shows the interfaces of the application, of the participation control, and of a general
application pool utility. Applications and utilities interact with the application pool control and
terminals. The application interacts in addition with an eventual parent application, and the ser-
vice broker.

The application exposes the Pc::ApplicationControl interface to the application pool
control. This interface contains for instance operations that allow the application pool control
to initialize the application once it runs, and a kill() operation that causes the application to
shutdown the session and to exit. If the application has been started by another application
rather than by a terminal it exposes an interface inheriting from App::Application to its
parent application.

Utilities expose an interface inheriting from Put::Utility to the application and the
application pool control, as is indicated in Figure 6.9. The participation control is a special
kind of application pool utility that keeps track of session membership and pending join
requests and invitations. It exposes the Pac::SessionAccess interface to terminals, and the
Pac::SessionControl interface to applications and the application pool control. Applica-
tions implement the callback interface Pac::Application towards the participation control.
Not shown in Figure 6.9 is that the participation control contains a participant object with fur-
ther interfaces for every terminal that participates in the application session, that issued a join
request, or that got invited by the application. Also not shown is the Pac::SessionInfor-
mation interface that allows multiple child applications to synchronize themselves with the
participant session of a parent application. An application pool may offer different kinds of
participation control utilities, with each of them being tailored to a certain class of applica-
tions. All participation control utilities are required to provide the basic functionality described
above, i.e., their interfaces to the application and to the terminals inherit from Pac::Ses-
sionControl and Pac::SessionAccess, respectively.

An application that wishes to advertise its existence registers the reference of the Pac::
SessionAccess interface of its participation control with the service broker. Terminals that
retrieve this reference can join the application without passing through the Pc::Pool interface
of the application pool control.

Figure 6.9. Application and application pool utility interfaces.

Application App::Application

Application

Terminals

Parent Application

Service

Application Pool Boundary

Pc::ApplicationControl

Utility
Put::Utility Participation

Control

Pac::SessionControl

Pac::SessionAccess

Pac::Application

Pool
Control

Broker

117

User Agent Pool Interfaces

6.7 User Agent Pool Interfaces

Figure 6.10 shows the interfaces of the user agent pool. The public interface of the user agent
pool to the outside is Usag::Access. This interface contains two operations, one that allows
terminals and applications to retrieve a reference to a Usag::UserAgent interface, and
another that allows the owner of a user agent to retrieve a reference to a Usag::AgentCon-
trol interface. The user agent pool has a management interface that allows to create new user
agents and to control existing ones. It may interact with a directory service for the registration
of the user agents that it manages.

The Usag::UserAgent interface contains an operation that allows applications or other
users to find out on which terminal the owner of the user agent is currently logged. This opera-
tion may be blocked by the owner if he does not want to advertise his current location. An
application that wants to invite the owner of the user agent to a session will either retrieve the
reference of the terminal the user is logged to, and invite him via the Pc::Pool interface, or
call the invite() operation of Usag::UserAgent if it cannot get hold of a reference to a
terminal. In the latter case it is possible that the user agent forwards the invitation to the termi-
nal on which the owner is logged. If the owner is currently not reachable the user agent will
store the invitation. A similar procedure exists for session announcements.

The Usag::AgentControl interface allows the owner of the user agent to retrieve the list
of pending invitations and session announcements, and to register the reference of his current
terminal. The functionality required to interact with the control interface of a user agent is pro-
vided by the generic control panel of the terminal.

The interfaces for the user agent pool as shown in Figure 6.10 have been defined, but will
not be further discussed in this thesis1. It is possible to extend the control and query interfaces
of the user agent and provide much more functionality than is described here. As an example, it
can be imagined to allow users to control the behavior of their user agents with executable
scripts.

1. See [Blum97a] for a commented online version of the user agent pool interfaces.

Figure 6.10. Interfaces of the user agent pool.

User
Agent

User

Usag::Access

Usag::Management

User
Agent

Terminals, Applications

User Agent Pool Management

Directory

Pool

Service

User
Agent

User
Agent

Usag::AgentControl

Usag::UserAgent

APMT Overview

118

6.8 Application Model and Major Application Scenarios

The application model of APMT consists of a central application that orchestrates a set of
applets in the periphery. Applets run in applet handlers on multimedia terminals. Applet code
is either downloaded from the application pool, or retrieved from a local cache. Applets take
care of issues that are local to the terminal on which they are running. Events that are of global
importance are communicated back to the application in the application pool. The application
processes incoming events, and emits directives to its applets that are a function o these events.
The application may also directly interact with the terminal infrastructure, which it does when
it establishes multipoint connections among terminals. Since both the applet and the applica-
tion are interacting with the terminal infrastructure it is necessary to provide a mechanism that
allows them to synchronize their activities. One such mechanism is event notification based on
the CORBA event service.

The application model of APMT is flexible enough to accommodate a wide range of appli-
cations and application scenarios. The three major application scenarios that are supported are:

• interactive presentation: a user accesses multimedia content via a presentation
application in an application pool that controls a multimedia object server.
Example applications are games, video on-demand and multimedia kiosks.

• conference: multiple users interact with each other and the application. The
number of users participating in the conference is limited. Example applications
are video-conferences, CSCW, and distributed games.

• broadcast: multimedia content is broadcast to a possibly large number of users.
There is only limited feedback from the terminals that consume content to those
that produce it. An example application is network radio.

These scenarios can be combined together to form mixed scenarios. As an example, the
conference and broadcast scenarios can be combined to form a panel scenario where a large
number of spectators participates passively in the interaction between a small number of panel-
ists. In the following it is shown how these scenarios are realized by APMT.

Interactive Presentation

Figure 6.11 shows the simple interactive presentation scenario. A user starts an application in
an application pool which in turn controls a multimedia object server. It is likely that there is a
direct control communication path between the applet on the multimedia terminal and the one

Figure 6.11. Interactive presentation scenario.

AP

Application

MT

Applet

MOS

Applet

MOS: Multimedia Object Server

control

stream

119

Application Model and Major Application Scenarios

on the multimedia object server. Simple applications will not require any intelligence on the
multimedia object server. The applet on the multimedia terminal will then directly control the
multimedia devices on the multimedia object server.

Conference

Two variants of the conference scenario are depicted in Figure 6.12. They are distinguished by
the way intelligence is distributed between applet and application. The left side of Figure 6.12
shows a centralized scenario where the bulk of intelligence resides in the central application,
with the applets being sensors and actuators that mediate between the user and the application.
The right side of Figure 6.12 shows a distributed scenario where most of the application intelli-
gence resides in applets. In this case the role of the application is limited to session and con-
nection management, and to some sort of arbitration between conflicting user requests. Applets
in the distributed scenario are likely to communicate directly with each other, as is indicated in
Figure 6.12. A conference application can be anything from completely centralized to com-
pletely distributed. The centralized scenario is adequate for very small conferences, whereas
the distributed scenario is adopted by applications that need to accommodate larger numbers of
users.

Broadcast

The broadcast scenario is depicted in Figure 6.13. The number of user terminals participating
in a broadcast application may overwhelm a single application pool, which makes it necessary
to distribute broadcast applications over multiple application pools. The source terminal runs
the master application, which controls the broadcast, on an arbitrary application pool and
advertises the identifier of this application, the set of used multicast addresses and a session
description via the service gateway to other application pools. Those application pools that
have the necessary code installed will offer participation in the broadband application session
via the service gateway to users. A terminal may therefore participate in the broadcast session
by joining a slave application on an application pool other than the one that houses the master
application. It is able to connect to the stream emitted by the source terminal because it knows
the respective multicast addresses. The slave application may communicate with the master
application, as is indicated in Figure 6.13, for instance to inform it about local session member-
ship, or the result of a vote. Multiple hierarchies of slave applications can be imagined that
reduce the communication load on the master application, but this is not supported by the
actual APMT specifications. Also shown in Figure 6.13 is the case where a terminal partici-

Figure 6.12. Centralized and distributed variants of the conference scenario.

AP

Application

MT

Applet

MT

Applet

MT

Applet

AP

Appl.

MT

Applet

MT

Applet

MT

Applet

centralized distributed

control

stream

APMT Overview

120

pates in a broadcast session without being connected to a slave application in an application
pool. This is possible by running a terminal application and configuring it with information
about the broadcast session. This kind of scenario resembles broadcasting as known from the
MBone.

6.9 Deployment Scenarios

Whoever owns a host that is connected to the Internet, or to a network based on Internet proto-
cols, may run an application pool. An application pool can run on a single personal computer
just as it can run on a cluster of workstations or a mainframe. Three example deployment sce-
narios will be discussed in the following:

• private application pool: a user runs application pool software together with ter-
minal software on the same machine.

• intranet application pool: an enterprise runs one or more application pools for
internal communication.

• public application pool: a service provider runs an application pool to offer ser-
vices to a large public.

This is only a small selection of possible scenarios that shall serve to illustrate the flexibility
of the APMT architecture.

Private Application Pool

A user may deploy a private application pool in order to disseminate an application that he
developed, or to host private meetings on it. In case it is deployed to disseminate an application
its address will be advertised to other users via service gateways. In case it is used for private
meetings its address will be kept secret, and it is possible that the user runs it only during the
meetings that take place on it. In this case it is used just like any other conferencing software,
with the only difference being that there is a central component running at the site of one con-
ference participant. In the case of a more distributed application, corresponding to the scenario
indicated on the right side of Figure 6.12, the performance impact on the machine hosting the
application pool is rather small. The number of sessions that can be concurrently run on a sin-

Figure 6.13. Broadcast application scenario.

AP

Slave

MT

MT

Applet

Applet

MT

Applet

AP

MT AP

MT

MT

control

stream

MT

Appl.
Master

Appl.

Terminal running
a terminal application

121

APMT and TINA

gle machine will then be limited by the maximum number of concurrently running processes,
or the maximum number of concurrently active TCP connections, but not by the power of its
CPU.

Intranet Application Pool

An intranet application pool is deployed on the network of an enterprise. Since it may have to
serve a larger number of users in parallel it will be distributed over multiple workstations. One
of these workstations runs the application pool control which distributes applications and
application pool utilities over the other workstations that are at disposal. The software used for
the intranet scenario may be identical to the one used for private application pools. This flexi-
bility is largely due to the use of CORBA.

Public Application Pool

A public application pool serves a large community with application logic and multimedia
content. It is based on a possibly considerable number of workstations, or alternatively on a
small number of high-end application servers. One or more file servers are dedicated to the
downloading of application code into terminals. Multimedia object servers are collocated with
the application pool. The application pool control is transparently replicated on multiple
machines in order to achieve high availability. The application pool has a high-speed access to
the Internet, and is itself built on top of a high-speed network that minimizes end-to-end delay
of internal communication.

The three deployment scenarios given here show how application pools may look like. The
way the other platform components are deployed is rather straightforward. The multimedia ter-
minal is deployed on a personal computer, or on a couple of workstations in case it represents a
larger conference room. The user agent pool is a single server running on a machine in the
home domain of the user. The user agent of a private user will be managed by the user agent
pool of his Internet service provider. The user agent of a business user will be managed by the
user agent pool of his company, which may be collocated with an intranet application pool.
Service gateways can be housed by large public application pools.

6.10 APMT and TINA

APMT can be considered as a service provision platform, and may therefore be compared with
TINA. The principal similarity between APMT and TINA is the partition of functionality
between components in the network and components in the terminal. However, the philoso-
phies that lead to this partition of functionality differ from each other. TINA is a full-fledged
service provision architecture for telecommunications networks. Service logic in telecommu-
nications networks resides traditionally within the network, and is accessed via dumb terminals
like telephone handsets. TINA must be considered as a move to make use of the increased
intelligence of terminals. This is different for APMT, for which the starting point is the intelli-
gent terminal, and which discovers servers in the network as code repositories and applications
running in them as central coordination points for multiple terminals. APMT distinguishes
itself from TINA also in its emphasis on extensibility, programmability, and mobile code. Both
the multimedia terminal and application pool are based on a high-level component framework
that allows them to be extended by third parties. The high-level components in the application
pool, the application pool utilities, are meant to provide additional layers of functionality to the
terminal interfaces, and to support the rapid development of applications. Terminals are static

APMT Overview

122

in the sense that no application code needs to be installed on them. Application code is down-
loaded into the terminals at runtime. Extensibility, programmability and mobile code are not
sufficiently addressed by TINA.

6.11 Conclusion

This chapter introduced the CORBA-based APMT platform. APMT is an overlay platform that
can be deployed on an IP network without requiring any modifications to the existing network
infrastructure. The APMT platform features a static terminal that can execute applets down-
loaded from applications in application pools. MMC applications developed on top of APMT
can be either completely centralized, completely decentralized or somewhere inbetween these
two extremes. APMT supports single-user applications, multi-user applications, and broadcast
applications. The APMT platform is highly extensible. The infrastructure of the terminal can
be extended with new terminal servers supporting new interpreted languages, CSCW tools and
whatever functionality may be needed in the terminal. The stream agent terminal server encap-
sulates a low-level component framework for multimedia processing devices that can be
extended by third-parties. The infrastructure of the application pool can be extended with new
application pool utilities that help applications manage terminals servers and low-level objects
in terminals. Every application implementing the App::Application interface extends the
platform because it can be reused by composite applications.

The following two chapters present the core architecture of APMT and the APMT multime-
dia middleware. A third chapter discusses the APMT prototype and evaluates the APMT plat-
form with respect to the criteria that were developed in Chapter 2.

123

7 APMT Platform Architecture

7.1 Introduction

The previous chapter introduced the APMT platform along with its major features and a set of
possible deployment scenarios. This chapter continues the description of APMT with a
detailed presentation of the platform architecture. It starts with some remarks about how
CORBA is used in APMT, and an overview of the modules that represent the core architecture.
It then discusses the major application-level interfaces of the multimedia terminal and the
application pool, and illustrates with a set of reference scenarios the way platform components
interact within an application session. The APMT multimedia middleware is not presented in
this chapter because it is already considered to be an extension of the architecture. What is pre-
sented are the interfaces that allow to manage applications on terminals and in application
pools. These are the interfaces that represent the core of the APMT architecture. They are kept
simple in order to have a solid basis for eventual extensions via interface inheritance or new
interface versions. It is supposed that the lifetime of the APMT platform as presented in this
thesis is linked with the one of these interfaces, meaning that they may be extended and
improved, but not substituted by a completely new set of interfaces.

7.2 Usage of CORBA in APMT Definitions

OMG-IDL interface definitions are at the border of design and implementation. Considering
them as a pure design construct may have a negative impact on the interface implementation. It
is therefore necessary to be aware of the implications of the use of OMG-IDL features like
modules, attributes, and oneway operations, and to take them into account during the design of
a system. This is done best by establishing a set of rules for the use of CORBA and OMG-IDL
with which all interface definitions of a system must comply. The following subsections out-
line the rules that were applied to the usage of CORBA in APMT definitions.

CORBAservices

APMT uses not only the basic object request broker, but also some of those CORBA services
that are widely approved by the CORBA community, namely the naming service, the event ser-
vice, the relationship service, and the trading service. Beyond that it can be assumed that
APMT applications make use of the transaction service, the query service and the persistent
object service. The usage of CORBA services is not always clearly visible in the APMT IDL
specifications. The usage of the relationship service for instance manifests itself only via inter-
face inheritance. The APMT objects that need to navigate the relationships in which they are
involved, or that need to be found by other APMT objects, inherit from the CosGraphs::
Node interface defined by the relationship service.

APMT Platform Architecture

124

Modules

All APMT definitions are enclosed in modules, first of all to protect the name space, and then
also to be able to group logically related interfaces, which helps in gaining an overview of the
architecture. No attention is given to the file level, although it is the file rather than the module
that is the smallest unit of IDL compilation. The IDL standard allows to close and reopen mod-
ule definitions within the same scope1, making it in principle possible to distribute the content
of a module over multiple files and compile them separately. The reality however is that this is
not supported by commercially available IDL compilers. It is therefore a good strategy to
define small modules and to group them into files in a way that a client or server is likely to use
all, and not just a part of the definitions within a file. If this is not the case it may happen that
client or server processes incorporate superfluous stub or skeleton code2. APMT defines rather
large modules which usually correspond to architecture building blocks. This supports the
comprehension of the definitions, but it is noted that implementation constraints may require to
split some of these modules into smaller ones.

Attributes

APMT interfaces contain readonly attributes rather than get operations whenever it seems ade-
quate to indicate that a certain piece of information that is available through an interface is
directly maintained by the object that implements this interface. This implies that an object that
is queried for the value of an attribute is able to return a response without being obliged to con-
tact other objects. An attribute should hold valid values throughout the lifetime of the object,
so that it can be queried at any time. However, there are certain attributes in the APMT defini-
tions that cannot hold a valid value right after object creation, i.e., before a first initialization
operation has been called. When queried for the value of an attribute that has not been initial-
ized yet, the object raises the standard CORBA system exception BAD_INV_ORDER. The
APMT definitions mostly use readonly attributes. As was already pointed out in Section 3.3.2,
changing the value of an attribute may have a significant impact on the state of an object, and
may consequently fail without that the object is able to throw a meaningful exception. It is
therefore preferable to explicitly define a set operation for an attribute whenever there is the
slightest chance that the direct setting of the attribute value may fail.

Oneway Operations

Because of their unclear semantics, oneway operations are rarely used in APMT definitions.
They are used for non-critical notifications over the network, and for message-style communi-
cation among peer objects that are physically collocated, which helps to avoid deadlocks and to
save on threads in an environment where communication errors are unlikely. In both cases it is
assumed that the client does not block on the delivery or execution of the operation invocation.

Nested Callbacks

APMT definitions try to avoid nested callbacks, i.e., situations where a server executing a cli-
ent request calls an operation in an interface implemented by the client. This can be handled by
multi-threaded CORBA implementations, but results in a deadlock in most of the single-
threaded CORBA implementations that are available today. APMT servers that need to call cli-

1. This is stated in the CORBA 2.0 specification in Section 3.13 [OMG95c].

2. In C++, IDL modules are mapped to C++ namespaces, but since namespaces are supported by few C++ com-
pilers they are normally mapped to C++ classes. Since C++ class definitions cannot be reopened it is not pos-
sible to scatter the definitions of a module over multiple IDL files.

125

Overview of APMT Modules

ent interfaces do this asynchronously, i.e., after completion of the initial client request. It has to
be noted that this kind of handshake is tedious to program if it is not supported by the CORBA
implementation1.

Long-lasting Operations

Comments are used in the IDL definitions of APMT to indicate operations that may take a long
time to complete. Such long-lasting operations are in general avoided with the same mecha-
nism that is used to avoid nested callbacks, i.e., asynchronous execution followed by a call-
back. Long-lasting operations have the disadvantage that they block threads in client processes.

Passing Object References

A CORBA server that receives an object reference as parameter in an operation call will auto-
matically create a proxy object that allows it to call operations in the interface denoted by the
object reference. Since proxy objects take ORB resources it should be avoided to directly pass
object references to a server that does not use them. The approach taken by APMT is to pass
object references as strings whenever it is unclear if the recipient will use them. A stringified
object reference can easily be transformed into a proxy object with the standard CORBA oper-
ation string_to_object().

7.3 Overview of APMT Modules

Table 7.1 shows the modules that contain the definitions of the APMT platform architecture.
The modules Typ, Atyp, Ftyp and Ex define basic types that are relevant for all other APMT
definitions. The modules Typ, Ftyp and Ex define types and exceptions that are not necessar-
ily specific for the APMT architecture. The module Atyp on the other side defines types that
express certain APMT concepts, like user names, application pool addresses and the like.

All terminal control interfaces that are visible to applications and control panels are defined
in the module Tc. The module Ts contains the terminal server base interface. The modules
TclTk and Java contain the definitions of applet handlers. The module Ta is foreseen for def-
initions related to terminal management.

All application pool control interfaces that are visible to terminals and applications are
defined in the module Pc. The module Pa is foreseen for the definition of application pool con-
trol interfaces that are visible to management tools. The module App contains interfaces that
are implemented by applications. The module Put contains the base interface of application
pool utilities. The module Pac contains all interfaces of the participation control utility. The
module Uap finally contains the definitions for the user agent pool and the user agent.

1. A CORBA implementation that supports this is OrbixTM from Iona Technologies with its filter mechanism
[Ion96a]. A filter in Orbix is server code that can be executed before operation invocation or after operation
execution.

APMT Platform Architecture

126

7.4 Major Types

This section presents the most important definitions in the modules Typ, Ftyp and Atyp. The
module Ex, which contains a couple of generally usable exception definitions, does not need to
be explicitly discussed here. It has to be noted that APMT defines sequences for many of the
types that are presented in the following. The name of the sequence is simply the name of the
component type with a trailing s.

7.4.1 Basic Types

The module Typ contains useful definitions like Date, Percentage, Fraction and Rect-
angle. Important for the remainder of this thesis are the definitions for the stringified object
reference StringRef and the name of an interface:

typedef string StringRef;
typedef string InfIdent;

The module Typ also contains the two basic types used for event notification with the CORBA
event service:

typedef string EventKey;
struct Event {
 EventKey key;
 Time::TimeT time;
 any data;
};

Component Module Remark

All Components ::Typ basic type definitions that are useful for all other APMT definitions

::Ftyp flagged types

::Ex basic set of exceptions that can be used by all APMT definititions

::Atyp basic architecture specific types

Terminal ::Tc all terminal control interfaces that are visible to applications

::Ta terminal administration interfaces (not defined)

::Ts basic terminal server types and the terminal server base interface

::TclTk Tcl/Tk applet handler definitions

::Java Java applet handler definitions

Application Pool ::Pc all application pool control interfaces visible to applications and terminals

::Pa pool administration interfaces (not defined)

::App application interfaces

::Put base interface for application pool utilities

::Pac participation control interfaces

User Agent Pool ::Uap user agent pool and user agent interfaces

Table 7.1. APMT platform architecture modules.

127

Major Types

The event key is a string that uniquely identifies an event within the APMT definitions. An
event key is defined as a string constant in the interface to which the event is related:

const string EventNameEventK = "module:interface:EventName";

An event key is used by event consumers to register for the generation and reception of specific
events, and by the event producer to mark the events that it generates, as can be seen in the
event data structure. Besides the event key, the event data structure contains a time stamp and
event specific data in form of an any type. The actual type used for event specific data is
defined in the same interface as the event key, and is often a structure or a typedef:

struct EventNameEventD { };
typedef type EventNameEventD;

For the moment, APMT uses only untyped event communication, which means that the event
data structure is communicated in form of an any type to event consumers. Event consumers
need to be able to associate the events that they receive with the objects that created them. In
APMT, event channels are always owned by event producers, which allows event consumers to
associate a separate CosEventComm::PushConsumer or CosEventComm::PullCon-
sumer interface instance with every event producer, and consequently identify the producer of
an event via the interface through which the event was communicated.

The module Ftyp contains definitions of flagged types, i.e., structures that contain a value
and a boolean flag that tells if the value is valid. Flagged types are used to pass optional param-
eters in operations. The following definition shows for instance a flagged string:

struct StringF {
 boolean flag;
 string value;
};

Flagged types are denoted by a trailing F in the type name. Not only basic CORBA types, but
also many APMT types have a flagged counterpart.

7.4.2 Advanced Types

The module Atyp contains definitions that express architecture concepts. Internet hostnames
are defined as strings, and the major architecture components terminal, application pool and
user agent server are defined as hostnames:

typedef string HostName;
typedef HostName TerminalName;
typedef HostName PoolName;
typedef HostName UapName;

The terminal name identifies the host on which an object implementing the Tc::Terminal
interfaces is instantiated. The same is true for the application pool name, which identifies the
host on which an implementation of the Pc::Pool interface can be accessed, and the user
agent pool name, which identifies the host on which an implementation of the Uap::Access
interface can be accessed. The hostname alone is not sufficient to construct an IIOP IOR. What
is needed in addition is a port number and an object key that are reserved for APMT. As for
now the IIOP standard does not address the issue of standard object keys. Object keys are con-
sidered to be opaque values that an ORB may format as it wishes, with the consequence that
ORB’s tend to encapsulate their proprietary object reference within the object key of an IIOP
IOR. However, there is a clear need for standard object keys that allow clients to construct

APMT Platform Architecture

128

IIOP IOR’s for certain objects from a hostname and a port number, and it is assumed that
future versions of the CORBA standard support this by allowing implementations to choose
standard values for the object key of their IIOP IOR reference. If it should turn out that
CORBA will not support this there is the less elegant alternative to design a bootstrapping ser-
vice on top of TCP similar to the Internet finger service [Zimm91] that allows clients of termi-
nals, application pools and user agent pools to retrieve an initial object reference. The need to
construct IIOP IOR’s from hostnames and port numbers disappears as soon as they can be
retrieved via a global directory service.

A user name is simply a string. User names do not need to be unique. They become unique
in combination with the name of the user agent pool that houses the agent of the user:

typedef string UserName;

struct User {
 UapName home;
 UserName name;
};

Users that do not have access to a public user agent pool may run a private one on their multi-
media terminal. The UapName in their identifier will then be identical to the name of the termi-
nal that they are normally using. The user identifier may be written as a string similar to an E-
mail address:

UserName@UapName

This form will for instance be used in graphical user interfaces, or in general whenever the
identifier of a user is communicated via other means than CORBA operations.

The module Atyp defines two identifiers that are used to identify applications and content
on application pools:

typedef string ApplicationName;
typedef string TitleName;

The application name is a preferably unique identifier for a certain application. Users start
applications with an application name whenever they are interested in application logic. They
use title names whenever they are interested in some content rather than in the application
logic that mediates this content. They use both an application and a title name whenever they
want to view some content with a specific application. In this case it may happen that a given
combination of application and content is invalid. Since title names associate application logic
with data they are more important than application names that can only identify functionality.

An application pool assigns a locally unique session identifier to every running application.
This session identifier together with the name of the application pool represents a unique ses-
sion address:

typedef unsigned long SessionId;

struct SessionAddress {
 PoolName paddr;
 SessionId id;
};

129

Terminal Control Interfaces

The initiator of a session may reserve a session identifier prior to application startup and dis-
tribute it together with the application pool name to other interested users. These users can then
join the session once it is active.

An application session can be in the states IDLE, ACTIVE and EXITING. It is IDLE until the
application pool control has initialized the application. Once it is initialized it is in state
ACTIVE. It enters state EXITING when it is asked to release its resources and to terminate:

enum SessionState {IDLE,ACTIVE,EXITING};

The module Atyp further contains the definition of the three important information structures
UserRecord, ParticipantRecord and SessionDescription. The user record contains
the user identifier, his E-mail address, the address of his Web page, and a general information
field:

struct UserRecord{
 UapName home;
 UserName name;
 Url homepage;
 Email mailaddr;
 string<1000> info;
};

The participant record consists of a participant identifier, a user record, a terminal name and a
timestamp taken at the moment when the user joined the session. The session description
finally consists of the session address, the application name, the optional title name, the session
state, the session start time and a list of participant records:

struct SessionDescription{
 PoolName pn;
 SessionId id;
 ApplicationName an;
 TitleNameF tn;
 SessionState state;
 ParticipantRecords prs;
 Typ::Date start;
};

The session description is available to every session participant, i.e., it can be accessed inde-
pendently from the application via the control panel. Applications are likely to supplement the
APMT session description with application and session specific information that can only be
accessed via the application itself.

7.5 Terminal Control Interfaces

This section presents the various interfaces of the terminal control. It starts with a description
of the principal interfaces visible to control panels and application pools, and continues with a
description of the interfaces of the user session object. The interfaces of the terminal control
are depicted in Figure 6.5 on page 112.

APMT Platform Architecture

130

7.5.1 Interface Tc::Terminal

Tc::Terminal is the public interface of the terminal. It contains attributes that describe ter-
minal characteristics, the operation finger() that allows other users to find out about who is
currently logged, and the operation knock() via which a textual message can be communi-
cated to the currently logged user. The most important operation it defines is the operation
invite() that allows an application to invite a user to its session:

void invite(in Atyp::User user,
 in Pac::Participant sc,
 in Typ::InfIdents termobjects,
 in Atyp::InvitationInfo info)

raises (NobodyThere,
Ex::NotCompatible,

 Ex::NoSuchUser);

The parameter user is the identifier of the invited user. The terminal control checks this iden-
tifier against the one of the user that is currently logged. If there is a mismatch, it will raise the
exception Ex::NoSuchUser. If there is currently nobody logged it will raise the exception
NobodyThere. The parameter termobjects is the minimal list of interfaces that the termi-
nal needs to implement in order to be able to participate in the application. If the terminal does
not support all of the interfaces mentioned in the list it will raise the exception Ex::NotCom-
patible. The parameter info contains a session description that helps the user in his deci-
sion whether to accept the invitation or not. The parameter sc is a reference to an interface of
the participation control that the terminal control will use to asynchronously respond to the
invitation. The response to an invitation is asynchronous because it is assumed that the caller of
the invite() operation does not want to block for the time it takes the user to decide upon an
invitation. The caller of the invite() operation will typically release the binding to the Tc::
Terminal interface right after the call completes.

7.5.2 Interface Tc::PanelTerminalControl

Tc::PanelTerminalControl is the interface of the terminal control towards a control
panel. Every terminal has a generic control panel, and allows users to import a private control
panel from an application pool. A user that wants to log to a terminal first starts the generic
control panel. The generic control panel contacts his user agent in order to retrieve the user
record, and registers him with the terminal control:

void register(in Atyp::UserRecord user)
 raises (RegistrationError);

If the user does not have a user agent he is asked by the control panel to provide the informa-
tion that is contained in the user record. Once a user is registered he can access the services of
the terminal control. A user terminates a terminal session by deregistering from the terminal
control with a call to deregister(). Deregistration causes the termination of all applications
started by the user. The terminal will also quit all application sessions in which the terminal
participates.

After successful registration of the user the control panel may retrieve a stringified reference
to the Tc::Terminal interface and send it to the user agent. This allows the user agent to for-
ward invitations to the terminal. Applications will normally send invitations to user agents, and
not directly to terminals. The control panel may also retrieve a reference to an application con-
trol interface via which applications can be started:

131

Terminal Control Interfaces

ApplicationControl get_application_control();

This interface allows for instance to import control panels. An imported control panel gets a
reference to the Tc::PanelTerminalControl interface from the terminal control. It does
not need to register with the terminal control, and has immediately the same access rights to
the terminal control as the generic control panel. Once the imported control panel is running
the user will stop to use the generic control panel. However, he will be able to resort to it at any
time if the imported control panel does not work satisfactory.

The terminal control communicates with its control panels via events. Control panels regis-
ter for terminal control events with the following operation:

CosEventChannelAdmin::ConsumerAdmin register_terminal_events();

The CosEventChannelAdmin::ConsumerAdmin interface allows a control panel to con-
nect a CosEventComm::PushConsumer or CosEventComm::PullConsumer interface to
the event channel. The terminal control maintains a single event channel for control panels,
which means that all control panels see exactly the same events. The terminal control generates
for instance events when applications are started by other applications, when applications are
ready, and when a message arrived via the knock() operation in the interface Tc::Termi-
nal. An important event is the invitation event:

const string InvitationEventK =
 "Tc:PanelTerminalControl:Invitation";

struct InvitationEventD {
Atyp::InvitationInfo info;
InvitationKey key;

 boolean rejected;
};

The event data contains the invitation information that was communicated to the terminal con-
trol via the invite() operation in the Tc::Terminal interface, a flag indicating if the termi-
nal control already rejected the invitation due to compatibility problems, and an invitation key
that the control panel uses in its response to identify the previous invitation:

UserSession invite_accept(in InvitationKey key)
 raises (Ex::NoSuchKey,

Ex::ResourceProblem,
Atyp::SessionAccessDenied);

oneway void invite_reject(in InvitationKey key);

If the user accepts the invitation, the terminal control contacts the participation control of the
application, which may actually reject the terminal, for instance due to resource problems that
did not exist at the time the invitation was sent, or because the invitation was cancelled by the
application. The invite_accept() operation blocks until the remote participation control
accepts or rejects the terminal. In case the terminal is accepted, a reference to a new instance of
a Tc::UserSession interface is returned to the control panel.

The control panel may get references to all user session objects, including those that were
started by yellow page applications. The Tc::UserSession interface allows the control
panel to discover and access all objects that the respective application has created on the termi-
nal, and to call compound operations on all terminal servers owned by an application.

APMT Platform Architecture

132

7.5.3 Interface Tc::ApplicationControl

Tc::ApplicationControl is the interface via which a control panel or an application may
start an application or join a session on an application pool. The most important operation in
this interface is start():

UserSession start(in Atyp::PoolName pool,
 in Atyp::ApplicationNameF application,

in Atyp::TitleNameF title,
in Atyp::SessionId reserved)

raises (PoolNameError,
Atyp::NoSuchApplication,

 Atyp::NoSuchTitle,
 Atyp::ApplicationStartupDenied,
 Atyp::ApplicationStartupFailed,
 Ex::NotCompatible,
 Ex::ResourceProblem);

This operation starts an application in an application pool. The application pool is identified by
the pool parameter, and the application by the combination of an application and a title name.
The caller may either give a title name, an application name, or both. The parameter
reserved indicates with a non-zero value a previously reserved session identifier that is to be
used for the session. The call blocks until the application runs and is initialized, i.e., until there
is a certain level of confidence that the application will successfully run on the terminal. A ref-
erence to a Tc::UserSession interface is returned to the caller via which the application can
be monitored and controlled.

The start() operation may already fail locally, for instance if the terminal is unable to
construct an IIOP IOR for the Pc::Pool interface of the given application pool, or if the ter-
minal does not have enough resources to support a new application. It may then fail in an early
phase if the contacted application pool does not support the given application or title, or if the
user is not authorized to start it. It may further fail because the terminal finds out by itself that
it is not compatible with the application. The application pool control allows terminals to test
their compatibility before they actually start an application. Application startup may then fail
because the application crashes right after startup, or because it cannot serve the requested title
to the user. The exceptions that the start() operation may raise take account of all the men-
tioned failure scenarios.

The second important operation in Tc::ApplicationControl is join() which allows
to join an ongoing application session:

UserSession join(in Atyp::SessionAddress aaddr)
raises (Atyp::SessionAccessDenied,....);

The only information needed to join a session is the session address consisting of the applica-
tion pool name and a local session identifier. The terminal control first accesses the Pc::Pool
interface of the application pool where it can get a reference to the Pac::SessionAccess
interface of the respective participation control. It then issues a join request to the participation
control. This join request returns immediately because it is processed asynchronously. The ter-
minal control receives a callback from the participation control once the application or one of
the session participants has decided about the request. In case the terminal and its user are
accepted, the operation join() returns a reference to the Tc::UserSession interface of the
user session object. It raises the exception Atyp::SessionAccessDenied if the application
denied session access.

133

Terminal Control Interfaces

The interface Tc::ApplicationControl further contains a couple of operations that
allow to start special applications. The control panel of a user is started with the following
operation:

UserSession start_panel(in Atyp::PoolName pool,
 in Atyp::TitleName paneluser)

raises (....);

A special operation is necessary for this because the control panel has, unlike other applica-
tions, the right to retrieve a reference to the Tc::PanelTerminalControl interface. The
control panel is identified by a title name, which may for instance be identical with the user
name.

Terminal applications are also started via the Tc::ApplicationControl interface. The
only argument needed for this is an application name:

UserSession start_term_app(in Atyp::ApplicationName application)
raises (....);

It can also be imagined to provide a special interface for already running terminal applications
that allows them to directly access the terminal control services.

7.5.4 Interface Tc::UserSession

Every application running on the terminal is represented by a user session object in the termi-
nal control. The Tc::UserSession interface of the user session object allows a control panel
to control an application. Terminal applications and remote applications are handled via differ-
ent interfaces that both inherit from Tc::UserSession:

module Tc {

 interface UserSession {...};
 interface RemoteUserSession : UserSession {...};
 interface LocalUserSession : UserSession {...};
};

Every running application has a user session identifier that is unique within the terminal:

typedef unsigned long UserSessionId;

A user session is associated with a state:

enum UserSessionState{RUNNING,PAUSED,HIDDEN,
 HIDDEN_PAUSED,EXITING};

A user may locally pause an application, which means that the terminal servers of the applica-
tion stop processing. This does not concern applet handlers, and it also does not concern the
processing of control operation requests. A user may further hide an application, in which case
it unmaps its graphical user interface and stops all output. An application may also be paused
and hidden at the same time, in which case it does not consume any resources and is invisible
to the user. The operations in Tc::UserSession that influence the user session state are:

void hide();
void show();
void pause();
void continue();

APMT Platform Architecture

134

These operations can also be found in the interface Ts::TerminalServer. The user session
object may therefore simply repeat their invocation on every terminal server owned by the
application. Since these operations only have a limited effect on the application it is assumed
that they do not fail under normal conditions. An eventual failure indicates a major problem
that is fatal to the user session as a whole.

A user may also kill the applications that he started, quit the applications that he joined, and
remove the user session object:

void kill();
void quit();
void remove();

The kill() operation blocks until the application has terminated. Similarly, the quit()
operation blocks until the application has removed all of its terminal servers. Applications will
normally provide proprietary ways to quit or kill the application session. It can therefore be
assumed that users will rarely need to resort to kill() or quit().

The module Tc defines the type RemoteSessionDescription for the description of an
application running in an application pool:

struct RemoteSessionDescription {
 UserSessionId id;
 UserSessionState state;
 Atyp::SessionDescription globdesc;
 Ts::TermServDescriptions terservs;
};

The member terservs is a list of terminal server descriptions. A terminal server description
contains a reference to a Ts::TerminalServer interface that allows a control panel to con-
tact the respective terminal server and to find out about the objects that it instantiated. The ses-
sion description can be retrieved via an operation in the Tc::RemoteUserSession interface:

RemoteSessionDescription get_description();

An operation has been chosen rather than an attribute because the terminal control may need to
contact the participation control in the application pool in order to get an up-to-date session
membership list.

7.5.5 Interface Tc::TerminalControl

Tc::TerminalControl is the interface of running applications to the terminal control. It
offers more functionality than any other terminal control interface. The terminal control gives
the reference to the Tc::TerminalControl interface not only to terminal applications and
remote applications, but also to every terminal server that is activated by an application. Before
an application activates a terminal server it may find out what kinds of terminal servers are
available:

readonly attribute Typ::InfIdents termservers;

It may also find out what interfaces are supported by the terminal:

Typ::InfIdents challenge(in Typ::InfIdents termobjects);

The parameter termobjects is the list of interfaces in which the application is interested.
The terminal control compares this with the list of available interfaces, and returns the subset

135

Terminal Control Interfaces

of interfaces that is not supported by the terminal. The challenge() operation is a conve-
nient way for applications to find out if a terminal supports certain sets of interfaces. It is not
thought to be a compatibility test. The compatibility of the terminal with respect to the applica-
tion is tested as part of the startup procedure, i.e., before the application even sees a reference
to the Tc::TerminalControl interface.

The application may activate terminal servers with the following operation:

Ts::TerminalServer get_terminal_server(in Ftyp::NameF name,
 in Typ::InfIdent server)

raises (....);

The parameter server is the name of the terminal server that is to be activated. The parameter
name allows the application to assign a name to the newly created instance of the terminal
server. The terminal control will then register this name and the object reference of the termi-
nal server with the local naming service.

Yellow page applications or application pool browsers may want to start other applications
on behalf of the user. They may retrieve a reference to the Tc::ApplicationControl
interface via the following operation:

ApplicationControl get_application_control();

Imported control panels need to get access to the Tc::PanelTerminalControl interface of
the terminal control:

PanelTerminalControl get_terminal_control();

This operation will raise the standard security exception NO_PERMISSION if it is called by an
application that was not started as a control panel.

The application may retrieve a reference to a branch in the naming tree of the local name
service that it may freely use for its purposes:

CosNaming::NamingContext get_name_service();

This branch is deleted when the application terminates. It would also be possible to provide a
branch in the naming tree that is shared among applications on the terminal and that allows
them to discover each other.

Many of the objects that an application owns on a terminal are in fact created by one of its
application pool utilities. This means that the application and its applets on the terminal do not
automatically have object references to them. An application may get the object references it is
interested in from the utilities that created the respective objects, and communicate these refer-
ences to its applets, but this is awkward and should be avoided because it puts an unnecessary
load on the application. It makes more sense to communicate object references locally to the
applets that are interested in them. The application and its utilities may assign a name to every
object that they create, as could be seen in the case of terminal servers. If an object is created
with a name, the terminal control will advertise its object reference via an entry in the naming
tree branch of the application. Most applications will need in addition to that a real handshake
procedure that allows them to synchronize with the life-cycle of an object. The interface Tc::
TerminalControl supports this with four operations and two events. The following two
operations are called by factories within terminal servers to indicate the creation or deletion of
a named object:

APMT Platform Architecture

136

oneway void create_indication(in CosNaming::Name obj_name,
 in Typ::StringRef obj_ref);
oneway void delete_indication(in CosNaming::Name obj_name);

Applets that want to synchronize with the creation or deletion of named objects call the follow-
ing two operations:

boolean create_event(in CosNaming::Name objname,
 out Typ::StringRef obj_ref);
boolean delete_event(in CosNaming::Name objname);

The operation create_event() returns TRUE if the object exists already, in which case it
returns the object reference in the obj_ref parameter. The operation delete_event()
returns TRUE if the object has already been deleted. The following events are issued by the ter-
minal control when a named object is created or deleted:

const string CreationEvent = "Tc:TerminalControl:Creation";
struct CreateEventD {
 CosNaming::Name obj_name;
 Typ::StringRef obj_ref;
};

const string DeleteEventK = "Tc:TerminalControl:Deletion";
typedef CosNaming::Name DeleteEventD;

Applets must separately register for the events in which they are interested:

CosEventChannelAdmin::ConsumerAdmin
 register_event(in Typ::EventKey key)
 raises (Ex::NoSuchEvent);

The user session object maintains one event channel per event. This means that an applet must
filter the create and delete events that it receives. This is acceptable because it can be assumed
that there will be rarely more than one applet per application on the terminal. If this assumption
should turn out to be wrong it would be necessary to add functionality to Tc::TerminalCon-
trol that allows applets to maintain their own event channels, in which case the user session
object needs to keep track about the requester of every registered event.

An application that is about to terminate, or that dismisses the terminal from the application
session, deletes all terminal servers. Once this is done it calls the terminal control to indicate
that the terminal is no longer part of the application session:

void terminated();

This operation may actually be called by the application in the application pool, or by an applet
in an applet handler shortly before it terminates. The operation is also called if the termination
of the application was initiated by the user via the quit() or kill() operation in the Tc::
UserSession interface, or by the terminal control itself.

7.6 Terminal Server and Applet Handler Interfaces

This section presents the terminal server base interface and as special cases of terminal servers
the interfaces of applet handlers for Tcl/Tk and Java.

137

Terminal Server and Applet Handler Interfaces

7.6.1 Interface Ts::TerminalServer

The module Ts contains the definitions of the terminal server base interface Ts::Termi-
nalServer and some types that are related to it. Two of the types defined in Ts shall be pre-
sented here:

enum TerminalServerState {NORMAL,HIDDEN,PAUSED,
 HIDDEN_PAUSED,EXITING};

struct TermServDescription {
 Typ::InfIdent type;
 Typ::Date started;
 Typ::StringRef termservref;
 TerminalServerState state;
};

The definition of the terminal server state is identical to the one of the user session state. The
terminal server description contains the interface name of the terminal server, the time it was
started, a stringified reference to it, and its state. It can be retrieved via an attribute in the inter-
face of the terminal server:

readonly attribute TermServDescription description;

Terminal servers are always started by the terminal control. The terminal control initializes a
terminal server with the following operation:

void set_terminal_control(in Typ::StringRef termcont);

The parameter termcont is a stringified reference to the Tc::TerminalControl interface
of the application that started the terminal server. The terminal server may consequently access
this interface and find out about the context in which it is running.

The remaining operations of the Ts::TerminalServer interface are already known from
the Tc::UserSession interface:

void hide();
void show();
void pause();
void continue();
void remove();

They can be called by the control panel, by the application, or by the user session object, for
instance following a call in the Tc::UserSession interface. It is possible to register for a
change event which allows all interested clients to be kept up-to-date about the state of a termi-
nal server. As for now it does not seem necessary to define a separate terminal server interface
towards the terminal control that is hidden from the application and the control panel.

7.6.2 The Tcl/Tk Applet Handler

There is no standard language mapping for OMG-IDL to Tcl, but it is possible to design a sim-
ple mapping for the purposes of APMT. This mapping may for instance build on the one pro-
posed by the Web* project [Alma95]. Tcl/Tk is fine for the development of graphical user
interfaces that can be downloaded into the terminal. It is therefore an option for the develop-
ment of centralized applications as shown in Figure 6.12 on page 119. Since it is weakly typed
it should not be used for complex applets as found in completely distributed applications.

APMT Platform Architecture

138

Another limitation of Tcl is the bad performance of the Tcl interpreter. However, starting with
version 8.0 the Tcl interpreter contains an on-the-fly bytecode compiler with which the execu-
tion speed of a Tcl script can be considerably improved. An appealing feature of Tcl is the
Safe-Tcl interpreter [Oust96] which isolates a Tcl script from the system that is housing it,
making it the natural choice for the interpreter in the Tcl/Tk applet handler.

An APMT applet handler is defined by an IDL interface and a secure system services API,
as was explained in Section 6.5.2. This section only presents the IDL interface of the Tcl/Tk
applet handler. The internal API is left open here, but it is stated that its specification is neces-
sary, for applets need a standard environment within the applet handler. The module TclTk
contains all definitions that are relevant for the Tcl/Tk applet handler. This includes the defini-
tion of an applet handler interface, and the definition of a code and media object loader for the
application pool:

module TclTk {

 interface TclTkLoader {...};
 interface TclTkApplethan : Ts::TerminalServer {...};
};

The application itself does not need to download Tcl/Tk scripts into an applet handler. Tcl/Tk
applet handlers maintain a cache of downloaded scripts and media objects, and access the Tcl/
Tk loader in the application pool if they need scripts or media objects that are not in the cache.
The module TclTk defines a unique identifier for scripts and media objects:

struct Downloadable {
 Atyp::ApplicationName appname;
 Typ::Name objname;
 string version;
};

A downloadable object can either be a script or a medium object like a digital image that is part
of the graphical user interface generated by a Tcl/Tk script. The globally unique application
name and the object name in the Downloadable structure form together with the version
number a unique identifier for a downloadable object. It allows Tcl/Tk applet handlers to find
out if they hold the exactly required version of an object in their cache, and if not, to retrieve it
from a loader.

The module TclTk also defines two types that represent a script and a binary medium
object:

typedef string TclTkScript;
typedef sequence<octet> MediumObject;

Scripts and media objects are both downloaded via IIOP. This simplifies the architecture of the
applet handler and the loader, but is slower than a transmission directly on top of TCP1. It can
be envisaged to compress Tcl/Tk scripts for the purpose of downloading. This reduces the load
on the network and the code loader, but results in additional delay on the client side where
received applet code must be decompressed before it can be executed.

1. [Pyar96] reports a considerable performance loss when using CORBA/IIOP for the transfer of binary large
objects (BLOB) rather than TCP via Berkeley sockets. On an ATM link, the CORBA/IIOP transfer of a BLOB
only reached 66% of the throughput measured for Berkeley sockets.

139

Terminal Server and Applet Handler Interfaces

Applet Handler Interface

TclTk::TclTkApplethan inherits from the Ts::TerminalServer interface. An applica-
tion launches a Tcl/Tk applet handler with a call to the get_terminal_server() operation
of the Tc::TerminalControl interface. It initializes the applet handler with the following
operation:

void init(in Downloadable script,
 in Downloadables libraries,
 in Downloadables media_objects,
 in Typ::StringRef loader,
 in Typ::StringRef application);

The parameter script is the identifier for the script that is to be executed. The libraries that
are used by this script are communicated via the second parameter. The parameter media_
objects identifies the media objects that are used. The applet handler must have the men-
tioned libraries and media objects at hand when it starts to evaluate the script. The parameter
loader is a reference to the loader in the application pool where the applet handler can
retrieve scripts and media objects that it does not have in the cache. The parameter applica-
tion finally is a stringified reference to a callback interface in the application that can be
accessed by the script once it is running. The init() operation returns immediately because
the applet handler is searching asynchronously for scripts, script libraries and media objects.
The next operation the application calls is start():

void start()
 raises (TclNok, NoScript);

This causes the script handler to evaluate the script. Start() blocks until the script has been
found and evaluated by the interpreter. Once the Tcl/Tk script in the applet handler is running it
may access the terminal control, retrieve object references to other objects of the application in
the terminal, and communicate user input back to the application in the application pool. The
application controls the applet with the following two operations:

Result eval_script(in TclTkScript script)
 raises (TclNok);

void as_eval_script(in TclTkScript script);

The script parameter is a small Tcl script, typically not more than the name of a Tcl proce-
dure that is to be executed, and some string arguments to it. The Result is the string result
that is returned by the Tcl interpreter. The first operation blocks until the script is evaluated,
whereas the second operation evaluates the script asynchronously. These two operations are a
surrogate for a server side IDL language mapping, which means that the Tcl/Tk applet handler
only needs to implement a client side mapping1. A Tcl/Tk script in the applet handler can
therefore access CORBA objects without any problems, but it cannot implement CORBA
interfaces. Its services are accessed directly in Tcl with the two evaluation operations of the
applet handler. These operations are supplemented with two further operations that allow to get
or set the value of a variable in the applet:

Result get_variable(in string variable)
 raises (TclNok);

1. It is assumed that a Tcl client uses the Dynamic Invocation Interface for requests. The advantage of this is that
no stub code needs to be shipped over the network. A server-side language mapping could be implemented on
top of the Dynamic Skeleton Interface.

APMT Platform Architecture

140

void set_variable(in string variable, in string value)
 raises (TclNok);

These two operations can be considered as a replacement for CORBA attributes.

Loader Interface

The interface TclTk::TclTkLoader contains two operations that allow applet handlers to
retrieve scripts and media objects. A complete script or script library is retrieved with the get_
script() operation:

TclTkScript get_script(in Downloadable script)
 raises (NoSuchObject);

Media objects can be downloaded with the following operation:

MediumObject get_medium_object(in Downloadable obj)
raises (NoSuchObject);

It is assumed that digital images and other objects in the graphical user interface are medium-
sized, and that it is not necessary to stream them from the application pool to the terminal.

The Tcl interpreter calls the unknown command whenever it stumbles over a command that
it does not know. The applet handler code may intercept calls to unknown, retrieve the missing
procedure from a cached library, and make it available to the script without that an error is gen-
erated. This procedure can be extended to allow the dynamic downloading of procedure code
from the loader. A similar procedure can be added for the dynamic downloading of media
objects.

7.6.3 The Java Applet Handler

The integration of Java into APMT is straightforward, first of all because of the existence of a
standard Java language mapping in CORBA, and then because Java is designed to be shipped
across the network and to be executed remotely. Java can be used in APMT the same way as in
the Web. This means that APMT Java applets are classes that extend the standard class
java.applet.Applet. What is different with respect to the Web is the bootstrapping proce-
dure, the class loader, and the security policies. APMT uses IIOP rather than HTTP to down-
load applet code into the terminal. This requires the definition of a Java code loader interface in
addition to an applet handler interface, and the development of an APMT class loader that
extends the default class loader java.lang.ClassLoader. The Java applet handler must
access CORBA interfaces on the terminal, in the application pool, and possibly in remote ter-
minals. This requires a relaxation of the current security policies for Java applets.

The Java code loader and applet handler interfaces are defined in the module Java. The
Java applet handler inherits from the general terminal server interface:

module Java {
 typedef string ClassName;
 typedef string PackageName;
 typedef sequence<octet> Package;

 interface JavaLoader {...};
 interface JavaApplethan : Ts::TerminalServer {...};
};

141

Application Pool Control Interfaces

The Java applet handler interface contains the two operations init() and start(). The
application calls the init() operation in order to communicate the applet name to the applet
handler:

void init(in ClassName applet,
 in Typ::StringRef loader,

in Typ::StringRef application);

The parameter applet is a globally unique Java class name. The parameter loader is a
stringified reference to the Java code loader in the application pool. The parameter applica-
tion is a stringified reference to an interface implemented by the application. The applet han-
dler looks asynchronously for the Java packages that are necessary to run the applet, and
downloads them from the code loader in the application pool. This includes not only the pack-
age of the applet itself, but also packages containing stub code for the application-specific
interfaces that the applet accesses, and skeleton code for the application-specific interfaces that
it implements. The following operation defined in Java::JavaLoader is used for download-
ing packages:

Package get_package(in PackageName name)
raises (NoSuchPackage);

At some point the application starts the execution of the applet by calling start(). This oper-
ation blocks until the applet handler is ready to execute the applet, and returns just before the
start() method of java.applet.Applet is called. There are two possiblities how the
contact between the applet and the application can be established. One possibility is to have the
applet call an operation in the application interface to which it holds a reference. The other
possiblity is to have the application call an operation in the applet right after start() returns.

Due to the existence of a Java server-side mapping there is no need for special evaluation
operations like the ones implemented by the Tcl/Tk applet handler. Once the applet is running,
the application can directly communicate with it, and does not need to pass through the inter-
face Java::JavaApplethan. The only interface that remains to be defined is the internal
APMT system services interface of the applet handler that allows applets to find out about the
environment in which they are running.

7.7 Application Pool Control Interfaces

This section presents the interfaces of the application pool control, as depicted in Figure 6.8 on
page 115 in the previous chapter. It starts with a description of the public interface of the appli-
cation pool, which is the interface Pc::Pool, followed by a discussion of the interfaces of the
session object that represents a running application.

7.7.1 Interface Pc::Pool

Pc::Pool is the public interface of the application pool. Terminals access it to start applica-
tions, or to join application sessions. A terminal control that wants to start an application calls
the following operation:

ParentSessionControl get_application(in Atyp::UserRecord user,
 in Atyp::ApplicationNameF application,
 in Atyp::TitleNameF title)
 raises (Atyp::NoSuchApplication,

APMT Platform Architecture

142

 Atyp::NoSuchTitle,
Atyp::ApplicationStartupDenied,
Ex::ResourceProblem);

This operation does not yet start the application. It returns a reference to the session control
interface of a session object. This session object represents the application that the terminal
control addresses with the combination of title and application name in the parameter list of the
operation. The session control interface allows the terminal control to find out if it is compati-
ble before it actually starts the application. It is a parent session control because all applica-
tions started by a terminal are automatically parent applications. The operation get_
application() fails if the application pool does not contain the combination of application
and title requested by the terminal control, if the user denoted by the parameter user is not
authorized to start the application, or if the application pool does not have enough resources
left to start this application.

A terminal control that holds an identifier for a session on an application pool may retrieve a
reference to the session access interface of the respective participation control:

Pac::SessionAccess get_access(in Atyp::SessionId sid)
 raises (....);

The operation fails if the given session identifier is invalid, if the session cannot be joined, or if
there is a resource problem. This operation is also used by terminals that want to join a slave
application of a broadcast application. The slave application is transparently launched by the
first terminal that wants to join it, and terminates when the last terminal quits the application
session.

The interface Pc::Pool also contains an operation with which a user may reserve a session
identifier for a future application session on this application pool:

Atyp::SessionId reserve_identifier(in Atyp::UserRecord user
 in Typ::Date expires);

A user accesses this operation for instance via his control panel. The parameter expires indi-
cates the expiration date of the session. If the session has not taken place until the date indi-
cated by expires, the reservation is automatically cancelled. The reservation of session
identifiers is the most simple form of reservation that can be imagined. A future version of the
Pc::Pool interface may provide access to more refined reservation interfaces.

7.7.2 Interface Pc::SessionControl

Applications started by terminals are parent applications and are represented by a parent ses-
sion object in the application pool control. Parent applications may start child applications
which are represented by a child session object. Similarly, child applications may start their
own child applications, which results in a hierarchy of application sessions that are all part of
the same composite session. A composite session is controlled by the application that was orig-
inally launched by a terminal. Figure 7.1 depicts the interfaces of the child and parent session
object, and the interaction between these objects with the terminal control and the child and
parent applications. Child session objects differ from parent session objects in the control
interface that is exposed to the owner of the application:

module Pc {

 interface SessionControl;

143

Application Pool Control Interfaces

 interface ParentSessionControl : SessionControl {...};
 interface ChildSessionControl : SessionControl {...};
};

The common base interface Pc::SessionControl allows applications and terminals to
retrieve a list of terminal interfaces required by the application:

Typ::InfIdents required_interfaces();

Terminals may compare this list with the list of interfaces that they implement in order to
determine if they are compatible with the application. Applications may check this list against
the list of interfaces implemented by every terminal in the application session. The terminal or
parent application that started an application may also kill it:

void kill();

It is assumed that there is normally no need to call this operation.

The interface Pc::ParentSessionControl contains two operations that allow to start
an application:

Atyp::SessionId start(in Typ::StringRef tc)
raises (....);

void start_with_id(in Typ::StringRef tc,
 in Atyp::SessionId id)

raises (....);

The operation start() returns a session identifier if the application could be started success-
fully. The operation start_with_id() allows to start the application with a previously
reserved session identifier. Both operations block until the application runs. The parameter tc
is a stringified reference to a Tc::TerminalControl interface in the terminal that wants to
start the application. The application control initializes the application with this reference.

The interface Pc::ChildSessionControl contains an operation that allows an applica-
tion to start a child application:

App::Application start()
raises (....);

Figure 7.1. Interfaces of the child and parent session.

Application Pool Management

Terminal Control

Parent

Pc::ParentSessionControl

Pc::PoolControl

Pa::Session
Parent

Application
Child

Pc::ChildSession

Pc::PoolControl

Pa::Session

 Control

Session Session

Child
Application

Composite Session
Application Pool Boundary

APMT Platform Architecture

144

The operation returns a reference to the control interface of the child application.

7.7.3 Interface Pc::PoolControl

Pc::PoolControl is the interface of the application pool control towards a running applica-
tion. It allows to start application pool utilities and other applications. Similar to the interface
Pc::Pool it provides information about installed utilities, applications and titles:

readonly attribute Typ::InfIdents installed_uts;
readonly attribute Atyp::ApplicationNames installed_apps;
readonly attribute Atyp::TitleNames installed_titles;

Applications may first consult these lists before they choose to start a child application or a
utility. They may also access the service broker of the application pool to get more information
about installed applications and titles. Two further attributes inform the application about the
utilities and child applications it has currently running:

readonly attribute Put::UtilityDescriptions running_uts;
readonly attribute ChildSessionControls child_sessions;

The attribute child_sessions is a list of references to Pc::ChildSessionControl inter-
faces. The attribute running_uts is a list of utility descriptions, with a utility description
containing some basic information about the utility and a reference to a Put::Utility inter-
face. Utilities are started with a call to the following operation:

Put::Utility get_utility(in Typ::InfIdent utility)
raises (....);

The call returns a reference to a Put::Utility interface once the utility is up and running.
The application may then narrow this reference to the type of interface it actually instantiated,
and start to issue operation requests to this interface.

The procedure for starting a child application is similar to the one for starting a parent appli-
cation. The application that wants to start a child application must first get hold of a reference
to a session control interface:

ChildSessionControl get_application(in Atyp::ApplicationNameF
 application,
 in Atyp::TitleNameF title)
 raises (....);

The application specifies a combination of application and title name, and receives a reference
to a Pc::ChildSessionControl interface if the application pool can satisfy the request.
This interface allows the application to test if the terminals that are currently participating in
the application session are compatible with the child application. Once compatibility is tested
the application may start the child application:

App::Application start()
raises (....);

The exceptions raised by this operation correspond to those of the get_application() call
in the interface Pc::Pool.

An application that terminates indicates this to the application pool control with a call to the
following operation:

145

Application Interfaces

void terminated();

Before calling this operation, the application must have disconnected from all terminals and
removed all application pool utilities and child applications that it owns. It will exit right after
the call to terminated() returns.

7.8 Application Interfaces

An application implements at least a Pc::ApplicationControl interface towards the
application pool control. If it can act as a child application it will also implement an App::
Application interface towards its parent application. Apart from that an application will also
implement interfaces towards the application pool utilities it uses, and the applets it downloads
into terminals.

7.8.1 Interface Pc::ApplicationControl

This interface contains operations that allow the application pool control to initialize an appli-
cation and to kill it. Parent applications are initialized with a call to the following operation:

void init_parent(in PoolControl cb,
 in Typ::StringRef termcont,
 in Atyp::UserRecord ur,
 in Atyp::TitleNameF title,
 in Atyp::SessionId aid);

The parameter cb is a reference to the Pc::PoolControl interface of the parent session
object. The parameter termcont is the stringified reference to the terminal control of the ter-
minal that launched the application. The parameter ur is the user record of the user that
requested the application, title is the name of the possibly requested title, and aid is the
identifier assigned to the parent application session. The application needs to know this identi-
fier if it wants to invite terminals to participate in the session.

The initialization of a child application is slightly different. In this case, no information
about terminals is passed to the application. It is assumed that the parent application will share
its participation control utility with its child applications, which allows the child application to
retrieve all information it needs about participating terminals. A child application is initialized
with a call to the following operation:

App::Application init_child(in PoolControl cb,
 in Atyp::TitleNameF title,
 in Atyp::SessionId aid)

raises (NoChildMode);

The operation returns a reference to the App::Application interface of the application in
case it may run in child mode, and the exception NoChildMode in case it can only run as a
parent application.

The application also implements a kill() operation that is called by the application pool
control when the owner of the application or the application pool management wants to termi-
nate the application. This call returns immediately since it is processed asynchronously by the
application. The application enters state EXITING and calls terminated() in the Pc::
PoolControl interface of its session object when it is ready to exit. An application that does

APMT Platform Architecture

146

not respond to kill() may still be killed via the ORB, or directly via an operating system
call.

7.8.2 Interface App::Application

App::Application is the interface from which all child application interfaces inherit. It
contains operations that allow the parent application to synchronize the child application with
the parent application session. If the parent application is a single-user application, it will fur-
nish a reference to a terminal control interface:

void set_terminal_control(in Typ::StringRef termcont)
raises (SessionRequired);

If the child application requires a participation control utility it will raise the SessionRe-
quired exception. Multi-user child applications are initialized with a stringified reference to
the Pac::SessionInformation interface of the participation control utility:

void synchronize_to_session(in Typ::StringRef sessioninfo)
 raises (NoSessionSupport);

The Pac::SessionInformation interface allows a child application to find out which ter-
minals participate in the session, and to register for events that indicate session changes.

A parent application may cause a child application to exit:

void remove();

This call is as handled asynchronously by the child application. It enters state EXITING and
calls terminated() in the Pc::PoolControl interface of its session object when it has
released all the terminal and application pool resources that it uses. It does not terminate the
user session with a call to terminated() in the Tc::TerminalControl interface. This call
is reserved to parent applications.

7.9 Utilities and the Participation Control

This section presents the base interface of application pool utilities and the interfaces of the
participation control. The participation control is a utility that helps the application to manage
the participant session. The participation control interfaces presented here are meant to be base
interfaces that can be extended to provide more services to terminals and applications.

7.9.1 Interface Put::Utility

The module Put contains the definitions of the type UtilityDescription and the interface
Put::Utility. This interface contains an operation allowing to remove the utility, and
another operation that allows the application pool control and the applications to register for
events generated by the utility. The remove operation in Put::Utility returns immediately
when called. It causes the utility to release all the terminal and application pool resources that
it holds. Once this is done it will generate a last state change event which allows applications to
synchronize with the termination of their utilities. The interface Put::Utility itself defines
only this state change event, but it can be expected that the interfaces which inherit from Put:
:Utility will define more events. An application pool utility maintains one event channel
per event type.

147

Utilities and the Participation Control

7.9.2 Participation Control Interfaces

The previous chapter already gave a rough overview of the participation control. Figure 7.2
depicts all interfaces of the participation control utility and associated callback interfaces in the
application and the terminal control. These interfaces are all defined in the module Pac. The
participation control has a public Pac::SessionAccess interface towards terminals, a Pac:
:SessionControl interface towards the application that controls the participant session, and
a Pac::SessionInformation interface towards child applications that need to synchronize
with the participant session of a parent application. Every terminal that participates in the ses-
sion, that has been invited to the session, or that issued a join request, is represented by a par-
ticipant object in the participation control utility. This object has a Pac::Participant
interface towards the parent application, and a Pac::ParticipationControl interface
towards the represented terminal. The parent application implements a Pac::Application
interface via which the participation control communicates events like join requests and
responses to invitations. A terminal that wants to join a session provides a reference to a Pac:
:ParticipationRequest interface to the participation control. The join request is pro-
cessed asynchronously by the participation control and the application, with the outcome being
communicated as callback to the Pac::ParticipationRequest interface of the requesting
terminal.

7.9.3 Interfaces Pac::SessionAccess and ParticipationRequest

Pac::SessionAccess is the interface that terminals use to join an application session. A ter-
minal can retrieve a reference to this interface via a call to the operation get_access() in
Pc::Pool if it knows the identifier of the application session, or it may also retrieve it via a
service gateway or the service broker of the application pool. The interface Pac::Session-
Access contains an attribute describing the application session:

readonly attribute Atyp::SessionDescription description;

Figure 7.2. Interfaces of the participation control utility.

Participation

Pac::SessionAccess

Pac::Participant

Pac::Participation
 Control

Participant

Pac::SessionControlPac::SessionInformation

ParentChild
Applications

Pac::Application

Application

Joining Terminal

Invited
or

Pac::ParticipationRequest

Application Pool Boundary

Participating
Terminal

Application
Pool

Control

Control
Utility

APMT Platform Architecture

148

It further contains an operation that allows a terminal to test if it is compatible with the applica-
tion:

Typ::InfIdents required_interfaces();

The kind of compatibility test provided by this operation is very simple. As was already said in
the discussion of the Pc::SessionAccess interface, a future version of APMT may contain
more advanced compatibility negotiation support. Once a terminal has tested its compatibility
it may issue a join request with a call to the following operation:

ParticipationControl join(in ParticipationRequest pr,
in Atyp::UserRecord us)

 raises (....);

The terminal furnishes a user record and a reference to a Pac::ParticipationRequest
interface to which the response of the application is delivered. The application or the participa-
tion control may immediately reject the join request, for instance in case the user is not autho-
rized to join the session, or in case there are not enough resources to accommodate a new
participant. If the application accepts to process the join request, the call to join() returns a
reference to a Pac::ParticipationControl interface, which is the interface of the termi-
nal to the participant object by which it is represented in the participation control. The applica-
tion may need a considerable amount of time to process a join request, for instance because it
needs the approval of a user. If the application accepts the join request of the terminal, the par-
ticipation control will call the following operation in the Pac::ParticipationRequest
interface of the terminal:

Typ::StringRef join_accept()
raises(JoinRequestCanceled);

The operation returns a stringified reference to a Tc::TerminalControl interface that the
participation control forwards to the application. If the user of the terminal has cancelled the
join request in the meantime, the operation raises a JoinRequestCanceled exception. Once
join_accept() has returned successfully, the terminal is member of the application session.
If the application does not accept the join request of the terminal, the following operation is
called:

void join_reject(in string description);

The parameter description contains an informal description of the reason why the terminal
is not allowed to join the application session. This description is meant to be displayed to the
user via the control panel.

7.9.4 Interfaces Pac::SessionControl and Application

Pac::SessionControl is the interface that the application controlling the participant ses-
sion has to the participation control. It inherits from Put::Utility and is therefore also visi-
ble to the application pool control. The application initializes the participation control with a
call to the following operation:

SessionInformation init(in Application cb
 in Atyp::SessionDescription session);

The parameter cb is a reference to the Pac::Application callback interface implemented
by the application. The parameter session is the initial session description. The operation
returns a reference to the Pac::SessionInformation interface of the participation control

149

Utilities and the Participation Control

that the application may forward to its child applications. The application must further provide
information about the terminal by which it was started:

Participant init_participant(in Atyp::ParticipantRecord part,
 in Typ::StringRef termcont);

The application furnishes a participant record and a stringified reference to a Tc::Terminal-
Control interface, and retrieves a reference to a Pac::Participant interface, which is the
interface that the application has to a participant object. Once the application has initialized the
participation control it may invite users:

Participant invite_user(in Atyp::User user);

The application furnishes a user identifier, and retrieves a reference to a Pac::Participant
interface. The participation control processes the invitation request asynchronously. It contacts
the user agent of the user and places the invitation. If the application knows on which terminal
a user is logged it may also cause the participation control to contact a terminal rather than a
user agent:

Participant invite_terminal(in Atyp::User user,
 in Atyp::TerminalName terminal);

In this case the participation control calls the invite() operation in the Tc::Terminal
interface. Once the participation control has successfully placed an invitation it will notify the
application of this with a call to the following operation in the Pac::Application interface
of the application:

oneway void invitation_placed(in Atyp::ParticipantId pid,
 in boolean success);

The participation control indicates for which participant it placed an invitation, and it also indi-
cates if the invitation was placed successfully. If the latter is not the case the invitation proce-
dure has failed and is finished, causing the participant object of the invited user to be deleted.

The Pac::Application interface contains further operations related to join requests and
invitations. A join request is indicated to the application with a call to the following operation:

void join(in Atyp::UserRecord user,
in Participant part)

 raises (....);

The application may immediately reject the join request, in which case the newly created par-
ticipant object is deleted, or it may start to asynchronously process the request, which it indi-
cates by not raising an exception. Terminals may cancel join requests. The participation control
indicates a cancelled join request with a call to the following operation:

oneway void cancel_join(in Atyp::ParticipantId id,
 in string description);

The join procedure may fail even after the application has accepted the terminal:

oneway void join_reject(in Atyp::ParticipantId pid);

It may also happen that a terminal rejects an invitation:

oneway void invite_reject(in Atyp::ParticipantId pid,
 in string description);

APMT Platform Architecture

150

The participation control indicates the successful outcome of an invitation or join procedure
with a call to the following operation:

oneway void new_participant(in Atyp::ParticipantId pid,
 in Typ::StringRef tc);

The parameter tc is a stringifed reference to a Tc::TerminalControl interface in the ter-
minal that joined the application session. The counterpart to new_participant() is the
operation with which the participation control indicates to the application that a terminal wants
to leave the session:

oneway void quit(in Atyp::ParticipantId pid,
 in string description);

Terminals will rarely quit an application session via the participation control. It is supposed
that every application offers the possibility to quit the session in the graphical user interface
that it generates on a terminal. It is therefore normally the application that informs the partici-
pation control that a terminal has left the session.

7.9.5 Interfaces Pac::Participant and ParticipationControl

Pac::Participant is the interface of the application towards a participant object. This
interface contains operations that allow the application to accept or reject a join request, to can-
cel an invitation, and to remove the participant object in case the respective terminal has left
the application session.

Pac::ParticipationControl is the interface of a terminal to a participant object. It
allows terminals to accept or to reject invitations, to cancel a pending join request, and to quit
the application session. A terminal accepts an invitation by calling the following operation:

void invite_accept(in Typ::StringRef tc,
 in Atyp::UserRecord us)
 raises (InvitationCancelled);

It furnishes a stringified reference to a Tc::TerminalControl interface and a user record.
The terminal is member of the application session if the operation returns normally. An appli-
cation may cancel a previously issued invitation. If the terminal tries to accept an invitation that
has been cancelled, the exception InvitationCancelled is returned to it.

7.9.6 Interface Pac::SessionInformation

The interface Pac::SessionInformation allows child applications to synchronize with the
participant session of their parent application. It contains an attribute listing the actual session
participants along with all information that child applications need to know about a participant.
The most important information child applications need to know is the reference to the termi-
nal control interface of a participating terminal. Pac::SessionInformation further con-
tains an operation that allows applications to register for events, and the definition of the events
NewParticipantEventK and GoneParticipantEventK. Child applications do not have
access to other participation control interfaces than Pac::SessionInformation. Session
membership is exclusively controlled by the parent application. Child applications may syn-
chronize with the session controlled by the parent application, but they cannot modify it.

151

Scenarios

7.10 Scenarios

This section discusses a selection of scenarios in order to illustrate the usage of the APMT
platform interfaces. The scenarios are application startup, session invitation, session join, and
child application startup. Session termination scenarios are less complex and are therefore not
shown here. It is assumed that the previous sections conveyed a good idea of how user sessions
and application sessions are terminated.

7.10.1 Application Startup Scenario

Figure 7.3 depicts the event trace of the application startup scenario. The figure shows how the
control panel, the terminal control and the application pool control interact during application
startup. The application startup scenario begins with the control panel issuing a start()
request to the Tc::ApplicationControl interface of the terminal control. The terminal
control contacts the respective application pool and issues a get_application() request in
the interface Pc::Pool. This causes the application pool control to create an application ses-
sion object with a Pc::ParentSessionControl interface towards the terminal. The termi-
nal control accesses this interface to retrieve the list of objects that are required by the
application, and compares it with its list of installed objects. If it sees that all objects required
by the application are installed on the terminal it creates a user session object and requests the
start of the application with a call to start()in the Pc::ParentSessionControl inter-
face. The argument to start() is a stringified reference to the Tc::TerminalControl
interface of the newly created user session object. The application session object launches the
application and initializes it by calling init_parent() in the interface Pc::Application-
Control. The arguments to this operation inform the application about the circumstances
under which it was created. It receives a user record identifying the user that started the appli-
cation, the name of the possibly requested title, and the stringified reference to the terminal
control interface of the user session object. If the application decides to serve the user, it
returns from the call to init_parent() without raising an exception. This causes the appli-
cation session object to return a session identifier to the terminal control, which returns a refer-

Figure 7.3. Event trace of the application startup scenario.

Terminal
Control

U
se

r
S

es
si

o
n

A
p

p
lic

at
io

n

Tc::ApplicationControl
start()

Control
Panel

Application
Pool

Control

A
p

p
lic

at
io

n
 S

es
si

o
n

Pc::Pool
get_application()

Pc::ParentSessionControl
required_interfaces()

Pc::ParentSessionControl
start() [launch application]

Pc::ApplicationControl
init_parent()

Tc::TerminalControl
get_terminal_server()

A
p

p
le

t
H

an
d

le
r

[launch

Ts::TerminalServer
set_terminal_
control()

 applet handler]

time

APMT Platform Architecture

152

ence to the Tc::RemoteUserSession interface of the user session object to the control
panel. Figure 7.3 then shows how the application starts an applet handler with a call to the
get_terminal_server() operation in the Tc::TerminalControl interface. The user
session object initializes the applet handler with a reference to the Tc::TerminalControl
interface that the eventually downloaded applet may retrieve via the internal system services
API of the applet handler.

The ORB in the terminal control must establish a TCP connection with the application pool
control before it can issue the first IIOP invocation. It is assumed that the application pool con-
trol closes this connection once the application runs in order to save network communication
resources. If the terminal control wants to terminate the application with a call to kill() in
the Pc::ParentSessionControl interface it must therefore first reestablish the TCP con-
nection with the application pool control1.

It takes the terminal control three IIOP operation invocations to start the application. The
delay introduced by these invocations is insignificant compared to the time it takes the ORB to
establish the TCP connection and the application pool control to launch the application.

If the application can accommodate multiple terminals it may at some point ask the applica-
tion pool control for a participation control utility and initialize it with the participant record of
the original terminal. Other terminals may then join the application session.

7.10.2 Session Join Scenario

Figure 7.4 depicts the event trace of the session join scenario. The panel control calls the
join() operation in the interface Tc::ApplicationControl which blocks until the termi-
nal has joined the application, or has been rejected by it. The argument to join() is a session
address consisting of an application pool name and a session identifier. The terminal control
contacts the application pool and calls get_access() with the session identifier as argument
in order to retrieve a reference to the Pac::SessionAccess interface of the participation
control. From there it can get the list of objects that the application requires, which allows it to
test its compatibility before it joins the application. As soon as it has determined that it is com-
patible it instantiates an object implementing the Pac::ParticipationRequest interface
and forwards a reference to this interface with a call to join() to the participation control.
This causes the participation control to create a participant object, and to call the join() oper-
ation in the Pac::Application callback interface implemented by the application. If the
application refuses to process the join request it raises an exception. Otherwise it returns from
the call and starts to asynchronously process the join request, for instance by consulting a user
via one of its applets. Once it has decided to accept the user it calls join_accept() in the
Pac::Participant interface of the participant object. The participant object forwards the
acceptance notification to the terminal control by calling join_accept() in the Pac::Par-
ticipationRequest interface. Since it may take an application a considerable amount of
time to decide if it wants to accept a join request it may happen that the terminal cancels its
request in the meantime, which in turn causes the join_accept() call to fail. If the join
request has not been cancelled, the terminal control creates a user session object and returns
the stringified reference of the Tc::TerminalControl interface to the participation control.

1. This means that it is not possible to hook garbage collection to the TCP connection between terminal control
and application pool control. A TCP connection that is more adequate for this is the one between application
and applet handler.

153

Scenarios

The participation control forwards this reference to the application with a call to new_par-
ticipant(). This call closes the session join scenario. Figure 7.4 shows for completeness
how the application launches an applet handler in the terminal.

The session join scenario illustrates the usage of the participation control utility. The inter-
face between the application and the participation control is event based, with the benefit that
the application is never blocked by the operations that it calls or that it executes. The applica-
tion may therefore decide on its own if wants to spend a thread on processing a join request or
not. The control panel and the terminal control on the other hand do not have this choice. They
must handle the join scenario with a separate thread, which is acceptable given that a terminal
will only be engaged in one join scenario at a time. This is different for the application which
may have to handle multiple join requests in parallel.

It takes the terminal four operation invocations over the network to join an application. The
terminal opens a first IIOP TCP connection with the application pool control to retrieve the ref-
erence to the Pac::SessionAccess interface of the participation control. The application
pool control is likely to close this connection right after it answered the call. The terminal will
open a second TCP connection to the participation control that will be closed as soon as the
terminal has issued a join request. Sometime later the participation control reopens the TCP
connection with the terminal control in order to notify it of the decision of the application. This
connection will also be closed as soon as the call terminates. The overhead of opening a TCP
connection for every operation invocation is acceptable in the join scenario for it is likely that
the delay introduced by network communication is negligible compared to the time it takes the
application to determine if it can accept the join request. The benefit of closing IIOP TCP con-
nections after operation completion is that the participation control can handle a large number
of participants.

Some applications, like for instance broadcast applications, will be able to decide on a join
request without needing to consult a user. Such applications must be supported with a simpli-

Figure 7.4. Event trace of the session join scenario.

Terminal
Control

U
se

r
S

es
si

o
n

Application

Tc::ApplicationControl
join()

Control
Panel

Pac::SessionAccess
join()

time

Pac::ParticipationRequest
join_accept()

Pac::Application
join()

Tc::TerminalControl
get_terminal_server()

A
p

p
le

t
H

an
d

le
r

[launch

Ts::TerminalServer
set_terminal_
control()

 applet handler]

Participation
Control

P
ar

ti
ci

p
an

t

Pac::SessionAccess
required_interfaces()j

Pac::Participant
join_accept()

Pac::Application
new_participant()

Application
Pool

Control
Pc::Pool
get_access()

APMT Platform Architecture

154

fied session join scenario in which a terminal may become a session participant with a single
join operation. This can be done with a slight modification of the join operations in the Pac::
SessionAccess and Pac::Application interfaces.

7.10.3 Session Invitation Scenario

Figure 7.5 shows the event trace of the session invitation scenario. The scenario starts with the
application calling invite_user() in the Pac::SessionControl interface of the partici-
pation control. This causes the participation control to create a participant object, and to con-
tact the user agent of the invited user. The participation control retrieves a reference to the
Usag::UserAgent interface via a call to get_agent() in the interface Usag::Access. It
then calls the operation invite() of the user agent. One of the arguments of this operation is
the stringified reference to the Pac::ParticipationControl interface of the participant
object. As soon as invite() returns, the participant object notifies the application of the suc-
cessful placement of the invitation with a call to invitation_placed() in the interface
Pac::Application. The user agent forwards the invitation to the terminal where the user is
logged. It does so by calling the invite() operation in the Tc::Terminal interface. Both
the invite operation of the user agent and the invite operation of the terminal have an argument
containing the list of required terminal objects. The terminal can therefore immediately find
out if it is compatible with the application or not. If it is not compatible, it may immediately
reject the invitation with a call to invite_reject() in the Pac::ParticipationCon-
trol interface. It will do this only if it is authorized by the user to react to invitations. It will in
any case notify the control panel of the invitation by means of an invitation event. Once the
user has decided to accept the invitation, the control panel calls the invite_accept() oper-
ation in the Tc::PanelTerminalControl interface. This causes the terminal control to cre-
ate a user session object1, and to call invite_accept() in the Pac::Participation-

1. The user session object may be created earlier, for instance during the processing of the invite() operation.
The user session object must be created at the latest before invite_accept() is called. This operation for-
wards the reference to the Tc::TerminalControl interface to the participation control.

Figure 7.5. Event trace of the session invitation scenario.

Terminal
Control

U
se

r
S

es
si

o
n

Application

Control
Panel

time Pac::SessionControl
invite_user()

A
p

p
le

t
H

an
d

le
r

[launch

Ts::TerminalServer
set_terminal_
control()

 applet handler]

User
Agent

U
se

r
A

g
en

t

Pool
Participation

Control

P
ar

ti
ci

p
an

t

Usag::Access
get_agent()

Usag::UserAgent
 invite()

Tc::Terminal
invite()

Pac::Application
invitation_placed()Tc::PanelTerminalControl

 [Invitation Event]

Tc::PanelTerminalControl
invite_accept() Pac::ParticipationControl

invite_accept() Pac::Application
new_participant()

Tc::TerminalControl
get_terminal_server()

155

Conclusion

Control interface. If the application has not cancelled the invitation in the meantime, the par-
ticipant object calls new_participant() in the interface Pac::Application to indicate
that the previously invited terminal has joined the application session. The application may
then start an applet handler in the terminal, as is shown in Figure 7.5.

The user agent allows a user to remain hidden. A user may configure his agent to not for-
ward invitations, which is completely hidden to the application. The result of this is that the
participant object in the participation control may exist until the application session terminates,
which happens if the application does not cancel the invitation. A more advanced participation
control may offer an automatism that cancels an invitation after a certain time.

7.10.4 Child Application Startup Scenario

Figure 7.6 depicts the child application startup scenario. The application that wants to start a
child application calls the operation get_application() in the Pc::PoolControl inter-
face of its session object. This causes the application pool control to create a new session
object. The reference to the Pc::ChildSessionControl interface of this session object is
returned to the parent application, which may then start the application. The start() opera-
tion blocks until the application pool control has started and initialized the child application. It
returns a reference to the App::Application interface of the child application. The parent
application calls the synchronize_to_session() operation in this interface, which causes
the child application to contact the Pac::Sessioninformation interface of the participa-
tion control in order to find out about the terminals that are participating in the session.

7.11 Conclusion

This chapter presented in detail the interfaces defined by the APMT platform architecture, and
illustrated the usage of these interfaces with reference scenarios. The large number of defined
interfaces may give the impression that APMT is a complex architecture, which this is not the
case. The large number of interfaces can be explained with the support APMT provides for
platform extensions, application portability, and imported control panels. It should be noted

Figure 7.6. Event trace for the child application startup scenario.

Application
Pool timeParticipation

Control
Parent

Application Control

P
ar

en
t

A
p

p
lic

at
io

n
 S

es
si

o
nPc::ChildSessionControl

Pc::PoolControl
get_application()

start()

[launch child application]

Pc::ApplicationControl()
init_child()

App::Application
synchronize_to_session()

Pac::Session
Information

[get participants]

C
h

ild
 A

p
p

lic
at

io
n

C
h

ild
 A

p
p

lic
at

io
n

 S
es

si
o

n

APMT Platform Architecture

156

that no developer will be confronted with all platform interfaces at once. Terminal server
developers only deal with the Ts::TerminalServer and Tc::TerminalControl inter-
faces. Application pool utility developers only deal with the Put::Utility interface. Appli-
cation developers deal with more interfaces, but they do not need to care about details of
application startup and participation control. The only components that are likely to be difficult
to implement are the core components terminal control and application pool control.

157

8 APMT Multimedia Middleware

8.1 Introduction

The previous chapter introduced the APMT platform architecture and its center pieces, the ter-
minal control, the applet handler, the application pool control and the participation control.
The APMT platform architecture is based on coarse-grained components, which are the termi-
nal servers on the multimedia terminal and the application pool utilities in the application pool.
Terminal servers allow to introduce new functionality into the terminal without that any modi-
fication of the basic terminal architecture would be necessary. New terminal servers may cause
the invention of new application pool utilities that add another layer of abstractions to them,
and that help to orchestrate them in multipoint configurations. Terminal servers and application
pool utilities provide for platform extensibility on a high, possibly conceptual level. This chap-
ter describes how this high-level extensibility is supplemented with low-level extensibility in
form of a component framework for multimedia data processing and communication. The pri-
mary abstractions of this component framework are devices and device connectors. Devices
encapsulate multimedia processing functionality and can be plugged together by means of
device connectors, with the result being a device graph. Device graphs are created via the
stream agent, which is the terminal server that encapsulates the low-level multimedia compo-
nent framework. Stream agent, graph, devices and device connectors constitute a multimedia
middleware that assures terminal interoperability and application portability. However, for
many applications programming on component-level is not acceptable. They require toolkits
similar in spirit to the API of Beteus that allow to establish complex component networks with
a few programming instructions. This chapter proposes as an example for such a toolkit an
application pool utility for the management of connections in teleconferences. This illustrates
how an application pool utility may simplify application development by providing a single
point of control for the management of multiple terminals.

The multimedia middleware described in this chapter is not yet complete. It does not sup-
port inter-stream synchronization, and it needs to be supplemented with a resource manage-
ment architecture. As for synchronization, it is stated that the synchronization architecture of
IMA-MSS can be readily integrated into APMT. Resource management is mirrored in the
interfaces of the APMT device, but the interface between the device and a resource manager
still needs to be defined. Also missing are mappings of the APMT component framework onto
specific operating systems. Such mappings address issues like component installation and acti-
vation, and are necessary in order to provide a standard programming environment for compo-
nents on every operating system. Since all interfaces of a component are defined it can be
expected that the program code of a component can be ported from one operating system to
another with a limited amount of effort.

APMT Multimedia Middleware

158

8.2 Overview of the Multimedia Middleware

Table 8.1 provides an overview of the IDL modules that define the multimedia middleware.
The modules that are relevant for device development are ::Bas, which contains the definition
of the interface hierarchy for devices and device connectors, the module ::DevMan, which
contains the definition of the device management interface, and the modules ::Port and ::
Cont, which contain pseudo-IDL definitions for device ports and data containers. The module
::Trans contains all definitions that are related to transport. Interfaces related to device
graphs are defined in ::Tgraph. The stream agent interface finally is defined in ::Strag. On
the side of the application pool there is the module ::Cccm which contains the definition of the
connection management interfaces.

Figure 8.1 shows as an example of a device graph an audio sender that consists of analog
microphone and tape drive devices, an audio coder device, an IP multicast device and two
device connectors. The audio coder digitizes the analog input signal from the microphone or
the tape drive, and forwards audio data in the form of containers to the multicast device, which
marshals containers into protocol data units and transmits them over the network. APMT
defines two kinds of device connectors, namely auto connectors and connector boxes. Auto
connectors connect the set of ports that they manage in the most straightforward manner,
which means that it is very easy to program with them. Connector boxes are more advanced;
they have to be considered as little switches that provide control over how source and sink
ports are connected with each other. Connector boxes contain connectors that are defined as a
source port and a set of sink ports. Connectors can be active or inactive. A connector connects
its source and sink ports on activation, and disconnects them on deactivation. The example in
Figure 8.1 shows two connectors, of which only one can be active at a time. An application that
wants to switch between the microphone device and the tape drive device does so by activating
or deactivating the respective connectors. Figure 8.1 also indicates the major interfaces of
devices and device connectors. Devices have a specific interface towards applications and
applets, and a generic management interface towards the graph. This is similar for device con-
nectors, with the difference that APMT does not define their management interfaces. Device
connectors are part of the infrastructure, and their management interfaces are neither visible to
devices nor to applets or applications, which makes it unnecessary to define them.

Component Module Remark

Graph Objects ::Bas graph object, device and device connector interfaces

::DevMan device factory interface, and interfaces related to device management

::Port pseudo-IDL interfaces for device ports

::Cont interfaces of the data buffer and header container

::Trans transport device interfaces

::Res resource management interfaces (not defined)

Stream Agent ::Tgraph interfaces related to device graphs

::Strag stream agent interface (graph factory)

Application Pool ::Cccm interfaces of the conference configuration and connection manager

Table 8.1. APMT multimedia middleware modules.

159

Overview of the Multimedia Middleware

Figure 8.2 depicts the interface inheritance diagram for graph objects, i.e., devices and
device connectors. At the root of the subtree defined by APMT is the interface Bas::Gra-
phObject, which is the base interface for devices and device connectors. Bas::GraphOb-
ject inherits from the CosGraphs::Node interface of the CORBA relationship service. This
allows devices and device connectors to participate in relationships that can be navigated by
applications, applets, the terminal control panel, the graph, and finally by the devices them-
selves. Example relationships are connect relationships and synchronization relationships. The
CORBA relationship service can be the basis for compound operations on devices graphs like
compound externalization, compound move and compound copy.

The interface Bas::GraphObject defines two readonly attributes that are related to iden-
tity, namely handle and name. Every graph object has an object handle that is unique within
the graph. Object handles are used to refer to graph objects whenever the object reference is
inadequate for this purpose, which is for instance the case when the object has not been created
yet. Four more attributes in Bas::GraphObject inform about the state of the graph object.
The activity state attribute run_state indicates if the device is running or if it is paused,
which can be controlled with the two operations pause() and continue(). Other operations
that affect the state of a graph object are defined in the management interfaces and are there-
fore hidden from applications. This is to avoid that applications interfere with compound graph
control operations. Bas::GraphObject defines in addition to pause() and continue()
an operation that allows to register for events, and a state change event.

The base interface for the auto connector and the connector box, Bas::DeviceConnec-
tor, defines a single readonly attribute, contained_endpoints, which is the set of ports
managed by a device connector. The interface Bas::AutoConnector adds two readonly
attributes to that, namely failed_endpoints and mode. The attribute failed_endpoints
informs about the ports that the auto connector could not connect. The attribute mode tells if
the auto connector is working in best-effort or atomic mode. The interface Bas::Connec-
torBox defines attributes for contained, active and failed connectors, and a set of operations
for the compound activation and deactivation of connectors.

The base interface for all devices, Bas::Device, contains functionality related to ports. It
defines the readonly attribute device_ports that lists the ports supported by the device, and
the operations get_port_info() and get_format() that return general information about

Figure 8.1. Example for a device graph.

Connector
Box Microphone

AudioCoder

TapeDrive

Multicast

Auto
Connector

Network

Graph

Applet or Application

Defined
Interface

Flow

Sender

Device
Connector

Device

Connector 1

Connector 2

Undefined
Interface

APMT Multimedia Middleware

160

a port and the description of the medium format with which the port is currently configured.
The operations hide() and show() are already known from the terminal server interface.
They allow to control the physical presence of a device on user interface level. Figure 8.2
shows how transport devices are situated in the interface inheritance diagram with respect to
Bas::Device. All transport devices inherit from Trans::TransportDevice, which in
turn inherits from Bas::Device. The interface Trans::TransportDevice contains,
besides the definition of a source port and a sink port, a couple of attributes and operations that
allow to monitor data transmission.

Devices and connectors constitute the lowest level of programming in the multimedia mid-
dleware, as is indicated in Figure 8.3. This level can be raised by defining composite devices
similar to the molecules in Medusa. There is no special support for composite devices on the
terminal given that they differ from base devices only in the granularity of the functionality
that they offer. It is assumed that the development of a composite device from multiple existing
base devices is easy compared to the development of a base device. The minimal configuration
of a graph containing a composite device consists of the composite device, a transport device
and an auto connector between the two. This is for instance the case in Figure 8.1 when the
audio coder, the microphone and the tape recorder are composed into a single audio sender
device. It is also imaginable that devices and connectors are used to build independent terminal
servers similar in spirit to the medium-specific applications known from the MBone. Such ter-
minal servers would provide less flexibility than configurable device graphs, but more pro-
gramming comfort because programmers would only need to deal with a single terminal server
interface, rather than with graph, device and device connector interfaces. However, for the
moment it is assumed that programming support is provided by application pool utilities rather

Figure 8.2. Graph object interface inheritance diagram.

get_port_info()
get_format()
hide()
show()

device_ports

Bas::Device

pause()
continue()
register_event()

handle
name
res_state
fun_state
act_state
run_state

Bas::GraphObject

CosGraphs::Node

contained_endpoints

Bas::DeviceConnector

failed_endpoints
mode

Bas::AutoConnector

activate_connector()
activate_connectors()
activate_all()
deactivate_connector()
deactivate_connectors()
deactivate_all()
get_connector()

contained_connectors
active_connectors
failed_connectors

Bas::ConnectorBox

Trans::TransportDevice

Trans::UdpTrans::Tcp Trans::IpmcastTrans::Rmp

161

Graph Objects

than extra layers of abstraction in the terminal, as is shown Figure 8.3. The application in the
application pool controls application pool utilities which in turn control device graphs in termi-
nals. Application pool utilities will rarely need to access device and device connector inter-
faces. They mainly use the compound operations of the graph interface to control graph
objects. The principal clients of the public device and device connector interfaces are therefore
the applets that the application downloads into the terminals. It should be noted that applets are
not limited to the usage of graph object interfaces. They may as well create graphs via the
stream agent interface, and communicate with applets on other terminals for the purpose of
connecting their graphs with others across the network.

8.3 Graph Objects

The base interfaces of the device and the device connector inherit both from Bas::GraphOb-
ject, first of all because they share the property of being a building block for graphs, but then
also because they both consume endsystem resources. A device consumes CPU time and may
need exclusive access to hardware devices. A device connector may connect devices in differ-
ent processes, or even in different machines. It is consequently consuming inter-process and
network communication resources. A device and a device connector need to acquire resources
before they are operational. This is reflected by the readonly attribute ResState in Bas::
GraphObject:

enum ResState {RELEASED, FAILURE, RESERVED, ACQUIRED};
readonly attribute ResState res_state;

Right after graph object creation, the attribute res_state holds the value RELEASED. At
some point after creation the graph will cause the graph object to reserve or to immediately
acquire the resources that it takes. It is assumed that resources can be reserved before they are
acquired. Reserved resources can be used by other terminal components until the graph object
that reserved them actually acquires them. It can be imagined to let the application define pri-
orities for the graphs that it creates. Graph objects in high-priority graphs are then able to
reserve resources and to preempt graph objects in graphs with lower priorities whenever they
are activated. If the graph object is not able to reserve or to acquire resources, or if it does not

Figure 8.3. Components of the APMT multimedia middleware.

Stream
Agent

Graph

Devices, Connectors

Composite
Devices,

Connectors

Connection Managers and other Utilities

Application

Other
Terminal
Servers

Applet

Terminal
Boundary

Devices,
Connectors

APMT Multimedia Middleware

162

get the resources that it needs during operation, it will indicate this with a res_state value of
FAILURE.

Three more attributes reflect the state of a graph object. The attribute FunState tells if the
graph object operates normally, or if it encountered partial or complete failure. The attribute
ActState tells if the graph object is idle, activated or deactivated. The attribute RunState
finally tells if the graph object is hidden, paused or both hidden and paused:

enum FunState {OK, PARTIAL_FAILURE, COMPLETE_FAILURE};
enum ActState {IDLE,ACTIVATED,DEACTIVATED};
enum RunState {NORMAL,HIDDEN,PAUSED,HIDDEN_PAUSED};

readonly attribute FunState fun_state;
readonly attribute ActState act_state;
readonly attribute RunState res_state;

RunState and ActState are orthogonal to each other. The RunState is typically influenced
by user interaction, whereas the ActState is controlled by the owner of the graph, like for
instance a connection manager in the application pool.

The interface Bas::GraphObject further contains two attributes for the identification of
the graph object:

readonly attribute Typ::ObjectHandle handle;
readonly attribute Ftyp::NameF name;

The object handle is defined in ::Typ as an unsigned long integer. The handle is an identifier
that the creator of a graph assigns to graph objects. It must be unique within a graph because it
is used to define device ports and connectors. The name is the name that the application may
optionally assign to the graph object. The object references and names of named graph objects
are registered with the naming service of the terminal, and their creation and removal causes
the terminal control to emit events, as was shown in the previous chapter.

The graph object interface defines three operations. The operations pause() and con-
tinue() cause the graph object to pause or restart operation, respectively. A paused device
connector halts data transmission among the ports that it manages. However, the most impor-
tant operation in the graph object interface is event registration:

CosEventChannelAdmin::ConsumerAdmin
 register_event (in Typ::EventKey key)
 raises (Ex::NoSuchEvent);

This operation allows an applet to retrieve a reference to the consumer administration interface
of an event channel, where it can register for the reception of events via the push or pull mech-
anism. A graph object maintains one event channel per event. For some events it may already
be solicited to create events when it executes the event registration operation. Other events
require the applet interested in an event to explicitly call an operation to this purpose. The
parameters of this operation determine the characteristics of event creation. Since the graph
object maintains one event channel per event it is not possible for different event consumers to
individually control the creation characteristics of an event. This would require one event chan-
nel per event per consumer, which puts an additional management burden on device program-
mers and takes significantly more event communication resources. In order to save resources,
device designers are supposed to keep the number of events created by a device as small as
possible. The way this is done is demonstrated by the graph object interface, which communi-

163

Devices

cates changes in the ResState, RunState, FunState and ActState attributes with a single
state change event.

8.4 Devices

A component framework ideally defines all interfaces with which a component may be con-
fronted, with the benefit that a component can be transparently deployed on multiple hardware
architectures and operating systems. The Java component framework defined by Sun Micro-
systems, JavaBeans [Sun96a], is as close to this ideal as one can get today. However, Java is
not yet a language for the development of high-performance multimedia components, and it is
therefore not considered to define the APMT device as a Java Bean. In order to make the code
of a device as portable as possible it is necessary to define at least all interfaces between the
device and the APMT platform. This concerns the interfaces of the device towards the stream
agent, the applet, the graph, and other devices. The device interfaces defined by the APMT
multimedia middleware are shown in Figure 8.4. The device implements a device-specific
interface that inherits from Bas::Device. This interface is visible to applets and applications.
It also implements a hidden management interface, DevMan::DevManagement, which is
only visible to the graph. The graph implements the callback interface DevMan::DevCall-
back that allows the device to inform the graph about fatal errors. The stream agent imple-
ments the interface DevMan::DeviceServices which provides access to general services
like the retrieval of references to the resource manager and the terminal control. Device ports
are interfaces that are defined in pseudo IDL, which means that they cannot be accessed across
address spaces. Source and sink port are defined by the interfaces Ports::OutPort and
Ports::InPort, respectively. Also indicated in Figure 8.4 is an event channel maintained by
the device, and the resource manager.

Devices are created by device factories. The developer of a device must provide both the
device and the device factory. The device factory does not only allow to create an instance of a
device, it can also be queried for device properties, i.e., it supports device introspection. The
graph queries device factories prior to device creation in oder to find a combination of devices
that fulfills the format and transmission parameter constraints imposed by the application.

Figure 8.4. The computational environment of a device.

Stream Agent

Ports::Inport Ports::OutPort

Bas::Device

DevMan::DevManagement

DevMan::DeviceServices

Device

Applet

Ports::InportPorts::Outport

Event
Channel

Graph
DevMan::DevCallback

Resource Mgr
Res::ResourceManager

APMT Multimedia Middleware

164

It is transparent to an application if a device is implemented in software, or if it provides its
functionality via special hardware. It is also transparent to the application how media data are
communicated from one device to another. If two connected devices are both implemented in
software, data will be communicated via the device connector. If two connected devices are
both built on top of the same hardware device, data will be communicated under the hood. This
is for instance the case with the audio coder, the microphone and the tape drive in Figure 8.1.
These three devices have to conspire to fulfill their functionality. The microphone device will
forward some of the operation invocations that it receives to the audio coder, or to a hidden
object that serves as the central point of control for the audio hardware of the terminal. The
device interface supports conspiracy via the CORBA relationship service, which allows a
device to explore its neighborhood in the graph.

The concept of device conspiracy has the benefit that application developers are not con-
fronted with different abstractions for hardware devices, software devices or analog devices,
and different kinds of device connectors like digital or analog connectors. Application develop-
ers see uniform device and device connector abstractions, and they do not need to care about
how devices are implemented, and how data are forwarded inbetween them. It is clear that this
already high level of abstraction does not come for free. Device development is more complex
than it would be if the abstractions were closer to the hard- and software environment in a ter-
minal. However, it is assumed that the level of reuse of a device in applications is sufficiently
high to justify the additional burden imposed on device development.

The following subsections explore all aspects of a device. The first subsection discusses the
format and port abstractions. Following that, the interface Bas::Device is presented. Once
this is done it is possible to discuss device introspection, creation and management. A final
subsection presents some assumptions about how the device interface hierarchy will look like.

8.4.1 Formats and Ports

This subsection presents the format and port abstractions of APMT. It further explains how
typed multimedia data are moved from source ports to sink ports.

Formats

Media data are associated with a format just like the parameters of a CORBA operation are
associated with a type. Media data are communicated via the source and sink ports of devices.
A port reflects the processing limitations of a device by constraining the format of the media
data that can enter or leave the device through it. The formats that are associated with con-
nected source and sink ports must be matched, which means that a source port and a sink port
must have a common understanding of the format of the media data that are exchanged
between them. Three different ways of format matching can be imagined:

• dynamic matching: media data are accompanied by complete format informa-
tion, which allows a sink port to dynamically adapt to incoming data.

• semi-dynamic matching: only the format type is matched prior to connection
establishment. Media data are accompanied by complete format information,
which allows a sink port to dynamically adapt to format parameters.

• static matching: format type and parameters are matched prior to connection
establishment. Media data do not need to be accompanied by format informa-
tion.

165

Devices

Dynamic matching is not a viable solution because it will lead to runtime errors. Static
matching may become very complex, if not infeasible, when the formats of many chained
devices have to be matched, as can be seen in IMA-MSS. The approach taken by APMT is
therefore semi-dynamic matching. Only the format type of source and sink ports is matched.
Format parameters are then chosen by source devices, with sink devices being forced to
dynamically adapt to the format parameters of the received media data. Semi-dynamic match-
ing is feasible if it can be reasonably assumed that all devices that are dealing with a given for-
mat are able to handle all variations of this format. In order to make semi-dynamic matching
work it is therefore necessary to restrict the parameter spaces of formats, and maybe even to
define different APMT formats based on different parameter spaces for one physical format.
Another possible pitfall of semi-dynamic matching is that in some cases the size of the format
information that accompanies media data is of the same order of magnitude than the size of the
media data. This is no problem within the endsystem, but may present itself as a waste of band-
width on the network. This can be remedied by transmitting format information only every
once in a while over the network.

APMT does not define media data formats from scratch. Instead of that it recycles existing
format standards for its purposes. An important source of format standards is the Audio-Video
Transport Working Group of the IETF which develops the Realtime Transport Protocol (RTP)
[Schu96b] and RTP payload formats. RTP payload formats are designed for dynamic match-
ing, which is necessary given that the loosely coupled MBone applications do not implement
application-level protocols that would allow for static format matching. RTP payload formats
can therefore be readily used by APMT where sink devices must adapt to the format of the
media data emitted by source devices. Some video formats defined so far are H.261 [Turl96],
MPEG [Hoff96] and Motion JPEG [Berc96]. A large number of video and audio formats fore-
seen for standardization is listed in [Schu96a].

APMT uses hierarchically structured strings to identify a format type. Format identifiers are
communicated via the type FormatKey which is defined in ::Bas:

typedef string FormatKey;

The module ::Bas further defines the basic format categories:

const string AnyFormatK = "any";
const string AudioFormatK = "audio";
const string VideoFormatK = "video";
const string ImageFormatK = "image";
...

Actual formats are defined as follows:

const string MJPEGFormatK = "video:mjpeg"; // Motion JPEG
const string MPEG1FormatK = "video:mpeg:mpeg1"; // MPEG1
const string PCMAudioFormatK = "audio:pcm:8kHz"; // PCM audio

A format description consists of a format key and a structure with format parameters:

struct Format {
 FormatKey key;
 any parameters;
};

APMT Multimedia Middleware

166

Every format key, except for those identifying format categories, is therefore accompanied by
the definition of a structure containing format parameters. The format structure definition of
logarithmically scaled 8kHz pulscode modulated (PCM) audio may therefore look as follows:

struct AudioPcm8kHzFormatD {
 unsigned short channels; // number of channels
 boolean mu_law; // 1=mu-law,0=A-law
};

Format matching would be simplified if the formats a device supports were fixed. This would
make it possible to automatically check for format mismatches at application development
time. However, fixing the formats a device can handle is restrictive because it hinders the evo-
lution of a device towards the support of new formats. An APMT device may therefore support
multiple formats per port with the only restriction that they must belong to the same format
category, and that they do not need to be separately reflected in the main interface of the
device. It is therefore not possible to introduce a format into a device that requires additional
functionality in the main device interface. Such a format can be accommodated by a new
device that extends the main interface of the existing device.

Buffers, Attribute Headers and Header Containers

Within the terminal, media data are forwarded by means of buffer objects. The format informa-
tion belonging to a data buffer is forwarded in a header container. Also forwarded in the header
container are so-called attribute headers, which contain device-specific information that is
linked with the media data in the associated buffer. Attribute headers do not contain format
information, and are consequently irrelevant for the decoding of media data. They may for
instance describe where media data originated, what they contain, and how they were pro-
cessed. An audio mixer for instance may add an attribute header to the mixed audio data which
tells what flows have been mixed together. This information may be displayed by a down-
stream device in a graphical user interface. Attribute headers are a convenient alternative to
CORBA operations and events for the transmission of control data within a terminal and inbe-
tween terminals. Transport devices transmit attribute headers together with the format header
and the media data. The transmitted headers are recreated on the receiving side and put into a
header container.

All data buffer and header container related pseudo-IDL interfaces are defined in the mod-
ule ::Cont. This module contains the definitions of the interfaces Buffer, BufferFactory,
AttrHeader and HeaderContainer. The interface Cont::Buffer contains a size and a
fill-level attribute and the two operations remove() and copy(). The Cont::BufferFac-
tory interface defines the single operation allocate() which allocates a buffer of a certain
size and returns a reference to it. Both the Cont::Buffer and the Cont::BufferFactory
interface are meant to be extended with functionality specific to implementation languages.
Buffers must be implemented in a way that device developers do not have to deal with memory
management. Device implementations create buffers via the buffer factory when they need
them. They forward them to other devices, which may remove them once they are done with
them. A device may not override the data in a buffer that it received. If it transforms the media
data in the buffer from one coding into another it has to use a new buffer for the result. This
allows to forward the reference to a media data buffer to all sink ports of a multicast connector,
i.e., unnecessary copies of possibly voluminous media data are avoided. The buffer must main-
tain a reference count that allows to find out when it is no longer referenced, in which case it
can be released. The buffer and the buffer factory must implement an intelligent memory man-

167

Devices

agement scheme that avoids the overhead that would be associated with the use of the native
memory allocation and deallocation mechanism of the implementation language.

The module ::Cont defines a general header interface, and derived from that interfaces for
attribute headers and format headers. The interface Cont::Header contains the following
attributes and operations:

readonly attribute any header_data;
void set_data(in any header_data) raises (InvalidHeader);
void remove();

The format header interface Cont::FormatHeader adds an attribute via which the format
key can be set and read:

attribute Bas::FormatKey key;

The header_data in Cont::Header is a format description in the case of a format header.
The attribute header interface Cont::AttrHeader adds the following two attributes to
Cont::Header:

attribute AttrHeaderKey key;
attribute boolean transmit;

The attribute header key is defined as a string. The attribute transmit tells the transport
devices if the attribute header shall be transmitted over the network or not. The device that adds
the attribute header to the media data uses this attribute to control the network bandwidth con-
sumed by the attribute header. Attribute header keys and data are defined as illustrated by the
following fictive example:

const unsigned long SpeakerHeaderK = "speaker";
struct SpeakerHeaderD {
 string name;
 string e-mail;
};

This header may for instance accompany video data and inform about a depicted person.
Attribute and format header encoding is discussed in the subsection describing transport
devices.

The header container is defined with the interface Cont::HeaderContainer. A header
container contains one format header and an arbitrary number of attribute headers, with the
restriction that an attribute header of a given type may only appear once in the header con-
tainer. Format headers and attribute headers are set as follows:

void set_format_header(in FormatHeader format)
raises (InvalidHeader);

void set_attr_header(in AttrHeader header)
raises (InvalidHeader);

The attribute header in set_attr_header() may overwrite an already contained header of
the same type. Headers are retrieved as follows:

FormatHeader get_format_header()
raises (NoSuchHeader);

AttrHeader get_attr_headerk(in HeaderKey key)
raises (NoSuchHeader);

AttrHeader get_attr_headern(in unsigned short index)

APMT Multimedia Middleware

168

raises (NoSuchHeader);

The operation get_attr_headern() allows to search the header container for attribute
headers. The interface Cont::HeaderContainer further defines a copy() and a remove()
operation as well as attributes for the sequence number of the container, the source identifier,
and the creation timestamp:

readonly attribute Typ::TimeStamp creation_time;
attribute unsigned long contnum;
attribute unsigned long sourceid;

The source identifier is important for mixers that receive multiple flows via a single sink port.
It is set by receiving transport devices.

Header containers and data buffers are treated differently when they are moved from one
device to another, which is the reason why they are defined separately. Unlike data buffers,
header containers are copied by multicast connectors, for it is assumed that downstream
devices will want to modify the content of the header container. Since the size of header con-
tainers is small it is not necessary to devise a special memory management scheme for them.

Ports

The ports of a device are defined as integer constants in the main device interface. As an exam-
ple, the following two ports may be defined by a device that decodes a Motion JPEG video
stream:

const short JpegInPort = 1;
const short VideoOutPort = 2;

Source ports are marked with the ending OutPort, and sink ports with the ending InPort.
Port identifiers are communicated via the type PortKey:

typedef short PortKey;

Applications use the following type to set the format of a port:

struct PortSetting {
 PortKey port;
 FormatKey format;
};

The format of a port has a direct influence on the characteristics of the flow that it emits. The
flow characteristics defined in APMT are reflected by the following type:

struct FlowParameter {
 unsigned long data_rate; // in bytes per second
};

The definition of this type is preliminary and is meant to be replaced by a more refined defini-
tion once a resource management framework has been defined for the multimedia middleware.
The structure member data_rate expresses the data rate of a flow leaving or entering a
device. Applications use the flow parameter structure to set the QoS of a flow that leaves the
network port of a transport device. Based on the network flow parameters the graph calculates
the flow parameters for every connected source port within the graph, as will be shown later in
the text. The graph will then set both the format and the flow parameters of a source port. The
following type is used for this:

struct PortFlowSetting {

169

Devices

 PortKey port;
 FormatKey format;
 FlowParameter flowparm;
};

Figure 8.5 shows excerpts from the port definitions. The module ::Ports contains the defini-
tion of a Ports::Port base interface from which the interfaces Ports::InPort and
Ports::OutPort inherit. The interface Ports::Port contains a set of transmission statis-
tics and port status attributes that are thought to be used by the device itself and by graphs that
monitor the state of their devices. The transmission statistics attributes in the Ports::Port
interface can be implemented by a library. All other attributes and operations must be imple-
mented by the device developer. Care must therefore be taken to define only attributes and
operations that are really needed.

The Ports::Port interface contains attributes informing about the type of the port, its
key, and its state:

readonly attribute Bas::PortType type; // source or sink port
readonly attribute Bas::PortKey key;
readonly attribute Bas::PortState connect_state;
readonly attribute Typ::State activity_state;

The attribute connect_state tells if the port is currently connected or not. The attribute
activity_state tells if data are transmitted or not. A connected source port does not neces-
sarily transmit data all the time. Ports::Port further defines attributes informing about the
amount of time a port exists and is connected, the number of bytes that have passed through it,
and the current data rate. Two operations are defined in Ports::Port, the operation dis-
connect() that disconnects the port, and the operation remove() that deletes it.

The interface Ports::InPort defines the operations connect(), push() and stop().
The connect() operation sets the format of the port and tells the sink port to which source
port it is connected:

void connect(in Outport out_port, in Bas::FormatKey format)
 raises (InvalidPortSetting);

Figure 8.5. Port interfaces.

connect()
adjust_flow()

Ports::OutPort

disconnect()
remove()

type
key
connect_state
activity_state
up_time
bytes_since_up

Ports::Port

connect()
stop()
push()

Ports::InPort

APMT Multimedia Middleware

170

The connect() operation raises the exception InvalidPortSetting if it does not support
the requested format. The sink port uses the reference out_port when it wants to throttle the
source port with a call to the adjust_flow() operation.

The push() operation is called by a source port to forward media data to a sink port. The
APMT prototype that is described in the following chapter supports a pull mechanism in addi-
tion to the push mechanism. It turned out that this adds an extra level of complexity to device
development that can be avoided with an intelligent garbage collection scheme. It is therefore
assumed that a device pushes a data unit to the next device in the chain as soon as it is finished
with it. Data units will then be buffered by the devices that finally consume them, which is
desirable given that these devices are also responsible for intra-stream synchronization. The
push() operation is defined as follows:

void push(in Cont::HeaderContainer cont, in Cont::Buffer buff);

The parameter buff contains the media data buffer. The parameter cont is the header con-
tainer that is associated with the data buffer.

A source device may temporarily halt the transmission of data, with an example being the
silence detector device that cuts silence periods from an audio stream. A source port that halts
transmission may indicate this with a call to the stop() operation. The respective sink device
may forward this call to other devices for which it acts as source device. Data transmission is
considered to be resumed next time the source port calls push().

The interface Ports::OutPort defines the operations connect() and adjust_
flow(). The operation connect() sets the format and the flow parameters of the source
port, and hands a reference to a sink port to the source port:

void connect(in Inport in_port,
 in Bas::FormatKey format,
 in Bas::FlowParameter parms)
 raises (InvalidPortSetting,BadParameters);

The parameter in_port may denote the sink port of the device to which the source port is
connected, or a proxy sink port inserted by the device connector, which is for instance the case
when the source port is connected to multiple sink ports via a multicast connector.

The operation adjust_flow() allows the graph and downstream devices to throttle the
flow that a source port generates:

void adjust_flow(in Bas::FlowParameter parms)
raises (BadParameters,NoInfluence);

A device that receives a call to this operation on one of its source ports may propagate it via its
sink ports to upstream devices if it has no or only limited influence on the parameters of the
emitted flow. The operation raises the exception NoInfluence if the device has no influence
on flow parameters, and cannot forward the call to other devices. Network receiver devices for
instance have no influence on the characteristics of the flows that they receive. The same is true
for devices that generate constant bitrate flows.

171

Devices

8.4.2 Device Interfaces

A device implements an interface inheriting from Bas::Device towards its users, and the
interface DevMan::DevManagement towards the graph. The interface Bas::Device con-
tains the two operations get_port_info() and get_format() that allow the user of a
device to find out about the characteristics of a device port. There is no operation that would
allow the user of a device to directly assign a format to a port, or to set format parameters. A
specific interface inheriting from Bas::Device may nevertheless choose to offer some con-
trol about port formats to device users. Bas::Device further contains the two operations
hide() and show() that were already encountered in the Ts::TerminalServer interface.
These operations are only implemented by those devices that generate visible or audible output
in one way or another. When called they affect the attribute run_state in Bas::GraphOb-
ject.

Figure 8.6 depicts a template for device interface definitions. The device interface inherits
directly or indirectly from Bas::Device. The interfaces of all devices that can be instantiated
define a type with the name Init that contains parameter values required by the device for ini-
tialization. Devices that do not need any initialization define the type Init as Bas::NoInit,
which is in turn defined as an octet. Device interfaces may further define ports, events and
event parameter types. Devices inherit ports and events from the devices from which they are
derived, and may add other ports and events. They are obliged to redefine the type Init.

From a computational point of view there is no stringent reason why Init type, device
ports, events and event parameter types need to be defined in the device interface, but it has the
advantage that all definitions that are relevant for a device are found in one place. An alterna-
tive would have been to invent an APMT device description language providing meta data
about the usage of a device. However, such a language needs to be avoided because it will
steepen the learning curve for device development and usage.

The second interface that has to be implemented by a device is DevMan::DevManage-
ment. This interface repeats the definitions of the state related attributes in Bas::GraphOb-

 module ModuleName {

 interface DeviceName : Bas::Device {
 /* types */
 struct Init {

 };

 /* exceptions */

 /* attributes */

 /* operations */

 /* ports */
 const short Inport1InPort = 1;
 const short OutPort1OutPort = 2;

 /* events */
 const string Event1EventK = "ModuleName:DeviceName:Event1";
 typedef type Event1EventD;
 const string Event2EventK = "ModuleName:DeviceName:Event2";
 typedef type Event2EventD;

 };
 };

Figure 8.6. Device interface template.

APMT Multimedia Middleware

172

ject. It further defines a set of operations for lifecycle and device management. Right after
creation a device is initialized with a call to the init() operation:

void init(in DevCallback cb,
in any initdata,
in Ftyp::NameF name,
in DeviceServices devser,
in Typ::ObjectHandle handle)

 raises (InitProblem);

The parameter list of this operation contains references to the device callback interface Dev-
Man::DevCallBack that is implemented by the graph, and the device service interface Dev-
Man::DeviceServices that may for instance be implemented by the stream agent. The
parameter handle is the object handle that is assigned to the device, and the parameter name
is the name that is possibly assigned to it. The parameter initdata finally carries the initial-
ization data for the device. The CORBA type code that comes along with the initialization data
in initdata must identify an Init type defined by the device itself, or by one of the devices
from which it inherits.

Following the instantiation of all devices, the graph will instantiate device connectors. A
device connector has a reference to the DevMan::DevManagement interface, and calls the
following operation to cause the device to create a port:

Ports::Port create_port(in Bas::PortKey key)
 raises (NoSuchPort,TooManyInstantiations);

The exception NoSuchPort is returned if the device does not implement a port with the iden-
tifier key. Some devices allow to instantiate a port more than once. Devices that do not support
this, or that already have a maximum number of ports of the given type, will raise the exception
TooManyInstantiations when asked to instantiate another port of this type. After a device
connector has created all the ports that it manages, it connects them.

Once the complete graph is created, and all devices are initialized, the graph may call the
following operation that causes a device to prepare operation:

 void prepare()
 raises (MissingInterface, Ex::GeneralProblem);

Devices that rely on other objects for proper operation, like for instance conspiring devices, are
prompted by this call to search for them. A device may access the CORBA relationship service
for this purpose, the device services interface, the naming service of the terminal, or an appli-
cation-level interface for which it got the reference via the initialization data. The exception
MissingInterfaces is raised if the device cannot locate one or more of the objects that it
requires. The graph repeats the operation prepare() whenever devices are added or removed
from it.

Two operations in DevMan::DevManagement control resource reservation. The operation
reserve() causes the device to reserve resources, the operation free() to free them. The
device starts operation and acquires resources as result of a call to activate(), and it stops
operation and releases resources when deactivate() is called. The deactivate() opera-
tion does not cancel any previous resource reservations, which means that the device will get
back any reserved resources when it is reactivated. On deactivation, the device removes all of
the buffers that it holds, but it does not reinitialize its state. The device will therefore manifest
itself after reactivation exactly like before it was deactivated. DevMan::DevManagement fur-

173

Devices

ther repeats the definitions of the operations hide() and show(), and defines the operation
remove() that causes the removal of the device.

8.4.3 Device Introspection

A graph must assign a format to every device port, and flow parameters to every source port.
The creator and owner of a graph, which may be an applet, an application or an application
pool utility, may constrain the choice of formats on a port directly by setting a format, or indi-
rectly by constraining flow parameters. It is also likely that the initialization data of a device
has an effect on the format and format parameters on a port. It is not possible to perform format
matching and flow parameter determination on a local level, i.e., only by looking at two con-
nected device ports, as it is foreseen in IMA-MSS. Format matching and flow parameter deter-
mination must be done end-to-end and requires to look at all devices that are plugged together
locally or that are connected via the network. A graph must find out about the characteristics of
every device that it contains, which concerns mainly the interdependencies between formats
and flow parameters, and the way a format and flow parameter choice on one device port con-
strains the choices on remaining device ports. If a graph has this information it can calculate a
set of possible network port format and flow parameter settings. A central connection manager
may then search for a setting that is commonly supported by all connected network ports, and
impose such a setting onto all involved graphs. A graph will then instantiate the graph objects
according to the previously calculated solution that is associated with the network port setting
chosen by the connection manager.

There are two possible solutions for the problem of providing the generic graph implemen-
tation with format and flow parameter related meta data about a device:

• device description language: a special language is used to describe the charac-
teristics of a device. The graph understands this language and has access to all
device descriptions. The device description can be defined as a constant string
in the interface of the device, and accessed by the graph implementation via the
CORBA interface repository.

• device introspection: the graph queries the device implementation itself at run-
time about device characteristics.

A device description language has not only the already mentioned disadvantage of increasing
the complexity of device implementation and usage, another problem with it is that it would fix
the kind of formats that are supported by a device. The approach chosen by APMT is therefore
introspection. A device implementation consists of the device itself and a device factory that
supports device introspection in addition to device creation. The device introspection function-
ality is packed into the factory interface in order to avoid the definition of an additional inter-
face to be implemented by the device developer.

The device factory is defined with the interface DevMan::DevFactory. This interface
defines a type that describes a device port:

struct PortInfo {
 Bas::PortKey port;

Bas::PortType type;
 Bas::FormatKeys supported_formats;
unsigned short maxinstances;

};

APMT Multimedia Middleware

174

The member type tells if the port is a source or a sink port. The member maxinstances tells
how many times this port can be instantiated. This will most of the times be a single instance.
An attribute allows the graph to retrieve a list of port descriptions:

readonly attribute PortInfos ports;

Three query operations allow the graph implementation to test device characteristics. The first
query operation allows a graph to test if a device supports the initialization data that will be
given to it after instantiation:

void query_init_parameters(in any initparms)
raises (InvalidParameters);

The second operation allows to find out about the formats a port supports when all other port
formats are set:

Bas::FormatKeys query_format(in Bas::PortKey port,
 in Bas::PortSettings settings,
 in any initparms)

raises (InvalidSettings,
InvalidParameters,
NoSuchPort);

Since the initialization data may constrain format choices they are also presented to the device
factory. The operation query_format() allows the graph implementation to calculate possi-
ble format settings independently from any flow parameter constraints. Given that the applica-
tion may itself constrain format settings, and that APMT devices are unlikely to support many
formats on a port, it will often happen that there is only a single possible combination of format
settings for all devices in the graph. Once the graph has found the set of theoretically possible
format settings it will try to find a setting that fulfills the flow parameter constraints imposed
by the creator of the graph. The following operation is used for this:

Bas::PortFlowSettings
 query_flow_parameters(in Bas::PortSettings sink_settings,

in Bas::PortFlowSettings source_settings,
in any initparms)

raises (InvalidSettings,
InvalidParameters,
NoSuchPort);

The caller of the operation must provide flow parameter and format settings for all source
ports, and format settings of all sink ports of the device. It then receives the flow parameter set-
tings that the device expects on its sink ports. The owner of a graph imposes flow parameter
constraints on the network ports of sending transport devices. The graph will therefore start to
query the device connected to the transport device, and work itself towards source devices. It
will thereby use the flow parameters returned for sink ports as flow parameter constraints for
connected source ports. Many devices will not be able to exactly predict the parameters of the
flow that they are producing, which means that the result of the flow parameter matching pro-
cedure can only be approximative. There is therefore a need for a runtime mechanism for flow
parameter enforcement. This mechanism uses the adjust_flow() operation of the Ports::
OutPort interface. Sending transport devices call this operation in the source port that is con-
nected to their input port when they realize that their flow parameter constraints are violated.
The operation invocation propagates upstream until a device is hit that may influence the flow
parameters, like for instance a video coder that can reduce the frame rate.

175

Devices

Once the graph has found a viable combination of devices, formats and flow parameter set-
tings it will instantiate devices with calls to the following operation:

void create(out Typ::StringRef devref,
 out DevManagement devman);

The operation returns a reference to the management interface of the device, and a stringified
reference to the main device interface that the graph will forward to the graph owner.

8.4.4 Device Granularity

APMT devices are not supposed to support large numbers of formats on a port, and the formats
of a port should also belong to a single format family. As an example, a video coder output port
should not support MPEG and Motion JPEG at the same time. The approach of APMT is to
define an MPEG and a Motion JPEG device that may be connected to the output port of a
video coder device. Formats like MPEG and Motion JPEG offer many degrees of freedom on
the coding side, which need to be reflected by an interface. APMT avoids format interfaces in
order to keep the usage of a device simple. Format control must therefore be provided by the
main device interface, which becomes awkward if it has to provide control over more than one
complex format per device port. The result of this is that APMT defines in some cases devices
where IMA-MSS defines formats. The approach taken by APMT has multiple benefits. Appli-
cations only need to deal with device interfaces, and not with format interfaces in addition. The
operations of a device interface will often have a side effect on port formats, and vice versa, the
direct modification of a format via a format interface will have a side effect on the operation
mode of a device. This means that a device developer would have to spend extra care on pre-
venting side effects, and the application developer extra time to find out how to use format and
device interfaces without producing side effects. All this is avoided if a device offers a single
consistent interface to applications.

The lack of format interfaces causes APMT to define fine-grained devices that are dedicated
to format manipulations. The granularity of APMT devices is therefore lower than the one of
IMA-MSS virtual devices or TINA objects, and corresponds approximately to the one of
Medusa modules. This does not prevent the definition of coarse-grained APMT devices that
are possibly composed from fine-grained devices. APMT graphs may consequently contain a
considerable number of fine-grained devices, or just a coarse-grained device connected to one
or more transport devices. The following chapter, which presents the APMT prototype, will
provide examples for APMT device definitions.

8.4.5 Device Interface Hierarchy

There are no limitations on the design of the device interface hierarchy. It is possible to add
abstract devices inbetween the base interface Bas::Device and real devices, but it is also
possible to derive real devices directly from Bas::Device. Abstract devices have the advan-
tage that they leave some degrees of freedom for the format setting procedure when used in
graph creation requests. An application that is not interested in the format of the video flows
that are transmitted inbetween terminals may use for instance generic VideoCompression
and VideoDecompression devices in its sender and receiver graph creation requests, with
which it indicates that it wants video to be compressed. The connection manager may then
have the choice among Motion JPEG, MPEG and H.261 devices that inherit from VideoCom-
pression or VideoDecompression.

APMT Multimedia Middleware

176

8.5 Transport Devices

An APMT transport device is a special kind of device that is able to transmit and receive media
data buffers and header containers. Transport devices are considered to be part of the terminal
infrastructure, which means that it is not possible to transparently add a transport device to a
terminal, as can be done with all other devices. The reason for this is that transport devices
need to be known to the graph implementation. Support for transport device development
could nevertheless be added to the APMT middleware if this should turn out to be necessary,
and requires the definition of transport-specific extensions to the basic device management
interface DevMan::DevManagement.

Transport devices have one input port and one output port to other devices within the same
graph, and one network port for the transmission and reception of containers. There is no
explicit definition for a network port identifier in the transport device interface. Network ports
are identified by a port number and a network interface address, rather than by an integer as is
the case with normal device ports. The formats set for the input and output port of the transport
device must be identical. APMT transport devices are tailored to IP, and it is not possible to
add a transport device to the multimedia middleware that is not based on IP. APMT transport
devices are supposed to implement Internet standards for the transport of multimedia data,
with examples being RTP [Schu96b] for the transport of streams and RSVP [Brad96] for
resource reservation in the network.

All transport related definitions are contained in the module ::Trans. This module defines
types for an IP address, a transport protocol port, and a transport service access point consist-
ing of an address and a port:

typedef string IpAddress;
typedef unsigned short IpPort;
struct IpTsap {
 IpAddress addr;
 IpPort port;
};

The string format of an IP address is dotted decimal. The module ::Trans further contains
the definition of a flow identifier:

struct FlowIdentifier {
 IpAddress srcterm;
 FlowHandle handle;
};

The member handle is an unsigned long integer that the application assigns to a flow. The
member srcterm is the IP address of the terminal control of the terminal that emits the flow.
Flow identifiers are transported within special attribute headers across the network.

The transport device interface hierarchy defined in ::Trans is depicted in Figure 8.7. The
generic Trans::TransportDevice interface inherits from Bas::Device. It contains the
definitions for the two transport device ports:

const short TpInPort = 1;
const short TpOutPort = 2;

It further contains the attribute mytsap that informs about the local interface and port to which
the transport device is bound, the attribute device_mode that tells if the device is operating as

177

Transport Devices

sender, receiver, or both sender and receiver, and a couple of attributes that hold transmission
statistics. It also defines the operation statistics_events() that causes the transport
device to emit transmission statistics events with a certain frequency. Figure 8.7 shows four
transport protocol devices that inherit from Trans::TransportDevice. The interface
Trans:Rmp is not defined, but is shown in order to indicate that there should be a reliable mul-
ticast protocol among the transport protocols supported by the multimedia middleware. The
interface Trans::Tcp represents TCP, the interface Trans::Udp UDP, and the interface
Trans::Ipmcast the IP multicast protocol. The interface of the TCP device contains rea-
donly attributes that inform about the remote connection endpoint, and the values of some TCP
protocol parameters. The interface of the UDP device contains a single attribute telling about
destinations, and the definition of an event that informs about changes in the list of destina-
tions. A UDP device can be used to transmit a single container to multiple destinations, which
allows to use UDP where IP multicast is not available. The interface of the IP multicast device
contains an attribute telling about the IP multicast address and port, and the value of the time-
to-live (ttl) parameter used for transmission. As can be seen, none of the transport device inter-
faces provides control over addresses, ports and connection establishment and release. The
only direct control an applet or application has over a transport device is the capability to pause
transmission with a call to pause() in Bas::GraphObject. The most important functional-
ity offered by transport device interfaces is the provision of information about transport related
issues. Transport devices are controlled by the graph implementation, as will be seen later in
the text.

The transport devices that inherit from Trans::TransportDevice do not define the ini-
tialization type Init, and cannot be instantiated. They are generic in the sense that they do not
impose a specific PDU format. Specific PDU formats, resource reservation protocols, and
application-level transport protocols are supported by devices that inherit from the basic trans-
port devices. Figure 8.7 shows the Trans::IpmcastRtp and Trans::UdpRtp that imple-
ment parts of the RTP protocol, namely the RTP PDU format defined in [Schu96b] and the
RTP profile for audio and video conferences with minimal control1 specified in [Schu96a]. Not
supported is the RTP control protocol (RTCP), but support would need to be envisaged because
it allows senders and receivers to find out about network conditions, and to implement conges-

Figure 8.7. Transport device interface hierarchy.

destinations

Trans::Udp

statistics_events()

mytsap
device_mode
tx_bytes
tx_bytes_ps
rx_bytes
rx_bytes_ps

Trans::TransportDevice

Bas::Device

Trans::UdpRtp

mcast_addr
ttl

Trans::Ipmcast

Trans::IpmcastRtp

destination
no_delay
keep_alive

Trans::TcpTrans::Rmp

APMT Multimedia Middleware

178

tion control mechanisms. In case IP multicast is used as underlying transport for RTCP it is
possible to let the connection manager in the application pool receive RTCP sender and
receiver report packets, which allows it to monitor the state of the network, and to centrally
orchestrate counter measures in the case of congestion. As for now it is assumed that the
devices Trans::IpmcastRtp and Trans::UdpRtp do not send RTCP packets, and silently
drop the ones that they receive.

The interfaces Trans::IpmcastRtp and Trans::UdpRtp only contain the definition of
Init types. The Init type of the RTP multicast device is for instance defined as follows:

struct Init {
 Mode mode;

IpTsap mcast_addr;
 Ftyp::UshortF ttl;
 Ftyp::UlongF flow_handle;
};

The member mode determines if the device works as sender, receiver or both sender and
receiver. The member mcast_addr is the used IP multicast address and UDP port number. It
is further possible to prescribe the IP multicast time-to-live (ttl) value, and to assign a flow han-
dle to the transmitted flow. The flow handle is used together with the IP address of the terminal
control in a flow identifier attribute header that is transmitted over the network.

Figure 8.8 depicts the RTP header and header extension. APMT transport devices use the
marker bit that delimitates data unit boundaries and the payload type field that identifies the
audio and video format as prescribed in [Schu96a]. Payload types in the range from 96 to 127
can be used by APMT to identify formats other than audio and video formats, i.e., image, ani-
mation, text and graphics formats. The timestamp defined in the Cont::HeaderContainer
interface is mapped to the timestamp in the RTP header. The container number in Cont::

1. This profile can be used because APMT applications are controlled via CORBA, and do not require special
RTP header fields for application-level control.

Figure 8.8. The RTP header and header extension.

RTP header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |V=2|P|X| CC |M| PT | sequence number |
 +-+
 | timestamp |
 +-+
 | synchronization source (SSRC) identifier |
 +=+
 | contributing source (CSRC) identifiers |
 | |
 +-+

RTP header extension:

 +-+
 | defined by profile | length |
 +-+
 | header extension |
 | |

V = version;
P = padding;
X = extension bit;
CC = number of CSRC identifiers;
M = marker bit;

PT = payload type;
sequence number = counts RTP data packets;
timestamp = reflects sampling instant (payload specific resolution);
SSRC = synchronization source identifier;
CSRC = contributing source identifiers (used by mixers);

179

Device Connectors

HeaderContainer is mapped to the RTP sequence number. The synchronization source
identifier (SSRC) is randomly generated as prescribed by RTP, and mapped to the source iden-
tifier in Cont::HeaderContainer. The contributing sources field (CSRC) is not used,
because its function will be provided by APMT attribute headers. Attribute headers are com-
municated via the RTP header extension, which can be ignored by RTP receivers outside the
APMT platform. APMT format keys and headers are mapped onto RTP payload types and for-
mat headers. An APMT audio or video stream can therefore be received and decoded by non-
APMT receivers that implement the RTP profile for audio and video conferences, like for
instance the existing MBone tools. This kind of interoperability can be desirable in the case of
broadcast applications.

The content of attribute headers must be marshalled into the header extension by senders,
and unmarshalled by receivers. Since attribute headers are defined in IDL it seems adequate to
use the Common Data Representation (CDR) of GIOP for this purpose. Marshalling code
could then be automatically generated by modified IDL compilers. However, the problem with
CDR is that it will waste a lot of bandwidth when used in streams. It encodes for instance an
IDL boolean as an octet, and a string as a four octet length field followed by the individual
characters. It is therefore more adequate to define an optimized network representation for
every attribute header and to provide marshalling code for it. In order to facilitate this task it
would be possible to constrain the kinds of CORBA types that can be used in attribute header
definitions.

An implementation of the APMT multimedia middleware must define internal interfaces
that allow to transparently add and remove RTP transport support for format and attribute
headers. The way this is done is outside the scope of the APMT definitions.

8.6 Device Connectors

Device connectors connect the source and sink ports of devices. Device connectors are not
responsible for matching the formats or flow parameters of device ports, and are therefore con-
siderably simpler than the virtual connection objects of IMA-MSS that take a similar role.
They are instructed by the graph implementation about what formats and flow parameters to
use for every port they manage. Device connectors have a public interface that allows applets
and applications to control the connections between devices. They access the CORBA relation-
ship service to establish relationships between devices and themselves that allow to navigate
the graph starting from a device or device connector. Two types of device connectors are
defined, as can be seen in Figure 8.2. The auto connector is a simple device connector that
automatically connects all the source ports that it manages to all sink ports. This connector is
typically used for unicast and multicast connections among device ports. The connector box
offers more degrees of freedom than that and allows to switch between predefined connection
structures, called connectors, as was indicated in Figure 8.1. The connector box is more diffi-
cult to use than the auto connector, which is not more than a plug.

A graph is defined in terms of devices and device endpoints connected by device connec-
tors. The module ::Bas defines a device endpoint as follows:

struct Endpoint {
 Typ::ObjectHandle device;
 PortKey port;
};

APMT Multimedia Middleware

180

The member device is the object handle that the creator of the graph assigns to a device.
Object handles must be unique within a graph, which allows to use them together with a port
key as an identifier for a device port. Auto connectors are defined as a set of endpoints. The
connectors contained in connector boxes are equally defined in terms of endpoints. A connec-
tor is identified via a connector key:

typedef unsigned short ConnectorKey;

A connector can be in the two principal states active and inactive. An active connector con-
nects the endpoints that define it. Active connectors can further be in three sub-states depend-
ing on success or failure of connection setup:

enum ConnectorState {INACTIVE,ACTIVE_OK,
 ACTIVE_NOK,ACTIVE_FAILED};

The state ACTIVE_NOK indicates that one or more of the sink ports could not be connected.
The connector is in state ACTIVE_FAILED if the source port or none of the sink ports could be
connected, or if the connector was defined to work in atomic rather than best-effort mode, and
not all ports could be connected. Applications use the following type to define a connector:

struct Connector {
 ConnectorKey conid;
 Typ::ExecSeman mode;
 Typ::State active;
 Endpoint out_port;
 Endpoints in_port;
};

The application defines the connector itself with the members out_port and in_port. The
member active indicates if the connector shall be activated right away. The member mode
tells if the connector shall work in atomic or best-effort mode. If atomic mode is chosen the
connector will either connect all ports or none.

Bas::AutoConnector and Bas::ConnectorBox inherit from the same base interface
Bas::DeviceConnector. This interface defines the attribute contained_endpoints,
which is the list of endpoints managed by the device connector. In the case of a connector box
this corresponds to the union of all endpoints appearing in connector definitions. An endpoint
may not be managed by more than one device connector. Another restriction is that a device
connector may only manage source or sink ports of a device, but not the two at the same time.
This makes it impossible to loop a source port back to a sink port of the same device. Further
restrictions are not required for the moment, but may become necessary as more experience is
gained with graph structures.

The interface Bas::AutoConnector contains the two attributes failed_endpoints
and mode:

readonly attribute Endpoints failed_endpoints;
readonly attribute Typ::ExecSeman mode;

The attribute failed_endpoints informs about the ports that could not be connected. The
attribute mode has the same meaning as the mode member of the connector definition and tells
if the auto connector works in atomic or best-effort mode. The interface Bas::Connector-
Box offers considerably more functionality than that and allows to activate and deactivate con-
nectors and groups of connectors. A single connector is activated with the following operation:

181

Device Connectors

void activate_connector(in ConnectorKey con,
 in boolean exclusive)
 raises (UnknownConnector,
 ActivationProblem);

If the exclusive flag is set the connector box will transparently deactivate all other currently
active connectors. The activate_connector() operation is supplemented by the acti-
vate_connectors() operation for the activation of a connector group, and the activate_
all() operation that activates all defined connectors. Similar operations exist for the deactiva-
tion of connectors. Bas::ConnectorBox further defines a connector state change event for
the case that the connector box is accessed by multiple clients.

A device connector uses the create_port() operation in the management interface of the
device to create the ports that it manages. It calls the connect() operations in the interfaces
Ports::OutPort and Ports::InPort to connect device ports and the disconnect()
operation in Ports::Port to disconnect them. Before a device connector is removed it dis-
connects all connected ports and deletes them with calls to remove() in Ports::Port.
Device connectors implement the pause() and continue() operations in the base interface
Bas::GraphObject by disconnecting and reconnecting ports. Figure 8.9 shows the two prin-
cipal connection configurations. For unicast connections within the same address space it is
possible to connect a source port directly to a sink port, as is illustrated in the upper half of Fig-
ure 8.9. In the case of multicast connections, or connections across address spaces, the device
connector must intercept the communication between source ports and sink ports. The source
and sink ports seen by connected device ports are proxy ports that are implemented by the
device connector. As part of a push() operation on the sink port proxy the device connector
forwards a copy of the header container and a reference to the data buffer to all connected sink
ports. This involves inter-process communication in case source and sink ports are distributed
over multiple address spaces.

Right after a device connector has established a connection it will create a connect relation-
ship between itself and the involved devices via the CORBA relationship service. Figure 8.10

Figure 8.9. Two device connection configurations.

Ports::Inport

Ports::OutPort

Bas::DeviceConnector

Device

Ports::Inport

Ports::Outport
Connector

Ports::Inport

Device A

Device B

Device C

Bas::DeviceConnector

Device
Connector

Ports::Outport

Device A
Ports::Inport

Device B

APMT Multimedia Middleware

182

shows that a connection between two device ports is modeled as a ternary relationship between
a source device, a sink device and the device connector that connects them. The source device
takes the source role, the sink device the sink role, and the device connector the connects role.
These roles are defined as empty interfaces in ::Bas:

interface SourceRole : CosGraphs::Role;
interface SinkRole : CosGraphs::Role;
interface ConnectsRole : CosGraphs::Role;

The interface CosGraphs::Role is the role interface defined by the relationship service. The
connect relationship is also represented by an interface:

interface ConnectRelation : CosRelationships::Relationship {
 readonly attribute Endpoint source;
 readonly attribute Endpoint sink;
};

The source and sink attributes identify the device endpoints that are involved in the connec-
tion. A device connector that wants to create a connect relationship first queries the roles_
of_node attribute of the CosGraphs::Node interfaces of the involved devices to see if they
already contain the necessary source and sink roles. If not, the device connector creates the
required roles via a role factory and adds them to the devices. Following that it creates the con-
nect relationship via a relationship factory, which establishes relationship links to the source
and sink roles of the devices and the connects role of the device connector. The device connec-
tor can then set the source and sink attributes of the new connect relationship. Once all con-
nect relationships have been created within a graph it is possible to navigate the graph. The
starting point for navigation can be an object reference to a device, a device connector, or a
connect relationship. The relationship service defines the CosGraphs::Traversal interface
that provides significant comfort for the navigation of graphs.

The connect relationships will be used by conspiring devices that need to locate each other,
and by applets that need to retrieve object references for devices and device connectors within
the graph. The control panel may use the connect relationships to query the structure of a
graph, which allows it to offer the user direct control over devices and device connectors.
Debugging tools may use the connect relationships for realtime exploration of established
graphs. In the future, connect relationships may provide support for compound life cycle con-
trol and compound externalization of graphs. This in turn may be the basis for user session
mobility support in APMT. It may also be possible to establish connect relationships that span
the network, i.e., that model connections among the network ports of transport devices. As for
now, connect relationships are local to a terminal.

Figure 8.10. Ternary relationship between two devices and a device connector.

Device

ConnectRelation

source
sink

source

sink

Device Connector
connects

183

Graph and Stream Agent

8.7 Graph and Stream Agent

Graphs provide compound control over device and device connector networks within a termi-
nal. To the outside, graphs appear as device factories. They are themselves created via the
stream agent interface, which effectively makes the stream agent a graph factory.

8.7.1 Graphs

Graphs are controlled by the stream agent via a management interface that is outside the scope
of the APMT definitions, for graphs are, like device connectors and transport devices, part of
the terminal infrastructure. The graph and its devices and device connectors are optimally col-
located within the same address space. The management of graph objects requires a multitude
of operation invocations, which has the consequence that the performance of graph manage-
ment procedures is directly linked with the performance of an operation invocation on the man-
agement interface of a device or device connector. The performance of an operation invocation
is optimal in the case of collocation within the same address space. It already suffers if graph
and graph objects are located in different address spaces on the same machine, and it is bad in
case a graph needs to control graph objects across a network. Just like the communication
between graph and graph objects is assumed to be local, the communication between the graph
and a graph owner is assumed to be remote. Most operations defined in the graph interface are
compound control operations. The invocation of a compound control operation will generally
result in a multitude of operation invocations on graph objects. Graphs optimize the perfor-
mance of device management, because they relieve the application or application pool utility
from an individual access of all devices and device connectors across the network. They per-
form the following functions:

• device and device connector life-cycle management: graphs create and remove
devices and device connectors.

• format matching: the graph matches the formats of all connected device ports.
This must be done in combination with flow parameter translation.

• flow parameter translation: the application imposes flow parameters at sending
network ports that the graph translates into flow parameter constraints for every
connected source port.

• compound resource management: the graph supports compound operations for
reservation, acquisition and release of resources.

• compound graph object control: the graph supports operations that start, pause,
restart and stop all contained devices and device connectors.

Graphs manage connections between devices. Connection managers in the application pool
manage network connections between graphs. Graphs perform format matching and flow
parameter setting on terminal level, whereas connection managers perform this task on net-
work level. This partition of functionality facilitates the establishment and control of device
networks involving device graphs in multiple terminals.

The module ::Tgraph defines the interfaces Graph and GraphCallBack, with the latter
being implemented by the owner of a graph. The module ::Tgraph further defines a couple of
types that are used in device and device connector creation requests. The following type is used
in device creation requests:

APMT Multimedia Middleware

184

struct DeviceRequest {
 Typ::InfIdent dev_name;
 Ftyp::NameF name;
 Typ::ObjectHandle dev_handle;
 any dev_settings;
 Bas::PortSettings port_settings;
};

The member dev_name identifies the device that is to be created. The member name is the
optional name assigned by the application to the device, the member dev_handle the unique
object handle used in connector definitions. Initialization data is passed via dev_settings to
the graph, which will transparently forward them to the device. The member port_settings
can be used to set port formats. The creator of a device is not obliged to set port formats, but
may do so if the application requires a specific format on a port. The graph will set all unset
port formats as part of the format matching procedure.

The creation request types for auto connectors and connector boxes resemble the one for
devices. Auto connectors are requested as follows:

struct AutocxtorRequest {
 Ftyp::StringF name;
 Typ::ObjectHandle cxtor_handle;
 Bas::Endpoints dev_ports;
};

The member dev_ports is the list of device ports that are to be connected by the auto connec-
tor. This member is replaced by a list of connectors in the case of the connector box:

struct CoboxRequest {
 Ftyp::StringF name;
 Typ::ObjectHandle cobox_handle;
 Bas::Connectors cxtors;
};

The module ::Tgraph also defines types related to network ports. The following type is used
to relate network ports to a transport device:

struct NetPortAddress {
 Typ::ObjectHandle transdev;
 Trans::IpTsaps addr;
};

The flow parameters of a network port are set with the following type:

struct NetPortParameter {
 Typ::ObjectHandle transdev;
 Bas::FlowParameter flowparm;
};

The format set on the network port of a transport device is described as follows:

struct NetPortFormat {
 Typ::ObjectHandle transdev;
 Bas::FormatKey format;
};

Possible combinations of network port format settings are given as follows:

185

Graph and Stream Agent

typedef sequence<NetPortFormat> NetPortFormats;
typedef sequence<NetPortFormats> NetPortFormatCombs;

The interface Tgraph::Graph defines attributes informing about the name of the graph, its
state, and the flows that it currently receives via one of its transport devices. The state of a
graph is reflected by four attributes that are identical to the state attributes of the graph object
as described on page 162. Graphs are created via the stream agent interface. Once they exist,
the following operation is used to add devices and device connectors to them:

NetPortFormatCombs add_objects(in DeviceRequests devs,
in AutocxtorRequests cxtors,
in CoboxRequests coboxes,

 in NetPortParameters tx_parms)
 raises (....);

The first three parameters describe the devices, auto connectors and connector boxes that shall
be instantiated1. The parameter tx_parms is a list of constraints on network flows emitted by
transport devices. The graph returns a list of possible network port format combinations that is
calculated by means of device introspection. The graph must find a format setting for every
connected device port, with constraints being the port formats already set in the device requests
and the flow parameters imposed on sending transport devices. The graph not only introspects
a device given in devs, but also all devices installed on the terminal that inherit from it,
because it is assumed that devices further down the device hierarchy support additional for-
mats. The outcome of device introspection is a probably small number of solutions to the port
format and flow parameter setting problem for the graph described by the parameters devs,
cxtors and coboxes. Solutions differ not only in port format and flow parameter settings,
but also in the choice of devices within the device hierarchy. It is therefore not possible to
instantiate devices until one of the solutions is chosen. The graph presents a found solution as a
list of network port format settings. This list contains a setting for every transport device given
in the parameter devs. The owner of the graph must choose one of the proposed solutions with
the following operation:

void commit(in NetPortFormats port_formats,
 out NetPortAddresses rx_addrs,
 out Typ::RefHandles objs)

raises (....);

The parameter port_formats is the chosen format setting combination. The graph chooses
one of the precalculated solutions that corresponds to this combination of network port for-
mats, and instantiates and initializes the necessary devices and device connectors. It returns the
stringified object references of all instantiated graph objects in the parameter objs, and a list
of network port addresses for receiving transport devices in rx_addrs. If the owner of a graph
realizes that it is impossible to match the network port formats of the graphs that are to be
interconnected, he will cancel the graph modification procedure with a call to cancel().

The graph does not have to be constructed in one move. First of all it is possible to call
add_objects() multiple times before commit() is called. It is further possible to add
objects to free device ports of an existing and possibly active graph. This is subject to the con-
dition that the formats and flow parameters of existing network ports remain unchanged. Graph
objects can also be removed from the graph:

1. The client of the graph transmits an empty request list for the graph object categories in which he is not inter-
ested.

APMT Multimedia Middleware

186

void rem_objects(in Typ::ObjectHandles handles)
 raises (....);

Once commit() has been called successfully it is possible to have the graph reserve the
resources that it needs for operation. The graph interface contains the operations reserve()
and free() for the management of resource reservations. A graph repeats a call to one of
these operations on all devices and device connectors that it contains. A graph is finally acti-
vated with a call to the operation start():

void start(in NetPortAddresses destinations,
 in Trans::FlowIdentifiers rec_flows)

 raises (....);

The parameter destinations contains a list of target addresses for sending transport
devices. These are addresses that the owner of the graph has previously retrieved from other
graphs via the commit() call. This mechanism is only used for TCP and UDP transmission
where it is adequate to let receivers choose free ports1. The parameter rec_flows informs the
graph about the flows that it is going to receive on its network ports. The graph may forward
this information to applets on the terminal, which may need to associate graphs and graph
objects with flows. The invocation of start() causes the graph to call the prepare() and
activate() operations in the management interface of all contained devices, which in turn
causes the devices to find out about the environment in which they are running, to acquire the
resources they need for operation, and to start operation. Resource acquisition is likely to be
successful if resources have been reserved in advance. An active graph can be deactivated with
a call to the operation park(). This operation is mapped onto the deactivate() operation
in the device management interface, and causes the graph to stop operation and to release the
resources that were acquired with start(). The park() operation has no effect on resource
reservations, i.e., reserved resources are not freed by park(). Since all objects within a parked
graph keep state it is possible to restart the graph with a single call to start(). The parame-
ters of start() allow to assign new destination addresses and a new set of identifiers for
received flows to the transport devices of a restarted graph.

The interface Tgraph::Graph further contains the compound operations hide(),
show(), pause() and continue() which are mapped onto the same operations in the
device management interface. The operation remove() allows to remove a graph along with
all the devices and device connectors that it contains. There is also the operation register_
events() that allows to register for the set of events generated by the graph. The graph inter-
face defines a state change event, a graph modification event, a resource problem event and a
failure event.

The interface Tgraph::Graph inherits from CosGraphs::Node, which allows the graph
to participate in CORBA relationships. The graph maintains a containment relationship as
standardized in the CORBA relationship service with every device and device connector that it
contains. This allows an applet that holds a reference to the graph to find out about the objects
that it contains.

The module ::Tgraph also contains the definition of a callback interface that is imple-
mented by the owner of a graph. The graph uses this interface to inform its owner about impor-

1. This mechanism also allows to instantiate the graph on a machine chosen by the stream agent in case the ter-
minal consists of multiple machines.

187

Graph and Stream Agent

tant events. The owner of a graph, which is assumed to be remote, will therefore not explicitly
need to register for events.

8.7.2 Stream Agent

The stream agent is the terminal entity that is responsible for the creation and management of
device graphs. Applications, including composite applications, run one instance of the stream
agent on a terminal. The stream agent is a terminal server, and supports therefore the com-
pound operations defined in Ts::TerminalServer. The stream agent interface Strag::
StreamAgent also inherits from CosGraphs::Node, which allows it to participate in rela-
tionships. The stream agent maintains standard containment relationships with its graphs,
which allows applets to find out about currently existing graphs. Graphs are created with the
following operation:

void create_graph(in Ftyp::NameF name,
 in Tgraph::GraphCallback mgr);

The parameter name is the optional name of the graph, the parameter mgr the callback inter-
face implemented by the owner of the graph. The stream agent further supports an operation
that informs about installed devices:

Typ::InfIdents challenge(in Typ::InfIdents devices);

This operation is similar to the challenge() operation defined in the Tc::TerminalCon-
trol interface. The caller presents a list of required devices, and the operation returns those
devices in that list that are not supported by the terminal. An application or application pool
utility that is only interested in devices, and not in terminal objects in general, will use the
challenge() operation of the stream agent rather than the one of the terminal control. Both
operations will return the same result, but the challenge() operation of the stream agent will
perform better because the database it has to browse is smaller.

Still missing in the stream agent interface are attributes and operations that allow connec-
tion managers to find out about the network access capabilities of the terminal. The flow
parameters that the connection manager imposes on sending network ports must be chosen
under consideration of the network access capabilities of sending and receiving terminals. An
example network access capability is maximum available bandwidth, which depends on both
the physical bandwidth of the network interface and the bandwidth limitations on the network
routes to the terminal. Attributes and operations related to network access capabilities must be
defined as part of a larger resource management framework for APMT.

8.7.3 Graph Creation Scenario

Figure 8.11 shows as a summary of the discussion in this section an example graph creation
scenario. The graph owner depicted on the right side can be an applet, an application, or an
application pool utility like the connection manager. The graph is created with a call to the
create_graph() operation in the stream agent interface. Next the operation add_
objects() is called, which causes the graph to load the device factories for all requested
devices and all the devices that inherit from them. The graph finds out about the ports of every
device by querying the ports attribute of the device factory interface. It then calls possibly
multiple times the operation query_format() in order to test format combinations. At the
end the graph has found all possible combinations of device port settings. It then tests every
format setting combination against the flow parameter constraints on sending network ports.

APMT Multimedia Middleware

188

This eliminates some of the possible format setting and device combinations, and results in ini-
tial flow parameter settings for source ports within the graph. The graph returns a set of possi-
ble format combinations for its network ports to the graph owner who will compare this set
with results from other graphs in order to find a match. Once a match is found the graph owner
calls the commit() operation which takes the found format setting combination as parameter.
The graph instantiates the devices that correspond to this format setting combination and ini-
tializes them. It then creates the requested device connectors and causes them to create device
ports, to connect them, and to instantiate the connect relationship objects. Once this is done the
graph calls the operation prepare() in the device management interface of all devices, which
allows conspiring devices to locate each other. After commit() has returned, the graph owner
may start the graph with a call to start(). This causes the graph to call the activate()
operation in the device management interface of every device. The graph is now active, and
receives or transmits data via its network ports. Figure 8.11 further shows how the graph is
deactivated with a call to park(), and deleted with a call to remove().

An arbitrarily complex graph can be created and started with the four calls create_
graph(), add_objects(), commit() and start(). These calls perform format matching
and flow parameter translation within the graph, and support network port format negotiation

Figure 8.11. Graph creation and control scenario.

time
Graph
Owner Stream

Agent

Graphcreate
Strag::StreamAgent

create_graph()

Tgraph::Graph
add_objects()

Device
Factory(n)

find and load

DevMan::DevFactory
query_format()

DevMan::DevFactory
query_flow_parameters()

DevMan::DevFactory
(query ports attribute)

DevMan::DevFactory
create() Device (n)

create

Tgraph::Graph
commit()

Tgraph::Graph
start()

DevMan::DevManagement
init()

[device connectors create and connect device ports]
DevMan::DevManagement

prepare()

DevMan::DevManagement
activate()

[device is active][graph is active]

Tgraph::Graph
park() DevMan::DevManagement

deactivate()

[device is deactivated][graph is deactivated]

Tgraph::Graph
remove() DevMan::DevManagement

remove()

[graph is removed] [device is removed]

189

A Connection Manager

and transport address exchange between sending and receiving network ports in different
graphs. A connection manager that wants to create and connect graphs in different terminals
may call the create_graph(), add_objects(), commit() and start() operations in
parallel in all terminals.

8.8 A Connection Manager

This section presents an example connection manager, the conference configuration and con-
nection manager (CCCM) [Schm96a]. The CCCM is tailored to the management of audio and
video connection structures among the participants of a conference. It relieves applications
from the establishment and modification of complex connection structures and hides their dis-
tributed nature behind a monolithic API. The connection management abstractions of the
CCCM are motivated by the ones of the Beteus API, and bear some similarities with them.
Emphasis has been put on the support for dynamic connection structure changes as required by
applications similar to the teleteaching scenario described in Section 4.3.6 on page 63. It also
has been tried to keep the CCCM as generic as possible, i.e., to keep it free from any device
dependencies.

The main abstractions exhibited by the CCCM interfaces are graph model, bridge and ter-
minal set. A graph model is simply a device graph that does not contain any transport devices.
Instead of that it leaves one device port open to which the CCCM can then attach the necessary
transport devices. A sender graph model has a source port to which sending transport devices
can be attached. This is similar for receiver graph models which have a sink port to which a
receiving transport device can be attached. A given sender graph model can be instantiated
only once on a terminal. This is different for receiver graph models, which may need to be
instantiated more than once in case they do not contain any mixing devices. A bridge is a
multipoint connection structure among instantiated graph models. It is defined in terms of a
sender graph model, a receiver graph model, and a connection structure type. Possible connec-
tion structure types are simplex, duplex, all-to-one, one-to-all, some-to-all, and all-to-all.
Bridges interconnect the terminals of a terminal set. A terminal set is a subset of the terminals
that are in the connection management session. A terminal can be member of multiple terminal
sets, which allows the construction of arbitrarily complex connection structures among the par-
ticipants of a conference. The CCCM connection management session is decoupled from the
application session, which means that the application must explicitly add or remove terminals
from it. Other connection managers could register for the session membership events of the
participation control, and establish connections with new session participants without that the
application would need to intervene.

8.8.1 Connection Management Session, Graph Models and Terminal Sets

Figure 8.12 shows an OMT object diagram of the CCCM interfaces. The principal interface of
the CCCM is Cccm::Session, which inherits from the application pool utility interface Put:
:Utility. Cccm::Session is a factory for terminal objects and terminal set objects, and
allows to register sender and receiver graph models. Terminal objects are created with the fol-
lowing operation:

Terminal create_terminal(in Tc::TerminalControl tc)
raises (....);

APMT Multimedia Middleware

190

The CCCM uses the reference to the terminal control interface to start a stream agent in the
terminal, or to get a reference to it if it is already running. Once create_terminal() has
returned successfully, the terminal identified by tc is part of the connection management ses-
sion. Terminals in the connection management session can be grouped into terminal sets:

TerminalSet create_terminal_set(in Terminals terminals);

It is also possible to create global terminal sets which automatically contain all terminals in the
connection management session:

TerminalSet create_global_terminal_set();

Cccm::Session contains two operations for the registration of sender and receiver graph
models. Graph models are identified by a handle that is defined in ::Cccm:

typedef unsigned short ModelHandle;

A sender graph model consists of devices and device connectors and some additional informa-
tion concerning network transport. Sender graphs are registered as follows:

void register_sender_model(
 in ModelHandle handle,
 in Tgraph::DeviceRequests devices,
 in Tgraph::AutocxtorRequests autocxtors,
 in Tgraph::CoboxRequests coboxes,
 in Bas::Endpoint network_port,

 in Bas::FlowParameter flow_parms,
 in Trans::FlowHandle flow_handle)

raises (....);

The parameter handle is the graph model handle assigned by the application to this graph
model. The parameters devices, autocxtors and coboxes contain the graph objects that
are part of the graph model. The parameter network_port is the device port to which the
CCCM may attach transport devices. This port is a an unconnected source port of one of the
devices listed in the parameter devices. The parameter flow_parms is a flow parameter
specification for the sending transport devices that the CCCM attaches to the graph model. The
parameter flow_handle finally is the flow handle assigned to the flows that are transmitted
over the network.

A receiver graph model does not contain flow parameters and flow handles. The question
that is important in the case of receiver graph models is multiplicity of instantiations. In the
case of a video receiver graph model for instance it may be necessary to instantiate one
receiver graph for every received video flow, i.e., for every video sender graph. This is different
in the case of audio, where one receiver graph with an audio mixer or flow selector may handle
all incoming audio flows. The mixer parameter in the register_receiver_model()
operation indicates if the receiver graph model is able to handle multiple incoming flows:

void register_receiver_model(
 in ModelHandle handle,
 in Tgraph::DeviceRequests devices,
 in Tgraph::AutocxtorRequests autocxtors,
 in Tgraph::CoboxRequests coboxes,
 in Bas::Endpoint network_port,
 in boolean mixer)
raises (....);

191

A Connection Manager

Network flows carry unique source identifiers and flow identifiers consisting of the terminal
control address of the sending terminal and the flow handle assigned to sending network ports
in the register_sender_model() operation. Mixing devices use source identifiers to
demultiplex the flows contained in the stream of containers they receive from a transport
device. They use flow identifiers to correlate flows with source terminals on application level.
An applet on a terminal has prior knowledge about the significance of certain flow handles, for
they are assigned by the application and known beforehand. The additional information of the
source terminal contained in a flow identifier allows an applet to tailor the functionality it
offers to the flows that it receives. As an example, it may allow to individually control the vol-
ume of incoming audio flows in a mixed audio signal. It would use volume sliders in the graph-
ical user interface that indicate the name of the person whose audio volume can be controlled.
The interface of a mixer must define events via which information about currently received
flows can be communicated to applets. Applets can register for such events once they have a
reference to the mixer. There are multiple ways an applet may receive references to graph
objects that were not created by itself, which is the case here where graphs are instantiated by
the CCCM. It may receive references via the application, which gets them from CCCM, or it
may receive them via the trigger mechanism of the terminal control in case the device was
assigned a name in the respective graph model request. It may also get them by navigating
graphs with the help of the CORBA relationship service.

The interface Cccm::Terminal is the place for compound operations on terminals. This is
illustrated with two operations, pause() and continue(), which pause and restart all graphs
managed by the CCCM on a terminal. The operation remove() removes the terminal from the
connection management session and from all terminal sets, and as a result of that from all
bridges. It also causes the CCCM to delete all graphs that it owns on the terminal.

Figure 8.12. CCCM interfaces.

start()
park()
remove()
get_object()

type
state
semantics
failed_graphs

Bridge

connect()
set_sender()
set_receiver()

sender
receiver

SimplexBridge

connect()

terminals

DuplexBridge

set_sender()

sender

OneToAllBridge

set_senders()
add_senders()
rem_senders()

senders

SomeToAllBridge AllToAllBridge

add_terminals()
remove_terminals()
create_bridge()
remove()

type
bridges
terminals

TerminalSet

pause()
continue()
remove()

state
termcont

Terminal

create_terminal()
create_terminal_set()
create_global_terminal_set()
register_sender_model()
register_receiver_model()
reset()
remove()

terminal_sets
terminals

Session

2+ Endpoint-of

Membership

member

set_receiver()

receiver

AllToOneBridge

APMT Multimedia Middleware

192

A terminal set corresponds to the subconference abstraction found in other session and con-
nection management architectures. Terminals can be member of multiple terminal sets at a
time. A terminal set defines the endpoints of a bridge. Adding a terminal to a terminal set is
therefore likely to have side effects on all bridges that are created on the terminal set. As can be
seen in Figure 8.12, the terminal set interface Cccm::TerminalSet contains the three
attributes type, bridges and terminals which tell if the terminal set is global or not, what
bridges are created on it, and which terminals it contains. The operations add_terminals()
and remove_terminals() allow to control terminal set membership. The operation
remove() removes the terminal set along with all of its bridges. Bridges are created with the
following operation:

enum BridgeType {SIMPLEX,DUPLEX,ALL_TO_ONE,
 ONE_TO_ALL,SOME_TO_ALL,ALL_TO_ALL};

Bridge create_bridge(in BridgeType type,
 in ModelHandle sender,
 in ModelHandle receiver,
 in Typ::ExecSeman semantics)
raises (....);

The parameter type identifies the type of the bridge that is to be created. The parameters
sender and receiver determine the sender and receiver graph models that are to be used for
this bridge. The parameter semantics tells if the bridge shall create network connections in
atomic or best-effort mode.

8.8.2 Bridges

Figure 8.12 shows the base interface Cccm::Bridge and derived from it interfaces for all
bridge types that are supported by the CCCM. A bridge can be in state IDLE, ACTIVATED,
ACTIVE and PARKED. It is in state IDLE when it is created, in state ACTIVATED once the oper-
ation start() has been called, and in state ACTIVE if connections are established. Connec-
tions will not be established until the terminal set holds at least two terminals. Some bridge
types also require further calls after start() in order to establish connections. An activated or
active bridge can be deactivated with a call to park(), which is mapped on the park() oper-
ation in Tgraph::Graph. Once the bridge is in state ACTIVE, the application can retrieve
object references from the CCCM:

Typ::StringRefs get_object(in Typ::ObjectHandle handle,
 in ModelType graph_type,
 in Terminal terminal)

raises (....);

The parameter handle identifies the object the application is interested in. The parameter
graph_type determines if this object is in the sender or receiver graph. The parameter ter-
minal finally identifies the terminal on which the graph model is instantiated. The operation
returns a list of stringified object references in the case of a receiver graph without a mixing
device that has been instantiated multiple times on the terminal. Otherwise it returns a single
object reference. Applications that name devices in graph models will normally not need to
retrieve object references with get_object(), because their applets may retrieve references
to named objects without any further help from the application.

The interfaces for the various bridge types that inherit from Cccm::Bridge are kept sim-
ple. The interface for a simplex bridge, Cccm::SimplexBridge, contains the attributes

193

A Connection Manager

sender and receiver that identify the current endpoints of the simplex connection. The
operation connect() is used to connect a sender graph with a receiver graph. The operations
set_sender() and set_receiver() allow to dynamically change one of the endpoints of
the simplex connection. This functionality is not provided in the interface Cccm::Duplex-
Bridge where a duplex connection is controlled via a single connect() operation taking two
terminals as argument. The interface Cccm::OneToAllBridge is the multicast counterpart to
Cccm::SimplexBridge. It defines the attribute sender, which is the current multicast root,
and the operation set_sender() that allows to reassign the sender role to a new terminal.
The interface Cccm::AllToOneBridge is the inverse of Cccm::OneToAllBridge. It
defines the attribute receiver for the current receiver, and the operation set_receiver()
to reassign the receiver role. The interface Cccm::SomeToAllBridge is inbetween Cccm::
OneToAllBridge and Cccm::AllToAllBridge and allows to define a group of sending
terminals within the terminal set that transmit streams to all other terminals, including other
sending terminals. Group membership is controlled via the operations set_sender(), add_
senders() and remove_senders() and reflected by the attribute senders. The last bridge
supported by the CCCM is the all-to-all bridge which is represented by the empty interface
Cccm::AllToAllBridge. Other bridge types can be imagined, and may be added to future
versions of the CCCM if they turn out to be important.

The CCCM instantiates graph models in terminals as they are needed. In the case of a mul-
ticast bridge for instance it will not instantiate any graph until the application has called the
set_sender() operation for the first time. Once the sender is set, the CCCM will instantiate
the receiver graph model once on all terminals in the terminal set except for the sending termi-
nal on which it instantiates the sender graph model. When the application chooses a new
sender, the CCCM will park the sender graph on the sending terminal and create a receiver
graph on it, and it will park the receiver graph on the terminal that becomes the new sender and
create a sender graph on it. If the application switches back to the previous sender at some
point the CCCM will park the current sender graph and reactivate the receiver graph on the
same terminal, and it will park the receiver graph on the previously sending terminal and reac-
tivate its sender graph. Reactivating existing graphs is supposed to take considerably less time
than the creation of new ones, for it requires less operation invocations across the network, and
no format matching procedure. The CCCM may implement a strategy for the recycling of
instantiated graphs. It will therefore not necessarily remove an instantiated graph model on a
terminal if the bridge in which it is used is removed by the application. It will keep it for
instance in case the graph can be recycled in another bridge which uses the same model.

The CCCM must also implement a strategy for the use of transport devices. The CCCM will
for instance establish the point-to-point connection of a simplex bridge via UDP if the sender
graph on the sending terminal is not active in any other bridge. Since sender graphs and mixing
receiver graphs can be used by multiple bridges in parallel it is possible that the sender graph
of the simplex bridge is already transmitting via IP multicast within another bridge. In this case
the CCCM may choose to realize the simplex connection with IP multicast and create the
receiver graph on the receiving terminal of the simplex bridge with an IP multicast device.
Alternatively it may choose to still use UDP for the simplex connection and add a UDP device
to the existing IP multicast device in the sender graph. The complexity of network connections
increases with the number of concurrently active bridges. The CCCM may realize complex
bridge combinations by having graphs transmit or receive on multiple UDP and IP multicast
addresses.

APMT Multimedia Middleware

194

8.9 Open Issues

The multimedia middleware presented in this chapter still lacks some important functionality,
namely resource management, synchronization and support for graphical user interfaces. Some
of the operations in the device management interface reflect the existence of a resource man-
agement framework for the terminal, but the interface between the device and resource man-
agement has not been designed. However, it is assumed that the definition of terminal resource
management interfaces does not require any modifications to existing device, device connector
and graph interfaces. The multimedia middleware also needs to be augmented with resource
management functionality for communication over the network. This requires the integration
of RSVP, which is the mainstream approach for resource management in the Internet. RSVP
can be added to the APMT multimedia middleware in the form of special transport devices, as
is done with RTP. Since resource reservation in RSVP is initiated by receivers it is necessary to
communicate flow parameters to both sending and receiving transport devices. Sending trans-
port devices try to enforce flow parameters via the adjust_flow() operation of the device
source port to which they are connected. Receiving transport devices use the flow parameters
in RSVP resource reservations. The structure Bas::FlowParameter, which now only con-
tains the definition of a maximum data rate, must be refined, and possibly tailored to RSVP
requirements.

Intra-stream synchronization is transparently supported by playout devices that maintain a
buffer in order to recreate the internal timing of a flow. Event-based synchronization can be
supported with special attribute headers that cause certain devices to generate events for which
orchestrating applets can register. Inter-stream synchronization requires the introduction of
abstractions for time into the multimedia middleware, possibly based on the CORBA time ser-
vice. The CORBA relationship service can be used to model synchronization relationships
between devices in different graphs. A starting point for the design of an APMT inter-stream
synchronization framework can be the one of IMA-MSS. The APMT multimedia middleware
further lacks abstractions for stored media and their interactive presentation over the network.
Here again it may be possible to recycle IMA-MSS concepts, namely the Stream interface
hierarchy that is depicted in Figure 5.3.

Also missing is support for the integration of media data playout with the graphical user
interface generated by downloaded applets. One possibility to support this would be to have
applets reserve windows within the graphical user interface for media data playout, and com-
municate their native window identifiers to playout devices. It is also possible to devise playout
devices as widgets that can be readily integrated into a graphical user interface.

8.10 Conclusion

This chapter introduced a multimedia middleware that is based on a low-level component
framework, and that is tailored to APMT1. A connection manager was described that illustrates
how toolkits can be built on top of the low-level component framework that are similar in pro-
gramming comfort to the monolithic platforms presented in Chapter 4. The APMT multimedia
middleware was influenced by IMA-MSS, and bears some similarities with it. However, the

1. The fact that the presented multimedia middleware is tailored to APMT somehow compromises the use of the
term ‘multimedia middleware’, given that a multimedia middleware is actually generic, and independent from
an application framework. However, the term ‘multimedia middleware’ was retained because it seems to be the
best compromise for the denomination of the low-level APMT multimedia component framework.

195

Conclusion

scope of the APMT multimedia middleware is wider than the one of IMA-MSS. The APMT
multimedia middleware is a full-fledged component framework because it defines all interfaces
of a device, including port interfaces and management interfaces, and not just the ones that are
visible to applications. Other differences are listed in the following:

• format interfaces: APMT does not define format interfaces. A device has a sin-
gle consistent control interface towards applets and applications. APMT devices
are, as a consequence of this, more fine-grained than IMA-MSS virtual devices.

• format matching: IMA-MSS matches formats between device pairs. APMT has
a two-level format matching framework: formats of device ports within a termi-
nal are matched by graphs, whereas network port formats are matched by cen-
tral connection managers.

• relation between formats and flow parameters: format matching in APMT takes
flow parameter constraints into account. In IMA-MSS, there is no evident rela-
tion between the format matching procedure and QoS negotiation.

• compound graph creation: in APMT, four operation invocations suffice to per-
form format matching, to instantiate all graph objects, and to start operation.
IMA-MSS requires considerably more operation invocations, and the number of
operation invocations grows with the number of devices.

• device introspection: APMT uses introspection to provide access to device meta
data. This approach was not envisaged by IMA-MSS.

• relationship service: APMT uses the CORBA relationship service to relate the
devices within a graph to each other. This allows for instance the conspiracy of
devices.

IMA-MSS has some features that do not have an APMT counterpart. IMA-MSS may there-
fore still be a source of inspiration for APMT. It is for instance possible that the IMA-MSS
synchronization and stored media framework can be recycled in APMT.

APMT Multimedia Middleware

196

197

9 APMT Evaluation

9.1 Introduction

Chapter 6 introduced the APMT architecture and discussed all of its components. Chapter 7
discussed the APMT application management architecture and showed how applications are
started and controlled by terminals or by other applications. Chapter 8 presented the APMT
multimedia middleware consisting of the device, the device connector, the graph, and the
stream agent. Also presented in Chapter 8 was an example connection manager, the Confer-
ence Configuration and Connection Manager (CCCM), which assists conferencing applica-
tions in the management of complex connection structures. This chapter discusses the APMT
prototype which was built to test the feasibility of APMT, and evaluates the APMT architec-
ture with respect to the requirements on MMC platforms that were developed in Chapter 2.

9.2 APMT Prototype

The principal aspects of APMT that are evaluated with the prototype are the APMT application
model consisting of a central application and downloaded applets, the adequacy of CORBA as
control bus for fine- and coarse-grained APMT objects, and the usefulness of the component
model on which the APMT multimedia middleware is based. Neither the multimedia terminal
nor the application pool have been implemented entirely. Important architecture components
that still need to be implemented are the terminal control and the application pool control. Pri-
ority was given to the implementation of an applet handler, the multimedia middleware, and
the CCCM because it was assumed that these architecture building blocks are more challeng-
ing. The APMT prototype consists of the following architecture building blocks:

• Tcl/Tk applet handler: the Tcl/Tk applet handler implements the interface dis-
cussed in Section 7.6.2.

• Multimedia middleware: the prototype implements the stream agent, graph,
device, and connector box interfaces.

• Devices: 25 audio, video and text devices have been developed for the multime-
dia middleware.

• CCCM: the CCCM of the prototype implements an important subset of the
interfaces discussed in Section 8.8.

• Title manager: the title manager is a video on-demand connection manager that
can be used by applications that want to integrate stored video clips or movies.

• Demo application: a videoconferencing demo application has been developed
that illustrates all aspects of the prototype.

• Video on-demand application: the video on-demand application illustrates the
use of the title manager.

APMT Evaluation

198

The IDL interfaces that were presented in Chapter 6, 7 and 8 are founded on the ones of the
prototype, but may differ significantly from them. This is on one hand due to the experience
gained with CORBA during the implementation of the prototype, and on the other hand due to
the revision of some features of APMT that were found to be problematic once they were
implemented and used. An online documentation of the interfaces of the APMT prototype can
be found at [Blum97b].

The CORBA implementation that has been used for the implementation of the APMT pro-
totype is Orbix from Iona Technologies [Ion96a]. The first version of the prototype used Orbix
1.3, which implemented a proprietary C++ language mapping. The software was subsequently
ported to Orbix 2.0, which was the first version of Orbix to implement the standard C++ lan-
guage mapping. The first version of the prototype ran on top of SunOs 4.1.3 and could there-
fore not use multi-threading, which turned out to be a serious limitation. The actual version of
the prototype runs on Solaris 2.5 and uses the multi-threading features of Orbix 2.1 MT. Multi-
threading is mainly required in the application pool where it allows applications and connec-
tion managers to perform multiple control operations in parallel. The audio devices of the
prototype use OrbixTalk [Ion96b], Iona’s implementation of the CORBA event service, for the
communication of events to applets and applications. OrbixTalk is based on IP multicast and
uses a proprietary reliable multicast protocol for the communication between event producers
and consumers.

The Tcl/Tk applet handler uses the TclDii package that was developed at West Virginia Uni-
versity [Alma95]. TclDii is basically an extension of the Tcl interpreter that allows Tcl scripts
to invoke CORBA operations via the Dynamic Invocation Interface (DII). The use of the DII
requires operation invocations to be accompanied by type information, as is illustrated by the
following fictive example:

long get(in short n, in short m); //OMG-IDL

set result [orb_call $objref get l s 13 s 20] //Tcl

The operation get() takes two short integers as parameters and returns a long integer. In Tcl-
Dii the operation is called with the procedure orb_call that takes a stringified object refer-
ence and a description of the invoked operation as parameters. The operation description
consists of the operation name (get), the return type (l), and a list of parameter type descrip-
tions along with values (s 13 and s 20). The TclDii Tcl language mapping is simple to use as
long as operation types are simple. Except for any, TclDii supports all CORBA types, but con-
structed types like unions and structures are tedious to use. This precludes the Tcl/Tk applet
handler from being used for applets that access a large number of complex interfaces. The lan-
guage of choice for these kinds of applets is Java. A Java applet handler has not been imple-
mented because of the late arrival of a server-side mapping in OrbixWeb, Iona’s Java
implementation of CORBA. The only other product that could have been used is Visigenic’s
Visibroker, which would have required the use of IIOP, for which support was still in its
infancy at the time the prototype was implemented.

The prototype runs on Sun Sparc stations that are connected via 100 Mbit/s TAXI interfaces
to a Fore ASX-200 ATM switch [Biag93]. The video devices use the Motion JPEG XVideo
board from Parallax. The audio devices use the standard audio features of Sun stations.

199

APMT Prototype

9.2.1 Multimedia Middleware Interfaces

Figure 9.1 depicts the basic interfaces of the multimedia middleware implemented by the
APMT prototype. At the root of the graph object interface hierarchy is the interface APMTOb-
ject, which contains operations for event registration. This interface was intended to be a
base interface for all interfaces defined by APMT, but finally it turned out that there is no rea-
son to have such an interface, which is why it was abandoned in the new set of interfaces that
were presented in Chapter 7 and 8. The interface TerminalResource, which is the only
interface inheriting from APMTObject, is the base interface of CoBox and Device. It contains
the two operations activate() and deactivate() which are among the most important
operations defined by the prototype. These operations are thought to be used by the graph, but
nothing prevents an applet or application to invoke them. This has been changed in the new set
of interfaces, where the activate() and deactivate() operations are defined in the device
management interface that can only be accessed by the graph. The interface CoBox also con-
tains operations that are reserved for usage by the graph, with an example being the operation
device_removal() which is used by the graph to tell the connector box that a device has
been removed. The new version of the interface CoBox, Bas::ConnectorBox, does not con-
tain any management operations, and a management interface for connector boxes is not
defined because connector boxes are considered to be part of the infrastructure. Programming
with connector boxes turned out to be tedious in cases where only two ports needed to be con-
nected. This is the reason why the new version of the interfaces contains the simple auto con-
nector Bas::AutoConnector. The definition of an auto connector with the type
Tgraph::AutocxtorRequest requires significantly less lines of code than with the type
Tgraph::CoBoxRequest. Figure 9.1 also shows the transport device interface hierarchy.
The transport devices of the prototype are unidirectional, which explains the existence of the
interfaces TRANS::Sender and TRANS::Receiver that inherit from the base interface
TRANS::TransportDevice. Transport devices are further divided into unicast and multicast
senders and receivers. Multicast senders are able to send to multiple UDP or IP multicast
addresses at a time. Similarly, multicast receivers can receive from multiple UDP sources or on
multiple IP multicast addresses. Their interfaces have been defined, but not implemented,
which is the reason why they are not shown in Figure 9.1. The IP multicast transport devices of
the prototype are derived from corresponding UDP devices, which makes sense given that
UDP is commonly layered on top of IP multicast. However, the five transport device hierarchy
levels introduced by the prototype are not really needed, and they were reduced to three in the
new version of the interfaces (see Figure 8.7). Also abandoned were the interfaces
VIDEO::VideoDevice and AUDIO::AudioDevice which were inspired by IMA-MSS, but
turned out to be useless in APMT.

Figure 9.1 also shows the interfaces Graph and StrAgent which correspond to
Tgraph::Graph and Strag::StreamAgent in the new set of interfaces. Graph creation
and startup in the prototype requires only two operation invocations as compared to four in the
new set of the interfaces. This is because the prototype does not support format matching. The
create_graph() operation in the interface StrAgent already takes a graph description as
parameter. This graph is instantiated immediately, and can be activated with the start()
operation in the interface Graph. In the new version of the interfaces, an empty graph is cre-
ated with create_graph(), to which objects are added with add_objects(). Graph
objects are not instantiated until the graph client chooses a format combination with com-
mit(). Only then it is possible to start the graph. The interface StrAgent contains the opera-
tion get_terminal_capabilities() which is used by connection managers to find out
about the network access capabilities of a terminal. This operation currently returns network
interface descriptions containing information about IP addresses and interface types.

APMT Evaluation

200

The port and header container interfaces are defined as C++ classes, and not as Pseudo-IDL
interfaces like in the new version. The prototype offers pull in addition to push-style communi-
cation among device ports. Pull-style communication was introduced because it facilitated
memory management. However, the existence of two mechanisms and the rather complex
details of the pull mechanism turned out to be confusing for device developers, which is why it
was omitted in the new set of interfaces. Devices within a graph recycle header containers and
data buffers in order to avoid the overhead of the frequent allocation of large blocks of mem-
ory. This complicated device development, and introduced interdependencies between devices
that compromised their usage as pluggable components. The new version of the port, header
container and data buffer interfaces assumes the existence of a smart memory management

Figure 9.1. Interface hierarchy of the APMT prototype.

Device

register_all_events()
register_event()

APMTObject

activate_connector()
add_connector()
deactivate_connector()
device_removal()
get_connector_list()
remove_connector()

CoBox

activate()
deactivate()

object_state

TerminalResource

byte_counter
bytes_second
bytes_secondavg
max_bytes_second
max_packet
min_bytes_second
min_packet

TRANS::TransportDevice

interface_address
receive_buffer_sz

TRANS::Receiver

sender_address

TRANS::UnicastReceiver

TRANS::UDPreceiver

mcast_address

TRANS::IPmcastReceiver

TRANS::Sender

dest_address

TRANS::UnicastSender

TRANS::UDPsender

interface_address
time_to_live

TRANS::IPmcastSender

AUDIO::AudioDeviceVIDEO::VideoDevice

graph_state

Graph

add_term_resource ()
modify_graph()
park()
start()
get_receiver_addresses()
get_tr_refs()
remove_term_resource()
remove_sub_graph()

StrAgent

create_graph()
get_terminal_capabilities()
remove_graph()
exit()

201

APMT Prototype

scheme that relieves the device programmer from the hairy details of memory allocation and
release. Memory management support helps improving the quality of device code, given that
memory management related programming mistakes are usually hard to track down.

9.2.2 Implementation of the Multimedia Middleware

The lack of multi-threading under SunOs 4.1.3 required the use of a process where otherwise a
thread would have been sufficient. Figure 9.2 shows how APMT objects are distributed over
processes. A stream agent process contains the objects implementing the StrAgent and
Graph interfaces. Stream handler processes contain device and connector box code, and the
implementation of the Builder interface, which is a factory for devices and connector boxes.
Every device is accompanied by a C++ device factory that registers itself with the generic
builder object on process startup. The fact that the graph is communicating with its graph
objects across process boundaries explains why the connector box and device interfaces con-
tain management operations. If graph and graph objects had been in the same address space it
would have been possible to define the management interface of a device in C++, and hide it
from the application. Graphs are collocated with the stream agent in order to reduce the num-
ber of TCP connections a connection manager has with a terminal. Since a connection manager
is not supposed to access device and connector box interfaces there is exactly one TCP connec-
tion between the connection manager and the terminal, which is the connection with the stream
agent process. The connection manager can use this TCP connection for the detection of termi-
nal crashes.

One would assume that operation invocations with the client and server processes collo-
cated on the same machine perform much better than operation invocations across the network.
However, tests in the APMT environment showed that there is no significant difference in the
performance of local or remote Orbix operation invocations [Schm96a]. This is because Orbix
uses the IP loopback interface of a station in case communication is local, rather than trying to
optimize the performance of operation invocations with one of the inter-process communica-
tion mechanisms available under Solaris 2.5. This means that the process configuration of Fig-

Figure 9.2. Distribution of objects over processes.

StrAgent

Graph

Stream Agent

Stream Handler

Builder

CoBox

Device
TclTkInfhan

Tcl/Tk Script

Applet Handler

Multimedia Terminal

CCCMApplication

Application Pool

APMT Evaluation

202

ure 9.2 has a negative impact on graph establishment performance. In the case of a LAN
environment, the graph in the stream agent process is not much faster in creating and activating
graph objects in stream handlers than the connection manager would be when performing the
same task across the LAN. This becomes different when terminal and connection manager are
separated by a WAN, in which case transit delay is likely to punish unnecessary control com-
munication over the network. With the multi-threading support of Solaris 2.5 it is possible to
build a process in which stream agent, graphs and graph objects are collocated. Communica-
tion between graph and graph objects is then reduced to C++ method invocations, which will
considerably improve the performance of graph control.

9.2.3 CCCM

As a replacement for threads, the first version of the CCCM made heavy use of the deferred
synchronous operations of the CORBA DII. The DII allows to send multiple requests in paral-
lel with the ORB operation send_multiple_requests(), and to subsequently poll for
replies. This makes it possible to exploit the parallelism of the create_graph() and
start() operations of the Graph interface: the CCCM can create and then start the graphs of
a bridge simultaneously. This results in a significant speedup as compared to serial graph cre-
ation and activation. The most important operation that needs to be called in parallel is
create_graph(), which may take seconds to complete because it entails the launch of a
stream handler process. Unfortunately it turned out that due to a bug in Orbix’s marshaling
code for the type any the DII could not be used for the create_graph() operation. The
operation create_graph() could therefore only be serially invoked via the normal client
stub. A certain acceleration of graph creation was nevertheless reached by installing stream
handler code on local disks, which avoided the overhead of the network file system. In the sec-
ond version of the CCCM, the deferred synchronous invocations have been replaced by
threads. A one-to-all video bridge with multiple receivers can now be established in less than a
second on the APMT testbed. The actual version of the CCCM implements the simplex,
duplex and one-to-all bridges discussed in Section 8.8.2. An internal API allows to add support
for additional bridge types.

9.2.4 Devices

Table 9.1 lists the devices that have been implemented for the APMT prototype, and indicates
the complexity of every device, i.e., the amount of code that was necessary to implement it.
The TextSender and TextReceiver devices shown at the bottom of the table served as sim-
ple test devices for the CCCM. They allowed to develop and test the CCCM on a single
machine, which would not have been possible with audio and video devices. The video devices
shown in Table 9.1 were developed for the first version of the prototype, and later ported to
Solaris 2.5 and Orbix 2.0 MT. The audio devices were directly developed on top of Solaris 2.5
and Orbix 2.0 MT, and could consequently make use of threads.

Video Devices

Figure 9.3 depicts the video device interface hierarchy of the APMT prototype and the sender
and receiver graphs that can be realized with it. The VideoSender and VideoReceiver
devices perform video frame segmentation and reassembly, a function that has been moved
into the transport devices in the new set of interfaces. The interface VIDEO::VideoCoder
represents an A/D converter that takes a subwindow in the video signal defined by the
attributes source_win_pos and source_window and scales it to the size of the

203

APMT Prototype

output_window. The attribute frame_interval defines the frame rate with which video is
encoded. The interface VIDEO::VideoCoder is intended to be the base interface for all video
coders. The interface VIDEO::WindowCoder, which inherits from VIDEO::VideoCoder, is
a special video coder that shows the encoded video in a top-level window. The hide(),
show(), move() and resize() operations defined in this interface should rather be defined
by a general interface for window control. The counterpart of the video coder is the video
decoder defined by the interface VIDEO::VideoDecoder. It decodes a subwindow from the
incoming digital video signal and scales it to the size of the output_window. The
frame_interval is readonly and reflects the frame rate of the incoming video signal. The
counterpart of the window coder is the window decoder defined by the interface
VIDEO::WindowDecoder. The window decoder shows the incoming video in a top-level
window. The digital video signal can be compressed and decompressed with the

Category Device Remark Complexity

AUDIO Coder audio A/D converter: control of gain and balance ❄

Decoder audio D/A converter: control of volume and balance ❄

Player reads a stored audio file: stream position can be controlled ❄

Recorder records an audio stream into a file ❄

SilenceDetector audio silence detector: cuts silence periods from an audio stream ❄ ❄

Selector selects one out of multiple incoming audio streams and forwards it ❄ ❄

Mixer mixes up to four incoming audio streams ❄ ❄ ❄

Receiver audio specific receiver device ❄

Sender audio specific sender device ❄

Headphone headphone ❄

LineIn line-in input ❄

LineOut line-out output ❄

Microphone microphone ❄

Speaker speaker ❄

VIDEO WindowCoder video A/D converter that shows the coded video in a video window ❄ ❄ ❄

WindowDecoder video D/A converter that shows the decoded video in a video window ❄ ❄ ❄

Camera camera ❄

JPEGcompressor motion JPEG compression device ❄ ❄

JPEGdecompressor motion JPEG decompression device ❄ ❄

VideoReceiver video specific receiver device (reassembly of video frames) ❄ ❄

VideoSender video specific sender device (segmentation of video frames) ❄ ❄

VideoReader video on-demand disk reader device ❄ ❄ ❄

VOD::VodCtrl video on-demand control device ❄ ❄

TEXT TextReceiver text receiver device for testing (prints received strings) ❄

TextSender text sender device for testing (periodic transmission of a string) ❄

Table 9.1. Implemented devices.

APMT Evaluation

204

VIDEO::JPEGcompressor and VIDEO::JPEGdecompressor devices. The interfaces of
both devices define the compression factor attribute comp_factor, which is settable in the
compressor, and readonly in the decompressor. The compression factor is communicated to the
JPEG decompressor device via an attribute header1.

The video devices shown in Figure 9.3 are just sufficient to realize end-to-end video trans-
mission with the depicted sender and receiver graphs. The configurability is rather limited, and
the only way to modify the sender and receiver graphs is to omit the JPEG devices, in which
case video is transmitted uncompressed.

Audio Devices

Table 9.1 shows that more audio devices have been implemented than video devices. All audio
devices are contained in a single multithreaded stream handler in which multiple audio sender
and receiver graphs can be instantiated [Geri97]. Figure 9.4 shows three example graph config-
urations that are possible with the implemented audio devices. The first graph is a complex
sender graph where connector boxes allow to switch between the three audio sources line-in,
microphone and file player. The audio flow is transmitted over the network, but may in addition
be recorded in a file. The application may define three connectors for the connector box inbe-
tween the silence detector, the file player, the recorder and the sender: one that connects the
silence detector with the sender, a multicast connector that connects the recorder in addition,
and a third connector that connects the player with the sender. A downloaded applet may then

1. The compression factor is not required for the decoding of a video frame because APMT video frames already
contain the quantization table that is calculated with the compression factor. This explains why the compres-
sion factor is communicated via an attribute header, and not via a medium header. The used compression fac-
tor can be shown in the GUI on the receiving side.

Figure 9.3. Video device interface hierarchy and graphs.

VIDEO::VideoDevice

frame_interval
output_window
source_win_pos
source_window

VIDEO::VideoCoder VIDEO::Camera VIDEO::VideoSenderVIDEO::VideoReceiver

scale()

frame_interval
output_window
source_position
source_window

VIDEO::VideoDecoder

VIDEO::WindowCoder

hide()
show()
move()
resize()

hide()
show()

VIDEO::WindowDecoder

comp_factor

VIDEO::JPEGcompressor comp_factor

VIDEO::JPEGdecompressor

Camera CoBox WindowCoder CoBox JPEGcompressor CoBox VideoSender CoBox

WindowDecoderCoBoxJPEGdecompressorCoBoxVideoReceiverCoBoxIPmcastReceiver

Sender Graph

Receiver Graph

IPmcastSender

205

APMT Prototype

switch between these connectors. The second graph shown in Figure 9.4 is a receiver graph
with a mixer of which the output is sent to a speaker, a headphone and a recorder, or to a com-
bination thereof. The mixer in this graph can be replaced with a selector if flow selection is suf-
ficient for the application. The third graph in Figure 9.4 mixes multiple incoming audio flows
that are sent to it via UDP, and transmits the mixed signal again on an IP multicast address.

9.2.5 The Videoconferencing Test Application

The videoconferencing application is a toy application that was developed in order to test all
features of the first version of the prototype, namely the multimedia middleware with the video
devices, the CCCM, and the Tcl/Tk applet handler. The videoconferencing application can
accommodate two or three terminals. When started it first downloads the Tcl/Tk script into the
applet handlers of the terminals. It then creates a high-quality video one-to-all bridge among
the terminals, and causes the sender role to rotate a predetermined amount of times around the
terminals in the terminal set. During the first round, the reassignment of the sender role takes a
few seconds to complete because multiple processes need to be launched in the concerned ter-
minals. Starting with the second round, the reassignment takes less than a second, because the
CCCM only needs to park and restart graphs, and no graph needs to be created. The following
piece of code implements the sender rotation:

for (i=0; i<ROUND_NUMBER; i++)
 for (int j=0; j<termnum; j++) {
 try {
 mcast_bridge->set_sender(terminal[j]);
 }
 catch (...) {
 cerr << endl << "could not change sender..." << endl;
 }
 sleep(10);
 }

This illustrates the high level of programming comfort that the CCCM provides. Once sender
rotation is finished, the application establishes additional low-quality video bridges with a
smaller frame rate and window size in a way that a momentary speaker emits a high-quality
video image and receives low-quality video images from the other terminals. The other termi-

Figure 9.4. Three example audio device graphs.

Microphone CoBox

Coder CoBox SilenceDetectorCoBox Sender CoBox

Speaker

CoBoxMixerCoBoxReceiverCoBoxIPmcastReceiver

IPmcastSender

Player Recorder

LineIn

Recorder

HeadPhone

MixerCoBoxReceiverCoBoxUDPreceiver Sender CoBox IPmcastSenderCoBox

APMT Evaluation

206

nals receive and show the high-quality video image of the momentary speaker, and the low-
quality video images of each other. Once the video bridges are established, the application
feeds its applets with the object references of the created window coder and decoder objects,
and causes them to activate the buttons of the GUI depicted in Figure 9.5. The GUI contains a
photo and a moving teddy icon that illustrate how media objects can be downloaded into the
terminals along with the Tcl/Tk scripts. When the user presses the ShowMe button, the applet
calls the application, which in turn rebuilds the connection structure so that the requesting user
becomes the momentary speaker. The Hide button is a toggle button that causes the applet to
call the hide() or show() operations in the interfaces of all low quality video decoders,
which then unmap or map their X11 video windows. This illustrates how the downloaded
applet controls other objects on the terminal that were not created by itself. The Exit button
finally causes the applet to indicate its termination to the application in the application pool.
The application then removes all video bridges and applet handlers.

9.2.6 The Video On-Demand Application

The video-on demand application is a reimplementation of a video server architecture previ-
ously developed at Eurécom [Bern95]. The principal characteristic of this video server archi-
tecture is that it is based on a server array rather than multiple independent server nodes.
Videos are striped over the nodes of the server array, with the striping blocks being for instance
single video frames. Clients receive the frames of a video from multiple synchronized server
nodes, and reassemble them to a continuous video stream. The advantage of this architecture is

Figure 9.5. The graphical user interface of the videoconferencing application,

207

APMT Prototype

that it avoids hot spot servers without needing to resort to the replication of videos on multiple
autonomous server nodes. The principal disadvantage of replication is that it wastes expensive
disk space. Apart from that it requires additional load balancing functionality in order to dis-
tribute video requests evenly onto multiple servers. In the server array architecture, all server
nodes, and all subnetworks leading to server nodes, are equally loaded, and there is no need for
a special treatment of popular videos. A drawback of the server array architecture is that it
requires a tight synchronization of the server nodes in order to keep the buffer requirements of
the client reasonable.

Multiple reasons led to the reimplementation of the existing video server prototype on top
of the APMT platform. First of all it should be demonstrated that the APMT platform and its
multimedia transmission and processing framework can accommodate a complex video on-
demand architecture without needing to be adjusted to it. It then should be demonstrated that
the video server could be reimplemented on top of APMT with significantly less effort than it
took to implement the first prototype. The reimplementation was supposed to be facilitated due
to the existence of reusable APMT audio and video devices, and the replacement of the mes-
sage-based control communication of the video server prototype with CORBA operations. A
significant part of the code for the original video server prototype consists of the implementa-
tion of state machines for the message-based control communication. Finally it should be dem-
onstrated that the video server could be reimplemented by people that were not familiar with
APMT. The video server was reimplemented by two groups of two students within three
months as part of a semester project [Durv96]. One group developed the devices and device
graphs on the server nodes and the multimedia terminal, whereas the other group developed the
application itself and a connection manager.

Figure 9.6 depicts the components that needed to be realized for the video on-demand appli-
cation. The VideoReader device is the principal device in the sender graph on a server node.
It reads video frames from a hard disk and transmits them via UDP to the receiver graph in the
multimedia terminal. The VodCtrl device in the receiver graph reassembles the video stream,
and forwards video data to a window decoder, and audio data to an audio decoder. The VodC-
trl device directly controls the VideoReader devices in the sender graphs. It synchronizes

Figure 9.6. Components and control flows of the video on-demand application.

VideoReader

Disk

Video Server A

Sender Graph

VideoReader

Disk

Video Server B

Sender Graph

VodCtrl

Receiver Graph

Speaker

Tcl/Tk Applet Handler

WindowDecoder

VOD applet

Multimedia Terminal

TitleManager Application

Application Pool

APMT Evaluation

208

the sender graphs on startup in a way that video frames arrive in order at the receiver graph,
and with inter-frame delays corresponding to the frame rate. It receives play(), pause(),
stop(), ffwd() and fbwd() operation invocations from the downloaded applet and for-
wards them to the video reader devices. The communication between the VodCtrl and Vide-
oReader devices has real-time requirements, and would therefore profit from a realtime
CORBA implementation. It would also be adequate to use a reliable multicast protocol for the
communication between the VodCtrl and the VideoReaders devices, rather than TCP. It
was envisaged to use OrbixTalk for this purpose, but at the end of the student project there was
not enough time left to integrate it.

The sender and receiver graphs are established by a special connection manager, the title
manager. The interface of the title manager allows the application to retrieve a list of available
movies, and to create a movie object for a chosen movie. The interface of the movie object pro-
vides control over a movie. When the operation play() is called in the interface TitleMan-
ager::Movie, the title manager establishes sender graphs in the server nodes in which the
chosen movie is stored, and a receiver graph in the multimedia terminal, and it also passes the
stringified object references of the VideoReader devices to the VodCtrl device. An applet
can then start playout with a call to the VodCtrl device.

When started, the application in the application pool binds to the title manager, and down-
loads the video on-demand applet into the terminal. It then retrieves the list of available movies
from the title manager and forwards it to the applet, which presents it in a movie selection win-
dow to the user. The title of the movie chosen by the user is forwarded to the application,
which in turn causes the title manager to establish the necessary sender and receiver graphs.
The role of the application in the application pool is negligible for this particular video on-
demand application, but it should be noted that the title manager can also be used by other
applications that need to show videos to a user for some purpose.

Figure 9.7 depicts the video on-demand sender and receiver graphs. Both graphs reuse
existing audio and video devices, most importantly the JPEG decompressor and window
decoder devices. It was envisaged to use IP multicast devices for transmission, which would
have allowed multiple terminals to view the same movie. Due to a lack of time this was not
implemented.

Figure 9.7. Sender and receiver graphs of the video on-demand application.

VideoReader CoBox VideoSender

JPEGdecompressor

CoBoxVodCtrlCoBoxVideoReceiverCoBoxUDPreceiver

Decoder CoBox Speaker

CoBox WindowDecoder
Video On-Demand Receiver Graph

CoBox UDPsender

Video On-Demand Sender Graph

Disk

209

Evaluation of APMT

9.3 Evaluation of APMT

The prototype is a proof for the feasibility of the APMT architecture, and it demonstrates the
advantage of having a low-level component framework in the terminal and multiple specialized
high-level connection managers in the application pool. However, the prototype is not a full
implementation of the APMT architecture, and the modifications that have been made in the
new set of interfaces still need to be evaluated with a prototype. The actual prototype is there-
fore only a partial evaluation of the APMT architecture. It also has to be stated that some
aspects of the architecture, like for instance scalability, can only be evaluated by simulation or
by deployment of the platform on a large network.

This section evaluates the APMT architecture with respect to the requirements for MMC
platforms that were developed in Chapter 2. It lists the features of APMT, and points out were
functionality is still missing. Table 9.2 contains a summary of the evaluation of APMT.

9.3.1 Platform Properties

This subsection evaluates APMT with respect to the required platform properties open, exten-
sible, programmable, scalable, deployable and simple.

Open

APMT supports terminal interoperability, application portability and platform extensibility
with open interfaces. Openness is largely due to the use of CORBA and IIOP. CORBA guaran-
tees the openness of control communication. The openness of multimedia data communication
is provided by the use of Internet standards like RTP. The application pool and terminal infra-
structures can be developed independently from each other, and there is no need for reference
implementations against which individual application pool and terminal implementations must
be tested.

Extensible

APMT features open interfaces for platform extension. The APMT platform is based on the
component framework paradigm and can be extended with both fine and coarse-grained func-
tionality. Coarse-grained functionality is added via terminal servers in the terminal and appli-
cation pool utilities in the application pool. Since APMT supports the federation of
applications, an application that is capable of acting as a child application must also be consid-
ered as a platform extension. Fine-grained functionality is added via low-level component
frameworks that are encapsulated by terminal servers. An example for such a component
framework is the multimedia middleware of the terminal that is encapsulated in the stream
agent. Another low-level component framework would be for instance the abstract window
toolkit implemented in a Java applet handler. It is still necessary to define operating-system
specific mappings for the multimedia middleware that solve issues like the installation and
dynamic loading of devices and device factories.

Programmable

APMT is highly programmable. Applications may directly access low-level terminal compo-
nents, or they may profit from the services of high-level application pool utilities. The applica-
tion model of APMT based on a central application and applets in the periphery reflects the
fundamental structure of distributed software. The central application manages all issues that

APMT Evaluation

210

require arbitration among multiple applets, whereas applets take care of all issues that are local
to a terminal. APMT is independent from any specific programming language. Applications
and applets can both be implemented in Java, which allows to use all features of Java in
APMT. Computation intensive applications, or applications that need to interface to legacy
software, can be implemented in C++, and download graphical user interfaces written in Tcl/
Tk into the terminals.

Scalable

An application pool may run many applications simultaneously, because applications dis-
charge processing via applets into terminals. Additional machines can be added to an applica-
tion pool if it needs to run more applications, or serve more terminals. CORBA makes it
possible that application pools with different hardware configurations use the same software,
which in turn allows to transparently upgrade the hardware of an application pool. Large com-
munities of users can be served by multiple application pools, with a service gateway taking
care of load balancing. The number of applications supported by an application pool is only
limited by the available disk space. The number of terminals that participate in an application
may vary from one to thousands. Applications with a large number of participants require the
federation of a master application and multiple slave applications.

Deployable

APMT is an overlay architecture and does not require any modifications of the network infra-
structure. In its simplest form it also does not require user agent pools and service gateways.
An application pool is as simple to deploy as a Web server. It consists of a daemon that imple-
ments the Pc::Pool interface to the outside and that launches applications and application
pool utilities. A factor that facilitates the deployment of APMT is its target network, the Inter-
net, through which a large number of potential users and programmers can be reached. A factor
that could hinder the deployment of APMT is the commercial nature of existing CORBA
implementations. Public-domain implementations exist, but they are not as robust as the com-
mercial implementations, and they do not offer the same amount of functionality. It can never-
theless be expected that CORBA implementations become free for non-commercial use, as is
the case with Web browsers.

Simple

The implementation of the APMT platform is likely to cause some difficulties. Critical features
are for example format matching, for which efficient algorithms need to be developed, and
multicast address management in connection managers. Care has to be taken to avoid dead-
locks, although the APMT interfaces are designed to reduce this risk. Many APMT compo-
nents, like for instance the terminal control, have to serve multiple clients in parallel. This
requires the use of threads, which in turn complicates implementation. It was tried to shift as
much complexity as possibly away from components into the infrastructure. A connection
manager for instance, which is a high-level component, does not need to perform format
matching between devices within a terminal. The development of devices, terminal servers,
application pool utilities and applications is therefore considerably simpler than the implemen-
tation of the APMT infrastructure.

9.3.2 Platform Functionality

This subsection evaluates APMT with respect to the requirements on platform functionality.

211

Evaluation of APMT

Session Management

APMT models the relationships between users, terminals and applications with multiple ses-
sion types, namely the terminal session, the user session, the application session, the partici-
pant session, and the composite application session. Terminals may start applications, join
participant sessions, be invited to participant sessions, leave participant sessions, and kill appli-
cations. The participant session is managed by an application pool utility, the participation
control, rather than the application pool control. This allows the development of multiple par-
ticipation controls with differing levels of functionality. Applications are then able to choose a
participation control that fits their needs.

Connection Management

Connection management is provided by connection managers in the application pool in collab-
oration with the stream agents and graphs in the terminals. Connection managers are applica-
tion pool utilities and are tailored to specific tasks. The APMT prototype contains two such
connection managers, namely the CCCM and the video on-demand title manager. The central-
ized connection management of APMT offers total control over connection establishment
within an application session. Connection structures can be dynamically created, modified and
deleted. Dynamic connection structure changes are difficult to achieve in a purely distributed
connection management architecture like the one originally planned for Beteus.

Multimedia Data Processing

Multimedia data processing is provided by the devices of the multimedia middleware. Multi-
media data processing is highly configurable since devices can be plugged together in various
ways.

Multipoint Control Communication

The most important vehicle for control communication in APMT is CORBA. The only
multipoint communication feature CORBA offers at the time of writing is the event service. In
APMT, the event service is exclusively used for event communication within the terminal or
within the application pool. This allows the use of a proprietary reliable multicast protocol
under the hood if only one ORB is used for internal communication, which is considered to be
the case. The shape of APMT would be different if CORBA offered more multipoint commu-
nication functionality. There would be more emphasis on multipoint communication between
applets, which is now neglected in favor of the point-to-point communication between the
applet and its application. Another vehicle for the communication of control information are
the attribute headers of the multimedia middleware. Attribute headers allow for the unreliable
oneway communication of control information from devices in sender graphs to devices in
receiver graphs, and from upstream devices to downstream devices within the same graph.

Resource Management

Resource management is reflected in the device and graph interfaces, but the interface of a
resource manager still needs to be defined. For network communication the integration of
RSVP and RTCP is foreseen, which is considered to be rather straightforward, given that a
central connection management has complete control over sender and receiver transport ports.
The stream agent interface needs to be extended with functionality that provides connection
managers with information about the network interfaces of the terminal and the available band-
width.

APMT Evaluation

212

Synchronization

APMT supports event-based synchronization via attribute headers, and intra-stream synchroni-
zation via devices. Inter-stream synchronization still needs to be integrated into the multimedia
middleware. Inter-stream synchronization is more an implementation than an interface design
problem, and its integration into the multimedia middleware interfaces should not provide
more problems than its integration into IMA-MSS.

Mobile Code

APMT is based on mobile code techniques, but does not depend on a particular interpreted
programming language for this. Tcl/Tk and Java applet handlers have been described. Tcl/Tk is
a scripting language and may be used for the rapid development of downloadable graphical
user interfaces, which may be sufficient for many applications. More advanced functionality
requires the use of a strongly typed language like Java.

Presentation Environment

The integration of the multimedia middleware and the graphical user interfaces generated by
downloaded applets has not been addressed yet.

Federation of Applications

APMT supports the federation of applications with the concept of parent and child applications
in an application pool. Applications that can be used by other applications implement the inter-
face App::Application. In the current version of the interfaces, child applications have to
reside on the same application pool as parent applications. This could be extended to allow
parent applications to run child applications on other application pools. Another form of feder-
ation of applications are the master and slave applications in broadcast scenarios.

Security

Security has not been explicitly addressed yet. Secure interpreters for Tcl and Java keep
applets from accessing the operating system in the terminal. Applets have access to the secure
system services provided by the applet handler, and to all objects on the terminal for which
they can get an object reference. This may be critical in the case of objects that communicate
the content of files, like for instance the audio player device of the prototype. APMT must be
analyzed with respect to security flaws. The use of the CORBA security service must be envis-
aged to protect control communication and resource access. Multimedia data communication
can be protected with devices that encrypt data flows before they are transmitted over the net-
work.

Mobility

APMT supports user mobility with user agents. Users may access their personal terminal con-
trol environment via remote control panel applications. APMT does not address terminal
mobility and session mobility, which are considered to be advanced concepts that should not
be part of the first version of the APMT platform.

Directory Service

Terminals, application pools, user agent pools and service gateways have a normal IP host
name. Their IP address can consequently be retrieved from DNS name servers, which in turn
allows to construct an IIOP IOR for their principal public interface. Information about users is

213

Evaluation of APMT

provided by user agents, information about applications and sessions by service gateways and
service brokers. APMT will profit from a more advanced directory service than the DNS, but it
does not require it.

Platform Management

Terminals, application pools and user agent pools have management interfaces. These inter-
faces still need to be defined. Standard management interfaces allow the development of man-
agement tools that are able to manage a heterogeneous set of terminals or application pools.

Accounting

Accounting and billing is not yet supported in APMT. It can for instance be added to it via spe-
cial participation controls.

APMT

Requirement Fulfilled Remark

Open ❄❄❄ profits from the openness of CORBA

Extensible ❄❄❄ concept of terminal servers and application pool utilities

Programmable ❄❄❄ programming on terminal server or application pool utility level

Scalable ❄❄❄ no inherent scalability problems

Deployable ❄❄❄ multiple possible deployment scenarios

Simple ❄❄ platform simple to use and to extend, but difficult to implement

Session Management ❄❄❄ multiple session types

Connection Management ❄❄❄ specialized connection managers in the application pool

Multimedia Data Processing ❄❄❄ provided by devices

Multipoint Control Comm. ❄❄ most control communication is point-to-point

Resource Management ❄ foreseen, but not yet defined

Synchronization no no support for inter-stream synchronization

Mobile Code ❄❄❄ support for mobile code via applet handlers

Presentation Environment no needs to be developed

Federation of Applications ❄❄❄ concept of parent and child applications

Security ❄ secure Tcl and Java interpreters

Mobility ❄❄ user mobility

Directory Service ❄❄❄ combination of DNS, user agents and service gateways

Platform Management ❄ foreseen, but not defined

Accounting no no support as for now

Standard DPE ❄❄❄ CORBA

Table 9.2. Evaluation of APMT.

APMT Evaluation

214

9.4 Conclusion

The prototype demonstrates the feasibility of the APMT platform. The evaluation of APMT
shows that it addresses most of the requirements on MMC platforms that were developed in
Chapter 2. The most important issues among those that still need to be addressed is security.
The APMT platform cannot be deployed if it represents a risk for the owners of application
pools and terminals. Other issues to be addressed are synchronization, resource management,
platform management and accounting. The APMT platform also lacks an integrated presenta-
tion environment within the terminal that allows to combine multiple standalone graphical user
interfaces of terminal servers into a single one.

215

10 Conclusions

10.1 MMC Platforms

The development and deployment of applications for multipoint multimedia communication
(MMC) requires the support of a platform. It is stated that such a platform must be open, exten-
sible, programmable, scalable, deployable and simple in order to attract application developers
and users. The functionality such a platform must provide is enormous and requires the
employment of existing technologies wherever this is possible. It must be built on top of a dis-
tributed processing environment that makes the network transparent for control communica-
tion. The most mature distributed processing technology that is at hand today is CORBA.
CORBA is open, language-independent and object-oriented, and provides in addition to the
basic object request broker an extensive set of services of which most are interesting for the
application platform targeted by this thesis.

First generation platforms like the Touring Machine, Beteus and Lakes provide considerable
support for application development. However, they provide only limited support for applica-
tion deployment because they require applications to be installed on endsystems. The thesis
refers to them as monolithic platforms because of their monolithic application programming
interface and their static internal structure that makes it difficult to extend them. The key to
extensibility is the definition of component frameworks that are embedded in the platform and
that allow third parties to augment the functionality of the platform by adding new components
to it. The way this can be done is illustrated by Medusa and IMA-MSS, two low-level compo-
nent frameworks for multimedia processing and communication. Medusa is a complete com-
ponent framework in the sense that it defines all interfaces of a component, including stream
interfaces, but it uses a proprietary protocol for the control of components. IMA-MSS uses
CORBA for this purpose, but defines only those interfaces of a component that are visible to
applications. Low-level component frameworks like Medusa and IMA-MSS must be supple-
mented by high-level component frameworks in order to increase the programmability of the
platform. High-level components can be built from low-level components, with an example for
this being the molecules of Medusa.

Medusa and IMA-MSS are meant to be generic component frameworks that can be inte-
grated into larger application platforms. One problem with this is that application platforms
may be based on principles that conflict with the ones of generic component frameworks, with
an example being TINA’s object model that is not compatible with the one of IMA-MSS.
Another problem is that a generic component framework may be inadequate or sub-optimal for
the application model and the target network of the platform in which it is to be integrated. It is
therefore stated that a component framework for multimedia data processing and transmission
must be harmonized with the platform in which it is embedded, or even better, be tailored to it.

Conclusions

216

10.2 APMT

The APMT platform proposed by this thesis is a platform for multipoint applications that sup-
ports multimedia data processing and communication with a low-level component framework
that is tailored to it. This component framework must already be considered as a platform
extension. APMT responds to most of the requirements that the thesis imposes on multipoint
multimedia application platforms. APMT is open due to the use of CORBA for the definition
of all interfaces, extensible due to the definition of low and high-level component frameworks,
and programmable due to the application pool utilities that are layered on top of low-level ter-
minal components, and its support for mobile code. APMT is scalable with respect to the num-
ber of users, terminals, applications and application sessions. It is deployable because it is
based on an overlay architecture that is tailored to IP networks and that does not require any
modifications of the network infrastructure. APMT is meant to be deployed as a platform ker-
nel that is extended with functionality as user demand crystallizes.

The major architecture building blocks are the application pool and the multimedia termi-
nal, which are supplemented by the user agent pool and the service gateway that is based on
the CORBA trading service. The following list summarizes the major features of APMT:

• Static terminal: application code is installed in the application pool, not in the
terminal. Applications download applets into terminals.

• Extensibility: the multimedia terminal can be extended with terminal servers, the
application pool with application pool utilities.

• Application model: the APMT application model is tailored to multipoint appli-
cations. Central applications arbitrate among applets in the periphery that take
care of whatever is local to a terminal.

• Application scenarios: APMT supports applications ranging from single-user
interactive presentations to broadcast applications with a large number of users.

• Maximum use of CORBA: in its current form, APMT uses the event service, the
naming service, the relationship service, and the trading service. APMT will
profit from other services like the security and transaction services, and facili-
ties like electronic payment and A/V stream control.

• Internet: APMT uses IIOP for control communication. It further uses Internet
hostnames for the identification of terminals, application pools, user agent pools
and service gateways.

• Support for multiple interpreted languages: support for new interpreted lan-
guages can be added via applet handlers in the terminal.

• Support for the import of control panels: users can import their own control pan-
els into the terminals that they are using.

• Support for yellow page applications: applications can be started by other appli-
cations in the terminal

• Support for terminal applications: applications installed on the terminal can
access the APMT infrastructure.

• Compatibility testing: the compatibility of a terminal with a certain application
can be tested before the terminal starts or joins the application.

• Exchangeable participation control: participation control is not part of the core
architecture. A basic participation control utility is defined that serves as a basis
for more advanced ones.

217

APMT

• Support for composite applications: applications can be built from other appli-
cations.

Multimedia data communication is supported with a low-level component framework based
on devices that is adapted to the APMT application model. Device networks in the terminal are
controlled by graphs that provide compound operations to connection managers or other utili-
ties in the application pool. Compound operations reduce network communication and
increase the speed with which connection structures can be established among terminals. The
following list summarizes the major features of the multimedia component framework:

• Devices: devices have a single consistent interface towards the application, a
management interface towards the infrastructure, and one or more ports for
media data flows.

• Device connectors: device ports are connected by simple auto connectors or
controllable connector boxes.

• Transport devices: transport devices encapsulate transport protocols and are
used for the communication of multimedia data among terminals.

• Graphs: graphs provide for compound operations. Graphs containing an arbi-
trary number of devices and device connectors can be created and activated with
four operation invocations.

• Device introspection: meta data about devices is provided via introspection,
rather than via a device description language.

• Format matching: format matching within the terminal is performed by graphs.
Format matching inbetween terminals is performed by central connection man-
agers. APMT pleads the cause of semi-dynamic format matching where only
the format type of source and sink ports is matched. Sink ports adapt dynami-
cally to the format parameters of incoming multimedia data.

• Attribute headers: attribute headers are a means to add media-format indepen-
dent control information to a data flow.

• Relationship service: the CORBA relationship service is used to allow for the
navigation of device graphs.

• Internet: APMT uses TCP/IP, UDP/IP, UDP/IP multicast, RTP and RTP payload
formats for network communication. The use of RSVP and RTCP is envisaged.

Applications may directly access devices and device connectors, or they may delegate con-
trol over them to application pool utilities, like for instance connection managers. The thesis
presented two connection managers, namely the Conference Configuration and Connection
Manager (CCCM) and the Title Manager used by the video on-demand application.

The core architecture of APMT can be compared with the service management architecture
of TINA which is based on a similar application model. APMT distinguishes itself from TINA
mainly with its emphasis on mobile code, on extensibility and on programmability. APMT is
an overlay architecture for IP networks that can be deployed today, whereas TINA is, at least in
its current form, an architecture for telecommunications networks that requires considerable
investments prior to its deployment.

Conclusions

218

10.3 Further Work

The present thesis concentrated on the application management architecture and the multime-
dia middleware of APMT. Few words were said about actual applications, and this is the point
where additional work is required. APMT must be evaluated with respect to its capability to
accommodate existing networked multimedia applications. The multimedia middleware pro-
vides ways to exchange and to process multimedia data, but many applications require more
infrastructure support than that. In order to demonstrate the aptitude of APMT as a general
application platform it is necessary to identify additional functionality that can be integrated
into the platform.

The Internet has become the realm of the Web, with the result that it is impossible to intro-
duce a new application platform into the Internet that does not interface to the Web in one way
or another. It its therefore necessary to relate APMT with the Web and to find ways for how
APMT can be reached via the Web and vice-versa. It is possible to define a new type of Uni-
form Resource Locator (URL) that denotes an APMT application or application session and
that can be used for hyper-links in HTML. Web browsers may then be integrated into APMT as
terminal applications with access to the terminal control, which in turn allows users to start or
join APMT applications by following hyper-links.

Application platforms like APMT are best divulged via freely available prototype imple-
mentations that demonstrate their capabilities better than any theoretical description. The exist-
ing prototype is only a first step in this direction since it is not a complete implementation of
APMT. A first publicly available prototype should only integrate a subset of the functionality
presented in this thesis in order to be simple to use and robust.

10.4 Contribution of this Thesis

The contribution of this thesis is in the area of multipoint applications for human communica-
tion and interaction, and consists of the following main parts:

• Motivation for platforms: the thesis motivates the use of platforms for the devel-
opment and deployment of multipoint multimedia applications. Development
and deployment support will lead to a large number and variety of applications,
which in turn is a prerequisite for the (commercial) success of multipoint appli-
cations in general. A large number of available applications and the resulting
user demand will justify investments into the network infrastructure.

• Requirements on platforms: the thesis develops a set of requirements that are
crucial for the design of a platform for multipoint multimedia applications. It is
shown that none of the existing approaches for platforms responds to all of these
requirements. There are few platforms that address multipoint application
development and deployment at all. The emphasis of platforms like TINA is on
terminal compatibility and application portability.

• Beteus platform: the thesis describes the Beteus platform, which is an example
for a platform that provides high-level support for multipoint multimedia appli-
cation development.

219

Contribution of this Thesis

• APMT platform architecture: the APMT platform responds to all important
requirements identified by this thesis. It supports application development with
high and low-level component frameworks, and application deployment with
mobile code techniques.

• APMT multimedia middleware: the thesis describes a multimedia middleware
based on low-level components, and a connection manager as an example for a
high-level component. The connection manager builds on the multimedia mid-
dleware and provides advanced support for application development.

The only platform known to the author that addresses the problem of platform design for
multipoint multimedia applications in a way comparable to APMT is TINA. It is stated that
APMT may provide many ideas for the future development of TINA.

Conclusions

220

221

References

References

[Abar96] Chelo Abarca et al. Service Architecture Version 5.0. TINA-C Baseline Document
No. TB_RM.001_4.0_96, December 1996.

[Ado90] Adobe Corporation. Postscript Language Reference Manual, Addison-Wesley
Publishing Company, Inc., 1990.

[AF93] ATM-Forum. ATM User-Network Interface Specification Version 3.0. Prentice-
Hall, Englewood Cliffs, 1993.

[Alma95] George Almasi et al. TclDii: A TCL Interface to the Orbix Dynamic Invocation
Interface. Technical report, West Virginia University, 1995. Online version at http:/
/www.cerc.wvu.edu/dice/iss/TclDii/TclDii.html.

[Appl96] Apple, IBM, Oracle, Netscape, and Sun. Network Computer Reference Profile
Introduction. http://www.nc.ihost.com/nc_ref_profile.html, May 1996.

[Aran93] M. Arango et al. The Touring Machine System. Communications of the ACM,
36(1):63–77, January 1993.

[Barr93] William J. Barr, Trevor Boyd, and Yuji Inoue. The TINA Initiative. IEEE Commu-
nications Magazine, 33(3):70–76, March 1993.

[Bate94] John Bates and Jean Bacon. A Development Platform for Multimedia Applications
in a Distributed, ATM Network Environment. In Proceedings of the International
Conference on Multimedia Computing and Systems, Boston MA, May 1994.

[Berc96] L. Berc, W. Fenner, B. Frederick, and S. McCanne. RTP Payload Format for
JPEG-compressed Video. Internet Engineering Task Force RFC 2035, October
1996.

[Bern95] Christoph Bernhardt and Ernst Biersack. A Scalable Video Server: Architecture,
Design and Implementation. In Proceedings of the Realtime Systems Conference,
pages 220–227, Paris, France, January 1995.

[Bess95] Michel Besson, Karim Traore, and Philippe Dubois. Control and Performance-
Monitoring of a Multimedia Platform over the ATM Pilot. In Proceedings of the
First International Distributed Conference IDC’95, Madeira, November 1995.

[Biag93] Edoardo Biagionie, Eric Cooper, and Robert Sansom. Designing a Practical ATM
LAN. IEEE Network, March 1993.

[Blum95] Christian Blum and Olivier Schaller. The Beteus Application Programming Inter-
face. Technical Report RR-96-020, Institut Eurécom, December 1995. Online ver-
sion at http://www.eurecom.fr/ blum/pub/pub.html.

References

222

[Blum96] Christian Blum, Didier Loisel, and Refik Molva. BETEUS: Multipoint Teleconfer-
encing over the European ATM Pilot. In Proceedings of the European Conference
on Networks and Optical Communication NOC ’96, Heidelberg, June 1996.

[Blum97a] Christian Blum. APMT IDL Documentation. http://www.eurecom.fr/ blum/phd/
apmtdoc.html, April 1997.

[Blum97b] Christian Blum. APMT Prototype. http://www.eurecom.fr/ blum/proto/proto.html,
May 1997.

[Blum97c] Christian Blum, Philippe Dubois, Refik Molva, and Olivier Schaller. A Develop-
ment and Runtime Platform for Teleconferencing Applications. Journal on
Selected Areas in Communications, special issue on Network Support for
Multipoint Communication, 15(3), April 1997.

[Bore94] Nathaniel S. Borenstein. EMail with a Mind of Its Own: The Safe-Tcl Language
for Enabled Mail. In Proceedings of the IFIP WG 6.5 Conference, Barcelona, May
1994.

[Bosc96] Pier Giorgio Bosco, Eirik Dahle, Michel Gien, Andrew Grace, Nicolas Mer-
couroff, Nathalie Perdigues, and Jean-Bernard Stefani. The ReTINA Project: An
Overview. Technical Report RT/TR-96-15.1, Chorus Systèmes, May 1996.

[Brad96] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation-
Protocol (RSVP) - Version 1 Functional Specification. IETF Internet Draft, Octo-
ber 1996.

[Bran95] Thomas J. Brando. Comparing DCE and CORBA. Technical Report Document
MP 95B-93, MITRE, March 1995.

[Brow95] Dave Brown and Stefano Montesi. Requirements upon TINA-C Architecture.
TINA-C Document No. TB_MH.002_2.0_94, February 1995.

[Brow96] Nat Brown and Charlie Kindel. Distributed Component Object Model Protocol:
DCOM 1.0. Internet Engineering Task Force, Internet Draft, November 1996.
Online version at ftp://ftp.ietf.org/internet-drafts/draft-brown-dcom-v1-spec-
01.txt.

[Camp92] Andrew Campbell, Geoff Coulson, Francisco Garcia, and David Hutchison. A
Continuous Media Transport and Orchestration Service. In Proceedings of ACM
SIGCOMM’92, Maryland, Baltimore USA, August 1992.

[Camp93] Andrew Campbell, Geoff Coulson, Francesco Garcia, David Hutchison, and Hel-
mut Leopold. Integrated Quality of Service for Multimedia Communications. In
Proceedings of IEEE Infocom, San Francisco, March 1993.

[Camp96] Andrew Campbell, Cristina Aurrecoechea, and Linda Hauw. A Review of QoS
Architectures. In Proceedings of the 4th IFIP International Workshop on Quality
of Service, IWQS’96, Paris, France, March 1996.

223

References

[CCIT88] CCITT/ISO. Recommendation X.500: The Directory - Overview of Concepts,
Models and Services. ITU and ISO, Geneva, March 1988. ISO 9594 is technically
aligned with X.500.

[Coan93] Brian A. Coan et al. The Touring Machine System (Ver. 3): An Open Distributed
Platform for Information Networking Applications. In Proceedings of TINA ’93,
September 1993.

[Coul93] Geoffrey Coulson. Multimedia Application Support in Open Distributed Systems.
PhD thesis, Computing Department at Lancaster University, April 1993.

[Coul95] Geoffrey Coulson, Andrew Campbell, Philippe Robin, Gordon Blair, Michael Pap-
athomas, and Doug Sheperd. The Design of a QoS-Controlled ATM-Based Com-
munications System in Chorus. IEEE Journal on Selected Areas in
Communications, 13(4):686–699, May 1995.

[Coul96] Geoffrey Coulson and Daniel G. Waddington. A CORBA Compliant Real-Time
Multimedia Platform for Broadband Networks. In Otto Spaniol et al, editor, Pro-
ceedings of the International Workshop TreDS’96 on Trends in Distributed Sys-
tems: CORBA and Beyond, Springer Lecture Notes in Computer Science 1161,
Aachen, October 1996.

[Deer91] Stephen Deering. Multicast Routing in a Datagram Internetwork. Technical Report
STAN-CS-92-1415, Stanford University, December 1991.

[Deut95] P. Deutsch, R. Schoultz, P. Faltstrom, and C. Weider. Architecture of the
WHOIS++ Service. Internet Engineering Task Force RFC 1835, August 1995.

[dM93] Vicki de Mey and Simon Gibbs. A Multimedia Component Kit. In Proceedings of
the ACM Multimedia ’93, Annaheim, CA, August 4-6 1993.

[Durv96] Nicolas Durville, Rodolphe Kraftsik, Christophe Stegmann, and Antonio Suarez.
Une Application Vidéo On-Demand. Semester project report, Institut Eurécom,
December 1996.

[Ecke96] Klaus-P. Eckert, M. Khayrat Durmosch, Klaus D. Engel, and Peter Schoo. A
CORBA 2 Based Distributed Processing Environment for Telecommunication
Applications. In Proceedings of the Distributed Object Computing for Telecom
Conference at ObjectWorld’96, Frankfurt am Main, Germany, October 1996.

[Elia96] Frank Eliassen and John R. Nicol. A Flexible Type Checking Model for Stream
Interface Typing. In Proceedings of the IEEE International Workshop on Multime-
dia Software Development, Berlin, March 1996.

[Engi96] Apple ScriptX/Java Engineering. Biscotti - A Treat for Java Lovers. http://dev-
world.apple.com, November 1996.

[Floy96] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. To appear
in IEEE/ACM Transactions on Networking, November 1996.

References

224

[Frit96] J. Christian Fritsche. Multimedia Building Blocks for Distributed Applications. In
Proceedings of the IEEE International Workshop on Multimedia Software Devel-
opment, pages 41–48, Berlin, March 1996.

[Gall91] Didier Le Gall. MPEG: A Video Compression Standard for Multimedia Applica-
tions. Communications of the ACM, 34(4):46–58, April 1991.

[Geib96] Rüdiger Geib. Operating the European ATM Pilot. In Proceedings of the European
Conference on Networks and Optical Communication NOC’96, Heidelberg, June
1996.

[Geri97] Frank Gerischer. Design and Implementation of Audio Components for a CORBA-
Based Multimedia Application Platform. Master’s thesis, University of Stuttgart,
May 1997.

[Gibb94] Simon J. Gibbs and Dionysios C. Tsichritzis. Multimedia Programming: Objects,
Environments and Frameworks. Addison-Wesley, 1994.

[Gokh96] Aniruddha Gokhale, Douglas C. Schmidt, Tim Harrison, and Guru Parulkar. Oper-
ating System Support for High-Performance, Real-Time CORBA. In Proceedings
of the 5th International Workshop on Object-Orientation in Operating Systems
IWOOOS’96, Seattle, Washington, October 1996.

[Grah96] Ian S. Graham. HTML Sourcebook: A Complete Guide to HTML 3.0. John Wiley
and Sons, Inc., 2nd edition, 1996.

[Gros94] Pascal Gros, Toni Vaquer-Mestre, and Philippe Dubois. Intelligent Session Man-
agement for Multimedia Shared Workspaces. Technical report, Institut Eurecom,
1994.

[Gute95] Thomas Gutekunst, Daniel Bauer, Germano Caronni, Hasan, and Bernhard Platt-
ner. A Distributed and Policy-Free General-Purpose Shared Window System.
IEEE/ACM Transactions on Networking, 3(1):51–62, February 1995.

[Herb94] Andrew Herbert. An ANSA Overview. IEEE Network, 8(1):18–23, January/Febru-
ary 1994.

[Herm94] I. Herman et al. PREMO: An ISO Standard for a Presentation Environment for
Multimedia Objects. In Proceedings of ACM Multimedia’94, pages 111–117, San
Francisco, October 1994.

[Hoff96] D. Hoffman and G. Fernando. RTP Payload format for MPEG1/MPEG2 Video.
Internet Engineering Task Force RFC 2038, October 1996.

[Houh95] Henry H. Houh, Joel F. Adam, Michael Ismert, Christopher J. Lindblad, and
David L. Tennenhouse. The VuNet Desk Area Network: Architecture, Implemen-
tation and Experience. IEEE Journal on Selected Areas in Communications,
13(4):710–721, May 1995.

225

References

[IBM 94] IBM Lakes Team. IBM Lakes: An Architecture for Collaborative Networking. R.
Morgan Publishing, Chislehurst, 1994.

[IEEE96] IEEE Communications Society. Special Issue: Multimedia Networked Terminals.
IEEE Personal Communications, 3(2), April 1996.

[IMA94a] Interactive Multimedia Association. Multimedia System Services Part 1: Func-
tional Specifications, IMA Recommended Practice, September 1994.

[IMA94b] Interactive Multimedia Association. Multimedia System Services Part 2: Multime-
dia Devices and Formats, IMA Recommended Practice, September 1994.

[InSo94] InSoft. OpenDVE Architecural Overview. Technical report, InSoft Inc., 1994.

[Ion96a] Iona Technologies Ltd. Orbix 2 Programming Guide, October 1996.

[Ion96b] Iona Technologies Ltd. OrbixTalk 1.0 Programming Guide, July 1996.

[ISO87] International Organization for Standardization. Information Processing Systems -
Computer Graphics - Metafile for the Storage and Transfer of Picture Description
Information, ISO IS 8632, 1987.

[ISO95a] ISO/IEC and ITU-T. Open Distributed Processing: - Basic Reference Model - Part
1: Overview, Draft Standard 10746-1, Draft Recommendation X.901, 1995.

[ISO95b] ISO/IEC and ITU-T. Open Distributed Processing: - ODP Trading Function, Draft
International Standard 13235, 1995.

[ISO96a] International Organization for Standardization. Information Processing Systems -
Computer Graphics and Image Processing - Presentation Environments for Multi-
media Objects (PREMO)- Part 1: Fundamentals of PREMO, ISO/IEC standards
committee ISO/IEC JTC1/SC24 draft 1996-05-15, May 1996.

[ISO96b] International Organization for Standardization. Information Processing Systems -
Computer Graphics and Image Processing - Presentation Environments for Multi-
media Objects (PREMO)- Part 3: Multimedia System Services, ISO/IEC standards
committee ISO/IEC JTC1/SC24 draft 1996-05-15, May 1996.

[ITU94] International Telecommunication Union. Recommendation T.120: Data Protocols
for Multimedia Conferencing, March 1994.

[ITU95] International Telecommunication Union. Draft Recommendation T.121: Generic
Application Template, March 1995.

[ITU97] International Telecommunication Union. Draft Recommendation T.130: Real Time
Audio-Visual Control for Multimedia Conferencing, January 1997.

[IWQ96] IFIP Fifth International Workshop on Quality of Service (IWQOS ’97) . http://
www.ctr.columbia.edu/iwqos/, 1996. Workshop announcement.

References

226

[Jack93] Keith Jack. Video Demystified: A Handbook for the Digital Engineer. Brooktree
Corporation, 1993.

[Jans96] Rickard Janson and Laurence Demounem. TINA Reference Points Version 3.1.
TINA-C Baseline Document No. EN_RC_J.030_3.1_96, December 1996.

[Jone93] Alan Jones and Andrew Hopper. Handling Audio and Video Data Streams in a Dis-
tributed Environment. In Proceedings of the 14th ACM Symposium on Operating
System Principles, pages 231–243, December 1993.

[Kali96] Thomas A. Kalil. Leveraging Cyberspace. IEEE Communications Magazine,
34(7):82–86, July 1996.

[Kay92] David C. Kay and John P. Levine. Graphics File Formats. Windcrest/McGraw-
Hill, 1992.

[Klap96] A. J. Klapwijk and U. Behnke. PLATINUM: A Platform for Users of Multimedia.
In Proceedings of the European Conference on Networks and Optical Communica-
tion NOC’96, Heidelberg, June 1996.

[Kret92] Francis Kretz and Francoise Colaitis. Standardizing Hypermedia Information
Objects. IEEE Communications Magazine, pages 60–70, May 1992.

[Laza95] Aurel A. Lazar, Shailendra K. Bhonsle, and Koon-Seng Lim. A Binding Architec-
ture for Multimedia Networks. Journal of Parallel and Distributed Computing,
30(2):204–216, November 1995.

[Laza96] Aurel A. Lazar, Koon-Seng Lim, and Franco Marconcini. The Binding Interface
Base. Technical Report CTR 412-95-18, COMET Group at Columbia University,
February 1996.

[Li95] Guanxing Li. ANSA Phase III: An Overview of Realtime ANSAware 1.0. Techni-
cal Report APM.1285.01, Architecture Projects Management APM, March 1995.
Online version at ftp://ftp.ansa.co.uk/.

[Litt90] Thomas D. C. Little and Arif Ghafoor. Synchronization and Storage Models for
Multimedia Objects. IEEE Journal on Selected Areas in Communications,
8(3):413–427, April 1990.

[Liu94] Cricket Liu, Jerry Peck, Russ Jones, Bryan Buus, and Adran Nye. Managing Inter-
net Information Services. O’Reilley and Associates, Inc., December 1994.

[Lock94] Harold W. Jr. Lockhart. OSF DCE: Guide to Developing Distributed Applications.
McGraw-Hill, Inc, 1994.

[Luca95] Henry C. Lucas, Hugues Levecq, Robert Kraut, and Lynn Streeter. France’s Grass-
Roots Data Net. IEEE Spectrum, pages 71–77, November 1995.

[Mace94] Michael R. Macedonia and Donald P. Brutzman. MBone Provides Audio and
Video Across the Internet. IEEE Computer, 27(4):30–36, April 1994.

227

References

[Magi96] General Magic. Telescript Technology: An Introduction to the Language. http://
www.genmagic.com/Telescript/index.html, 1996.

[Mak93] Viktor Mak, Mauricio Arango, and Takako Hickey. The Application Programming
Interface to the Touring Machine. Bellcore Technical Report, February 1993.

[Mank96] Allison Mankin and Allyn Romanow. IETF Criteria For Evaluating Reliable Mul-
ticast Transport and Application Protocols. Internet Engineering Task Force, Inter-
net Draft, November 1996.

[MB95] Thomas Meyer-Boudnik and Wolfgang Effelsberg. MHEG Explained. IEEE Multi-
media, 2(1):26–38, Spring 1995.

[McCa95] Steven McCanne and Van Jacobson. vic: A Flexible Framework for Packet Video.
In Proceedings of ACM Multimedia’94, pages 511–521, San Francisco, October
1995.

[Meye96] Bertrand Meyer. The many faces of inheritance: A taxonomy of taxonomy. IEEE
Computer, 29(5):105–108, May 1996.

[Micr95] Microsoft. The Component Object Model Specification, Draft Version 0.9. Techni-
cal report, Microsoft Corporation and Digital Equipment Corporation, October
1995.

[Mine94] Robert F. Mines, Jerrold A. Friesen, and Christine L. Yang. DAVE: A Plug and
Play Model for Distributed Multimedia Application Development. In Proceedings
of ACM Multimedia’94, pages 59–66, San Francisco, October 1994.

[Mock87] P. Mockapetris. Domain Names: Implementation and Specification. Internet Engi-
neering Task Force RFC 1035, November 1987.

[Mont95] Todd Montgomery. Design, Implementation and Verification of the Reliable Multi-
cast Protocol. Master’s thesis, West Virginia University, December 1995.

[MP97] Ketan Mayer-Patel and Lawrence A. Rowe. Design and Performance of the Berke-
ley Continuous Media Toolkit. In Proceedings of Multimedia Computing and Net-
working MMCN’97, San Jose, CA, February 1997.

[Mühl96] Max Mühlhäuser and Jan Gecsei. Services, Frameworks, and Paradigms for Dis-
tributed Multimedia Applications. IEEE Multimedia, 3(3):48–61, Fall 1996.

[Murp96] Brendan Murphy and Glenford Mapp. Integrating Multimedia Streams into a Dis-
tributed Computing System. In Proceedings of Multimedia Computing and Net-
working, San Jose, CA, USA, January 1996.

[Nets97] Netscape, Inc. Netscape Navigator Inline Plug-Ins. http://home.netscape.com/inf/
comprod/products/navigator/version_2.0/plugins/% index.html, May 1997.

[Neum95] B. Clifford Neuman. Security, Payment and Privacy for Network Commerce. IEEE
Journal on Selected Areas in Communications, 13(8):1523–1531, October 1995.

References

228

[OMG94] Object Management Group. Common Facilities Architecture: Revision 4.0, OMG
Document 95-1-2, January 1994.

[OMG95a] Object Management Group. Common Facilities Architecture, OMG Document 95-
1-2, January 1995.

[OMG95b] Object Management Group. CORBAservices: Common Object Services Specifica-
tion, Revised Edition, OMG Document 94-1-1, March 1995. Online version at
http://www.omg.org/library/corbserv.htm.

[OMG95c] Object Management Group. The Common Object Request Broker Architecture and
Specification: Revision 2.0, Object Management Group, Inc., Framingham, MA.,
July 1995.

[OMG96a] Object Management Group. Common Facilities RFP-4: Common Business Objects
and Business Objects Facility, OMG Document CF/96-01-04, January 1996.

[OMG96b] Object Management Group. The Fall 1996 CORBA Buyers Guide. Object Manage-
ment Group, Inc., Framingham, MA., 1996. Online version at http://www.omg.org/
news/cbg.htm.

[OMG96c] Object Management Group. Messaging Service RFP, OMG Document orbos/96-
03-16, March 1996.

[OMG96d] Object Management Group. Multiple Interfaces and Composition RFP, OMG Doc-
ument orb/96-01-04, January 1996.

[OMG96e] Object Management Group. Object Analysis and Design RFP, OMG Document ad/
96-05-01, May 1996.

[OMG96f] Object Management Group. Objects-by-value RFP, OMG Document orbos/96-06-
14, June 1996.

[OMG96g] Object Management Group. Telecommunications Task Force RFP: Control and
Management of A/V Streams, OMG Document telecom/96-08-01, August 1996.

[OMG96h] Object Management Group. Trading Object Service, OMG Document orbos/96-
05-06, October 1996.

[OMG97a] Object Management Group. CORBA Component Model RFP, OMG Document
orbos/97-06-12, June 1997.

[OMG97b] Object Management Group. DCE/CORBA Interworking RFP, OMG Document
orbos/97-03-19, March 1997.

[OMG97c] Object Management Group. Java to IDL RFP, OMG Document orbos/97-03-08,
March 1997.

229

References

[OMG97d] Object Management Group. Multiple Interfaces and Composition, Joint Submis-
sion to Object Management Group by Iona Technologies and others, OMG Docu-
ment orbos/97-01-02, January 1997.

[OMG97e] Object Management Group. ORB Portability Enhancement - Portable Object
Adapter (POA), OMG Document orbos/97-04-14, April 1997.

[OMG97f] Object Management Group. Proposal to the OMG’s Analysis and Design Task
Force, Joint Submission to Object Management Group by Rational Software Cor-
poration and others, OMG Document orbos/97-01-14, January 1997.

[Orfa96] Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential Distributed Objects
Survival Guide. John Wiley and Sons, Inc., 1996.

[Otwa95a] Dave Otway. ANSA Phase III: DIMMA Overview. Technical Report
APM.1439.02, Architecture Projects Management APM, April 1995. Online ver-
sion at ftp://ftp.ansa.co.uk/.

[Otwa95b] Dave Otway. ANSA Phase III: Streams and Signals. Technical Report
APM.1393.02, Architecture Projects Management APM, January 1995. Online
version at ftp://ftp.ansa.co.uk/.

[Oust90] John K. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of
the Winter 1990 USENIX Conference, 1990.

[Oust94] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, Massachu-
setts, 1994.

[Oust96] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch. The Safe-Tcl Security
Model. Technical report, Sun Microsystems, November 1996. Online version at
http://www.smli.com/research/tcl/.

[Pan95] Davis Pan. A Tutorial on MPEG/Audio Compression. IEEE Multimedia, 2(2):60–
74, Summer 1995.

[Parh96] A. Parhar. TINA Object Definition Language Manual Version 2.3. TINA-C Base-
line Document No. TR_NM.002_2.2_96, July 1996.

[Picc94] Marty Picco, Glenn Stewart, Wayne Blackard, Greg Flurry, William K. Pratt, and
Jim Van Loo. Multimedia Systems, chapter Middleware System Services Architec-
ture, pages 221–244. ACM Press SIGGRAPH Series. Addison-Wesley Publishing
Company, New York, 1994.

[Pryc93] Martin De Prycker. Asynchronous Transfer Mode: Solution for Broadband-ISDN.
Ellis-Horwood, 1993.

[Pusz94] Yu-Hong Pusztaszeri et al. Multimedia Teletutoring over a Trans-European ATM
Network. In Proceedings of the IWACA ’94, pages 32–39, September 1994.

References

230

[Pyar96] Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt. Design and Perfor-
mance of an Object-Oriented Framework for High-Speed Electronic Medical
Imaging. USENIX Computing Systems Journal, 9(3), November/December 1996.

[Raja95] Sreeranga Rajan, P. Venkat Rangan, and Harrick M. Vin. A Formal Basis for Struc-
tured Multimedia Collaborations. In Proceedings of the 2nd IEEE International
Conference on Multimedia Computing and Systems, Washington, D.C., May 1995.

[Rang91] P. Venkat Rangan and Harrick M. Vin. Multimedia Conferencing as a Universal
Paradigm for Colaboration. In Lars Kjelldahl, editor, Multimedia - Principles, Sys-
tems, and Applications, chapter 14. Springer-Verlag, April 1991. (Proceedings of
Eurographics Workshop on Multimedia Systems, Applications, and Interaction,
Stockholm, Sweden).

[Raym95] Kerry Raymond. Streams and QoS: A White Paper. Technical report, OMG Tele-
communications SIG, 1995.

[Rona87] J. Rona. MIDI: The Ins, Outs & Thrus. Hal Leonard, Milwaukee, 1987.

[Roth94] Kurt Rothermel, Ingo Barth, and Tobias Helbig. CINEMA - An Architecture for
Distributed Multimedia Applications. In O. Spaniol, A. Danthine, and
W. Effelsberg, editors, Architecture and Protocols for High-Speed Networks, pages
253–271. Kluwer Academic Publishers, 1994.

[Rowe93] L. A. Rowe, B. Smith, and S. Yenftp. Tcl Distributed Programming (Tcl-DP).
Technical report, University of Berkeley, Computer Science Division, March 1993.

[Rozi91] M. Rozier et al. Overview of the CHORUS Distributed Operating System. Techni-
cal Report CS/TR-90-25.1, Chorus Systèmes, February 1991.

[Rumb91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and Will-
iam Lorensen. Object-Oriented Modeling and Design. Prentice Hall International,
Inc., Englewood Cliffs, New Jersey, 1991.

[Schm96a] Marcus Schmid. Design and Implementation of a Connection Management Plat-
form for Networked Multimedia Applications. Master’s thesis, University of Stut-
tgart, May 1996.

[Schm96b] Douglas C. Schmidt and Aniruddha Gokhale. Performance of the CORBA
Dynamic Invocation Interface and Internet Inter-ORB Protocol over High-Speed
ATM Networks. In Proceedings of IEEE GLOBECOM’96, London, November
1996.

[Schu96a] Henning Schulzrinne. RTP Profile for Audio and Video Conferences with Minimal
Control. Internet Engineering Task Force RFC 1890, May 1996.

[Schu96b] Henning Schulzrinne, Van Jacobson, Stephen L. Casner, and Ron Frederick. RTP:
A Transport Protocol for Real-Time Applications. Internet Engineering Task Force
RFC 1889, February 1996.

231

References

[Shen95] Scott Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal
on Selected Areas in Communications, 13(7):1176–1188, September 1995.

[Sieg96] Jon Siegel et al. CORBA: Fundamentals and Programming. John Wiley and Sons,
Inc., 1996.

[Sree92] Cormac John Sreenan. Synchronization Services for Digital Continuous Media.
PhD thesis, Christ’s College University of Cambridge, October 1992.

[Staj94] Frank Stajano. Writing Tcl Programs in the Medusa Applications Environment. In
Proceedings of the Tcl/Tk Workshop, New Orleans, June 1994.

[Staj95] Frank Stajano and Robert Walker. Taming the Complexity of Distributed Multime-
dia Applications. In Proceedings of the 1995 Usenix Tcl/Tk Workshop,, Toronto,
July 1995.

[Stal94] Richard Stallman. Why you should not use Tcl. USENET article on comp.lang.tcl,
September 1994.

[Stei90] Ralf Steinmetz. Synchronization Properties in Multimedia Systems. IEEE Journal
on Selected Areas in Communications, 8(3):401–412, April 1990.

[Stei95] Ralf Steinmetz. Analyzing the Multimedia Operating System. IEEE Multimedia,
2(1):68–84, Spring 1995.

[Stev90] Richard W. Stevens. UNIX Network Programming. Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1990.

[Sun88] Sun Microsystems. RPC: Remote Procedure Call Specification Version 2. Internet
Engineering Task Force, RFC 1050, June 1988. Online version at ftp://ds.inter-
nic.net/rfc/rfc1057.txt.

[Sun95] Sun Microsystems. The Java Language Specification, October 1995. Online ver-
sion at http://www.javasoft.com/doc/programmer.html.

[Sun96a] Sun Microsystems. Java Beans 1.0 API Specification, December 1996. Online ver-
sion at http://splash.javasoft.com/beans/spec.html.

[Sun96b] Sun Microsystems. Java Media API, 1996. Online version at http://www.java-
soft.com/products/api-overview.html.

[Sun96c] Sun Microsystems. Java Object Serialization Specification, December 1996.
Online version at http://chatsubo.javasoft.com/current/serial/index.html.

[Sun96d] Sun Microsystems. Remote Method Invocation Specification, 1996. Online version
at http://java.sun.com/products/JDK/1.1/docs/guide/rmi/.

[Thoe94] Jan Thoerner. Intelligent Networks. Artech House, 1994.

References

232

[TIF88] Aldus Corporation Developer Desk and Microsoft Corporation Windows Market-
ing Group. TIFF 5.0. An Aldus/Microsoft Technical Memorandum, 1988.

[Turl96] Thierry Turletti and Christian Huitema. RTP Payload format for H.261 Video
Streams. Internet Engineering Task Force RFC 2032, October 1996.

[vdL93] Rob van der Linden. ANSA Phase III: An Overview of ANSA. Technical Report
APM.1000.01, Architecture Projects Management APM, July 1993. Online ver-
sion at ftp://ftp.ansa.co.uk/.

[Wald94] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A Note on Distributed
Computing. Technical Report SMLI TR-94-29, Sun Microsystems Laboratories,
November 1994.

[Wall91] G. K. Wallace. The JPEG Still Compression Standard. Communications of the
ACM, 34(4):31–45, April 1991.

[Watt96] Aaron R. Watters. The What, Why, Who, and Where of Python. http://
www.wcmh.com/uworld/archives/95/tutorial/005.html, November 1996.

[Wayn95] Peter Wayner. Agents Unleashed: A Public Domain Look at Agent Technology.
Academic Press Professional, Chestnut Hill, Massachusetts, 1995.

[Wein94] Abel Weinrib. The Need for a Software Infrastructure to Support Community Net-
working Applications. In Proceedings of the 1st International Workshop on Com-
munity Networking, San Francisco, July 1994.

[Whit96] Robert A. Whiteside and Ernest J. Friedman-Hill. Idldoc: The IDL Documentation
Generator. http://herzberg.ca.sandia.gov/idldoc/, April 1996.

[Woo94] Miae Woo, Naveed U. Qazi, and Arif Ghafor. A Synchronization Framework for
Communication of Pre-orchestrated Information. IEEE Network, pages 52–61,
January/February 1994.

[Wool96] Michael Woolridge. Intelligent Agents and Multi-Agent Systems. In Proceedings
of the EUNICE’96 Summer School on Telecommunications Services, Lausanne,
September 1996.

[Wray94] Stuart Wray, Tim Glauert, and Andy Hopper. Networked Multimedia: The Medusa
Environment. IEEE Multimedia, 1(4):54–63, Winter 1994.

[Zhan93] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala.
RSVP:A New Resource ReSerVation Protocol. IEEE Network Magazine, Septem-
ber 1993.

[Zimm91] D. Zimmerman. The Finger User Information Protocol. Internet Engineering Task
Force RFC 1288, December 1991.

233

List of Acronyms and Abbreviations

ANSA Advanced Networked Systems Architecture
AP Application Pool
API Application Programming Interface
APM Architecture Projects Management
APMT Application Pool and Multimedia Terminal architecture
ATM Asynchronous Transfer Mode
ASE Application Service Element
ASID Access, Searching and Indexing of Directories
A/V Audio and Video
AWT Abstract Window Toolkit
BETEUS Broadband Exchange for Trans-European USage
B-ISDN Broadband-ISDN
BLOB Binary Large Object
BOA Basic Object Adapter
CC Cross-Connect
CC Connection Coordinator
CCCM Conference Configuration and Connection Manager
CCITT Comité Consultatif International Télégraphique et Téléphonique
CD Compact Disk
CDR Common Data Representation
CDS Cell Directory Service
CINEMA Configurable INtEgrated Multimedia Architecture
CLSID CLaSs IDentifier
CF Common Facilities
CGM Computer Graphics Metafile
CIOP Common Inter-ORB Protocol
CLI Command-Level Interface
CMT Continuous Media Toolkit
COM Component Object Model
CORBA Common Object Request Broker Architecture
COS Common Object Services
CP Connection Performer
CPU Central Processing Unit
CSCW Computer-Supported Collaborative Work
CSM Communication Session Manager
CSRC Contributing SouRCe
DAN Desk Area Network
DAVE Distributed Audio and Video Environment

List of Acronyms and Abbreviations

234

DCOM Distributed Component Object Model
DCE Distributed Computing Environment
DII Dynamic Invocation Interface
DIMMA Distributed Interactive MultiMedia Architecture
DIR Dynamic Implementation Routine
DNS Domain Name System
DOC Distributed Object Computing
DPE Distributed Processing Environment
DSI Dynamic Skeleton Interface (CORBA)
DSI Device Support Interface (IBM Lakes)
DSTC Cooperative Research Centre for Distributed Systems Technology
EML Element Management Layer
ESIOP Environment Specific Inter-ORB Protocol
GAT Generic Application Template
GCC Generic Conference Control
GDA Global Directory Agent
GDS Global Directory Service
GIF Graphics Interchange Format
GIOP General Inter-ORB Protocol
GSM Global System for Mobile Communication
GUI Graphical User Interface
GUID Globally Unique IDentifer
HLR Home Location Registry
HTML Hyper-Text Markup Language
HTTP Hyper-Text Transfer Protocol
IA Initial Agent
ID Identifier
IDL Interface Definition Language
IETF Internet Engineering Task Force
IID Interface IDentifier
IIOP Internet Inter-ORB Protocol
IMA Interactive Multimedia Association
IN Intelligent Network
IOR Interoperable Object Reference
IP Internet Protocol
IR Interface Repository
ISDN Integrated Services Digital Network
ISO International Organization for Standardization
ITU International Telecommunications Union
JPEG Joint Photographic Experts Group
LAN Local Area Network
LDI Logical Device Interface
LNC Layer Network Coordinator
LSM Link Support Module

235

List of Acronyms and Abbreviations

MBone Multicast Backbone
MCS Multipoint Communications Service
MCU Multipoint Control Unit
MHEG Multimedia and Hypermedia Coding Experts Group
MIB Management Information Base
MIDI Musical Instrument Digital Interface
MIDL Microsoft IDL
MMC Multipoint Multimedia Communication
MOM Message-Oriented Middleware
MPEG Motion Pictures Expert Group
MSS Multimedia System Services
MT Multimedia Terminal
NC Network Computer
NDR Network Data Representation
OCX OLE Controls
ODL Object Definition Language
ODP Open Distributed Processing
OLE Object Linking and Embedding
OMA Object Management Architecture
OMG Object Management Group
OMT Object Modeling Technique
ONC Open Network Computing
ORB Object Request Broker
ORL Olivetti Research Laboratories
OS Operating System
OSF Open Software Foundation
P2P Person-To-Person
PA Provider Agent
PAL Phase Alternation Line
PDU Protocol Data Unit
PREMO Presentation Environment for Multimedia Objects
QoS Quality of Service
RFI Request For Information
RFP Request For Proposal
RLI Resource-Level Interface
RMI Remote Method Invocation
RM-ODP Reference Model for ODP
RMP Reliable Multicast Protocol
ROM Read-Only Memory
RP Recommended Practice
RPC Remote Procedure Call
RSVP Resource ReSerVation Protocol
RTP Realtime Transport Protocol
RTCP Realtime Transport Control Protocol

List of Acronyms and Abbreviations

236

SDR Session Directory
SF Service Factory
SMDS Switched Multi-Megabit Data Service
SOM System Object Model
SRM Scalable Reliable Multicast
SSM Service Session Manager
SSRC Synchronization SouRCe
TCL Tool Command Language
TCL-DP TCL Distributed Processing
TCP Transmission Control Protocol
TCSM Terminal CSM
TK Toolkit
TLI Transport Layer Interface
TIFF Tag Image File Format
TINA Telecommunications Information Networking Architecture
TINA-C TINA Consortium
TTL Time-To-Live
UA User Agent
UAP User APplication
UDP User Datagram Protocol
UML Unified Modeling Language
URL Uniform Resource Locator
USM User Service Session Manager
UUID Universal Unique IDentifier
VAT Visual Audio Tool
VIC VIdeo Conferencing tool
WAN Wide Area Network
WB WhiteBoard
Web World Wide Web

A1

Appendix A APMT Platform Interface
Definintions

A.1 Remarks

This appendix contains a reference of the APMT platform definitions discussed in Chapter 7.
An online version of these interfaces can be found under [Blum97a]. Note that the online ver-
sion is commented.

A.2 Module Typ

module Typ
{
 typedef string StringRef;
 typedef sequence<StringRef> StringRefs;
 enum State {ACTIVE,INACTIVE};
 enum ProbSign {FATAL,NONFATAL};
 enum ExecSeman {ATOMIC,BEST_EFFORT};
 typedef string Name;
 typedef string InfIdent;
 typedef sequence<InfIdent> InfIdents;
 typedef unsigned long ObjectHandle;
 typedef sequence<ObjectHandle> ObjectHandles;
 struct RefHandle {
 ObjectHandle handle;
 StringRef ref;
 };
 typedef sequence<RefHandle> RefHandles;
 typedef unsigned short Percentage;
 struct Date {
 unsigned short year;
 unsigned short month;
 unsigned short day;
 unsigned short hour;
 unsigned short minute;
 unsigned short second;
 };
 typedef unsigned long TimeStamp;
 typedef unsigned long MilliSeconds;
 struct Fraction {
 long numerator;
 long denominator;
 };
 struct IntRange {
 long min;
 long max;
 };
 struct Rectangle {
 long width;
 long height;
 };

APMT Platform Interface Definintions

A2

 struct D2Position {
 long xpos;
 long ypos;
 };
 struct D3Position {
 long xpos;
 long ypos;
 long zpos;
 };
 typedef string EventKey;
 struct Event {
 EventKey key;
 Time::TimeT time;
 any data;
 };
};

A.3 Module Ftyp

module Ftyp
{
 struct BooleanF {
 boolean flag;
 boolean value;
 };
 struct ShortF {
 boolean flag;
 short value;
 };
 struct UshortF {
 boolean flag;
 unsigned short value;
 };
 struct OctetF {
 boolean flag;
 octet value;
 };
 struct LongF {
 boolean flag;
 long value;
 };
 struct UlongF {
 boolean flag;
 unsigned long value;
 };
 struct FloatF {
 boolean flag;
 float value;
 };
 struct StringF {
 boolean flag;
 string value;
 };
 struct NameF {
 boolean flag;
 CosNaming::Name name;
 };
 struct IntRangeF {
 boolean flag;
 Typ::IntRange value;
 };

A3

Module Ex

 struct FractionF {
 boolean flag;
 Typ::Fraction value;
 };
 struct RectangleF {
 boolean flag;
 Typ::Rectangle value;
 };
 struct D2PositionF {
 boolean flag;
 Typ::D2Position value;
 };
 struct D3PositionF {
 boolean flag;
 Typ::D3Position value;
 };
};

A.4 Module Ex

module Ex
{
 exception GeneralProblem {
 Typ::ProbSign significance;
 string description;
 };
 exception RangeProblem {
 string description;
 };
 exception ResourceProblem {
 Typ::ProbSign significance;
 string description;
 };
 exception NoSuchUser {};
 exception NoSuchEvent {};
 exception NoSuchApplication {};
 exception NoSuchKey {};
 exception NotCompatible {};
};

A.5 Module Atyp

module Atyp
{
 typedef string Url;
 typedef string Email;
 typedef string IpAddress;
 typedef string HostName;
 typedef IpAddress TerminalAddress;
 typedef HostName TerminalName;
 typedef IpAddress PoolAddress;
 typedef HostName PoolName;
 typedef IpAddress UapAddress;
 typedef HostName UapName;
 typedef string UserName;
 typedef sequence<UserName> UserNames;
 struct User {
 UapName home;
 UserName name;

APMT Platform Interface Definintions

A4

 };
 typedef sequence<User> Users;
 struct UserRecord {
 UapName home;
 UserName name;
 Url homepage;
 Email mailaddr;
 string<1000> info;
 };
 typedef sequence<UserRecord> UserRecords;
 typedef unsigned long ParticipantId;
 typedef sequence<ParticipantId> ParticipantIds;
 struct ParticipantRecord {
 ParticipantId pid;
 UserRecord user;
 TerminalName tn;
 Typ::Date join_t;
 };
 typedef sequence<ParticipantRecord> ParticipantRecords;
 typedef string ApplicationName;
 typedef Ftyp::StringF ApplicationNameF;
 typedef sequence<ApplicationName> ApplicationNames;
 typedef string TitleName;
 typedef Ftyp::StringF TitleNameF;
 typedef sequence<TitleName> TitleNames;
 typedef unsigned long SessionId;
 struct SessionAddress {
 PoolName paddr;
 SessionId id;
 };
 typedef sequence<SessionAddress> SessionAddresses;
 enum MembershipState {JOINING,INVITED,MEMBER,LEFT};
 enum SessionState {IDLE,ACTIVE,EXITING};
 struct SessionDescription {
 PoolName pn;
 SessionId id;
 ApplicationName an;
 TitleNameF tn;
 SessionState state;
 ParticipantRecords prs;
 Typ::Date start;
 };
 struct InvitationInfo {
 SessionDescription apdesc;
 string description;
 };
 struct AnnouncementInfo {
 Typ::Date startTime;
 SessionAddress aaddr;
 string description;
 };
 exception NoSuchApplication { string description; };
 exception NoSuchSession { string description; };
 exception NoSuchTitle { string description; };
 exception SessionAccessDenied { string description; };
 exception ApplicationStartupDenied { string description; };
 exception ApplicationStartupFailed { string description; };
};

A5

Module Tc

A.6 Module Tc

module Tc
{
 interface UserSession;
 interface TerminalControl;
 interface PanelTerminalControl;
 typedef sequence<UserSession> UserSessions;
 typedef unsigned long UserSessionId;
 typedef sequence<UserSessionId> UserSessionIds;
 enum TerminationCause {LEFT, KILLED, FAILURE};
 enum UserSessionState {RUNNING,PAUSED,HIDDEN,HIDDEN_PAUSED,EXITING};
 struct RemoteSessionDescription {
 UserSessionId id;
 UserSessionState state;
 Atyp::SessionDescription globdesc;
 Ts::TermServDescriptions terservs;
 };
 struct LocalSessionDescription {
 UserSessionId id;
 UserSessionState state;
 Atyp::ApplicationName an;
 Ts::TermServDescriptions terservs;
 Typ::Date start;
 };

 interface Terminal
 {
 struct FingerInfo {
 Atyp::UserRecord ur;
 Atyp::SessionAddresses inapps;
 Typ::Date since;
 boolean present;
 };
 readonly attribute Atyp::Email administrator;
 readonly attribute Atyp::TerminalName name;
 readonly attribute Atyp::TerminalAddress address;
 exception NobodyThere {};
 void invite(in Atyp::User user,
 in Pac::Participant sc,
 in Typ::InfIdents termobjects,
 in Atyp::InvitationInfo info)
 raises (NobodyThere,
 Ex::NotCompatible,
 Ex::NoSuchUser);
 oneway void knock(in string text);
 FingerInfo finger()
 raises (NobodyThere);
 };

 interface UserSession
 {
 readonly attribute boolean local;
 readonly attribute Atyp::ApplicationName name;
 readonly attribute UserSessionId localid;
 readonly attribute UserSessionState state;
 void hide();
 void show();
 void pause();
 void continue();
 void kill();
 void quit();
 void remove();

APMT Platform Interface Definintions

A6

 CosEventChannelAdmin::ConsumerAdmin register_event(in Typ::EventKey key)
 raises (Ex::NoSuchEvent);
 const string StateEventK = "Tc:UserSession:State";
 typedef UserSessionState StateEventD;
 };

 interface RemoteUserSession : UserSession
 {
 RemoteSessionDescription get_description();
 const string ChangeEventK = "Tc:RemoteUserSession:Change";
 typedef RemoteSessionDescription ChangeEventD;
 };

 interface LocalUserSession : UserSession
 {
 readonly attribute LocalSessionDescription description;
 };

 interface ApplicationControl
 {
 exception PoolNameError { string description; };
 UserSession start(in Atyp::PoolName pool,

in Atyp::ApplicationName application,
 in Atyp::TitleNameF title,
 in Atyp::SessionId reserved)
 raises (PoolNameError,
 Atyp::NoSuchApplication,
 Atyp::NoSuchTitle,

Atyp::ApplicationStartupDenied,
 Atyp::ApplicationStartupFailed,
 Ex::NotCompatible,
 Ex::ResourceProblem);
 UserSession start_browser(in Atyp::PoolName pool)
 raises (PoolNameError,
 Atyp::NoSuchApplication,
 Atyp::ApplicationStartupDenied,

Atyp::ApplicationStartupFailed,
 Ex::NotCompatible,
 Ex::ResourceProblem);
 UserSession start_panel(in Atyp::PoolName pool,
 in Atyp::TitleName paneluser)

raises (PoolNameError,
 Atyp::NoSuchTitle,
 Atyp::ApplicationStartupDenied,
 Atyp::ApplicationStartupFailed,
 Ex::NotCompatible,

Ex::ResourceProblem);
 UserSession start_term_app(in Atyp::ApplicationName application)
 raises (Atyp::NoSuchApplication,
 Ex::ResourceProblem);
 UserSession join(in Atyp::SessionAddress aaddr)

raises (Atyp::NoSuchSession,
 Atyp::SessionAccessDenied,
 Atyp::ApplicationStartupFailed,
 Ex::NotCompatible,
 Ex::ResourceProblem);
 };

 interface TerminalControl
 {
 readonly attribute Atyp::UserRecord terminal_user;
 readonly attribute Atyp::TerminalName name;
 readonly attribute Atyp::TerminalAddress address;
 readonly attribute Typ::InfIdents termservers;

A7

Module Tc

 exception TooManyInstances { short maxinst; };
 exception NoSuchServer {};
 CosNaming::NamingContext get_name_service();
 CosEventChannelAdmin::EventChannel get_event_channel();
 Ts::TerminalServer get_terminal_server(in Ftyp::NameF name,
 in Typ::InfIdent server)

raises (NoSuchServer, TooManyInstances);
 PanelTerminalControl get_terminal_control();
 oneway void create_indication(in CosNaming::Name obj_name,
 in Typ::StringRef obj_ref);
 oneway void delete_indication(in CosNaming::Name obj_name);
 boolean create_event(in CosNaming::Name objname,
 out Typ::StringRef obj_ref);
 boolean delete_event(in CosNaming::Name objname);
 CosEventChannelAdmin::ConsumerAdmin

 register_event (in Typ::EventKey key)
 raises (Ex::NoSuchEvent);
 void terminated();
 void session_change(in Atyp::SessionDescription des);
 Typ::InfIdents challenge(in Typ::InfIdents termobjects);
 const string CreationEventK = "Tc:TerminalControl:Creation";
 struct CreationEventD {
 CosNaming::Name obj_name;
 Typ::StringRef obj_ref;
 };
 const string DeleteEventK = "Tc:TerminalControl:Deletion";
 typedef CosNaming::Name DeleteEventD;
 };

 interface PanelTerminalControl
 {
 typedef unsigned long InvitationKey;
 readonly attribute UserSessions sessions;
 exception RegistrationError { string description; };
 void register(in Atyp::UserRecord user)
 raises (RegistrationError);
 ApplicationControl get_application_control();
 Typ::StringRef get_terminal();
 void deregister();
 UserSession invite_accept(in InvitationKey key)
 raises (Ex::NoSuchKey,
 Ex::ResourceProblem,
 Atyp::SessionAccessDenied);
 oneway void invite_reject(in InvitationKey key);
 void quit_all();
 CosEventChannelAdmin::ConsumerAdmin register_terminal_events();
 const string ReadyEventK = "Tc:PanelTerminalControl:Ready";
 typedef UserSession ReadyEventD;
 const string InvitationEventK = "Tc:PanelTerminalControl:Invitation";
 struct InvitationEventD {
 Atyp::InvitationInfo info;

InvitationKey key;
 boolean rejected;
 };
 const string TerminationEventK = "Tc:PanelTerminalControl:Termination";
 typedef UserSessionId TerminationEventD;
 const string DeregistrationEventK =

"Tc:PanelTerminalControl:Deregistration";
 const string KnockEventK = "Tc:PanelTerminalControl:Knock";
 typedef string KnockEventD;
 };
};

APMT Platform Interface Definintions

A8

A.7 Module Ts

module Ts
{
 interface TerminalServer;
 enum TerminalServerState {NORMAL,HIDDEN,PAUSED,HIDDEN_PAUSED,EXITING};
 struct TermServDescription {
 Typ::InfIdent type;
 Typ::Date started;
 Typ::StringRef termservref;
 TerminalServerState state;
 };
 typedef sequence<TermServDescription> TermServDescriptions;

 interface TerminalServer
 {
 readonly attribute TerminalServerState state;
 readonly attribute TermServDescription description;
 void set_terminal_control(in Typ::StringRef termcont);
 void hide();
 void show();
 void pause();
 void continue();
 void remove();
 CosEventChannelAdmin::ConsumerAdmin
 register_event (in Typ::EventKey key)

raises (Ex::NoSuchEvent);
 const string StateEventK = "Ts:TerminalServer:State";
 typedef TerminalServerState StateEventD;
 };
};

A.8 Module TclTk

module TclTk
{
 struct Downloadable {
 Atyp::ApplicationName appname;
 Typ::Name objname;
 string version;
 };
 typedef sequence<Downloadable> Downloadables;
 typedef string TclTkScript;
 typedef sequence<octet> MediumObject;

 interface TclTkLoader
 {
 exception NoSuchObject {};
 TclTkScript get_script(in Downloadable script)

raises (NoSuchObject);
 MediumObject get_medium_object(in Downloadable obj)
 raises (NoSuchObject);
 };

 interface TclTkApplethan : Ts::TerminalServer
 {
 typedef string Result;
 exception TclNok { string description; };
 exception NoScript {};

A9

Module Java

 void init(in Downloadable script,
 in Downloadables libraries,
 in Downloadables media_objects,
 in Typ::StringRef loader,
 in Typ::StringRef application);
 void start()
 raises (TclNok, NoScript);
 void reset();
 Result eval_script(in TclTkScript script)

raises (TclNok);
 void as_eval_script(in TclTkScript script);
 Result get_variable(in string variable)
 raises (TclNok);
 void set_variable(in string variable, in string value)

raises (TclNok);
 };
};

A.9 Module Java

module Java
{
 typedef string ClassName;
 typedef string PackageName;
 typedef sequence<octet> Package;

 interface JavaApplethan : Ts::TerminalServer
 {
 exception MissingClass {};
 void init(in ClassName applet,

in Typ::StringRef loader,
 in Typ::StringRef application);
 void start()

raises (MissingClass);
 };

 interface JavaLoader
 {
 exception NoSuchPackage {};
 Package get_package(in PackageName name)
 raises (NoSuchPackage);
 };
};

A.10 Module Pc

module Pc
{
 interface ApplicationControl;
 interface ParentSessionControl;
 interface ChildSessionControl;
 typedef sequence<ChildSessionControl> ChildSessionControls;

 interface Pool
 {
 readonly attribute Atyp::Email administrator;
 readonly attribute Atyp::ApplicationNames installed_apps;
 readonly attribute Atyp::TitleNames installed_titles;
 Atyp::SessionId reserve_identifier(in Atyp::UserRecord user,
 in Typ::Date expires);

APMT Platform Interface Definintions

A10

 ParentSessionControl get_application(in Atyp::UserRecord user,
 in Atyp::ApplicationNameF application,
 in Atyp::TitleNameF title)

raises (Atyp::NoSuchApplication,
 Atyp::NoSuchTitle,
 Atyp::ApplicationStartupDenied,
 Ex::ResourceProblem);
 Pac::SessionAccess get_access(in Atyp::SessionId sid)
 raises (Atyp::NoSuchSession,
 Atyp::SessionAccessDenied,
 Ex::ResourceProblem);
 ParentSessionControl get_browser()
 raises (Atyp::ApplicationStartupDenied,
 Atyp::NoSuchApplication,
 Ex::ResourceProblem);
 };

 interface SessionControl
 {
 readonly attribute Atyp::ApplicationName name;
 readonly attribute Atyp::SessionId sid;
 readonly attribute Atyp::SessionState state;
 exception NoSuchSessionId {};
 exception AlreadyStarted {};
 Atyp::SessionDescription get_description();
 void kill();
 Typ::InfIdents required_interfaces();
 };

 interface ParentSessionControl : SessionControl
 {
 Atyp::SessionId start(in Typ::StringRef tc)
 raises (AlreadyStarted,
 Atyp::ApplicationStartupFailed,
 Ex::ResourceProblem);
 void start_with_id(in Typ::StringRef tc,
 in Atyp::SessionId id)
 raises (Ex::ResourceProblem,
 NoSuchSessionId,
 Atyp::ApplicationStartupFailed,
 Atyp::ApplicationStartupDenied);
 };

 interface ChildSessionControl : SessionControl
 {
 App::Application start()
 raises (AlreadyStarted,
 Atyp::ApplicationStartupFailed,
 Ex::ResourceProblem);
 };

 interface PoolControl
 {
 readonly attribute Typ::InfIdents installed_uts;
 readonly attribute Atyp::ApplicationNames installed_apps;
 readonly attribute Atyp::TitleNames installed_titles;
 readonly attribute Put::UtilityDescriptions running_uts;
 readonly attribute ChildSessionControls child_sessions;
 exception NoSuchUtility {};
 exception UtilityStartupFailed { string description; };

A11

Module Put

 ChildSessionControl get_application(in Atyp::ApplicationNameF application,
 in Atyp::TitleNameF title)
 raises (Atyp::NoSuchApplication,
 Atyp::NoSuchTitle,
 Atyp::ApplicationStartupDenied,
 Ex::ResourceProblem);
 Put::Utility get_utility(in Typ::InfIdent utility)

raises (NoSuchUtility,
 UtilityStartupFailed,
 Ex::ResourceProblem);
 void terminated();
 };

 interface ApplicationControl
 {
 readonly attribute Atyp::SessionState state;
 exception NoChildMode {};
 void init_parent(in PoolControl cb,
 in Typ::StringRef termcont,
 in Atyp::UserRecord ur,
 in Atyp::TitleNameF title,
 in Atyp::SessionId aid);
 App::Application init_child(in PoolControl cb,
 in Atyp::TitleNameF title,
 in Atyp::SessionId aid)

raises (NoChildMode);
 void kill();
 };
};

A.11 Module Put

module Put
{
 interface Utility;
 typedef sequence<Utility> Utilities;
 enum UtilityState {IDLE,RUNNING,FAILED,EXITING};
 struct UtilityDescription {
 Typ::InfIdent type;
 Typ::Date started;
 UtilityState state;
 Utility utility;
 };
 typedef sequence<UtilityDescription> UtilityDescriptions;

 interface Utility
 {
 readonly attribute UtilityState state;
 void remove();
 CosEventChannelAdmin::ConsumerAdmin register_event (in Typ::EventKey key)
 raises (Ex::NoSuchEvent);
 const string StateEventK = "Put:Utility:State";
 typedef UtilityState StateEventD;
 };
};

APMT Platform Interface Definintions

A12

A.12 Module App

module App
{
 interface Application
 {
 readonly attribute Atyp::SessionState state;
 exception NoSessionSupport {};
 exception SessionRequired {};
 void remove();
 void synchronize_to_session(in Typ::StringRef sessioninfo)

raises (NoSessionSupport);
 void set_terminal_control(in Typ::StringRef termcont)
 raises (SessionRequired);
 CosEventChannelAdmin::ConsumerAdmin register_events ()
 raises (Ex::NoSuchEvent);
 const string StateEventK = "App:Application:State";
 typedef Atyp::SessionState StateEventD;
 };
};

A.13 Module Pac

module Pac
{
 interface Participant;
 interface ParticipationRequest;
 interface ParticipationControl;
 interface Application;
 interface SessionControl;
 interface SessionInformation;
 struct Invitation {
 Atyp::User user;
 Typ::Date invitation_time;
 };
 typedef sequence<Invitation> Invitations;
 struct JoinRequest {
 Atyp::User user;
 Typ::Date join_time;
 };
 typedef sequence<JoinRequest> JoinRequests;

 interface SessionAccess
 {
 readonly attribute Atyp::SessionDescription description;
 Typ::InfIdents required_interfaces();
 ParticipationControl join(in ParticipationRequest pr,
 in Atyp::UserRecord us)
 raises (Atyp::SessionAccessDenied,
 Ex::ResourceProblem);
 };

 interface ParticipationRequest
 {
 exception JoinRequestCancelled {};
 void join_reject(in string description);
 Typ::StringRef join_accept()
 raises(JoinRequestCancelled);
 };

A13

Module Pac

 interface ParticipationControl
 {
 readonly attribute Atyp::MembershipState state;
 exception InvitationCancelled { string description; };
 void invite_accept(in Typ::StringRef tc,
 in Atyp::UserRecord us)
 raises (InvitationCancelled);
 void invite_reject(in string description);
 void cancel_join(in string description);
 void quit(in string description);
 };

 interface Participant
 {
 readonly attribute Typ::StringRef termcont;
 readonly attribute Atyp::MembershipState state;
 exception InfoNotAvailable {};
 exception NotJoining {};
 JoinRequest get_join_request()
 raises (InfoNotAvailable);
 Invitation get_invitation_record()
 raises (InfoNotAvailable);
 Atyp::ParticipantRecord get_participant_record()
 raises (InfoNotAvailable);
 void join_accept()
 raises (NotJoining);
 oneway void join_reject(in string description);
 oneway void cancel_invitation(in string description);
 oneway void remove();
 };

 interface Application
 {
 void join(in Atyp::UserRecord user,
 in Participant part)
 raises (Atyp::SessionAccessDenied,
 Ex::ResourceProblem);
 oneway void cancel_join(in Atyp::ParticipantId id,
 in string description);
 oneway void invitation_placed(in Atyp::ParticipantId pid,
 in boolean success);
 oneway void new_participant(in Atyp::ParticipantId pid,
 in Typ::StringRef tc);
 oneway void invite_reject(in Atyp::ParticipantId pid,
 in string description);
 oneway void join_reject(in Atyp::ParticipantId pid);
 oneway void quit(in Atyp::ParticipantId pid,
 in string description);
 };

 interface SessionControl : Put::Utility
 {
 readonly attribute Invitations pending_invitations;
 readonly attribute JoinRequests pending_joinings;
 readonly attribute Atyp::ParticipantRecords members;
 readonly attribute Atyp::SessionDescription description;
 readonly attribute Atyp::SessionState state;
 exception InvitationError { string description; };
 exception NoSuchParticipant {};
 SessionInformation init(in Application cb,
 in Atyp::SessionDescription session);
 Participant init_participant(in Atyp::ParticipantRecord part,
 in Typ::StringRef termcont);
 Participant invite_user(in Atyp::User user);

APMT Platform Interface Definintions

A14

 Participant invite_terminal(in Atyp::User user,
 in Atyp::TerminalName terminal);
 Participant get_participant(in Atyp::ParticipantId pid)
 raises (NoSuchParticipant);
 };

 interface SessionInformation
 {
 struct ParticipantInfo {
 Atyp::ParticipantRecord part;
 Typ::StringRef termcont;
 };
 typedef sequence<ParticipantInfo> ParticipantInfos;
 readonly attribute ParticipantInfos participants;
 CosEventChannelAdmin::ConsumerAdmin register_events()

raises (Ex::NoSuchEvent);
 const string StateEventK = "Pac:SessionInformation:State";
 typedef Atyp::SessionState StateEventD;
 const string NewParticipantEventK = "Pac:SessionInformation:NewParticipant";
 typedef ParticipantInfo NewParticipantEventD;
 const string GoneParticipantEventK = "Pac:SessionInformation:GoneParticipant";
 typedef Atyp::ParticipantId GoneParticipantEventD;
 };
};

B1

Appendix B APMT Multimedia
Middleware Interface Definitions

B.1 Remarks

This appendix contains a reference of the APMT multimedia middleware definitions discussed
in Chapter 8. An online version of these interfaces can be found under [Blum97a]. Note that
the online version is commented.

B.2 Module Bas

module Bas
{
 enum ResState {RELEASED, FAILURE, RESERVED, ACQUIRED};
 enum FunState {OK, PARTIAL_FAILURE, COMPLETE_FAILURE};
 enum RunState {NORMAL,HIDDEN,PAUSED,HIDDEN_PAUSED};
 enum ActState {IDLE,ACTIVATED,DEACTIVATED};
 struct StateEvent {
 boolean res_state_ev;
 boolean act_state_ev;
 boolean fun_state_ev;
 boolean run_state_ev;
 ResState res_state;
 ActState act_state;
 FunState fun_state;
 RunState run_state;
 };
 typedef octet NoInit;
 typedef string FormatKey;
 typedef sequence<FormatKey> FormatKeys;
 struct Format {
 FormatKey key;
 any parameters;
 };
 const string AnyFormatK = "any";
 const string AudioFormatK = "audio";
 const string VideoFormatK = "video";
 const string ImageFormatK = "image";
 const string GraphFormatK = "graphics";
 const string AnimationFormatK = "animation";
 const string TextFormatK = "text";
 typedef short PortKey;
 typedef sequence<PortKey> PortKeys;
 enum PortState {DISCONNECTED, CONNECTED};
 enum PortType {INPORT, OUTPORT};
 struct PortSetting {
 PortKey port;
 FormatKey format;
 };
 typedef sequence <PortSetting> PortSettings;

APMT Multimedia Middleware Interface Definitions

B2

 struct Endpoint {
 Typ::ObjectHandle device;
 PortKey port;
 };
 typedef sequence<Endpoint> Endpoints;
 struct FlowParameter {
 unsigned long data_rate;
 };
 struct PortFlowSetting {
 PortKey port;
 FormatKey format;
 FlowParameter flowparm;
 };
 typedef sequence<PortFlowSetting> PortFlowSettings;
 typedef unsigned short ConnectorKey;
 typedef sequence<ConnectorKey> ConnectorKeys;
 enum ConnectorState {INACTIVE, ACTIVE_OK, ACTIVE_NOK, ACTIVE_FAILED};
 struct Connector {
 ConnectorKey conid;
 Typ::ExecSeman mode;
 Typ::State active;
 Endpoint out_port;
 Endpoints in_port;
 };
 typedef sequence<Connector> Connectors;
 struct ConnectorInfo {
 ConnectorKey conid;
 Typ::ExecSeman mode;
 Endpoint out_port;
 Endpoints in_port;
 Endpoints failed_inports;
 };
 typedef sequence<ConnectorInfo> ConnectorInfos;

 interface ConnectsRole : CosGraphs::Role {};
 interface SourceRole : CosGraphs::Role {};
 interface SinkRole : CosGraphs::Role {};

 interface ConnectRelation : CosRelationships::Relationship
 {
 readonly attribute Endpoint source;
 readonly attribute Endpoint sink;
 };

 interface GraphObject : CosGraphs::Node
 {
 readonly attribute Typ::ObjectHandle handle;
 readonly attribute Ftyp::NameF name;
 readonly attribute ResState res_state;
 readonly attribute RunState run_state;
 readonly attribute ActState act_state;
 readonly attribute FunState fun_state;
 void pause();
 void continue();
 CosEventChannelAdmin::ConsumerAdmin register_event (in Typ::EventKey key)

raises (Ex::NoSuchEvent);
 const string StateEventK = "GraphObject:State";
 typedef StateEvent StatEventD;
 };

B3

Module Bas

 interface Device : GraphObject
 {
 struct PortInfo {
 PortType type;
 PortState state;
 FormatKeys supported_formats;
 unsigned short maxinstances;
 };
 readonly attribute PortKeys device_ports;
 exception NoSuchPort {};
 exception PortNotConnected {};
 void hide();
 void show();
 PortInfo get_port_info(in PortKey key)
 raises (NoSuchPort);
 Format get_format(in PortKey key)

raises (PortNotConnected);
 };

 interface DeviceConnector : GraphObject
 {
 readonly attribute Endpoints contained_endpoints;
 };

 interface AutoConnector : DeviceConnector
 {
 readonly attribute Endpoints failed_endpoints;
 readonly attribute Typ::ExecSeman mode;
 };

 interface ConnectorBox : DeviceConnector
 {
 readonly attribute ConnectorInfos contained_connectors;
 readonly attribute ConnectorInfos active_connectors;
 readonly attribute ConnectorInfos failed_connectors;
 exception UnknownConnector { ConnectorKeys unknown_conns; };
 exception ActivationProblem {

string description;
 boolean complete_failure;

ConnectorKeys incomplete_conns;
 Endpoints failed_inports;

};
 void activate_connector(in ConnectorKey con, in boolean exclusive)
 raises (UnknownConnector, ActivationProblem);
 void activate_connectors(in ConnectorKeys cons, in boolean exclusive)
 raises (UnknownConnector, ActivationProblem);
 void activate_all()

raises (ActivationProblem);
 void deactivate_connector(in ConnectorKey con)
 raises (UnknownConnector);
 void deactivate_connectors(in ConnectorKeys cons)

raises (UnknownConnector);
 void deactivate_all();
 ConnectorInfo get_connector(in ConnectorKey key)
 raises (UnknownConnector);
 const string ConnectorStateEventK = "ConnectorBox:ConnectorState";
 struct ConnectorStateEventD {

boolean activate;
boolean success;
ConnectorKeys connectors;

 };
 };
};

APMT Multimedia Middleware Interface Definitions

B4

B.3 Module DevMan

module DevMan
{
 interface DevManagement;
 interface Graph;

 interface DevFactory
 {
 struct PortInfo {
 Bas::PortKey port;
 Bas::PortType type;
 Bas::FormatKeys supported_formats;
 unsigned short maxinstances;
 };
 typedef sequence<PortInfo> PortInfos;
 exception NoSuchDevice {};
 exception InvalidSettings {};
 exception InvalidParameters {};
 exception NoSuchPort {};
 readonly attribute PortInfos ports;
 void query_init_parameters(in any initparms)
 raises (InvalidParameters);
 Bas::FormatKeys query_format(in Bas::PortKey port,
 in Bas::PortSettings settings,
 in any initparms)
 raises (InvalidSettings,
 InvalidParameters,
 NoSuchPort);
 Bas::PortFlowSettings query_flow_parameters(
 in Bas::PortSettings sink_settings,
 in Bas::PortFlowSettings source_settings,
 in any initparms)

raises (InvalidSettings,
 InvalidParameters,
 NoSuchPort);
 void create(out Typ::StringRef devref,
 out DevManagement devman);
 };

 interface DevFactoryFinder
 {
 typedef sequence<DevFactory> DevFactories;
 exception NoSuchFactory {};
 exception AlreadyRegistered { Typ::InfIdents devices; };
 DevFactories find_factory(in Typ::InfIdent device)
 raises (NoSuchFactory);
 void register_factory(in DevFactory factory,
 in Typ::InfIdent device)
 raises (AlreadyRegistered);
 };

 interface DeviceServices
 {
 readonly attribute Typ::StringRef termcont;
 readonly attribute Res::ResourceManager resmgr;
 readonly attribute Cont::BufferFactory buff_fact;
 };

B5

Module Trans

 interface DevCallback
 {
 oneway void problem (in Typ::ObjectHandle error_source,
 in Typ::ProbSign significance,
 in string description);
 };

 interface DevManagement
 {
 readonly attribute Typ::ObjectHandle object_handle;
 readonly attribute Bas::GraphObject object_interface;
 readonly attribute Bas::ResState res_state;
 readonly attribute Bas::RunState run_state;
 readonly attribute Bas::ActState act_state;
 readonly attribute Bas::FunState fun_state;
 exception InitProblem {
 boolean inittype_error;
 boolean paramrange_error;
 boolean paramsupport_error;

string description;
 };
 exception NoSuchPort {};
 exception TooManyInstantiations {};
 exception RoleNotSupported {};
 exception MissingInterface {
 Typ::InfIdents missing_interfaces;
 };
 void init(in DevCallback cb,

in any initdata,
 in Ftyp::NameF name,
 in DeviceServices devser,
 in Typ::ObjectHandle handle)
 raises (InitProblem);
 void prepare()

raises (MissingInterface,
Ex::GeneralProblem);

 void reserve()
 raises (Ex::ResourceProblem);
 void free();
 void activate()
 raises (Ex::GeneralProblem,
 Ex::ResourceProblem);
 void deactivate();
 void hide();
 void show();
 void remove();
 Ports::Port create_port(in Bas::PortKey key)

raises (NoSuchPort,TooManyInstantiations);
 };
};

B.4 Module Trans

module Trans
{
 typedef string IpAddress;
 typedef sequence<IpAddress> IpAddresses;
 typedef unsigned short IpPort;
 struct IpTsap {
 IpAddress addr;
 IpPort port;
 };

APMT Multimedia Middleware Interface Definitions

B6

 typedef sequence <IpTsap> IpTsaps;
 struct IpAddressF {
 boolean flag;
 IpAddress address;
 };
 struct IpTsapF {
 boolean flag;
 IpTsap tsap;
 };
 enum Mode {TX, RX, TX_AND_RX};
 typedef unsigned long FlowHandle;
 struct FlowIdentifier {
 IpAddress srcterm;
 FlowHandle handle;
 };
 typedef sequence<FlowIdentifier> FlowIdentifiers;

 interface TransportDevice : Bas::Device
 {
 readonly attribute IpTsap mytsap;
 readonly attribute Mode device_mode;
 readonly attribute unsigned long tx_bytes;
 readonly attribute unsigned long tx_bytes_ps;
 readonly attribute unsigned long rx_bytes;
 readonly attribute unsigned long rx_bytes_ps;
 void statistics_events(in unsigned long ival)
 raises (Ex::RangeProblem);
 const short TpInPort = 1;
 const short TpOutPort = 2;
 const string StatisticsEventK = "Trans:TransportDevice:Statistics";
 struct StatisticsEventD {
 unsigned long tx_bytes;
 unsigned long tx_bytes_ps;
 unsigned long rx_bytes;
 unsigned long rx_bytes_ps;
 };
 };

 interface Udp : TransportDevice
 {
 readonly attribute IpTsaps destinations;
 const string AddressEventK = "Trans:Udp:Address";
 struct AddressEventD {
 IpTsaps destinations;
 IpAddressF if_addr;
 };
 };

 interface UdpRtp : Udp
 {
 struct Init {
 Mode device_mode;
 IpTsaps destinations;
 Ftyp::UshortF port;
 Ftyp::UlongF flow_handle;
 };
 };

 interface Ipmcast : TransportDevice
 {
 readonly attribute IpTsap mcast_addr;
 readonly attribute unsigned short ttl;
 };

B7

Module Port

 interface IpmcastRtp : Ipmcast
 {
 struct Init {
 Mode mode;
 IpTsap mcast_addr;
 Ftyp::UshortF ttl;
 Ftyp::UlongF flow_handle;
 };
 };

 interface Tcp : TransportDevice
 {
 readonly attribute IpTsap destination;
 readonly attribute boolean no_delay;
 readonly attribute boolean keep_alive;
 const string ConnectEventK = "Trans:Tcp:Connect";
 struct ConnectEventD {
 boolean connect;
 IpTsap destination;
 IpTsap if;
 };
 };
};

B.5 Module Port

module Ports
{
 interface Outport;
 interface Inport;

 interface Port
 {
 readonly attribute Bas::PortType type;
 readonly attribute Bas::PortKey key;
 readonly attribute Bas::PortState connect_state;
 readonly attribute Typ::State activity_state;
 readonly attribute Typ::MilliSeconds up_time;
 readonly attribute Typ::MilliSeconds conn_time;
 readonly attribute Typ::MilliSeconds active_time;
 readonly attribute unsigned long cont_num_since_up;
 readonly attribute unsigned long bytes_since_up;
 readonly attribute unsigned long cont_num_since_conn;
 readonly attribute unsigned long bytes_since_conn;
 exception InvalidPortSetting {};
 void disconnect();
 void remove();
 };

 interface Inport : Port
 {
 void connect(in Outport out_port,
 in Bas::FormatKey format)
 raises (InvalidPortSetting);
 void stop();
 void push(in Cont::HeaderContainer cont, in Cont::Buffer buff);
 };

APMT Multimedia Middleware Interface Definitions

B8

 interface Outport : Port
 {
 exception BadParameters {
 Typ::ObjectHandle originator;
 Bas::FlowParameter minparm;
 };

 exception NoInfluence {};
 void connect(in Inport in_port,
 in Bas::FormatKey format,
 in Bas::FlowParameter parms)

raises (InvalidPortSetting,BadParameters);
 void adjust_flow(in Bas::FlowParameter parms)

raises (BadParameters,NoInfluence);
 };
};

B.6 Module Cont

module Cont
{
 interface BufferFactory;
 interface HeaderContainer;
 typedef string AttrHeaderKey;
 exception InvalidHeader { string description; };

 interface Buffer
 {
 readonly attribute unsigned long size;
 readonly attribute unsigned long fill_level;
 void remove();
 Buffer copy();
 };

 interface BufferFactory
 {
 Buffer allocate(in unsigned long size);
 };

 interface Header
 {
 readonly attribute any header_data;
 void set_data(in any header_data)
 raises (InvalidHeader);
 void remove();
 };

 interface FormatHeader : Header
 {
 attribute Bas::FormatKey key;
 };

 interface AttrHeader : Header
 {
 attribute AttrHeaderKey key;
 attribute boolean transmit;
 };

 interface HeaderContainer
 {
 readonly attribute Typ::TimeStamp creation_time;
 attribute unsigned long contnum;

B9

Module Tgraph

 readonly attribute unsigned long sourceid;
 readonly attribute unsigned short headnum;
 void set_format_header(in FormatHeader format)
 raises (InvalidHeader);
 void set_attr_header(in AttrHeader header)

raises (InvalidHeader);
 FormatHeader get_format_header()
 raises (NoSuchHeader);
 AttrHeader get_attr_headerk(in AttrHeaderKey key)
 raises (NoSuchHeader);
 AttrHeader get_attr_headern(in unsigned short index)
 raises (NoSuchHeader);
 HeaderContainer copy();
 void remove();
 };
};

B.7 Module Tgraph

module Tgraph
{
 interface Graph;
 interface GraphCallback;
 struct ObjectProblem {
 Typ::ObjectHandle handle;
 string problem;
 };
 typedef sequence<ObjectProblem> ObjectProblems;
 struct NetPortAddress {
 Typ::ObjectHandle transdev;
 Trans::IpTsaps addr;
 };
 typedef sequence<NetPortAddress> NetPortAddresses;
 struct NetPortParameter {
 Typ::ObjectHandle transdev;
 Bas::FlowParameter flowparm;
 };
 typedef sequence<NetPortParameter> NetPortParameters;
 struct NetPortFormat {
 Typ::ObjectHandle transdev;
 Bas::FormatKey format;
 };
 typedef sequence<NetPortFormat> NetPortFormats;
 typedef sequence<NetPortFormats> NetPortFormatCombs;
 struct DeviceRequest {
 Typ::InfIdent dev_name;
 Ftyp::NameF name;
 Typ::ObjectHandle dev_handle;
 any dev_settings;
 Bas::PortSettings port_settings;
 };
 typedef sequence<DeviceRequest> DeviceRequests;
 struct AutocxtorRequest {
 Ftyp::StringF name;
 Typ::ObjectHandle cxtor_handle;
 Bas::Endpoints dev_ports;
 };
 typedef sequence<AutocxtorRequest> AutocxtorRequests;

APMT Multimedia Middleware Interface Definitions

B10

 struct CoboxRequest {
 Ftyp::StringF name;
 Typ::ObjectHandle cobox_handle;
 Bas::Connectors cxtors;
 };
 typedef sequence<CoboxRequest> CoboxRequests;
 exception NoSuchObject { Typ::ObjectHandles miss_handles; };
 exception BadRequests { ObjectProblems bad_requests; };
 exception BadEndpoints { Bas::Endpoints bad_endpoints; };
 exception BadObjectHandles { Typ::ObjectHandles bad_handles; };
 exception ObjectsWithProblems { ObjectProblems objprobs; };
 exception GraphIncomplete { string description; };

 interface Graph : CosGraphs::Node
 {
 readonly attribute Ftyp::NameF name;
 readonly attribute Bas::ResState res_state;
 readonly attribute Bas::RunState run_state;
 readonly attribute Bas::ActState act_state;
 readonly attribute Bas::FunState fun_state;
 readonly attribute boolean error_state;
 readonly attribute Trans::FlowIdentifiers rec_flows;
 exception FormatMismatch { Typ::ObjectHandles bad_objects; };
 exception NoFormatMatch {};
 NetPortFormatCombs add_objects (in DeviceRequests devs,
 in AutocxtorRequests cxtors,
 in CoboxRequests coboxes,
 in NetPortParameters tx_parms)
 raises (NoSuchObject,BadRequests,
 BadEndpoints,BadObjectHandles,
 FormatMismatch,
 NoFormatMatch,
 Ex::ResourceProblem);
 void commit(in NetPortFormats port_formats,
 out NetPortAddresses rx_addrs,
 out Typ::RefHandles objs)
 raises (ObjectsWithProblems,
 FormatMismatch);
 void cancel();
 void rem_objects(in Typ::ObjectHandles handles)

raises (NoSuchObject);
 void reserve()
 raises (ObjectsWithProblems);
 void free();
 void start(in NetPortAddresses destinations,
 in Trans::FlowIdentifiers rec_flows)
 raises (ObjectsWithProblems,GraphIncomplete);
 void park();
 void pause();
 void continue();
 void remove();
 CosEventChannelAdmin::ConsumerAdmin register_events ();
 const string StateEventK = "Tgraph:Graph:State";
 struct StateEventD {
 Bas::StateEvent state;
 Trans::FlowIdentifiers rec_flows;
 };
 const string ResourceEventK = "Tgraph:Graph:Resource";
 typedef ObjectProblems ResourceEventD;
 const string ModificationEventK = "Tgraph:Graph:Modification";
 const string FailureEventK = "Tgraph:Graph:Failure";
 typedef string FailureEventD;
 };

B11

Module Strag

 interface GraphCallback
 {
 oneway void state_change(in Bas::StateEvent new_state);
 oneway void resource_problem(in ObjectProblems problems);
 oneway void graph_modification(in string description);
 oneway void graph_failure(in string description);
 };
};

B.8 Module Strag

module Strag
{
 interface StreamAgent : Ts::TerminalServer, CosGraphs::Node
 {
 readonly attribute Typ::InfIdents supported_devices;
 void create_graph(in Ftyp::NameF name,
 Typ::InfIdents challenge(in Typ::InfIdents devices);
 };
};

B.9 Module Cccm

module Cccm
{
 interface Session;
 interface TerminalSet;
 interface Terminal;
 interface Bridge;
 interface SimplexBridge;
 interface DuplexBridge;
 interface OneToAllBridge;
 interface SomeToAllBridge;
 interface AllToOneBridge;
 interface AllToAllBridge;
 typedef sequence<TerminalSet> TerminalSets;
 typedef sequence<Terminal> Terminals;
 typedef sequence<Bridge> Bridges;
 enum BridgeType {SIMPLEX,
 DUPLEX,
 ALL_TO_ONE,
 ONE_TO_ALL,
 SOME_TO_ALL,
 ALL_TO_ALL};
 enum ModelType {SENDER,RECEIVER};
 typedef unsigned short ModelHandle;
 enum SetType {GLOBAL,SUBSET};
 struct GraphFailure {
 Terminal where;
 boolean sender;
 };
 typedef sequence<GraphFailure> GraphFailures;
 exception BridgeFailure { GraphFailures failed_graphs; };

 interface Session : Put::Utility
 {
 readonly attribute TerminalSets terminal_sets;
 readonly attribute Terminals terminals;
 exception StragentError { string description; };
 exception BadModelHandle {};

APMT Multimedia Middleware Interface Definitions

B12

 Terminal create_terminal(in Tc::TerminalControl tc)
 raises (StragentError);
 TerminalSet create_terminal_set(in Terminals terminals);
 TerminalSet create_global_terminal_set();
 void register_sender_model(in ModelHandle handle,
 in Tgraph::DeviceRequests devices,
 in Tgraph::AutocxtorRequests autocxtors,
 in Tgraph::CoboxRequests coboxes,
 in Bas::Endpoint network_port,
 in Bas::FlowParameter flow_parms,
 in Trans::FlowHandle flow_handle)
 raises (Tgraph::BadRequests,
 Tgraph::BadEndpoints,

Tgraph::BadObjectHandles,
 BadModelHandle);

 void register_receiver_model(in ModelHandle handle,
 in Tgraph::DeviceRequests devices,
 in Tgraph::AutocxtorRequests autocxtors,
 in Tgraph::CoboxRequests coboxes,
 in Bas::Endpoint network_port,
 in boolean mixer)
 raises (Tgraph::BadRequests,
 Tgraph::BadEndpoints,
 Tgraph::BadObjectHandles,
 BadModelHandle);
 void reset();
 void remove();
 };

 interface Terminal
 {
 enum State {IDLE,CONNECTED,STOPPED,DEFUNCT};
 readonly attribute State state;
 readonly attribute Tc::TerminalControl termcont;
 readonly attribute TerminalSets terminal_sets;
 void pause();
 void continue();
 void remove();
 };

 interface TerminalSet
 {
 readonly attribute SetType type;
 readonly attribute Bridges bridges;
 readonly attribute Terminals terminals;
 exception InvalidModel { string description; };
 void add_terminals(in Terminals terminals);
 void remove_terminals(in Terminals terminals);
 Bridge create_bridge(in BridgeType type,
 in ModelHandle sender,
 in ModelHandle receiver,
 in Typ::ExecSeman semantics)
 raises (InvalidModel);
 void remove();
 };

 interface Bridge
 {
 enum State {IDLE,ACTIVATED,ACTIVE,PARKED};
 readonly attribute BridgeType type;
 readonly attribute State state;
 readonly attribute TerminalSet my_terminal_set;
 readonly attribute Typ::ExecSeman semantics;

B13

Module Cccm

 readonly attribute GraphFailures failed_graphs;
 exception NotInTerminalSet {};
 exception NotInstantiated {};
 void start()
 raises (BridgeFailure);
 void park()
 raises(BridgeFailure);
 void remove();
 Typ::StringRefs get_object(in Typ::ObjectHandle handle,
 in ModelType graph_type,
 in Terminal terminal)
 raises (NotInstantiated);
 };

 interface SimplexBridge : Bridge
 {
 readonly attribute Terminal sender;
 readonly attribute Terminal receiver;
 void connect(in Terminal sender, in Terminal receiver)
 raises (NotInTerminalSet,BridgeFailure);
 void set_sender(in Terminal sender)
 raises (NotInTerminalSet,BridgeFailure);
 void set_receiver(in Terminal receiver)
 raises (NotInTerminalSet,BridgeFailure);
 };

 interface DuplexBridge : Bridge
 {
 readonly attribute Terminals terminals;
 void connect(in Terminal first, in Terminal second)
 raises (NotInTerminalSet,BridgeFailure);
 };

 interface OneToAllBridge : Bridge
 {
 readonly attribute Terminal sender;
 void set_sender(in Terminal sender)
 raises (NotInTerminalSet,BridgeFailure);
 };

 interface AllToOneBridge : Bridge
 {
 readonly attribute Terminal receiver;
 void set_receiver(in Terminal receiver)
 raises (NotInTerminalSet,BridgeFailure);
 };

 interface SomeToAllBridge : Bridge
 {
 readonly attribute Terminals senders;
 exception NotSending {};
 void set_senders(in Terminal senders)
 raises (NotInTerminalSet,BridgeFailure);
 void add_senders(in Terminal senders)
 raises (NotInTerminalSet,BridgeFailure);
 void rem_senders(in Terminal senders)
 raises (NotInTerminalSet,NotSending);
 };

 interface AllToAllBridge : Bridge
 {};
};

APMT Multimedia Middleware Interface Definitions

B14

Curriculum Vitae

Christian Blum

Biographical Data:

Higher Education:

Author and Coauthor of the Following Publications:

1. Christian Blum, Refik Molva, and Erich Rütsche. A Terminal-Based Approach to
Multimedia Service Provision. In Proceedings of the 1st International Workshop on
Community Networking, San Francisco, July 1994.

2. Christian Blum. A Practical Method for the Synchronization of Live Continuous
Media Streams. In Proceedings of the OPNET’95, Paris, January 1995.

3. Christian Blum, Philippe Dubois, Refik Molva, and Olivier Schaller. A Semi-Distrib-
uted Platform for the Support of CSCW Applications. In Proceedings of the First
International Distributed Conference IDC’95, Madeira, November 1995.

Home Address Office Address Electronic Addresses

Les Bastides de la Bléjarde
Bâtiment Hysope II
06530 Peymeinade
France

Institut Eurécom
2229, route des Crêtes
06904 Sophia-Antipolis Cedex
France

E-mail: blum@eurecom.fr
Url: http://www.eurecom.fr/~blum/

Birthdate: October 30, 1965
Place of Birth: Ravensburg (Germany)
Citizenship: German
Marital Status: single

since Sep. 93 Ph.D. studies at Eurécom, Corporate Communications
Department
Ph.D. inscription: Ecole Polytechnique Fédérale de
Lausanne (EPFL)
Advisor: Prof. Dr. Refik Molva

Sep. 90 - Sep. 91 Graduate student in the department of Electrical and Com-
puter Engineering at Oregon State University, Oregon,
USA

Oct. 86 - Jun. 93 Electrical engineering studies at the University of Stuttgart
Major: Communication Systems
Title: Diplom-Ingenieur (U)

Aug. 76 - Jun. 85 High school studies at the Welfengymnasium Ravensburg.
Abitur.

4. Christian Blum and Olivier Schaller. The Beteus Application Programming Interface.
Technical Report RR-96-020, Institut Eurecom, December 1995. Available at http://
www.eurecom.fr/~blum/pub/pub.html.

5. Christian Blum, Didier Loisel, and Refik Molva. BETEUS: Multipoint Teleconferenc-
ing over the European ATM Pilot. In Proceedings of the European Conference on Net-
works and Optical Communication NOC ’96, Heidelberg, June 1996.

6. Christian Blum and Refik Molva. A Software Platform for Distributed Multimedia
Applications. In Proceedings of the IEEE International Workshop on Multimedia Soft-
ware Development, Berlin, March 1996.

7. Christian Blum, Philippe Dubois, Refik Molva, and Olivier Schaller. A Development
and Runtime Platform for Teleconferencing Applications. Journal on Selected Areas
in Communications, special issue on Network Support for Multipoint Communication,
15(3), April 1997.

8. Christian Blum and Refik Molva. A CORBA-Based Platform for Distributed Multime-
dia Applications. In Proceedings of Multimedia Computing and Networking
MMCN’97, San José, CA, February 1997.

9. Marcus Schmid and Christian Blum. A CORBA-Based Connection Management
Scheme for a Multimedia Platform with Stream Configuration Support. In Proceed-
ings of the 5th Open Workshop on High-Speed Networks, Paris, March 1996.

