
Thèse
présentée pour obtenir le grade de docteur

de l’École Nationale Supérieure
des Télécommunications

Spécialité : Informatique et Réseaux

JAMEL GAFSI

DESIGN AND PERFORMANCE OF
LARGE SCALE VIDEO SERVERS

Soutenue le 17 Novembre 1999 devant le Jury composé de:

Président Prof. Jacques Labetoulle (Eurecom)

Rapporteurs Prof. Wolfgang Effelsberg (Universität Mannheim)
Prof. Monique Becker (INT)

Examinateurs Dr. Isabelle Demeure (ENST)
Dr. Zhen Liu (INRIA)

Directeur de Thèse Prof. Ernst W. Biersack (Eurecom)

École Nationale Supérieure des Télécommunications

ii

iii

Dedication

To my mother and the memory of my father.

I hope to be now what my father taught me to be.

iv

v

Acknowledgments
First and foremost I would like to thank my thesis advisor Professor Ernst Biersack for his
support and his guidance over the last three years. He never stopped guiding, encouraging, and
supporting me, especially during the very hard time I had after my father died. I am indebted
to him for provoking my interest to video on demand servers and for teaching me how to write
papers and to give talks. His continuous and thorough reviews improved tremendously the
technical quality and the presentation of the work I have published.

I am grateful to Prof. Jacques Labetoulle, Prof. Wolfgang Effelsberg, Prof. Monique Becker,
Dr. Isabelle Demeure, and Dr. Zhen Liu for agreeing to serve on my dissertation committee
and for the time they took to read and comment my work.

Special thanks go to Didier Loisel and David Tremouillac who were the main forces behind the
administration of the hardware and material we have required. I owe special thanks to Ulrich
Walther, Jan Exner, and Thomas Mancini for their contributions in the implementation of our
video server prototype. I also thank Mme Evelyne Biersack, Emmanuelle Chassagnoux, and
Karim Maouche for reading and correcting the french summary of this dissertation.

I have immensely benefited from many stimulating discussions, technical and otherwise, with
many colleagues at Eurecom. I will fondly remember the countless hours I spent discussing
with my colleagues and friends at Eurecom: Jörg Nonnenmacher, Jakob Hummes, Christian
Blum, Lassaad Gannoun, Raymond Knopp and later Arnaud Legout, Morsy Cheikhrouhou,
Matthias Jung, Pablo Rodriguez, Neda Nikaein, Sergio Loureiro, Arnd Kohrs, Pierre Conti, and
Guiseppe Montalbano. Special thanks to Arnaud Legout for his permanent help.

I am especially indebted to three fabulous friends, Jörg Nonnenmacher, Jakob Hummes, and
Morsy Cheikhrouhou. I thank them for their help on innumerable occasions, their advice on
technical matters and their perspectives in life in general. I have learned a lot from them.

My life at the Côte d’Azur has been enriched by several people I have gotten to know over
the past three years. The long road towards a doctoral degree can be fraught with frustration
and pain. Instead, the company and support of these friends have made this journey mostly
rewarding and fun.

Finally, I would like to thank my family for sharing the ups and downs of my student life and
for putting up with very long years of separation.

vi

vii

Résuḿe

Les applications multimédia, qui commencent à apparaı̂tre, vont devenir omniprésentes dans
quelques années. Un exemple de ces applications est la vidéo à la demande. La mise en oeuvre
de celle-ci nécessite la conception de nouveaux systèmes de stockage et de livraison appelés
serveurs vidéo. La conception de ces derniers doit tenir compte de la nature de l’information
vidéo qui est très volumineuse, gourmande en bande passante et impose des contraintes en
matière de délais de livraison.

La conception d’un serveur vidéo représente plusieurs défis: celui-ci doit servir une grande
population de clients simultanément. En outre, il doit être robuste au facteur d’échelle (scalable)
et doit être aussi économiquement rentable. Finalement, son architecture doit tolérer les pannes
de ses composantes afin de garantir un service ininterrompu. L’objectif de cette thèse est de
concevoir et étudier la performance d’un serveur vidéo qui réalise ces défis.

Cette thèse identifie, propose et compare plusieurs algorithmes qui interviennent dans les dif-
férentes phases de conception d’un serveur vidéo. Elle étudie en particulier l’architecture du
serveur vidéo, le placement et la distribution des données vidéo et la fiabilité du serveur vidéo.
Nous proposons un algorithme de répartition des données sur plusieurs disques et noeuds du
serveur vidéo, appelé Mean Grained Striping, et nous le comparons avec les algorithmes de
répartition des données que nous avons identifiés en matière du débit du serveur (nombre max-
imum des clients admis simultanément), du besoin en buffer et du temps de latence initial pour
un nouveau client. Nous avons considéré le cas d’un serveur vidéo non-tolérant aux pannes et
celui d’un serveur vidéo tolérant aux pannes. Nos résultats montrent surtout que l’algorithme
de répartition des données et celui qui assure la fiabilité du serveur vidéo sont interdépendants
et le choix de l’un doit être pris en combinaison avec le choix de l’autre. En outre, nous com-
parons plusieurs algorithmes de fiabilité du serveur vidéo en fait de la performance et du coût du
serveur. Les résultats prouvent que pour un serveur vidéo, la technique de fiabilité fondée sur la
simple réplication des données est moins coûteuse que celle qui est fondée sur la technique de
parité. Afin d’évaluer quantitativement la fiabilité du serveur vidéo pour les différentes méth-
odes de fiabilité, nous modélisons la fiabilité à l’aide des chaı̂nes Markoviennes. L’évaluation
de ces modèles montre que l’algorithme de fiabilité Grouped One-to-One, que nous avons pro-
posé, assure la fiabilité la plus importante en dépit d’un coût par flux relativement élevé. Nos
résultats indiquent aussi que diviser le serveur vidéo en petits groupes indépendants aboutit au
meilleur compromis entre une fiabilité élevée et un coût par flux bas. Dans le cas d’un serveur
vidéo qui utilise la technique de réplication des données, nous proposons une nouvelle méthode
de placement de la réplication, appelée ARPS(Adjacent Replica Placement Scheme). Celle-ci
place les données originales directement à côté des données répliquées de fa̧con à éliminer les
temps de recherche supplémentaire quand le serveur vidéo opère dans le mode de défaillance.
Nous montrons que ARPS améliore le débit du serveur vidéo de 60�90% par rapport aux méth-
odes classiques de placement de la réplication. Finalement, nous implémentons un prototype

viii

de serveur vidéo qui reflète les décisions que nous avons prises durant la phase de conception.
Le prototype implémente un nouvel algorithme distribué d’ordonnancement et d’extraction des
données. En outre, nos résultats expérimentaux montrent que le prototype du serveur vidéo est
robuste au facteur d’échelle en matière du nombre de noeuds contenus dans le serveur vidéo.

ix

Abstract
The concept of Video On Demand (VOD) has received lot of attention during the past few years.
To make VOD possible, one needs to address the issues of digital video storage and retrieval
using a video server.

The design of video servers mainly poses four challenges: (i) the video server must achieve a
high throughput to serve a large number of customers concurrently, (ii) it must be scalable, (iii)
it must provide a cost effective architecture, and (iv) it must be reliable that is guaranteeing an
uninterrupted service even when operating with some component failures. The design and the
performance evaluation of a video server that addresses these four challenges is the focus of
this dissertation.

This dissertation describes, proposes, and compares several algorithms and techniques that con-
cern the video server architecture, data layout, data striping that is the technique of distributing
video data on the video server, and server reliability. We introduce a generic data striping
scheme, called the Mean Grained Striping algorithm, and compare different striping algorithms
in terms of server throughput, buffer requirements and start-up latency for a non fault-tolerant
as well as a fault-tolerant video server. Our results demonstrate that the choice of the strip-
ing scheme must be made in combination with the choice of the reliability scheme. Moreover,
we compare several reliability schemes in terms of server performance and cost. We find that
mirroring-based reliability is more cost effective than parity-based reliability for video servers.
In order to quantitatively evaluate server reliability for the different reliability schemes that we
have identified, we perform reliability modeling based on Markov chains. The identification of
the different reliability schemes is based on the technique used to achieve reliability and on the
distribution granularity of redundant data. We propose a mirroring-based organization, called
the Grouped One-to-One scheme and show that it outperforms all other mirroring- and parity-
based schemes in terms of video server reliability at the expense of a slightly higher per stream
cost. The results further indicate that dividing the video server into small independent groups
of disks achieves the best trade-off between high server reliability and low per stream cost. For
mirroring-based reliability, we propose a novel replica placement scheme that stores replicated
data adjacently to original data. This scheme outperforms existing replica placement schemes
in terms the overall server throughput. Finally, we instantiate most of the design decisions in a
prototype implementation. The prototype addresses the main goals that were followed during
the design phases and implements a distributed stream scheduling and retrieval at the server
side and a Java platform-independent client. Furthermore, the experimental results show that
the prototype is scalable in terms of the number of nodes that are contained on the video server.

x

Contents

1 Introduction 1

1.1 Dissertation Outline . 4

2 Video Server Design Issues 5

2.1 Design Overview . 5

2.1.1 Video Server Storage Devices . 6

2.1.2 Video Server Environment and Server Design Phases 8

2.1.3 Video Server Performance and Quality of Service 10

2.2 Design Decisions . 11

2.3 Summary . 17

3 Data Striping 19

3.1 Data Striping Techniques for Video Servers 19

3.1.1 Storage and Retrieval Parameters . 20

3.1.2 Striping Techniques . 21

3.1.3 MGS: A Generic Data Striping Algorithm 24

3.2 Related Work . 28

3.3 Comparison of the Striping Algorithms . 30

3.3.1 Buffer Requirement . 30

3.3.2 Server Throughput . 34

3.3.3 Start-up Latency . 37

3.4 Summary . 40

4 Data Striping and Server Reliability 41

xi

xii CONTENTS

4.1 Video Server Reliability . 41

4.1.1 Mirroring-Based Reliability . 42

4.1.2 Parity-Based Reliability . 43

4.2 Related Work . 45

4.3 Comparison of Striping and Reliability Schemes 46

4.3.1 Comparison for Mirroring-Based Reliability 47

4.3.2 Comparison with Parity-Based Reliability 48

4.3.3 Data Striping vs. Server Reliability: Discussion 56

4.4 Summary . 57

5 Video Server Reliability: Modeling and Performance 59

5.1 Introduction . 59

5.2 Classification of Reliability Schemes . 60

5.3 Related Work . 65

5.4 Reliability Modeling . 66

5.4.1 Motivation . 66

5.4.2 Reliability Modeling for Independent Disk Failures 68

5.4.3 Reliability Modeling for Dependent Component Failures 71

5.4.4 Video Server Reliability: Results . 77

5.5 Server Performance . 81

5.5.1 Server Throughput . 81

5.5.2 Buffer Requirement . 84

5.5.3 Cost Comparison . 85

5.6 Server Reliability vs. Server Performance 88

5.6.1 Server Reliability vs. Per Stream Cost 88

5.6.2 Determining the Group Size Dc . 90

5.7 Summary . 93

6 ARPS: A Novel Replica Placement for Video Servers 95

6.1 Introduction . 95

6.2 Interleaved Declustering Schemes . 97

CONTENTS xiii

6.3 A Novel Replica Placement for Video Servers 98

6.3.1 Motivation . 98

6.3.2 ARPS: Adjacent Replica Placement Scheme 100

6.4 Performance Comparison . 102

6.4.1 Admission Control Criterion . 102

6.4.2 Throughput Results . 104

6.4.3 Reducing Read Overhead for ARPS 106

6.5 Summary . 108

7 Implementation of Eurecom’s Video Server Prototype 111

7.1 Motivation . 111

7.2 Related Work . 112

7.3 Video Server Components . 113

7.3.1 Meta Server . 114

7.3.2 Disk Server . 116

7.3.3 Server Client . 118

7.4 From the Client Request to the Video Playback 121

7.5 Operating in Failure Mode . 124

7.5.1 Client-Based Failure Detection . 125

7.5.2 Retrieval of Replicated Blocks . 126

7.6 Performance of the Video Server Prototype 129

7.6.1 Possible Bottlenecks . 130

7.6.2 Video Server Performance: Results 130

7.7 Summary . 132

8 Conclusions 133

A Disk Parameters 137

B Data Layout and Scheduling for a CGS-striped Server 139

B.1 Parity-Based Reliability . 139

B.1.1 Scheduling and Retrieval for Normal Operation Mode 140

xiv CONTENTS

B.1.2 Scheduling and Retrieval for Single Disk Failure Operation Mode . . . 142

B.2 Mirroring-Based Reliability . 144

B.2.1 Scheduling and Retrieval for Normal Operation Mode 146

B.2.2 Scheduling and Retrieval for Single Disk Failure Operation Mode . . . 146

C Sommaire d́etaillé en fraņcais 149

C.1 Introduction . 149

C.1.1 Serveurs vidéo: environnement et ressources 150

C.1.2 Critères de performance et de qualité de service du serveur vidéo 155

C.2 Conception des serveurs vidéo . 156

C.2.1 Motivation . 156

C.2.2 Architecture et configuration: la matrice à serveur 158

C.2.3 Extraction des données (Data Retrieval) 159

C.2.4 Ordonnancement des flux vidéo (Stream Scheduling) 161

C.2.5 Contrôle d’admission (Admission Control) 162

C.2.6 Répartition des données (Data Striping) 164

C.3 Étude de la fiabilité du serveur vidéo . 169

C.3.1 Techniques et méthodes de fiabilité du serveur vidéo 170

C.3.2 Modélisation de la fiabilité du serveur vidéo 174

C.3.3 Performance du serveur vidéo: Coût par flux 178

C.3.4 Fiabilité vs. performance du serveur vidéo 181

C.3.5 ARPS: Un Nouvel Algorithme de Placement de la Réplication 182

C.4 Implémentation du Server Arrayd’Eurecom 184

C.5 Conclusions . 185

Bibliography 187

List of Figures

2.1 Magnetic Disk Characteristics. 7

2.2 The video server environment. 9

2.3 The server array architecture. 12

2.4 The three round-based scheduling algorithms. 14

3.1 Video-Single-Striping (vss) . 22

3.2 Video-Narrow-Striping (vns) . 22

3.3 Video-Wide-Striping(vws) . 22

3.4 Segment-Single-Striping (sss) . 23

3.5 Segment-Narrow-Striping (sns) . 23

3.6 Segment-Wide-Striping (sws) . 23

3.7 Retrieval Groups . 26

3.8 Striping of a retrieval unit over a retrieval group 28

3.9 Buffer requirement for FGS, CGS and MGS with bFGS
dr

= bMGS

dr
= 100 kbit,

bCGS
dr

= 1 Mbit, rp = 1:5 Mbit/sec, rd = 40 Mbit/sec, QFGS = QCGS = QMGS

for each value of D. 32

3.10 Buffer requirement for MGS and CGS for bMGS

dr
= 100 Kbit, rp = 1:5 Mbit/sec,

rd = 40 Mbit/sec, QFGS = QCGS = QMGS . 33

3.11 Throughput for FGS, CGS and MGS with Dc = 10 for MGS and rp = 1:5

Mbit/sec. 36

3.12 Throughput for MGS and CGS for bMGS

dr
= 100 Kbit, rp = 1:5 Mbit/sec, rd =

40 Mbit/sec. 37

3.13 Worst case start-up latency for rp = 1:5 Mbit/sec. 39

4.1 Parity encoding and decoding. 44

xv

xvi LIST OF FIGURES

4.2 Mirroring for CGS. 47

4.3 Mirroring for MGS for first retrieval group with disks 1 to Dc. 48

4.4 Start-up latency and throughput for CGS- and MGS-based mirroring with
bMGS

dr
= 100 kbit, bCGS

dr
= 1 Mbit and rp = 1:5 Mbit/sec. 49

4.5 Parity data layout of the server for CGS. 49

4.6 Parity data layout of the first retrieval group (disks 1 to Dc) for MGS. 50

4.7 Latency for CGS after a disk failure. 51

4.8 Buffer requirement for CGS during failure mode. 52

4.9 Start-up latency and throughput for CGS (buffering) and MGS with the preven-
tive mode in a parity-based video server. 55

4.10 Start-up latency and throughput for CGS (second read) and MGS with the pre-
ventive mode in a parity-based video server. 56

5.1 One-to-One Organization MirrOne. 62

5.2 One-to-All Organization with Entire block replication Mirrall�entire. 62

5.3 One-to-All Organization with Sub-blocks replication Mirrall�sub. 63

5.4 One-to-Some Organization with Entire block replication Mirrsome�entire 63

5.5 One-to-Some Organization with Sub-blocks replication Mirrsome�sub 64

5.6 One-to-All Organization Parall. 64

5.7 One-to-Some Organization Parsome. 64

5.8 State-space diagram for the One-to-All Scheme. 68

5.9 State-space diagram for the One-to-One scheme. 70

5.10 State-space diagrams for the One-to-Some Scheme. 71

5.11 State-space diagram for the One-to-All scheme with dependent component fail-
ures. 72

5.12 Grouped One-to-One scheme for a server with 4 nodes, each with 2 disks (Dc =

N = 4). 74

5.13 State-space diagram of one group for the Grouped One-to-One scheme with
dependent component failures (Dc = N = 4). 75

5.14 Transitions from state [i; j] to higher states and back, for (i+ j) < Dc

2
. 76

5.15 Transition to the failure state for (i+ j) = Dc

2
. 76

5.16 State-space diagrams for the One-to-Some Scheme for the case of dependent
component failures. 77

LIST OF FIGURES xvii

5.17 Server reliability for the three schemes assuming independent disk failures with
�d =

1
72

hours, D = 100, and Dc = N = 10. 78

5.18 Server reliability for the three schemes assuming dependent component failures
with �d = 1

72
hours, D = 100, and Dc = N = 10. 80

5.19 Server reliability for the three schemes assuming dependent component failures
with �d = 1

72
; 1
48

, and 1
3
hours, D = 100, and Dc = N = 10. 81

5.20 Throughput results for the reliability schemes with Dc = 10. 84

5.21 Per stream cost for different values of the cost ratio � with Dc = 10. 87

5.22 Server reliability for the same server throughput with �d = �n =
1

100000
hours,

�d = �n =
1
72

hours, and Dc = 10. 89

5.23 Video server configurations with D = 100 and Dc = 5. 91

5.24 Server reliability for the same throughput with �d = �n =
1

100000
hours, �d =

�n =
1
72

hours , and Dc = 5; 20.. 92

6.1 Evolution of data transfer rates for Seagate disks. 99

6.2 Evolution of average access time for Seagate disks. 99

6.3 Layout example of ARPS for a server with 6 disks and 2 groups. 101

6.4 Data layout for ARPS. 103

6.5 Server throughput for One/Some, Some/Some, and ARPS with tseek =

13:79 ms, trot = 10 ms, b = 0:5 Mbit, and rp = 1:5 Mbit=sec. 105

6.6 Server throughput for different access time values with rd = 40 MByte=sec,
b = 0:5 Mbit, and rp = 1:5 Mbit=sec. 106

6.7 Reducing read overhead for ARPS. 107

6.8 Server throughput for One/Some, Some/Some, ARPS, and Optimized ARPS
with tseek = 13:79 ms, trot = 10 ms, b = 0:5 Mbit, and rp = 1:5 Mbit=sec.. . 108

7.1 Video Server Architecture . 114

7.2 Meta Server Tasks . 115

7.3 Striping Tool at the Meta Server . 115

7.4 Striping Tool Algorithm . 116

7.5 Disk Server Tasks . 117

7.6 Stream Scheduling Algorithm . 118

7.7 Client Tasks. 119

xviii LIST OF FIGURES

7.8 User Interface at the Client. 120

7.9 Information Flow between the Server Components 121

7.10 From Client Request to Video Play-back. 123

7.11 Setup Message Flow Example . 124

7.12 Client-Based Failure Detection . 126

7.13 Opening a Mirror Stream (Meta Server) . 128

7.14 Opening a Mirror Stream (Disk Server) . 129

7.15 Hardware configuration of a disk server. 131

7.16 Video server performance. 132

B.1 The RAID5 data layout for one video object stored on a video server with D

disks. 140

B.2 Storage layout of original and parity data of one video object on disk i. 141

B.3 The (D, (Z �D))-matrix organization. 141

B.4 Mirroring data layout for one video object stored on a video server with D disks. 145

C.1 Caractéristiques d’un disque magnétique . 153

C.2 Architecture et environnement du serveur vidéo 153

C.3 Les différentes étapes dans la conception d’un serveur vidéo. 157

C.4 La Matrice à serveurs . 159

C.5 Techniques d’extraction pour VBR. 160

C.6 Algorithmes d’ordonnancement périodique. 163

C.7 Méthodes de répartition de la vidéo et d’un bloc. 165

C.8 Débit du serveur vidéo pour CGS, FGS et MGS (Dc = 10). 168

C.9 Débit d’un serveur vidéo fiable pour CGS et MGS (Dc = 10). 169

C.10 Méthodes de réplication des données pour un serveur vidéo. 172

C.11 Exemple de la technique de parité. 173

C.12 Méthodes de parité pour un serveur vidéo. 174

C.13 Diagramme pour One-to-All. 175

C.14 Diagrammes pour One-to-Some. 176

C.15 Diagramme pour One-to-One. 177

LIST OF FIGURES xix

C.16 Fiabilité du serveur vidéo avec D = 100, �d = �n = 1
72

heures et pour One-
to-SomeDc = 10. 178

C.17 Coût par flux pour les méthodes de fiabilité du serveur vidéo avec Dc = 10. . . 180

C.18 Fiabilité du serveur vidéo pour le même débit avec Dc = 10, �d =
1

100000
heures et �d = �n =

1
72

heures. 181

C.19 Un example d’ARPS pour un serveur vidéo à 6 disques et 2 groupes. 183

C.20 Placement des données avec ARPS. 183

xx LIST OF FIGURES

List of Tables

3.1 Storage and retrieval parameters . 21

3.2 Classification of Striping Strategies . 29

3.3 Design Parameters for FGS, CGS and MGS 31

3.4 Buffer requirement for CGS, MGS, and FGS 31

3.5 Throughput for FGS, CGS and MGS. 36

5.1 Classification of the different reliability schemes 61

5.2 Normalized stream cost (by Mirrone) for different values of � with Dc = 10 . . 89

5.3 Normalized stream cost (by Mirrone) for different values of � and Dc. 91

6.1 Classification of interleaved schemes . 98

6.2 Data layout parameters for ARPS . 102

6.3 Throughput ratios. 105

6.4 Throughput ratio between ARPS and the Tiger Some/Some. 107

A.1 Performance Parameters . 137

C.1 Dispositifs de stockage (prix env. 1996) . 151

C.2 Classification des algorithmes de répartition des données 166

C.3 Data layout parameters for ARPS . 184

xxi

xxii LIST OF TABLES

Chapter 1

Introduction

The incredible progress in computing and communication technologies over the past years has
made it feasible and economically viable to provide new services such as video-on-demand,
interactive television, online news, distance learning, and multimedia messaging. All of these
services involve storing, accessing, delivering, and processing multimedia information (video
and audio). The realization of such services requires the development of multimedia storage
servers, i.e. video servers, that are capable of transmitting multimedia information to thousands
of users. These users will be permitted to retrieve multimedia objects from the video server for
real-time playback.

There are two fundamental characteristics of digital video and audio that make the design of
video servers significantly different from the one of traditional file systems and storage servers.
The first characteristic concerns the real-time requirementsof video (audio) data. Indeed, in
contrast to conventional data (e.g. text, binary files) that do not have rate requirements, digital
video (audio) consists of a sequence of video frames (audio samples) that convey meaning only
when presented continuously in time. The second characteristic of video data are large storage
and high data transfer raterequirements. In fact, even in their compressed form, video data re-
main voluminous (a 100 minutes MPEG2 coded video at the rate of 2Mbit=sec is about 1:2GBit
large), where the term MPEG refers to Motion Picture Expert Group that has standardized many
audio and video compression formats. Consequently, the storage and transfer rate requirements
for a video server are huge, since the latter is expected to store thousands of videos and to serve
many thousands of users concurrently. Given these requirements, a video server must provide
(i) massive amounts of space and bandwidth to store and display video data and (ii) efficient
mechanisms for storing, retrieving, and manipulating video data in large quantities and at high
speeds.

Magnetic disks have established themselves as the most suitable storage devices for video
servers since they have the desirable features to support video storage and retrieval. Indeed,

1

2 CHAPTER 1. INTRODUCTION

magnetic disks allow fast random access, high data transfer rates, and have a high storage ca-
pacity at moderate prices. Given that a single magnetic disk is not capable to provide the storage
and bandwidth requirements of a large video server, a video server consists typically of mul-
tiple magnetic disks organized as a disk array [Patterson 88]. Since a disk array is typically
connected to a single machine, the number of its disks is limited by the capacity of the respec-
tive machine. Therefore, making the video server scalable in terms of both, the storage capacity
and the throughput achieved, leads to a distributed architecture that contains multiple machines,
also called nodes, where each of them behaves as a single disk array.

For a video server, the distributed solution is essential, given the large volume of data to be
stored and the global throughput to provide. However, a distributed video server that is made
of multiple disk arrays poses various and sometimes conflicting challenges. These challenges
mainly include providing high server throughput, achieving good load balancing between the
multiple server nodes, designing appropriate data storage and retrieval algorithms such as dis-
tributed stream scheduling and admission control, ensuring guaranteed and uninterrupted video
data delivery even when some of the server components fail, and finally keeping server cost as
low as possible. These challenges must be addressed together since the different issues are in-
terdependent. Hence the need to a complete designthat best compromises the challenges cited
above while meating the server storage, retrieval, and real-time requirements. The design and
performance evaluation of a distributed video server is the focus of this dissertation.

A key point of our work is that different design aspects of a video server are related and each
of these aspects can have an impact on the others. Therefore, the design of a video server must
simultaneously consider the different aspects together. We address throughout this dissertation
threecentral design aspects that are data layout, data striping, and server reliability.

Data layout determines the placement order in which video data is stored on server disks. We
consider two types of data layout. The first type is intra-disk layoutthat organizes the physical
data placement order within the surface of a single disk, whereas the second type is inter-disk
layoutthat addresses data layout between the different disks of the video server. Data layout is
addressed in different chapters of this dissertation.

Before defining data striping, let us discuss the following scenario. Given is a video object to
store on the video server. If this video object is entirely stored on a single disk, the number of
concurrent accesses to that video object is limited by the transfer rate capacity of that disk. A
solution to overcome this limitation is to copy the video object several times on different disks.
However, this solution results in wasted storage space and thus in high server costs. Another
drawback of entirely storing a video object on a single disk are load-imbalances that might
occur between server disks. In fact, a disk that contains a popular video object may experience
a hot spot, whereas other disks may remain underutilized or even idle. An effective solution
to these problems is to partition the video object and scatterit across multiple disks, which is
referred to as data striping. There is no standard and unique definition of data striping in the

3

literature. The following is the data striping definition we consider. Data striping partitions
a given video object into blocks that are stored on a set of disks. Successive blocks of the
video object are stored on different disks following, for instance, a round robin manner. There
are mainly three advantages of data striping for video servers: Given a very popular video
object that is stored across all server disks, the whole server capacity can be used to serve
the clients that are all requesting that popular video object, which allows for high throughput
without the need to duplicate the video object several times. Further, since blocks of each video
object are contained on all server disks, perfect load balancing is achieved independently of
which video objects are requested. Finally, when new disks are added to the video server, a
simple redistribution of the blocks of each video object allows to exploit the additional server
capacity and thus making the video server scalable. Different data striping algorithms differ (i)
in the size of the blocks to store on disks and (ii) in the number of disks that are involved to
retrieve video data during a certain time interval. The analysis and comparison of several data
striping algorithms with respect to video server performance and quality of service is the focus
of chapters 3 and 4.

The third design aspect we concentrate on in this thesis is video server reliability or video server
fault-tolerance1. In order to ensure high quality of service and uninterrupted service, the devel-
opment of new reliability concepts that match the characteristics and requirements of a large and
distributed video server is necessary. In fact, even though modern disk drives have a mean time
to failure (MTTF) of many years, a sufficiently large collection of disk drives can experience
frequent failures. For instance, for a disk MTTF of 300; 000 hours and given that disk life times
are exponentially distributed [GIBS 90], a video server with 300 disks has a mean time between
failures (MTBF) of only 300;000

300
= 1; 000 hours, which is only 42 days. However, the support

of reliability within a video server introduces a storage and bandwidth overhead that may affect
server performance and costs. In chapters 4, 5, and 6, we study video server reliability with
respect to different design goals such as high server performance, low server cost, high server
reliability, and also good load balancing. We only consider server reliability schemes that add
redundant information to original information in order to make the video server fault-tolerant.
We focus on server reliability from two different points of view: the reliability technique used
and the distribution granularity of redundant data. We analyze the video server behavior during
normal operation mode, where all server components are operating, and during failure mode,
where one or some of the server components fail. In the context of reliable video servers, we
also address the management and scheduling of data retrieval for a distributed video server dur-
ing both, normal operation mode and failure mode. Appendix B derives appropriate procedures
for data scheduling and retrieval during these two modes.

1The terms reliability and fault tolerance are used interchangeably throughout this thesis.

4 CHAPTER 1. INTRODUCTION

1.1 Dissertation Outline

The rest of this dissertation is organized as follows.

Chapter 2 provides a design overview for a video server. We first motivate the choice of mag-
netic disks as unique video server storage devices. We then highlight the video server environ-
ment and design phases and derive server performance and quality of service metrics. We finally
articulate the primary design decisions that will be the basis during the rest of this dissertation.

Chapter 3 studies data striping for a non-fault tolerant video server. We classify several strip-
ing algorithms. We then present the Mean Grained striping algorithm, a generic algorithm that
covers the most relevant striping schemes. We compare the retained data striping algorithms in
terms of the overall server throughput, buffer requirement, and start-up latency for new incom-
ing client requests.

Chapter 4 studies video server fault-tolerance and its effect on server performance and quality
of service based on the striping algorithm used. We compare striping algorithms regarding
server throughput, buffer requirement, and start-up latency when the video server operates in
failure mode and make explicit the relationship between the striping algorithm and the reliability
technique used.

Chapter 5 first classifies several server reliability schemes depending on the technique used
and the distribution granularity of redundant data. We then perform reliability modeling for
the different schemes identified based on Continuous Time Markov Chains. Thereby, we split
the discussion to the two cases of independent disk failures and dependent component failures.
We propose a novel mirroring scheme, called Grouped One-to-One mirroring and show that
it achieves highest video server reliability. We compare the retained reliability schemes with
respect to server reliability and per stream cost and determine, for schemes that divide the video
server into independent groups, the group size that best trades-off server reliability and per
stream cost.

Chapter 6 presents a novel replica placement scheme for mirroring-based video servers. We
first classify interleaved declustering schemes for mirroring. We then propose ARPS (Adjacent
Replica Placement Scheme) that stores original data adjacent to replicated data and compare it
with the classical interleaved declustering schemes in terms the overall server throughput.

Chapter 7 instantiates the different video server design aspects in a prototype implementation.
We describe the different components of the distributed video server prototype and present
the algorithms we have implemented for distributed stream scheduling, failure detection, and
failure recovery. We present experimental results to demonstrate the scalability of our video
server prototype.

Finally, chapter 8 summarizes our results and outlines directions for future work.

Chapter 2

Video Server Design Issues

The main challenges in the design of a video server are (i) to satisfy the video server require-
ments regarding storage, retrieval and real-time constraints and (ii) to allow for a scalable and
cost effective video server architecture [Srivastava 97]. The aim of this chapter is first to give an
overview of the video server design. This includes the devices considered to store and retrieve
video data, the overall video server environment, the video server design phases, and finally the
video server performance and quality of service criteria. The second part of this chapter focuses
on the primary design decisions we make, which are the basis of all the work carried out in this
dissertation.

2.1 Design Overview

Due to the storage, bandwidth, and real-time requirements of a video server, its design funda-
mentally differs from the one of classical file systems. Further, the video server design must
result in a scalable and fault-tolerant architecture at a low cost. As we will see throughout
this dissertation, the different issues of the video server design are interdependent and must be
therefore addressed together. To point out the most relevant design aspects for a video server,
we give next a design overview, where we first motivate the choice of magnetic disks as storage
devices for a video server and discuss the main characteristics of a magnetic disk drive. Subse-
quently, we focus on the video server environment and identify the video server design phases.
The last part of this section introduces the different server performance and quality of service
criteria that we will use later to evaluate and compare various algorithms that can be involved
in the different server design phases.

5

6 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

2.1.1 Video Server Storage Devices

The first decision to make when designing a video server is the choice of the storage device
that meets best the space and I/O bandwidth capacity requirements as well as the real-time
constraints of the video server [Chung 96]. Common storage devices are tapes, optical disks,
CD-ROM, DVD, magnetic disks, and main memory (RAM). Out of all these storage devices,
only magnetic disks have the desirable features to support storage and retrieval for video servers
[Lu 96, Chervenak 94, REDD 96]. In fact, magnetic disks provide (i) fast and random access
unlike tapes and optical disks, (ii) high data transfer rates in contrast to tapes, optical disks,
CD-ROM, or DVD, (iii) high storage capacity unlike CD-ROM and DVD, and finally (iv) mod-
erate cost unlike main memory. Moreover, the capacity and speed of magnetic disks has im-
proved tremendously over the last 20 years. The storage capacity of a magnetic disk increases
at a rate of 25% per year and it exceeds today 18GByte [Grochowski 97b]. Further, mag-
netic disks experience a steady transfer rate improvement (40% per year). Currently, the new
generation of magnetic disks, e.g. the IBM Ultra 36XP SCSI disk family, has a transfer rate
of about 40MByte=sec [Grochowski 97c]. Another encouraging factor for choosing magnetic
disks as storage devices is their price that continuously decreases at a rate of 40% per year
[Grochowski 97a]. Today (1999), the price of of magnetic disks is about $0:2 per 1 MByte

[Grochowski 97a, Mr.X]. However, the average access time of magnetic disks has improved
over the last 15 years only at a rate of 5% per year. This average access time is today about
10ms.

Note that magnetic disk costs were relatively high a few years ago, which motivated some
researchers to propose storage hierarchies in order to construct a cost-effective video server
[Doganata 96, Shastri 98, KIENZ 95, WILK 96]. All of these works suggest to store only a
small set of frequently requested video objects on magnetic disks. The large set of less fre-
quently requested video objects are stored on tapes or optical disks that were much cheaper
than magnetic disks. Today, magnetic disks provide large storage capacity at a low price, which
allows to use them as unique storage device for a video server and thus to fully exploit their
high throughput and low latency advantages compared to other storage devices such as tapes
and optical disks. A deep knowledge of the internals of magnetic disk1 drives is needed to un-
derstand well the storage and retrieval requirements and thus to make the right design decisions
for a video server.

Characteristics of Magnetic Disk Drives

Regarding mechanical components of disk drives and their characteristics, we are based on
[Mr.X] and also on the work done in [WILK 94]. The SCSI (Small Computer System Interface)

1In the remainder of this book, the term disk will refer to magnetic disk when it is used alone

2.1. DESIGN OVERVIEW 7

standard presents thereby the most popular magnetic disk drive. As shown in Figure 2.1, a disk
drive typically contains a set of surfacesor platters that rotate in lockstep on a central spindle.
Each surface has an associated disk head responsible for reading/writing data. Unfortunately,
the disk drive has a single read data channel and therefore only one disk head is active at a time.
A surface is set up to store data in a series of concentric circles, called tracks. One track is
made of multiple storage units called sectors, where each sector commonly holds 512bytes of
data. Tracks belonging to different surfaces and having the same distance to the central spindle
build together a cylinder. As an example of today’s disks, the seagate Barracuda ST118273W
disk drive contains 20 surfaces; 7; 500 cylinders; and 150; 000 tracks.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Track
Arm

Cylinder

Sector

Arm assembly (Actuator)Surface (Platter)

Disk head

Central spindle

Figure 2.1: Magnetic Disk Characteristics.

In order to access data stored on a given track, the disk head must perform two operations. First,
the disk head must be positioned over the correct track. The time that elapses to reposition the
disk head from the current track to the target track is known as seek time. The maximum value
of the seek time tseek is the time that the disk head spends to move from the outer track to
the inner track or inversely. More precisely, seek time as studied in [WILK 94, WORT 95] is
mainly composed of four phases: (i) a speedupphase, which is the acceleration phase of the
arm, (ii) a coastphase (only for long seeks), where the arm moves at its maximum velocity, (iii)
a slowdownphase, which is the phase to rest close to the desired track, and finally (iv) a settle
phase, where the disk controller adjusts the head to access the desired location. Note that the
duration tstl of the settle phase is independent of the distance traveled and is about tstl = 3 ms.
However, the durations of the speedup phase (tspeed), the coast phase (tcoast), and the slowdown

8 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

phase (tslowdown) mainly depend on the distance traveled. The seek time tseek takes then the
following form: tseek = tspeed + tcoast + tslowdown + tstl.

Once the disk head is positioned at the target track after performing a seek operation, the disk
surface must rotate such that the desired data is moved under the disk head. The time needed
for this operation is termed rotational latency. In other terms, rotational latency is the time the
disk arm spends inside one cylinder to reposition itself on the beginning of the data to be read.
The maximum value of the rotational latency trot is directly given by the rotation speed of the
spindle. The most common spindle speeds are 4; 500 rpm, 5; 400 rpm, 7; 200 rpm, and more
recently 10; 000 rpm. For a spindle speed of 7; 200 rpm, the maximum value of the rotational
latency trot = 8:33ms.

During seek time and rotational latency, the disk is not performing any read operation. The
percentage of the disk utilization depends therefore on these two values. High seek time
and rotational latency negatively affect the disk utilization. Given that the video server must
implement scheduling and admission control policies to guarantee continuous real-time data
delivery, the values of the seek time and the rotational latency must be based on the worst
case disk head movements. We will see in later chapters that the seek time and the rota-
tional latency at the magnetic disk level have a big impact on the design choices we have
made concerning the data striping algorithm, the reliability scheme as well as the data lay-
out and placement policy. For more details about magnetic disk drive characteristics, we refer
to [WILK 94, WORT 95, Hennessy 90, Mr.X].

2.1.2 Video Server Environment and Server Design Phases

The primary goal of a video server is to achieve high performance at low cost. Hence the mo-
tivation to use standard hardwarefor the video server. Besides the price advantage, a video
server that is based on standard hardware can continuously profit from the technological ad-
vances of these components. However, using (standard) cheap hardware requires to shift the
video server complexity to the application and therefore to realize the whole intelligence of the
server in software. This requires a careful design that must respect all video server requirements
together and achieve the expected performance and quality of service goals.

In order to set the appropriate context of a video server, let us consider the environment shown
in Figure 2.2. Here, the video server is based on multiple magnetic disks building a disk array.
In this scenario, multiple clients request playback of stored videos from the video server. The
video server retrieves data stored on its disks (1), temporarily stores the data in its buffer (2)
until the data is transmitted onto the network interface (3) and through the network to the client
machines (4). Each client receives its requested video stream and performs video playback
simultaneously.

2.1. DESIGN OVERVIEW 9

Buffering
Layout Scheduling

Storage Retrieval

I/O bus Buffer

Streaming Network transmission Playback

Clients

(1)

Video Server Network

(2)

(4)

(3)

Figure 2.2: The video server environment.

The previous scenario leads to identify the following video server design aspects. Data storage
determines the way a given video object is stored on the video server. Data placementand data
layout indicate the physical placement of different parts of a video object on disks. For data
layout, we make the difference between intra-disk layoutand inter-disk layout. The first term
organizes the data placement within a single disk, whereas the second term organizes the data
placement between different disks of the video server. Data retrievaldefines for each stream the
frequency of retrieving its data from server. Stream schedulinggives the order in which multiple
streams are served from a single disk. Since the disk transfer rate is higher than a single stream
playback rate, multiple streams can be served from a single disk. However, in order to avoid
starvation at the client side and thus guarantee continuous playback, admission controlmust
be integrated in the video server. The admission control policy decides for a new incoming
stream, whether it can be accepted. Because of the speed mismatch between data retrieval from
disk and video playback at the client side, main memory (buffer) is needed to temporarily store
retrieved data. The amount of buffer needed is a function of the number of streams served and
on the amount of data read for each stream. Streaming and network transmissionbuild together
the data delivery phase: Data stored temporarily in the buffer must be sent to the client via the
network to arrive in time. Finally, video playbackis performed at the client side. We will focus
in more details on these design aspects in section 2.2.

Figure 2.2 also emphasizes the possible bottlenecks of a video server environment. These can
be (i) the disk transfer rate (also called disk I/O bandwidth), (ii) the I/O bus capacity at the SCSI
interface, (iii) the buffer space, (iv) the transfer rate at the network interface, and (v) the client
capacity (bandwidth and processing). The potential bottlenecks that are related to the video
server capacity are (i), (ii), and (iii). In order to efficiently exploit the total capacity of the video
server, the I/O bus capacity must be higher than the sum over all disks I/O bandwidth of the

10 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

disk array. Once this condition holds, only two bottlenecks remain: the disk I/O bandwidth and
the buffer space.

2.1.3 Video Server Performance and Quality of Service

The performance criteria considered throughout this dissertation are server throughput, buffer
requirement, and server cost. Server throughput is defined as the maximum number of streams
the video server can admit concurrently. Buffer requirement is a decisive performance measure
for a video server since it can affect the server cost. Indeed, whereas main memory cost ex-
periences a steady decrease as is the case for SCSI disk cost, main memory remains relatively
expensive (1 MByte RAM cost about $13 against $0:2 for 1 MByte of hard disk) and repre-
sents a main cost factor of the video server. The third performance metric is server cost. More
precisely, we consider the cost per stream that is the overall server cost divided by the server
throughput. We only consider hard disk and memory costs to calculate the per stream cost.

Besides high performance and low cost, the video server must satisfy quality of service criteria.
The most decisive quality of service metric is video server reliabilitythat is to ensure contin-
uous and uninterrupted service even in the presence of some component failures. Nowadays,
magnetic disk drives are fairly reliable and the mean time to failure MTTF of a single disk
drive is very high (up-to 500; 000 hours for the Seagate Barracuda or Cheetah disk families
[Mr.X]). However, given that a video server is made of hundreds or even thousands of disks,
the probability that one or some disk failures occur becomes very high. In the context of classi-
cal file systems, reliability (also referred to as fault tolerance) was addressed in [Patterson 88],
where six schemes based on RAID (Redundant Array of Inexpensive Disks) were introduced
and specified. These schemes have in common that they all use redundant data to reconstruct
lost data due to disk failures. Redundant data may be based on simple replication mechanisms
or on parity decoding as we will show later when discussing video server reliability. However,
RAID schemes as presented in [Patterson 88] are based on hardware, which makes them not
adapted to real-time systems such as a video server. Hence the need for reliability mechanisms
at the application level to make the video server fault-tolerant. A large part of this dissertation
addresses video server reliability, see chapters 4, 5, and 6.

Another quality of service metric is the start-up latencythat is the interval from the point in
time at which the client has sent its request for a stream to the point in time at which the client
receives the first frame of the requested video. Note that the calculation of the start-up latency
does not include network delays. The last quality of service criterion is load-balancing. The
even distribution of the server load among all its components is very important when designing
a video server, since load imbalances may cause a dramatic reduction of video server perfor-
mance.

2.2. DESIGN DECISIONS 11

2.2 Design Decisions

We determine next the video format we will consider for storage and retrieval. Digital video
can be encoded either using constant bit rate (CBR) or variable bit rate (VBR) compression
algorithms. A CBR stream has a constant consumption rate with variable quality, whereas a
VBR stream has a variable consumption rate with constant quality. We will only consider CBR
streams in our video server design study.

A large part of this dissertation studies two central design issues of a video server. The first issue
is how to organize and store hundreds of video objects over multiple disks such that thousands
of clients can concurrently access these objects, whereas the second issue is how to ensure an
uninterrupted and reliable service for all clients at any point in time. Before we analyze and
discuss in details these two issues, we introduce in the following the decisions we make for the
other design aspects of a video server such as the overall server architecture, the scheduling,
admission control, retrieval, and buffering policies considered.

The Server Array: A Scalable Architecture

We consider a disk array-based video server architecture as we have described in the previous
section. A decisive metric of a video server architecture is its scalability in terms of both,
the server throughput, which determines the maximum number of streams that can be serviced
concurrently, and the storage capacity, which determines the number of video objects that can
be stored. However, an increasing demand for bandwidth or/and storage capacity cannot be met
by simply adding new disks within the disk array. Indeed, given that the disk array is connected
to a single machine (node), the number of disks that are contained in this disk array is limited to
the capacity of this machine. Limiting factors can be the SCSI I/O bandwidth, the system bus,
the CPU, or the buffer space. Consequently, ensuring scalability for a video server consists in
adding new nodes, where each node behaves in turn as a single disk array. As a result, the video
server is made of multiple server nodes or multiple disk arrays. A video server that consists of
multiple nodes can be designed in different ways.

One way is to build a server out of autonomous and independent nodes, where a video ob-
ject is totally contained on a single node. the disadvantages of this architecture are its limited
throughput and load imbalances. Indeed, the number of clients that are consuming the same
very popular video object, which is stored on a single server node, is limited to the capacity of
this node. Hence the limited throughput for this alternative. Further, autonomous nodes have
load balancing problems, since nodes that store popular video objects can become hot spots,
whereas other nodes may remain idle. Eventually, the hot spot node will be overloaded and
unable to accept requests for service while other servers are not fully utilized. The only es-
cape from this situation is to simply duplicate popular videos on more than one server node,

12 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

which results in a waste of precious storage volume. Additionally, the popularity of the video
objects is not always known in advance and may change over time, which requires a very com-
plex monitoring system that redistributes the storage of different video objects whenever their
popularities change.

Another way to build the video server is to configure the server nodes into the called server
array [BERN 96b]. The server array is made of multiple server nodes (disk arrays), where
each node does not store entire video objects. Instead, each video object is cut into several
parts and the different parts are distributedover possibly all nodes of the server array. The
distribution of a video object over all server nodes, which is referred to as data striping, allows
for (i) perfect load balancing independently of which video objects are requested and (ii) high
server throughput, since the whole server capacity can be used to service the clients that are all
consuming the same very popular video. The server array scales naturally by adding new server
nodes. The server array architecture is illustrated in Figure 2.3.

Network
I/O bus Buffer

I/O bus Buffer

I/O bus Buffer

Server Array

Clients

Node 1

Node 2

Node N

Figure 2.3: The server array architecture.

2.2. DESIGN DECISIONS 13

Round-Based Data Retrieval

As already mentioned, the playback of a stream must proceed at its real-time rate. Thus, the
server must retrieve data from disks at a rate that avoids starvation at the client side. Hence
the need to a data retrieval technique that ensures real-time data retrieval without risking data
starvation. A naive retrieval technique that ensures continuous playback and thus avoids data
starvation is to prefetch the whole video object from the server and buffer it prior to initiating the
playback. however, such a technique requires a huge amount of buffer and results in a very high
start-up latency that may not be tolerable from user. Consequently, the challenging task is to
prevent starvation when retrieving data while at the same time keeping buffer requirement and
start-up latency as small as possible. Given that a single disk transfer rate is significantly higher
than the playback rate of a single stream, each disk is able to serve multiple streams at a given
point in time. However, the video server must ensure that the continuous playback requirements
of all admitted streams are met. Most of the literature considers data retrieval techniques that
are based on rounds. Thereby, the video server serves multiple streams simultaneously by
proceeding in service rounds. We call this technique round-based data retrieval, where the
service time is divided into equal size time intervals called service rounds. More precisely,
based on the server array architecture, a client is connected to all server nodes and is served once
every service round. Data that is retrieved from video server during service round i is consumed
during service round i + 1. Note that for CBR-coded videos, round-based data retrieval means
that blocks that are retrieved for the same stream are constant length and the stream is serviced
during each service round. However, the situation is more complicated for VBR-coded streams,
where the literature makes the difference between the called constant time length and constant
data length retrieval techniques (see [CHA 94, CHAN 96] for more details).

The SCAN Stream Scheduling Algorithm

Since the transfer rate of a single disk is much higher than the playback rate of a stream, each
disk can serve many streams during one service round. The policy that determines the order in
which blocks belonging to different streams are retrieved from a single disk, is referred to as
stream scheduling. The stream scheduling algorithm that matches best real-time scheduling
is the EDF (Earliest Deadline First) algorithm, where the block with the earliest deadline is
scheduled for retrieval. EDF, however, does not order in advance the retrieval of multiple blocks.
Consequently, the disk head may spend most of time in seeking the expected blocks, which
results in excessive seek time and leads to a very poor disk utilization. Stream scheduling
algorithms that are based on round-based data retrieval address this drawback for EDF. We
discuss as follows three stream scheduling algorithms [Gemmell 95] that use round-based data
retrieval.

The first scheduling algorithm is Round-Robin (RR), where the order in which multiple streams

14 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

1 2 3 4 5 6 1 2 3 4 5 6

service round (i) service round (i+1)

Maximum time between two

successive retrievals (stream 3)

(a) The RR scheduling algorithm.

3 5 1 6 2 4 1 4 6 52 3

service round (i) service round (i+1)

Maximum time between two successive
retrievals (stream 3)

(b) The SCAN scheduling algorithm.

3 5 1 6 2 4 5 1 3 2 6 4

service round (i) service round (i+1)

Group 1 Group 2 Group 1 Group 2

Maximum time between two successive
retrievals (stream 3)

(c) The GSS scheduling algorithm.

Figure 2.4: The three round-based scheduling algorithms.

are serviced is kept unchanged from one service round to another as shown in Figure 2.4(a). The
major drawback of RR is that it does not take into account the placement of the different blocks
to be retrieved from disk and therefore the seek time can be very high, which results in poor
disk utilization and low performance. To address the limitations of RR, the SCAN scheduling
algorithm is used, where the disk head moves back and forth across the surface of the disk only
onceduring one service round. Every block is retrieved as the disk head passes over it and thus
the order in which multiple streams are serviced may change from one service to another. SCAN
therefore reduces the seek overhead as compared to RR. However, SCAN requires more buffer
space than RR. Indeed, since RR conserves the order in which clients are served across rounds,
the retrieval times of two successive requests of a client is equal to the service round duration.
Consequently, RR requires as much buffer space as needed for consumption during one service

2.2. DESIGN DECISIONS 15

round. SCAN, however, needs twice as much buffer space, since it may happen that a client is
serviced at the end of service round i and at the very beginning of the next service round i+1 (see
Figure 2.4(b)). We see that there is a trade-off between good disk utilization (SCAN) and low
buffer requirement (RR). The called Grouped Sweeping Scheme (GSS) [YU 93, CHENMS 93]
was proposed to address this trade-off. The GSS algorithm partitions a service round into a
number of groups. Each stream is assigned to a certain group as illustrated in Figure 2.4(c).
The groups are serviced in a fixed order during each service round analogously to RR. Within
each group, however, SCAN is employed. Note that if there is only one group, GSS is reduced
to SCAN and if there are as many groups as clients serviced, GSS becomes equivalent to RR.
By optimally deriving the number of groups, the server can balance the two conflicting goals:
high disk utilization and low buffer requirement. We will consider the SCAN stream scheduling
algorithm for the remainder of this thesis.

Deterministic Admission Control

Given the real-time requirements of each stream, the video server must perform admission con-
trol to decide whether a new incoming client can be admitted without violating the performance
and deadline requirements of the other clients that are already being serviced. The literature
makes the difference between two ways to perform admission control: the first way is based on
statistical admission control and the second way is based on deterministic admission control.

With statistical admission control, deadlines are guaranteed to be satisfied with a certain proba-
bility that is to guarantee for instance that 90% of deadlines will be met during a certain service
round. Statistical admission control is especially worthwhile for a video server configuration,
where the admitted clients are frequentlysending requests to the server to get pieces of the re-
quired videos. This scenario, which is called pull mode, uses statistical analysis to determine
whether a new incoming client can be admitted and to calculate for it the data loss probability.
A Ph.D. thesis has studied the performance and reliability of multi-disk multimedia servers that
are based on the pull mode[Kaddeche 98] . In this work, a multi-disk multimedia was studied
in terms of its quality of service such as the system response time, the transmission quality
expressed in block loss probability, and the maximal workload that can server the system. Af-
ter validating the multi-disk architecture, multimedia server fault-tolerance was studied, where
both RAID1 and RAID5 were considered. This thesis further presents a set of models and
simulations to evaluate multimedia servers that operate in a pull mode.

The second way to perform admission control is the deterministic one. Deterministic admission
control can not be easily used for the pull modeexplained above. However, it is adapted to the
called push mode, where during normal play back operation, the video server sends periodically
video data to each admitted client. In other terms, based on the push model and upon admission,
a client becomes passiveand receives periodically video data without requesting them, unless it

16 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

uses VCR functions. Deterministic admission control ensures that all deadlines are guaranteed
to be satisfied. To do so, the worst case situation must be considered when admitting new
incoming requests.

We adopt a deterministic admission control criterion at the magnetic disk level. This criterion
determines whether the disk can admit a new client, which depends on the disk characteristics
(disk transfer rate, seek time and rotational latency), the video playback rate, the size of the
blocks to be retrieved, and finally the scheduling algorithm used, which is SCAN in our case.

The admission control policy is simply based on the following constraint: The service round
duration must not exceed the playback duration of the already buffered information. As a result,
the following equation holds:

� �
b

rp

where � denotes the service round duration and b and rp denote the block size and the playback
rate of the stream respectively. Thus, the admission control policy allows to determine the
maximum number of streams Qd that can be admitted from a single disk. In fact, this maximum
is reached when � = b

rp
. Let tseek and trot denote the maximum seek time and the maximum

rotational latency of the disk. Since the SCAN scheduling algorithm is employed, the disk head
moves at most twice across the whole disk surface and the worst case seek overhead during a
service round is twice as much as the maximum seek time tseek of the disk head. However, each
stream requires in the worst case the maximum rotational latency trot. Finally, assuming that all
blocks that are retrieved on a disk have the same size b and all streams have the same playback
rate rp, the admission control criterion for a single disk is [DENG 96]:

Qd � (
b

rd
+ trot) + 2 � tseek =

b

rp
= �

Consequently, Qd is given by Eq. 2.1.

Qd =

b

rp
� 2 � tseek
b

rd
+ trot

(2.1)

Note that for the server array that contains multiple nodes, each containing in turn multiple
disks, the admission control criterion becomes dependent on the number and size of the blocks
that are retrieved for a single stream during one service round. The data striping algorithm
used clearly and unambiguouslydetermines the way a stream is served during a service round.
Therefore, the formula of the admission control criterion, and thus the server throughput, differs
for different striping algorithms (see chapter 3).

2.3. SUMMARY 17

Double Buffering

Because of the asynchronous nature of data retrieval from disk, the video server needs to tem-
porarily store retrieved video data in a buffer before it sends them to the respective client via
the network. Let us consider a single stream served from a single disk, where a block of size b
is retrieved from disk during each service round. In order to avoid buffer overflow, the amount
of buffer needed for this stream is twice the value b as shown in Figure 2.2. This buffer require-
ment of size 2 � b is referred to as double buffering in most of the literature. However, if we
consider the case of multiple streams served by a video server that contains multiple disks, the
situation changes. In [GB 97a, GABI 97], we have studied two buffer management strategies
for distributed video servers. The first strategy is the called dedicatedbuffer management that
allocates for each stream its worst case buffer space, which is 2 � b, independently of the other
streams. Instead, the called sharedbuffer management assigns to all streams a single buffer
and considers the worst case scenario over all streams together. We have calculated the buffer
requirement for these two strategies and for the three scheduling algorithms RR, SCAN, and
GSS. The results of this work demonstrate that for all scheduling algorithms considered, shared
buffer management reduces the buffer requirements up-to 50% as compared to dedicated buffer
management. Given that each stream is assigned a dynamically changing portion of a common
buffer for shared buffer management, this strategy is, however, more complicated than dedicated
buffer management. In the next chapters, we will explicitly indicate, which buffer management
we consider.

2.3 Summary

In this chapter, we first gave an overview of the video server design. We advocated the choice
of magnetic disk drives for video data storage and examined their main characteristics. We
then introduced the video server environment and presented the performance and quality of
service metrics for a video server. The second part of this chapter presented the different design
decisions we made, which mainly include (i) the server array as video server architecture, (ii)
round-based data retrieval, (iii) the SCAN stream scheduling algorithm, and (iv) a deterministic
admission control criterion. The next chapters adopt these design decisions when we study
other video server design aspects such as data layout, data striping, and server reliability.

18 CHAPTER 2. VIDEO SERVER DESIGN ISSUES

Chapter 3

Data Striping

We consider the server array architecture as presented in the previous chapter. To efficiently
utilize the server array, a video object is distributed over multiple disks of the server. A scheme
that partitions a video object into blocks and distributes these blocks on different disks in a well
defined order is called data striping [SaGa 86]. Data striping has been addressed previously in
the literature in the context of classical file systems, see e.g. [Patterson 88, Chen 90, LEE 92,
KATZ 92, CHEN 93, CHEN 94a, CLGK 94]. However, the data striping techniques proposed
for classical file servers are not directly applicable for video servers due to (i) the real time
requirements, (ii) the periodic and sequential nature, and (iii) the large data rate requirements
of video data. Hence the need for data striping techniques that are adapted to video server
requirements. Classification, analysis, and comparison of data striping algorithms for video
servers are subject of this chapter.

The rest of this chapter is organized as follows. In section 3.1, we discuss data striping tech-
niques for video servers and describe the Mean Grained Striping algorithm we propose. Section
3.2 presents related work. In section 3.3, we compare the three data striping algorithms retained
in terms of server throughput, buffer requirement, and start-up latency for new incoming re-
quests. Finally, section 4.4 summarizes our results.

3.1 Data Striping Techniques for Video Servers

In contrast to simply storing a whole video object on a single disk, striping that video object
among multiple disks allows for high throughput and good load balancing. As the video server
grows and thus the number of its disks increases, the striping algorithm used becomes decisive
in terms of server performance and costs. In this section, we first give the storage and retrieval
parameters and their respective definitions that are repeatedly used throughout this thesis. Then,
we classify several striping techniques depending on their striping granularity and introduce

19

20 CHAPTER 3. DATA STRIPING

a generic algorithm, called Mean Grained Striping, that covers the most relevant striping
policies.

3.1.1 Storage and Retrieval Parameters

We need to introduce the relevant terms used for the storage and retrieval of video data to and
from a video server:

� Video Object: A sequence of frames such as a movie or a video clip.

� Video Segment: A partition of a video object. Each of the video segments contains
a contiguous part of the whole video object. The video segment consists of multiple
frames.

� Physical Disk Block: The smallest amount of consecutive data fetched from disk in one
I/O access. bd is the size of the physical disk block.

� Striping Unit : The amount of contiguous logical data belonging to a single video seg-
ment and stored on a single disk. bsu denotes the size of a striping unit and is a multiple
of the physical block size bd (block interleaved and not bit/byte-interleaved striping).

� Disk Retrieval Block: The amount of data retrieved for one stream (client) from a single
disk during a service round. Generally, a disk retrieval block may contain multiple strip-
ing units belonging to different video segments and thus it does not necessarily contain
contiguous data. bdr is the size of the disk retrieval block and is a multiple of both, bsu
and bd.

� Retrieval Unit : The whole amount of data retrieved for one stream during one service
round. The retrieval unit is a multiple of the disk retrieval block and can be read either
from a single disk of the server or from a group of disks of the server. The retrieval unit
contains one or more video segments. bru is the size of the retrieval unit and is a multiple
of bdr.

Based on the definitions above, we introduce in Table 3.1 the storage and retrieval parameters
considered. Note that during a single service round, up to Qd disk retrieval blocks belonging
to Qd different video streams (clients) are read from a single disk and put in the server buffer.
The value of the service round duration � depends on the retrieval unit size bru of each stream.
In fact, bru is the amount of data consumed at the client side during exactly one service round.
Thus, to avoid hiccup-free display and to prevent for buffer overflow, the display time of the
retrieval unit must be equal to the value � = bru

rp
(see the admission control criterion in section

2.2).

3.1. DATA STRIPING TECHNIQUES FOR VIDEO SERVERS 21

Term Definition

D The total number of disks in the video server
N The total number of server nodes in the video server
Dn The number of disks that belong to a server node (Dn =

D

N
)

rd The transmission rate of a single disk in Mbit/sec
rp The playback rate of a video object in Mbit/sec
Qd The maximum number of clients that can be simultaneously served from a singledisk
Q The maximum number of clients that can be simultaneously served from the video server
� The service round duration

Table 3.1: Storage and retrieval parameters

3.1.2 Striping Techniques

Data striping is the technique of partitioning of a video object into video segments that are in
turn distributed across a set of disks in a predefined order. When we have multiple disks, we
need to decide over how many disks to distribute (1) the whole video object (video object strip-
ing) and (2) each individual video segment (segment striping). In the following, we introduce
three video object and three video segment striping techniques. The combination of video ob-
ject striping and video segment striping unambiguously defines how the data of a video object
is stored on the disks. We show in Figures 3.1 to 3.6 for a video server with 6 disks simple
examples of the striping techniques we will discuss below.

Video Object Striping (vs)

If we consider an entire video object, we can identify:

Video-Single-Striping (vss): A naive storage method is to store each video object on a single
disk. Let us assume three video objects VO1 , VO2 , and VO3 that are stored respectively on
three disks d1, d2, and d3, as depicted in Figure 3.1. vss stores each video object on a single disk
and thus it suffers from load imbalance and lack of robustness in case of disk failures: IfVO1 is
very popular andVO2 , andVO3 are not required at all, the disks d2 and d3 will be underutilized,
whereas the bandwidth of d1 is not sufficient to serve all clients that simultaneously request
VO1 . Additionally, a disk failure (e.g. d1) results in loss of a whole video object (VO1).

Video-Narrow-Striping (vns): The distribution of a video object across multiple disks gives
a higher throughput, especially when many clients require the same video object. When we

22 CHAPTER 3. DATA STRIPING

����
����
����
����
����

����
����
����
����
���� ����

����
����
����

����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

d1 d2 d3 d4 d5 d6

VO1 VO2 VO3

Figure 3.1: Video-Single-Striping (vss)

distribute a video object only across a subset of disks of the server, we deal with the vns mecha-
nism. Figure 3.2 shows the storage of 2 video objects VO1 and VO2 , where VO1 is distributed
over disks d1, d2, and d3, whereas video object VO2 is distributed over disks d4, d5, and d6.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
��� ���

���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

d1 d2 d3 d4 d5 d6

VO1 VO2

Figure 3.2: Video-Narrow-Striping (vns)

Video-Wide-Striping (vws): This technique distributes each video object over all existing
disks of the server. An example showing the storage layout of 2 video objects VO1 and VO2
is depicted in Figure 3.3.

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

d1 d2 d3 d4 d5 d6

VO1

VO2

Figure 3.3: Video-Wide-Striping(vws)

Video-Segment-Striping (ss)

If we consider a single segment, we can identify:

Segment-Single-Striping (sss): A video segment is entirely stored on a single disk (Figure
3.4). In this case, the disk retrieval block, the retrieval unit, and the video segment are all
equivalent. sss can be combined with all three video object striping policies vss, vns, and vws.

3.1. DATA STRIPING TECHNIQUES FOR VIDEO SERVERS 23

d4 d5d3d2

��
��
��

��
��
��

d1 d6

VS

Figure 3.4: Segment-Single-Striping (sss)

Segment-Narrow-Striping (sns): This means that every video segment is stored on a subset
of the disks (Figure 3.5). sns can be combined with vns and vws.

d6

��
��
��
��

d3 d4 d5

��
��
��
��

d2

��
��
��
��

d1

VS

Figure 3.5: Segment-Narrow-Striping (sns)

Segment-Wide-Striping (sws): In contrast to sns, sws partitions each video segment into
many sub-segments as disks there are on the server. Thus, all available disks of the server are
involved to store a single video segment(see Figure 3.6). sws can be only combined with vws.

���� ���� ���� ���� ������ ����

d1 d2 d3 d4 d5 d6

VS

Figure 3.6: Segment-Wide-Striping (sws)

Video Object vs. Video Segment Striping

We now study the different combinations of video object and segment striping and describe the
storage and retrieval parameters of a video server for each possible combination. Let Uvo denote
the video object sizeand Uvs the video segment size. Assume that all video segments are equal
size and the size of each stored video object is a multiple of the size of a video segment. To
simplify the discussion, we define the following two functions as:

1. �(vs): Returns the type of vs. We have distinguished between three different strategies:
vss, vns, and vws. Thus: �(vs) 2 fvss; vns; vwsg

24 CHAPTER 3. DATA STRIPING

2. �(ss): Returns the value of the ss. We have also distinguished between three different
strategies: sss, sns, and sws. Thus: �(ss) 2 fsss; sns; swsg

A particular striping strategy is described with a tuple (�(vs); �(ss)) that indicates the unique
combination of vs and ss. As we have already seen, some combinations are not possible. In the
following, we describe every possible combination in terms of the relationship that may exist
between the following system parameters: the physical disk block size bd, the striping unit size
bsu, the disk retrieval block size bdr, the retrieval unit size bru, the video segment size Uvs, and
the video object size Uvo:

� (vss; sss) : Each video object is stored on a single disk and therefore also all its video
segments. We have Uvo = bsu � bru = Uvs = bdr � bd

� (vns; sss): Each video object is stored on a set of disks. However, each video segment is
stored on a single disk. We have Uvo > bsu = bru = Uvs = bdr � bd

� (vws; sss): Each video object is stored on all available disks and each video segment is
stored on a single disk. We have Uvo � bsu = bru = Uvs = bdr � bd

� (vns; sns): Each video object is stored on a set of disks. Each video segment of a video
object is stored on the same set of disks or on a subset of it. We have Uvo > bru > bdr >

bsu � bd

� (vws; sns): Each video object is stored on all available disks. A video segment of a given
video object is stored on only a set of disks. We have Uvo � bru > bdr > bsu � bd

� (vws; sws): Each video object is stored on all available disks. Each video segment is also
distributed on all disks. We have Uvo � bru � bdr � bsu � bd

3.1.3 MGS: A Generic Data Striping Algorithm

After having classified various striping techniques, we now limit our further discussion to some
of these techniques for deep and detailed study. To do this, we have looked at the possible
striping algorithms and realized that:

1. Video objectstriping should be video wide striping (vws) where a video object is dis-
tributed over all disks of the video server: vws achieves a good load-balancingindepen-
dently from the video objects requested and offers highest throughputfor popular video
objects as compared to video narrow striping vns and video single striping vss.

2. For video segmentstriping, three approaches are possible:

3.1. DATA STRIPING TECHNIQUES FOR VIDEO SERVERS 25

� sws distributes each segment over all disksand therefore achieves perfect load bal-
ancing. However, as we will see, the buffer requirement grows proportionally to the
number of disks.

� sss stores the whole segment on a singledisk, which can result in a load imbalance
between disks and high start-up latency for new client requests. Given that a large
segment is entirely stored on a single disk, the number of disk accesses for one
stream is small, resulting in small seek overhead.

� sns distributes a video segment over a sub-setof all disks and can be considered as
a compromise between sws and sss.

Now combining our choice for video wide striping vws with the three possible segment striping
techniques sws, sss, and sns, we are then left with three possible striping techniques that we will
further investigate:

� (vws; sws), which will be referred to as FGS or Fine Grained Striping [OZDE 96b].

� (vws; sss), which will be referred to as CGS or Coarse Grained Striping [OZDE 96b,
BEBA 97].

� (vws; sns), which will be referred to as MGS or Mean Grained Striping [GABI 98c].

Retrieval Groups

To define where a video segment should be stored, we introduce the notion of retrieval group .
A retrieval group can comprise one, or multiple disks. Each retrieval unit is read from one
retrieval group during a service round. A single disk of the server belongs to exactly oneretrieval
group. The retrieval group size is the number of disks belonging to a retrieval group and
determines the striping granularity of a video segment.

The following parameters are needed to model a video server that is based on several retrieval
groups:

� C: Number of retrieval groups in the server.

� Dc: Retrieval group size: Dc indicates how many disks the retrieval unit will be simulta-
neously read from during one service round.

� Qc: Maximum number of clients that can be simultaneously served by a retrieval group.

One can vary the retrieval group size Dc within a video server. We assume that all retrieval
groups have the same size (Dc). Thus, D is a multiple of C and: Dc =

D

C
8c 2 [1::C]

26 CHAPTER 3. DATA STRIPING

Varying the retrieval group size allows us to cover the three striping algorithms CGS, FGS, and
MGS:

� Dc = 1: The retrieval unit is entirely stored on onedisk (CGS) and is equal to the disk
retrieval block that, in turn, equals the video segment.

� Dc = D: The retrieval unit is distributed over all disks of the server (FGS) and is D times
larger than the disk retrieval block.

� 1 < Dc < D: The retrieval unit is distributed over a setof disks Dc of the server (MGS)
and is Dc times larger than the disk retrieval block.

An MGS Striped Video Server

The assignment of disks to nodes and to retrieval groups can be carried out as follows: Let dk
denote a disk with k 2 [0; :::; (D�1)]. If we define n = (k div Dn)+1 and l = (k mod Dn)+1,
then disk dk is the l-th disk of node n and belongs to retrieval group c with c = (((l � 1) �N +

n) div Dc) + 1.

Figure 3.7 shows an example of an MGS striped video server, where each retrieval group con-
tains one disk from each server node as is the case for the orthogonal RAIDconfiguration that
was used in [GIBS 90]. A retrieval group g contains the disks dk with k = i �Dn + g � 1 and
i 2 [0; :::; (N � 1)].

Group G
Retrieval

Node NNode 2Node 1

Group 1
Retrieval

0

1

Dn-2

Dn-1

Dn 2Dn

D-1

Figure 3.7: Retrieval Groups

Parameters Below are the parameters that specify a video object stored on a video server:

� V is the number of video objects to store in the video server. V Oi denotes the video
object i (i 2 [1::V].

3.1. DATA STRIPING TECHNIQUES FOR VIDEO SERVERS 27

� Uvo(i) denotes the size of the video object i and V Si;j is the jth video segment of the i-th
video object.

� Uvs(i; j) represents the size of V Si;j . For the sake of simplicity, we assume that for a
given video object Uvo(i): 9n;9Uvsj Uvo(i) = n � Uvs.

We present in the following the MGS algorithm that is based on Figure 3.7. The MGS algorithm
presented is a simple example of the MGS class. Depending on the striping granularity of a
video segment, MGS can configure each retrieval group containing more than onedisk from
each server node, or consisting of disks from a sub-set and not all server nodes.

MGS Algorithm

for all video objects V Oi (i 2 [1::V]) f

Partition V Oi into video segments V Si;j

with: j 2
h
1::
�
Uvo(i)

Uvs

�i
.

for all video segments V Si;j f

Partition V Si;j into Dc striping units Si;j;k

where k 2 [1::Dc].

Determine the retrieval group c that will contain

V Si;j such that: c = (i+ j � 1) mod C.

Store the striping unit Si;j;k on the disk d

with: d = c+ (k � 1) �Dn.

g

g

The MGS algorithm presented above ensures perfect load-balancing inside a retrieval group.
Disks belonging to the same retrieval group store the same amount of video data. Further,
consecutive video segments V Si;j and V Si;j+1 are stored across consecutive retrieval groups
c and ((c + 1) mod C). This ensures an equal distribution of video data across all retrieval
groups and distributes the storage load as fairly as possible. Additionally, the two first video
segments V Si;1 and V Si+1;1 of two consecutive video objects V Oi and V Oi+1 are stored across
consecutive retrieval groups (i mod C) and ((i + 1) mod C) to better distribute new client
requests over the retrieval groups.

In the following, we consider one of the retrieval groups shown in Figure 3.7 and show how
one retrieval unit Ru of a video object i is stored on the different disks of the retrieval group.
Figure 3.8 illustrates the storage of different striping units Si;j;k and video segments V Si;j .
It also shows the disk retrieval block Drb to be retrieved from a single disk. Let us assume
that bru = m � Uvs; m 2 f1; 2; ::g. A disk retrieval block contains striping units of m video
segments.

28 CHAPTER 3. DATA STRIPING

By making the disk retrieval block contain multiple striping units, we can optimally trade off
disk access overhead and main memory requirements. When m = 1, the striping unit and the
disk retrieval block are the same size and the video segment size equals the retrieval unit size.

disk 1 disk 2 disk Dg

S

S S

S

S S

S

S

S i,1,1 i,1,2 i,1,Dg

i,2,1 i,2,2 i,2,Dg

i,m,1 i,m,2 i,m,Dg

Drb

VS i,j+m

Ru

VS i,j

Figure 3.8: Striping of a retrieval unit over a retrieval group

Many researchers have proposed data striping schemes that are similar to the MGS algorithm
proposed above, where the video server is divided into different groups. The most relevant
schemes are the streaming RAID [TOB 93b], the staggered striping scheme [BEGH 94], the
configuration planner [GHAN 95b]. However, none of these schemes takes into account a mul-
tiple node video server architecture as the case for our server array. Instead, the MGS algorithm
considers a multiple node video server and has the originality of exploiting the orthogonality
principle that was introduced in [GIBS 90]. In fact, retrieval groups are independent of each
others and disks belonging to the same retrieval group are contained on different nodes, which
allows to fairly distribute the server load among the different nodes and also to tolerate even a
complete node failure as we will see in later chapters of this thesis.

3.2 Related Work

Various papers have investigated data striping in video servers. According to the classification
of section 3.1.3, we discuss the striping algorithms proposed in the literature. In Table 3.2,
we attribute to each striping technique its corresponding striping class depending on the com-
bination of the video object and the video segment striping granularity. The symbol ”XXX”
indicates combinations that are not allowed.

In [SHEN 97], a (vns,sns) striping algorithm was proposed that distributes a video object only
on a set of disks. Its main disadvantage is that it does not distribute all video objects uniformly
on all disks and therefore popular video objects will be replayed only from a few disks. On the
other hand, the bandwidth-imbalances between disks becomes higher when the number of disks
increases. Because of its restriction in terms of the number of concurrent streams requiring the
same video object, we will not consider this striping algorithm in the later discussion.

3.2. RELATED WORK 29

(�(ss); �(vs)) �(ss)=sss �(ss)=sns
�(vs) = vss No striping XXX
�(vs) = vns Shenoy/Vin [SHEN 97] Shenoy/Vin [SHEN 97]

(large Segments) (small Segments)
Berson et al. [BER 94a]

�(vs) = vws Oezden et al. [OZDE 96a, OZDE 96b] Berson et al. [BEGH 94] Oezden et al. [O
Mourad [MOUR 96, Mourad 96] Ghandeharizadeh et al.[GHAN 95b]
Tewari et al. [TEWA 96a] Tobagi et al.[TOB 93b]

Table 3.2: Classification of Striping Strategies

In [OZDE 96b], (vws, sws) and (vws, sss) were compared in terms of the maximum number of
admitted streams (throughput) given a fixed amount of resources on the video server. The
results show that (vws, sss) achieves a higher throughput than (vws,sws). This study did not take
into account either the latency overhead for every client request or fault-tolerance.

(vws, sss) was also studied in [MOUR 96], where fault tolerance is assured using a mirroring
method (the doubly striped mirroring) that uniformly distributes the load of a failed disk over
all remaining disks.

In [TOB 93b], streaming RAID was proposed, where a video object is stored on the server using
(vws,sns). The video server is divided into fixed size clusters. This work clearly emphasizes the
constraints on the number of admitted streams due to the disk I/O bandwidth, available buffer
and start-up latency as a function of the retrieval unit size, which is the amount of data read
for a stream during a single service round. However, this work does not compare the streaming
RAID scheme with the other parity schemes as we will do later in this chapter.

In [TEWA 96a], the authors use the streaming RAID approach and additionally propose two
schemes to distribute parity information across all disks: the storage of a parity group can be
sequential or random. The goal is to distribute the load uniformly over disks when working
with or without a single disk failure. The authors do not study the performance of the server in
terms of throughput, buffer, start-up latency.

In [GHAN 95b], the striping granularity was discussed and a planner was proposed to decide
the cluster size. The authors proposed to split a video segment across one, some, or all disks in
the server depending on the desired throughput and latency. This organization corresponds to
(vws; sns). Only throughput and latency were addressed to determine the way a video segment
should be striped on disks.

In [BEGH 94], the staggered striping (vws; sns) was proposed to improve the throughput for

30 CHAPTER 3. DATA STRIPING

concurrent access compared with the so-called virtual data placement 1. The staggered striping
method especially allows popular video objects to be striped over all available clusters and
thereby avoids replicating them many times to achieve the expected bandwidth.

We note that none of the works evaluated and compared the three retained data striping algo-
rithms FGS, CGS, and MGS for a multiple node video server in terms of all of the following
criteria: throughput, buffer requirement, start-up latency, and load-balancing.

3.3 Comparison of the Striping Algorithms

In this section, we compare the three retained data striping algorithms FGS, CGS, and MGS in
terms of buffer requirement (section 3.5.5.2), video server throughput (section 3.3.3.2), and
start-up latency (section 3.3.3.3).

3.3.1 Buffer Requirement

Since the transmission rate rd of a single disk is much larger than the playback rate rp of a video
object, a single disk can serve multiple clients at the same time. Since for a particular client the
data retrieval will be ahead of the data consumption, main memory is needed at the server side
to temporarily store video data.

For a single stream, the buffer requirement varies over time since it is determined by the differ-
ence between production of video by the server and consumption by the client.

We consider the following assumptions to calculate the amount of buffer needed:

1. The total number of clients Q that can be admitted is assumed to be constant. Let QFGS ,
QCGS and QMGS denote the maximum number of admitted clients for respectively FGS,
CGS, and MGS: we assume that Q = QFGS = QCGS = QMGS .

2. SCAN is the scheduling algorithm used.

3. The buffer requirement is for the case of shared buffer management where each video
stream has been assigned a dynamically changing portion of a common buffer. As already
mentioned, compared to dedicated buffer management, where each stream, independently
of the other streams, is assigned as much buffer as it needs in the worst case, shared buffer
management reduces the buffer requirement by up to 50% [GB 97a, GABI 97].

1The virtual data placement assumes a system consisting of d clusters and each video object is assigned to a
single cluster (vns; sns).

3.3. COMPARISON OF THE STRIPING ALGORITHMS 31

Buffer Requirement for FGS, CGS, and MGS

Table 3.3 gives the values of the parameters C , Dc and Qc depending on the striping algorithm
used.

Parameter FGS MGS CGS

C 1 D

Dc

D

Dc D D

C
1

Qc Q Q

C
Qd

Table 3.3: Design Parameters for FGS, CGS and MGS

When we use the parameter values of Table 3.3, we get the following buffer requirementB(D)
for the three different striping techniques (Table 3.4):

Striping Algorithm B(D)

CGS D �Qd � bdr = Q � bdr
MGS C �Dc �Qc � bdr = Q �Dc � bdr
FGS Q �D � bdr

Table 3.4: Buffer requirement for CGS, MGS, and FGS

From the buffer requirement formulas of Table 3.4, we observe that for a given disk retrieval
block size:

� For FGS: the total buffer is proportional to the product of the total number of disks D and
the total number of clients Q.

� For CGS: the total buffer is only proportional to the total number of clients Q.

� For MGS: the total buffer is proportional to the product of the number of disks in a
retrieval group Dc and the total number of clients Q.

Results

Let bFGS
dr

, bCGS
dr

, and bMGS

dr
bFGS
ru

, bCGS
ru

, bMGS

ru
denote respectively disk retrieval block and re-

trieval unit sizes of FGS, CGS, and MGS. We use the formulas of Table 3.4 to compute the
buffer requirement for FGS, CGS and MGS.

Figure 3.9(a) shows the buffer requirement for FGS, CGS and MGS. We keep the retrieval
group size Dc constant and vary the number of retrieval groups C for MGS. When the total

32 CHAPTER 3. DATA STRIPING

number of disks increases, the number of retrieval groups increases while the retrieval unit size
for MGS bMGS

ru
remains constant. However, the retrieval unit size for FGS bFGS

ru
grows with the

increasing total number of disks. Since for CGS only one disk is involved to serve one client,
the number of disks does not influence bCGS

ru
. We see that FGS requires much more buffer than

CGS and MGS.

In Figure 3.9(b), we keep for MGS the number of retrieval groups constant (C = 10), and
vary the number of disks Dc within one retrieval group. FGS results again in the highest buffer
requirement. Since C is constant for MGS, the number of disks Dc per retrieval group grows
when the total number of disks D increases. The buffer requirement for CGS and MGS follow
respectively the formula: BCGS = Q � bCGS

dr
, and BMGS = Q � bMGS

dr
� Dc (Table 3.4). The

increase of Dc for MGS results therefore in an increase in the amount of buffer required: For
D = 100, we have Dc = 10, BCGS = Q�1000Kbit, andBMGS = Q�100K �10 = Q�1000Kbit.
Therefore, for D = 100, we see in Figure 3.9(b) that BMGS = BCGS . For (D < 100), we
have Dc < 10, and consequently BMGS < BCGS . For higher values of D (D > 100), we have
Dc > 10, and consequently BMGS > BCGS .

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

Number of Disks D in the Server

A
m

ou
nt

 o
f B

uf
fe

r
(M

B
it)

Buffer for FGS, CGS and MGS

FGS
100K

CGS
1000K

MGS
100K

(a) Buffer requirement for FGS, CGS, and MGS with
Dc = 10 for MGS.

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

Number of Disks D in the Server

A
m

ou
nt

 o
f B

uf
fe

r
(M

B
it)

Buffer for FGS, CGS, and MGS

FGS
100K

CGS
1000K

MGS
100K

(b) Buffer requirement for FGS, CGS, and MGS with
C = 10 for MGS.

Figure 3.9: Buffer requirement for FGS, CGS and MGS with bFGS
dr

= bMGS

dr
= 100 kbit,

bCGS
dr

= 1 Mbit, rp = 1:5 Mbit/sec, rd = 40 Mbit/sec, QFGS = QCGS = QMGS for each value
of D.

Figures 3.9(a) and 3.9(b) show that FGS requires the highest amount of buffer. Depending on
the parameters bdr and C , MGS or CGS has the lowest buffer requirement.

In the following we only compare the buffer requirement for CGS and MGS. Since the buffer
requirement strongly depends on the choice of the retrieval unit sizes (bCGS

dr
and bMGS

dr
), we

3.3. COMPARISON OF THE STRIPING ALGORITHMS 33

consider the following situations:

� We vary the retrieval group size (Dc = 5; 10; 20) and keep bCGS
dr

and bMGS

dr
constant (See

Figure 3.10(a)). For MGS, bMGS

ru
= Dc � bMGS

dr
will vary with changing Dc.

� We vary the disk retrieval block size for CGS (bCGS
dr

= 1; 1:5; 2 Mbit) (See Figure
3.10(b)). Because bCGS

dr
= bCGS

ru
, we vary in this case the retrieval unit size for CGS.

50 100 150 200 250 300
10

1

10
2

10
3

Number of Disks D in the Server

A
m

ou
nt

 o
f B

uf
fe

r
(M

B
it)

Buffer for CGS and MGS

MGS
D

c
=5

MGS
D

c
=10

MGS
D

c
=20

CGS
1000K

(a) Buffer requirement for MGS and CGS with Dc =

5; 10; 20 for MGS and bMGS

dr
= 100Kbit and bCGS

dr
=

1 Mbit.

50 100 150 200 250 300
10

1

10
2

10
3

Number of Disks D in the Server

A
m

ou
nt

 o
f B

uf
fe

r
(M

B
it)

Buffer for CGS and MGS

MGS
D

c
=10

CGS
500K

CGS
1000K

CGS
1500K

CGS
2000K

(b) Buffer requirement for MGS and CGS for
bCGS
dr

= 0:5; 1; 1:5; 2Mbit and bMGS

dr
= 100 Kbit.

Figure 3.10: Buffer requirement for MGS and CGS for bMGS

dr
= 100 Kbit, rp = 1:5 Mbit/sec,

rd = 40 Mbit/sec, QFGS = QCGS = QMGS .

Figures 3.10(a) and 3.10(b) show that the buffer requirement decreases when:

� For MGS: the size of the retrieval group Dc decreases, which implies a smaller retrieval
unit size bMGS

ru
,

� For CGS: the retrieval unit size bCGS
ru

decreases.

However, a decrease of the retrieval unit size bCGS
ru

for CGS will increase the seek overheads
within disks, which results in a lower throughput, as we will see in section 3.3.2.

In order to reduce the buffer requirement for MGS, the retrieval group size Dc must decrease.
However, a small retrieval group means a large number of retrieval groups for a given total
number of disks D. We will see in section 3.3.3 that a small retrieval group size increases the
latency for new client requests.

34 CHAPTER 3. DATA STRIPING

3.3.2 Server Throughput

To compare FGS, CGS, and MGS in terms of throughput, we use an admission control criterion
calculating the maximum number of streams Q that can be admitted from a video server. The
value of Q depends among others on the disk characteristics. In this Section, we will determine
the throughput for each of the striping algorithms FGS, CGS, and MGS.

Admission Control Criterion

In order to avoid buffer starvation for all concurrent video streams, the time between the retrieval
of two consecutive retrieval units should not exceed bru

rp
, which is the service round duration � .

Further, using SCAN as scheduling policy implies that disk heads travel across the disk surface
twice in the worst case (2 � tseek). Additionally, the retrieval of data requires in the worst case
the maximum value of the rotational latency (trot) (see section 2.2).

The admission control criterion computes the maximum number of streams that can be admit-
ted. It takes into account the worst case latency overhead and the I/O bandwidth of the storage
disks, the retrieval unit size and the video playback rate [OZDE 96b]. Since retrieval groups are
independent from each other, we reduce the admission control discussion to a single retrieval
group and derive later the formula for the video server depending on the striping algorithm used.
According to the assumptions above and referring to section 2.2, the admission control crite-
rion for a single disk is given by Eq. 3.1, where bru denotes the retrieval unit size of a stream.
Now, we consider a video server with multiple disks and compute the its overall throughput
depending on whether FGS, CGS, or MGS is used.

Qd � (
bru

rd
+ trot) + 2 � tseek =

bru

rp
= � (3.1)

For FGS, the retrieval unit of size bFGS
ru

is divided into exactly D disk retrieval blocks and each
of that disk retrieval blocks is stored on a single disk. During one service round and for a single
stream, each disk retrieves a disk retrieval block of size bFGS

dr
=

b
FGS
ru

D
. Since all server disks

are involved to service each stream during every service round, FGS considers the whole video
server as a single group. Hence the following admission control formula:

QFGS �

b
FGS
ru

D

rd
+ trot

!
+ 2 � tseek =

bFGS
ru

rp

Substituting bFGS
ru

by its value D � bFGS
dr

, we then get:

3.3. COMPARISON OF THE STRIPING ALGORITHMS 35

QFGS �
�
bFGS
dr

rd
+ trot

�
+ 2 � tseek =

D � bFGS
dr

rp
(3.2)

For CGS, the entire retrieval unit of size bCGS
ru

is stored on a single disk and is therefore equiva-
lent to the disk retrieval block as bCGS

ru
= bCGS

dr
. During one service round, one retrieval unit is

retrieved from a single disk for each stream. Thus, CGS considers a single disk as a group that
is independent of the other groups (disks). Therefore, the server throughput is simply calculated
as the disk throughput QCGS

d
times the total number of server disks D (Eq. C.2).

QCGS

d
�
�
bCGS
dr

rd
+ trot + tstl

�
+ 2 � tseek =

bCGS
dr

rp

QCGS

D
�
�
bCGS
dr

rd
+ trot

�
+ 2 � tseek =

bCGS
dr

rp
(3.3)

MGS divides the video server into C independent retrieval groups. During one service round,
Dc disk retrieval blocks of size bMGS

dr
are retrieved for each stream from Dc different disks. The

retrieval unit size for MGS is therefore bMGS

ru
= Dc � bMGS

dr
. During two successive service

rounds, a stream retrieves data from two consecutive retrieval groups. Hence, FGS is applied
inside a single group, whereas CGS is used between the different retrieval groups of the server.
Consequently, the overall server throughput QMGS equals the throughput QMGS

c
of a single

retrieval group times the number of retrieval groups C that are contained in the server and the
admission control formula for MGS is depicted in Eq. C.4.

QMGS

C
�
�
bMGS

dr

rd
+ trot

�
+ 2 � tseek =

Dc � bMGS

dr

rp
(3.4)

Note that Eq. C.4 covers the other two admission control formula of Eqs. C.3 and C.2. Indeed,
If we take the values C = 1 and Dc = D, which correspond the the FGS algorithm, Eq. C.4
becomes equivalent to Eq. C.3. On the other hand, if we take the value C = D and Dc = 1,
which correspond to the CGS algorithm, Eq. C.4 becomes equivalent to Eq. C.2.

Let us now use Eqs. (C.3), (C.2), and (C.4) to derive the maximum number of admitted streams
for FGS, CGS, and MGS illustrated in Table 3.5:

Results

We evaluate the throughput behavior for FGS, CGS and MGS. The disk parameters and their
corresponding values are those of Seagate and HP for the SCSI II disk drives [GKSZ 96] and
are depicted in Appendix A (Table A.1). We are based on the same scenario as in Figure 3.9(a).

36 CHAPTER 3. DATA STRIPING

Striping Algorithm Maximum Number of Clients

FGS QFGS =
D�b

FGS

dr

rp
�2�tseek

b
FGS

dr

r
d

+trot

CGS QCGS =
b
CGS

dr

rp
�2�tseek

b
CGS

dr

r
d

+trot

�D

MGS QMGS =
Dc�b

MGS

dr

rp
�2�tseek

b
MGS

dr

r
d

+trot

� C

Table 3.5: Throughput for FGS, CGS and MGS.

Figure 3.11 shows how the throughput grows for FGS, CGS and MGS with an increasing num-
ber of disks in the server. CGS achieves the highest throughput, since CGS retrieves very
large disk retrieval blocks during one service round (bCGS

dr
= 1 Mbit), and therefore keeps

the total seek overhead low. For FGS and MGS, the disk retrieval blocks are much smaller
(bFGS
dr

= bMGS

dr
= 100 Kbit) resulting in a higher seek overhead and a lower throughput.

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput of FGS, CGS and MGS

CGS
1000K

MGS
100K

FGS
100K

Figure 3.11: Throughput for FGS, CGS and MGS with Dc = 10 for MGS and rp = 1:5

Mbit/sec.

Let us consider the results of Figures 3.9(a) and 3.3.11: Since bCGS
dr

= 1 Mbit and bFGS
dr

=

bMGS

dr
= 100 Kbit for both Figures, we can compare FGS, CGS and MGS in terms of buffer

requirement as well as throughput: We see that CGS has the best performance, since it has the
same buffer requirement as MGS and the highest throughput. FGS requires much more buffer
than CGS and MGS and admits fewer clients than CGS. For the same throughput, MGS requires
less buffer than FGS.

Now we will only focus on the throughput comparison of CGS and MGS. Figures 3.10(a) and
3.10(b) have already shown that increasing retrieval units for CGS or for MGS increases the

3.3. COMPARISON OF THE STRIPING ALGORITHMS 37

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput for MGS and CGS

MGS
D

c
=5

MGS
D

c
=10

MGS
D

c
=20

CGS
1000K

(a) Throughput for CGS and MGS (Dc = 5; 10; 20)
with bMGS

dr
= 100 Kbit and bCGS

dr
= 1 Mbit.

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput for MGS and CGS

MGS
D

c
=10

CGS
500K

CGS
1000K

CGS
1500K

CGS
2000K

(b) Throughput for MGS and CGS with bCGS
dr

=

0:5; 1; 1:5;2Mbit and bMGS

dr
= 100 Kbit.

Figure 3.12: Throughput for MGS and CGS for bMGS

dr
= 100 Kbit, rp = 1:5 Mbit/sec, rd = 40

Mbit/sec.

amount of buffer. We will take the same parameter values and show the effect of varying the
retrieval unit size for CGS and the retrieval group size for MGS on the throughput (Figures
3.12(a) and 3.12(b)).

We consider the results of Figures 3.10(a) and 3.12(a) in order to compare MGS and CGS in
terms of both buffer requirement and throughput: MGS (Dc = 10 and bMGS

dr
= 100 Kbit) and

CGS (bCGS
dr

= 1 Mbit) require the same amount of buffer. The throughput is however much
higher for CGS than for MGS. The same results can be observed from Figures 3.10(b) and
3.12(b).

Figure 3.12(a) shows that the variation of the retrieval group size Dc for MGS has no significant
influence on the throughput. On the other hand, Figure 3.12(b) shows that the throughput of
CGS increases as the disk retrieval block size bCGS

dr
grows. However the buffer requirement

increases too.

3.3.3 Start-up Latency

We consider the value � = bru

rp
for the service round duration. An important performance

measure, from the users point of view, is the start-up latency that is defined as the maximum
elapsed time between the arrival of a new client and the retrieval of the first block for this client.
Let �FGS , �CGS , and �MGS denote the duration of a service round for FGS, CGS, and MGS

38 CHAPTER 3. DATA STRIPING

respectively. The corresponding start-up latencies are then TFGS

s
, TCGS

s
and TMGS

s
.

During one service round, a single disk retrieves multiple disk retrieval blocks for multiple
streams. Each of these disk retrieval blocks is serviced during a slot of duration � and � is a
multiple of �. Let us call the slot that is not used for data retrieval a free slot. We compare FGS,
CGS and MGS in terms of start-up latency for a given number of disks. We also look at the
start-up latency behavior when the number of disks increases.

Start-up Latency for FGS

With FGS, all disks serve all video streams during each service round. When a new request
arrives at disk d and there is a free slot, the retrieval of the corresponding video stream waits at
most a service round �FGS :

T FGS

s
= �FGS (3.5)

We observe that TFGS

s
does not depend on the number of disks used and the requested disk. It

also does not depend on the number of existing free slots.

Start-up Latency for CGS

We assume that a new request is arriving at disk d, with: d 2 [1::D] and the only existing free
slot at this time is at disk d + 1. The new request has to wait for (D � (d + 1) + d) service
rounds, until the free slotattains disk d. Thus:

TCGS

s
= (D � 1) � �CGS (3.6)

TCGS

s
increases linearly when the total number of disks D increases.

Start-up Latency for MGS

We assume that a request is coming to group g with: c 2 [1::C] and the only existing free slotis
at group c + 1 at this time. To start retrieving data, the server has to wait for (C � (c+ 1) + c)

service rounds. Consequently, the worst case start-up latency is:

TMGS

s
= (C � 1) � �MGS (3.7)

Now, we want to compare TMGS

S
and T FGS

S
: If we assume that the sizes of a disk retrieval

block are equal for FGS and CGS, then the retrieval unit size of FGS is a multiple of the the
retrieval unit size of MGS, and consequently the service round �FGS is a multiple of �MGS as:
�MGS = �

FGS

C

We derive the start-up latency of MGS: TMGS

s
= (C�1)��MGS = (C�1)� �

FGS

C
=

(C�1)

C
��FGS

3.3. COMPARISON OF THE STRIPING ALGORITHMS 39

TMGS

s
increases monotonously with larger values ofC , but is always smaller than �FGS . TMGS

S

does not depend on the total number of disks in the server, but only on the number of retrieval
groups.

Results

Figure 3.13(a) shows the variation of the start-up latency for FGS, CGS, and MGS. We vary
the total number of disks between 10 and 200 and maintain a fixed number of disks inside a
retrieval group (Dc = 10). The start-up latency is much higher for CGS than for MGS and FGS.
The difference between TCGS

s
and TMGS

s
increases with an increasing number of disks. We

also see that the start-up latency by MGS becomes increasingly closer to the one by FGS when
the total number of disks D increases. This is due to an increase of C for a fixed Dc, when D
increases.

Figure 3.13(b) considers only MGS and FGS. It shows how the worst case start-up latency
of MGS depends on the number of retrieval groups C of the server for a given retrieval group
size Dc and a fixed total number of disks D: When C grows, the start-up latency increases.
For CGS, in order to decrease the start-up latency, we can reduce the service round duration.
However, the throughput will then also decrease.

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Number of Disks D in the Server

S
ta

rt
−

up
 L

at
en

cy
 (

se
c)

Start−up Latency for FGS, CGS and MGS

FGS
100K

CGS
1000K

MGS
100K

(a) Start-up latency for FGS, CGS and MGS (Dc =

10) with bFGS
dr

= bMGS

dr
= 100 kbit, bCGS

dr
= 1 Mbit

10 20 30 40 50 60 70 80
6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Number of retrieval groups C

S
ta

rt
−

up
 L

at
en

cy
 (

se
c)

Start−up Latency for FGS and MGS

FGS
100K

MGS
100K

(b) Start-Up latency for MGS for different retrieval
groups for bFGS

dr
= bMGS

dr
= 100 kbit and D = 100

Figure 3.13: Worst case start-up latency for rp = 1:5 Mbit/sec.

40 CHAPTER 3. DATA STRIPING

3.4 Summary

In this chapter, we have classified data striping schemes for video servers. The classification
is based on the striping and retrieval granularity of a video object (video object striping) and
a video segment (video segment striping). Further, we have proposed the Mean Grained Strip-
ing (MGS) algorithm that divides the video server into independent groups, where all disks
contained in the same node belong to different groups similarly to the orthogonal RAID config-
uration introduced in [GIBS 90]. The MGS algorithm covers the two other striping algorithms
FGS and CGS as special cases if we choose the number of retrieval groups in the server to be 1
or D respectively. We have compared these three retained video wide striping algorithms FGS,
CGS, and MGS in terms of buffer requirement, server throughput, and start-up latency. Our re-
sults demonstrate that for the same amount of buffer, CGS has a higher server throughput than
MGS, while MGS in turn, achieves a higher throughput than FGS. With respect to the start-up
latency, CGS is worst, whereas MGS has the lowest values. The results further indicate that
FGS is the worst algorithm in terms of video server performance (buffer requirement for the
same throughput or server throughput for the same amount of available buffer). Moreover, we
have realized that the performance gap between CGS/MGS on one side and FGS on another
side increases as the total number of server disks increases. In fact, as the number of disks in
the server increases, the number of disk retrieval blocks to retrieve during one service round
increases as well for FGS. This leads to an increase in the retrieval unit size, which in turn,
results in a higher buffer requirement. If one were to keep the retrieval unit size the same for
FGS regardless of the total number of disks, and thus keep the required buffer space low, then
as the number of disks increases, the size of the disk retrieval block must be decreased corre-
spondingly. As a result, the seek and rotational overhead becomes more important, which limits
the number of concurrent streams (server throughput). Consequently, FGS is a baddata striping
algorithm. Our further discussion will therefore be limited to CGS and MGS.

The results of this chapter indicate that CGS has highest server throughput for a non fault-
tolerantvideo server. Making the video server fault-tolerant requires additional server resources
in terms of disk storage, I/O bandwidth, and buffer capacity. Further, depending on the relia-
bility scheme used, various striping algorithms may perform differently. The performance and
quality of service of a fault-tolerant video server with respect to the striping algorithm and the
reliability technique used is the focus of the next chapter.

Chapter 4

Data Striping and Server Reliability

The previous chapter investigated data striping for a non-fault tolerant video server. We found
out that the Coarse Grained Striping algorithm (CGS) performs better than FGS and MGS in
terms of the overall server throughput for a given amount of buffer. In this chapter, we introduce
video server reliability and study the effect of making the video server fault-tolerant on server
performance and quality of service depending on the striping algorithm used. We restrict our
focus to the striping algorithms CGS and MGS and compare their server throughput, buffer
requirement, and start-up latency for different reliability techniques.

The rest of this chapter is organized as follows. In section 4.1, we motivate server reliability
for video servers and present the reliability techniques we consider; mirroring-based reliability
and parity-based reliability. Section 4.2 presents related work. In section 4.3, we propose data
layout for CGS and MGS for mirroring-based and for parity-based reliability and compare these
different striping/reliability combinations in terms of server throughput, buffer requirement, and
start-up latency. Section 4.4 finally summarizes our results.

4.1 Video Server Reliability

Even though the mean time to failure (MTTF) of a single disk is very high ,i.e. 300; 000 hours,
a video server with, say, 200 disks has a MTTF of about 300;000

200
= 1500 hours that is only

60 days 1. Since the data contained on a failed disk is not accessible until the disk has been
repaired, and given that each video object is distributed over all server disks (video object
wide striping Vws), a single disk failure affects all video objects stored and thus results in the
interruption of service for all streams currently serviced. Hence, in order to provide continuous
and uninterrupted service to all clients, it is imperative to reconstruct data that are residing on a

1We assume that life times of magnetic disk drives are exponentially distributed.

41

42 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

failed disk.

In the general context of disk arrays, schemes for ensuring the availability of data on failed disks
have been proposed in the literature, e.g. [Patterson 88, CHEN 94a]. Most of these schemes are
based on a RAID architecture and employ parity encoding to achieve fault-tolerance. However,
these schemes assume conventional workload, in which reads access small amounts of data,
are independent of each other, are aperiodic, and do not impose any real time requirements. In
contrast, access to video data is sequential, periodic, and imposes real time constraints. Hence
the need of reliability schemes that enable video data to be retrieved at a guaranteed rate despite
disk failures as is the case for the streaming RAID scheme [TOB 93b] or the doubly striped
scheme [MOUR 96].

For video server reliability, we will only consider schemes that add redundant data besides
original data in order to make the video server fault-tolerant. Redundant data will be used to
reconstruct original data that are contained on failed components2. There are two major tech-
niques for a fault-tolerant video server that uses redundant data, a mirroring-based technique
and a parity-based technique. In the following, we analyze for each of these two techniques
how the placement of redundant data can be decisive with respect to the number of disk failures
that are tolerated and the load balancing between server components during failure mode.

4.1.1 Mirroring-Based Reliability

Mirroring-based reliability consists in simply making a copy of each original video object
[BITT 88, MERC 95, Mourad 96, BOLO 96, CHEN 97, HSDE 90, GOMZ 92]. Many re-
searchers have proposed to replicate video data many times on the server, e.g. the replication
scheme presented in [Korst 97], where the author proposes to store multiple copies of each
original block and the choice of disks to store the replica is random. The result of this work
shows that this approach has very small response times. In our work, however, we assume that a
video object is replicated onceon the video server and thus mirroring3 results in 100% storage
overhead. There are two ways of replicating a video object on a video server. The first way
consists in replicating the whole original content of a given disk on a separatedisk, called the
mirror disk. We call this way of replication the dedicated mirroring model. The drawbacks
of the dedicated mirroring model are (i) load-imbalances since the half of the server disks are
idle during normal operation mode, whereas the other half may experience hot spot, and (ii)
inefficient utilization of the server resources since up-to the half of the server bandwidth is not
exploited. The second way of replicating a video object on a video server addresses these two
problems by distributing replicated data besides original data on all server disks. We call this
way of replication shared mirroring model. In [MOUR 96], the called doubly striped ap-

2The term component is used to denote a server disk or a server node.
3The term mirroring is used to denote mirroring-based reliability.

4.1. VIDEO SERVER RELIABILITY 43

proach is proposed, where the secondary copy (replica) of each disk is uniformly distributed
over all remaining (D � 1) disks of the video server. During the normal operation mode, each
disk reserves a fraction of its available bandwidth to be used during failure mode. However,
the doubly striped scheme does not tolerate more than a single disk failure, which may be in-
sufficient for large video servers. To address this disadvantage and thus tolerate more than one
disk failure, the authors in [BOLO 96] propose to distribute the secondary copy only over a
declusterof d disks and not all remaining (D � 1) disks. However, each disk must reserve for
failure mode a higher fraction of bandwidth than with the doubly striped approach. Note that
the amount of bandwidth to be reserved and the number of disk failures that can be tolerated are
conflicting. Indeed, as the value of d decreases to allow for more disk failures to be tolerated,
the amount of bandwidth that must be reserved on each disk must be increased.

In the remainder of this thesis, We will limit our discussion to the shared mirroring model since
it achieves higher throughput and better load balancing than the dedicated mirroring model.

4.1.2 Parity-Based Reliability

Parity-based reliability consists of storing parity data in addition to the existing original video
data. In the general context of disk arrays, conventional RAID2–RAID6 schemes use parity-
based reliability to protect the disk array against disk failures [LEE 92, CHAN 93, REDD 93,
HOLL 94]. Parity-based reliability is also applied in the context of video servers similarly to
the RAID architecture [TOB 93b, CLGK 94, GHAN 95a, COHE 96, OZDE 96a, TEWA 96b,
BIRK 97]. Whereas mirroring-based reliability retrieves the copy of lost data that are residing
on a failed disk, parity-based reliability uses parity data to reconstruct lost data. Parity data are
encoded out of a set of original data, using typically a simple eXclusive-OR (XOR) function as
shown in Figure 4.1 (A). The set of original data together with the parity data build the called
parity group . No matter which original data of a parity group is lost, the surviving original data
with the parity data are able to reconstruct the lost data by simply performing a XOR operation.
The example in Figure 4.1 (B) illustrates this issue: The surviving original blocks 2, 3, and
4 together with the parity block P perform a XOR operation and reconstruct the lost original
block 1.

Obviously, parity-based reliability requires a lower storage overhead, which is needed to store
parity data, than mirroring-based reliability. As for replicated data, parity data can be placed
on the server following two different ways. The first way consists in storing parity data on
separate parity disks, which we call dedicated parity model [TOB 93b, BER 94a]. Thereby,
parity disks are only used during failure mode, which creates load imbalances between server
disks as well as inefficient use of server resources (bandwidth). The called shared parity model
addresses this inefficiency by storing parity data on the same disks as original data, as studied
in [COHE 96, GHAN 95a, OZDE 96a, CHEN 97, TEWA 96b, Kaddeche 98].

44 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

+ + +
����
����
����
����=1 2 3 4 P

����
����
����
����2 3 4 P1

32
����
����
����
����P4 1+ + + =

XOR

(A)

(B)

Figure 4.1: Parity encoding and decoding.

Let us consider the shared parity model and look at the layout alternatives of a parity group. If
the parity group size is smaller than the total number of disks D in the server, then the placement
of data belonging to different parity groups is decisive in terms of server performance, load
balancing, and server reliability. The literature mainly distinguishes between (i) independent,
also called non-overlapping, parity groups and (ii) dependent, also called overlapping, parity
groups. In the case of independent parity groups, the video server is divided into separate parity
groups, where each disk exclusively belongs to one parity group. Consequently, this alternative
can tolerate one disk failure per parity group, which might be required to ensure high reliability
for large video servers. However, since parity groups are independent of each other, a parity
group that operates in failure mode may become a hot spot. Indeed, when a single disk fails
within a parity group, the load of that failed disk is only distributed among the surviving disks
of that parity group, which leads to load imbalances between the parity groups of the server.
To address this inefficiency, schemes that use dependent (overlapping) groups are proposed. In
[TEWA 96c], the called sequential parity placement is applied. It allows to distribute the load of
a failed disk among two parity groups, which improves load-balancing when operating in failure
mode. However, this improvement is traded for a reduced server reliability, since only one disk
failure is tolerated per two parity groups. In [BIRK 97], the possibility for bottlenecks due to
load-imbalances is alleviated by distributing blocks of a parity group randomlyamong the server
disks. Therefore, the additional load generated by a failed disk is almost uniformly distributed
among all surviving disks in the server. However, this random placement scheme only tolerates
a single disk failure, which may be insufficient for large video servers. Further, with random
placement algorithms, parity blocks may be placed within the same node as original blocks of
the same parity group and hence node failures cannot be tolerated. Generally, the alternative
of dependent parity groups (sequential and random placement) cannot provide the required

4.2. RELATED WORK 45

reliability for large video servers. Consequently, we will consider in our further discussion
only independent parity groups that can provide a high server reliability at the expense of some
load-imbalances during failure mode.

To summarize, we consider for parity-based reliability the shared parity model. In the case
where the size of the parity group is smaller than the total number of disks in the server, as the
case for the MGS algorithm, we consider independent parity groups, where the video server is
divided into equal size and non-overlapping parity groups.

4.2 Related Work

Fault-tolerance in a video server environment has received wide attention, see e.g.
[COHE 96, GHAN 95a, OZDE 96a, CHEN 97, BIRK 97, BOLO 96, Mourad 96, TEWA 96b,
Kaddeche 98]. In [BAAN 98], the authors compare RAID3 (FGS combined with parity) and
RAID5 (CGS combined with parity) in terms of server performance and reliability. The results
show that RAID5 performs better than RAID3. This work, however, only considers parity-
based reliability and do not consider the MGS algorithm. In [TOB 93b], the Streaming RAID
approach uses FGS/MGS with parity-based reliability. Thereby, the whole parity group is re-
trieved during a single service round, which allows to avoid any scheduling changes when
switching from normal operation mode to failure mode. However, Streaming RAID has very
high buffer requirement. The Staggered-group scheme in [BER 94a] addresses the high buffer
requirement of Streaming RAID and reads a parity group during a single service round applying
FGS/MGS, but plays it out during the next n service rounds, where n denotes the parity group
size. The Software RAID approach [TEWA 96c] also uses parity-based reliability and com-
bines FGS and CGS for data storage and retrieval. In fact, during normal operation mode, CGS
is applied. During failure mode, FGS is only applied to reconstruct blocks that reside on the
failed disk and CGS is applied otherwise. However, during failure mode, scheduling conflicts
may arise during a switch from FGS retrieval to CGS retrieval.

In the context of mirroring-based reliability, The CGS algorithm is used in most of the literature:
The doubly striped schemes proposed in [Mourad 96] replicates the original content of a single
disk evenly among the other disks of the server. Thus, the load of a failed disk is balanced
over all surviving server disks and each disk of them only needs to reserve a small fraction of
its available bandwidth to be used during failure mode. However, the doubly striped approach
tolerates only a single disk failure. Alternatively, the Microsoft Tiger video server [BOLO 96]
replicates the original content of each disk across a subset of all disks and thus builds groups.
Consequently, This approach tolerates more disk failures than the doubly striped scheme.

Most of the work cited above does not make explicit the relationship between data striping and
reliability for a video server. Further, there is no direct comparison of parity-based reliability

46 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

and mirroring-based reliability for a given data striping algorithm. This chapter investigates
data striping and reliability aspects for video servers. We consider the two striping algorithms
CGS and MGS and compare them in terms of server throughput, buffer requirement, and start-
up latency in the case of mirroring-based reliability as well as parity-based reliability. Even
though mirroring-based reliability doubles the storage volume required, it avoids the dramatic
increase of the I/O bandwidth in case of failure that may be observed for parity-based reliability
[HOLL 94]. In the following, we analyze this concern with respect to the data striping algorithm
used.

4.3 Comparison of Striping and Reliability Schemes

The performance results of the last chapter show that CGS provides a higher throughput than
MGS for a given amount of buffer. However, these results have only considered a non-fault
tolerant video server. We now assume a fault-tolerant video server and compare MGS and CGS
in terms of throughput for a given amount of buffer, worst case start-up latency for incoming
client requests. We are interested in computing the start-up latency during failure mode. This
start-up latency includes (i) the latency until a free slot is available as calculated in the last
chapter and also (ii) the called restart latency. The restart latency for a given stream is defined
as the worst case interval between the point of time where a single disk fails and the time at
which the server is able to reconstruct the first disk retrieval block. As already mentioned, we
focus on video server performance during both, normal operation mode and failure mode. Let
us first determine the disk throughput during normal operation mode and during failure mode
for CGS and MGS.

� Normal operation mode: During this mode, each disk should not exploit the entire avail-
able bandwidth. Instead, it keeps unused a part of the bandwidth, which reduces the
maximum number of streams that can be admitted. Let us call QCGS

no
and QMGS

no
the

maximum number of clients that can be serviced concurrently by a single disk that keeps
unused a part of its bandwidth 4.

� Disk Failure Mode: When one out of the D (Dc) disks fails, the remainingD�1 (Dc�1)

disks must support more streams than when operating in normal operation mode. The
additional bandwidth load for each of the surviving disks is Q

CGS
no

D�1
for CGS and Q

MGS
no

Dc�1
for

MGS. Thus, the maximum number of streams served in case of failure, QCGS

d
and QMGS

d

per diskis:

QCGS
d = QCGS

no +
QCGS
no

D � 1
= QCGS

no � (
D

D � 1
) (4.1)

4The index no denotes the normal operation mode.

4.3. COMPARISON OF STRIPING AND RELIABILITY SCHEMES 47

QMGS
d = QMGS

no +
QMGS
no

Dc � 1
= QMGS

no � (
Dc

Dc � 1
) (4.2)

We use Eqs. 4.1 and 4.2 to calculate server throughput in the remainder of this chapter. These
equations assume that in case of disk failure, the streams that would have been serviced from
that disk are uniformly distributed over the D � 1 (Dc � 1) remaining disks. This assumption
will be replaced in the next chapter by a worst case consideration, where the load of a failed
disk may be entirely shifted to another disk.

4.3.1 Comparison for Mirroring-Based Reliability

We assume a shared mirroring model, where the secondary copy of each single disk is uniformly
distributed over all remaining (D�1) disks for CGS, as proposed for the doubly striped scheme
of Mourad [MOUR 96]. We propose in Figure 4.2 data placement of original disk retrieval
blocks for the CGS algorithm. Figure 4.2 also illustrates, how original disk retrieval blocks that
are stored on disk i are replicated across the other server disks.

Line

1

2

j

1

2

n

Disk D

2

(j-1).D+2

((n-1).D+(1-n)).D+i ((n-1).D+(2-n)).D+i

(j-1).D+i

Original Data

Replicated Data
of disk i

D.D+i

D+i

Disk 1

1

D+1

i

(D-1).D+i

D+i

i

Disk iDisk 2

D

2.D

j.D

(D-2).D+i

(2.D-3).D+i

((n-1).D+(D-n-1)).D+i

D+2

(j-1).D+1

Figure 4.2: Mirroring for CGS.

For MGS, secondary data are stored among the remaining (Dc � 1) disks of a single retrieval
group. Figure 4.3 shows the placement of secondary copies among the remaining (Dc � 1)

disks of a retrieval group for MGS. Note that we only consider the first retrieval group (disks 1
to groups (2 to C). An extension to other retrieval groups is analogous.

Results

We compare CGS and MGS for mirroring-based reliability in terms of start-up latency and
server throughput for the same amount of buffer.

48 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

1

2

j

1

2

Line Disk 2 Disk i Disk Dg

i

1

(Dg-1).D+i

D+1

2 i Dg

(j-1).D+i (j-1).D+Dg(j-1).D+1 (j-1).D+2

D+2 D+i D+Dg

D+i

Dg.D+i

(Dg-2).D+i

(2.Dg-3).D+i

Original Data

Replicated Data
of disk i

Disk 1

Figure 4.3: Mirroring for MGS for first retrieval group with disks 1 to Dc.

For a new incoming client during failure mode, the values of the worst case start-up latency for
CGS and MGS are the same as during normal operation mode. In fact, during failure mode,
the lost disk retrieval block is simply replaced by its replicated block, which does not require
any additional delay. Consequently, for new clients and during failure mode, there is no restart
latency with mirroring. We plot the start-up latency results in Figure 4.4(a). Note that these
results are equivalent to those of Figure 3.13(a) in the last chapter.

We refer to Eqs. (4.1) and (4.2) to compute the server throughput. When a disk fails, the
original disk retrieval blocks residing on that failed disk are replaced when needed by their
replica. These replica are retrieved from the surviving disks. As a result, the amount of buffer
required for the video server does not depend on whether it is in normal operation or failure
mode. Hence the throughput results in Figure 4.4(b) demonstrating that CGS still has a higher
server throughput than MGS for the same amount of buffer when mirroring is used.

In summary, the results of Figure 4.4 indicate that for mirroring-based reliability, CGS, com-
pared to MGS, keeps its throughput superiority for a given amount of buffer as for a non fault-
tolerant video server. However, MGS has a lower start-up latency than CGS.

4.3.2 Comparison with Parity-Based Reliability

We now consider parity-based reliability, where parity disk retrieval blocks are used to recon-
struct failed original disk retrieval blocks. We study the shared parity model, where parity data
are distributed with original data on all D disks.

For CGS, (D � 1) original disk retrieval blocks and one parity disk retrieval block build one
parity group . In Figure 4.5, we show how original and parity disk retrieval blocks of one video

4.3. COMPARISON OF STRIPING AND RELIABILITY SCHEMES 49

50 100 150 200 250 300

50

100

150

200

250

300

350

400
S

ta
rt

−
up

 L
at

en
cy

 (
se

c)
Start−up Latency for CGS and MGS with Mirroring

Number of Disks D in the Server

CGS
1000K

MGS
100K

(a) Start-up latency for CGS and MGS (Dc = 10).

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput for MGS and CGS with Mirroring

CGS
Mirr, 1000K

MGS
Mirr, 100K

(b) Throughput for CGS and MGS (Dc = 10) for the
same amount of buffer.

Figure 4.4: Start-up latency and throughput for CGS- and MGS-based mirroring with bMGS

dr
=

100 kbit, bCGS
dr

= 1 Mbit and rp = 1:5 Mbit/sec.

object are placed across the various disks of the video server. For that, we use a round robin
data placement. The term ”P” denotes the parity disk retrieval block of a given parity group.

i

2

1

Line

D

Disk 2

1

PD

P

(D-1).D+(2-D) (D-1).D+(3-D)

Disk 1

(D-1).D+(i-(D-1))

(i-1)

D+(i-2)

P

Disk i Disk D

P

2.(D-1)

(D-1)

Figure 4.5: Parity data layout of the server for CGS.

Figure 4.6 shows within a single retrieval group the parity data placement for MGS. As for CGS,
original disk retrieval blocks of one video object are stored in a round robin manner among all
available D disks of the server. However, a parity group is built out of only (Dc � 1) original
disk retrieval blocks and one parity disk retrieval block. Like for mirroring, we only draw in
Figure 4.6 the data layout of the first retrieval group (disks 1 to Dc) of the server.

Let us now compare MGS and CGS in terms of buffer requirements, server throughput, and

50 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

Line

Dg

2

1

(G+1).(Dg-1)

Disk i

(i-1).G.(Dg-1)+1 (i-1).G.(Dg-1)+2

(Dg-1).G.(Dg-1)+1 (Dg-1).G.(Dg-1)+2 (Dg-1).G.(Dg-1)+i

G.(Dg-1)+1

Disk 1 Disk 2

P

P (i-1)

G.(Dg-1)+(i-1)

P

(Dg-1)

Disk Dg

P

1

i

Figure 4.6: Parity data layout of the first retrieval group (disks 1 to Dc) for MGS.

start-up latency. In the context of parity decoding, we consider two ways of dealing with failure:

� Reactive: Means that parity information is only sent when a disk failure occurs, which
implies that parity data are not used during normal operation mode.

� Preventive: Means that parity data are alwayssent with original information, even when
working in normal operation mode. The bandwidth used for each of the surviving disks
is therefore the same during both normal operation and failure mode.

Based on the distinction above, we discuss in the following four possible cases: MGS-reactive
mode, MGS-preventive mode, CGS-reactive mode, and CGS-preventive mode.

MGS-reactive mode The (Dc�1) original disk retrieval blocks are sent for one stream during
a service round. The parity disk retrieval block is only retrieved when a single disk fails inside
the retrieval group. In this case, (Dc � 2) original and one parity disk retrieval blocks are
retrieved. Because we always (during normal operation and single disk failure mode) retrieve
(Dc�1) disk retrieval blocks for the reactive mode, an admitted client requires the same amount
of buffer and bandwidth from the video server before and after a single disk failure. However,
the reactive mode can result in a transient degradation (for one service round).

MGS-preventive mode With this mode, parity information is automatically retrieved and sent
with the original disk retrieval blocks. When working with normal operation mode, Dc disk
retrieval blocks are sent. When a single disk fails inside a retrieval group, (Dc � 1) blocks are
sent, which are enough to reconstruct the missing video data. The advantage of the preventive
mode is that there is neither a temporal degradation nor additional start-up latency when a single
disk fails, as is the case with the reactive mode.

4.3. COMPARISON OF STRIPING AND RELIABILITY SCHEMES 51

We should mention that parity data is per a retrieval group. Thus, each retrieval group can
tolerate a single disk failure and the video server can tolerate multiple disk failures as well as a
complete node failure (due to other component failures, i.e. operating system, hardware, cable).

CGS-reactive mode Only original disk retrieval blocks are retrieved using the CGS-reactive
mode. Further, during normal operation mode, the buffer is immediately liberated after con-
sumption. When a single disk fails, original as well as parity disk retrieval blocks are sequen-
tially retrieved (during consecutive service rounds) from disks and temporarily stored in the
buffer (for many service rounds) to reconstruct the lost original disk retrieval block. This re-
quires additional buffer space. In the following, we calculate the amount of needed buffer and
the worst case restart latency.

Assume a single disk failure is happening during service round k � 1. At most, all QCGS

d
disk

retrieval blocks that should have been retrieved from this failed disk must be reconstructed.
However, to reconstruct one failed disk retrieval block for one stream, (D � 1) disk retrieval
blocks are sequentiallyretrieved (during (D � 1) successive service rounds) and temporarily
storedin the buffer. We also call this strategy buffering . QCGS

d
is as in Eq. (4.1).

Q1

Q1

Q1

Q1

Q1

Q4

Q3

Q2

Q2 Q3 Q4

Q2 Q3

Q4 Q2

Q3 Q4

Q2 Q3 Q4

k

k+1

k+2

k+3

k+4

Number of the service round

d1 d2 d3 d4

Figure 4.7: Latency for CGS after a disk failure.

The retrieval schedule of a CGS-parity-based server is depicted in Figure 4.7 for a simple sce-
nario with 4 disks. Q1, Q2, Q3, and Q4 denote lists of clients. Each client is in exactly one
list. Each list is served from one disk (d1, d2, d3, or d4) during one service round and from the

52 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

next disk (round robin order) during the next service round. In Figure 4.7, we attribute to each
of the lists (Q1; Q2; Q3; and Q4) the corresponding disk (d1, d2, d3, or d4) from which data
must be retrieved during service rounds k, k + 1, k + 2, k + 3, and k + 4. Let us assume that
disk d1 fails during service round k � 1 and let us focus on the data retrieval for clients in list
Q4: During service round k, blocks are retrieved from disk d4; during service round (k +1) no
data is retrieved, since d1 has failed, during service round (k + 2) data is retrieved from disk
d2, and during service round (k + 3) from disk d3. At the end of service round (k + 3), blocks
of disk d1 can be reconstructed. Thus, streams belonging to list Q4 need four service rounds to
reconstruct the failed information. For streams of lists Q1 and Q3, four service rounds are also
needed, while streams of list Q2 take only three service rounds.

Figure 4.8 shows a single disk failure situation. A parity group contains 3 original disk retrieval
blocks and one parity disk retrieval block (Drb) . The first block is assumed to be lost. To
reconstruct the whole stream, three times bCGS

dr
buffer space and four service round durations

are required. Figure 4.8 illustrates the additional latency incurred and the amount of buffer
space needed to reconstruct the missing data.

1st D rb Parity

2nd D rb

2nd D rb

2nd D rb

Number of the service round

k+1

k+3

2nd D 3rd Drbrb

rb

Parity

rb

3rd D

3rd D
Reconstruct

1st Drb

k+2

Figure 4.8: Buffer requirement for CGS during failure mode.

From Table 3.4, we know that the buffer requirement for a CGS based non-fault tolerant video
server is: BCGS(D) = QCGS �bCGS

dr
, which is enough when working in normal operation mode.

For a fault-tolerant video server, the worst case buffer requirement needed for one stream is:
(D� 1) � bCGS

dr
, since from the point of time where a disk failure occurs, the whole parity group

of each stream must be kept in the buffer to reconstruct the lost block.

4.3. COMPARISON OF STRIPING AND RELIABILITY SCHEMES 53

Thus, the buffer requirement for all QCGS streams during single disk failure modeis:

BCGS�bu� (D) = (D � 1) �QCGS � bCGSdr = (D � 1) � BCGS(D) (4.3)

When a single disk fails, the restart latency varies between (D � 1) � �CGS and D � �CGS ,
depending on the placement of the disk retrieval blocks that belong to a parity group (Figure
4.7).

During failure mode, an admitted new client request needs to be delayed until free slots are
available. Additionally, in the worst case, the client consumption must be delayed until the lost
information is reconstructed. This additional delay is (D � 1) � �CGS and the total worst case
start-up latency TCGS

rel
for CGS when working in disk failure mode is the sum of the worst case

latency TCGS = (D � 1) � �CGS and the additional delay:

TCGS

rel
= 2 � (D � 1) � �CGS (4.4)

CGS-preventive mode To avoid temporal degradations for the admitted streams when a disk
failure occurs, the video server can be preventive to be able to reconstruct the failed block at
any time. This requires that blocks of a parity group be kept in the buffer even during normal
operation mode. Thus, there is no difference between running in normal operation or disk
failure mode in terms of buffer requirement. The overall needed amount of buffer is:

BCGS�bu� (D) = D �QCGS � bCGSdr = D � BCGS (D) (4.5)

During normal operation mode, the parity information is not needed. In failure mode, parities
will be needed to reconstruct a missing block.

The preventive mode eliminates or decreases the restart latency overhead produced by the re-
active model, since some or all retrieval blocks of a parity group are already contained in the
buffer when a missing retrieval block is needed and it takes less time to reconstruct the lost
information. The throughput is as given in Eq. (4.1).

Eqs. (4.3) and (4.5) show that the buffer requirement dramatically increases(factor (D � 1) or
D) for a CGS parity-based video server.

Results

In Figure 4.9, we plot the throughput and worst case start-up latency of CGS (buffering) and
MGS when the video server is based on a parity and preventive model. Figure 4.9(a) shows
that the start-up latency of CGS is becoming much higher than of MGS.

54 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

To compare the throughput for CGS (buffering) and MGS, we follow the next steps: Given the
throughput for MGS for a non-fault-tolerant case (see Figure 3.11) 5, we derive the throughput
for MGS with the parity-based scheme. Subsequently, we calculate the amount of buffer re-
quired to achieve this throughput. Finally, we calculate for CGS (buffering) the throughput that
can be achieved given the same amount of buffer as for MGS.

We plot in Figure 4.9(b) the throughput for MGS and CGS in both cases (i) the non-fault-
tolerant case (the two highest curves in the Figure) and (ii) the parity-based case (the two lowest
curves in the Figure). The terms NF and Par in Figure 4.9(b) denote respectively the non-
fault-tolerant case and the parity-based case. We observe that:

� The throughput for CGS decreases enormouslywhen working with the parity-based
scheme and the buffering strategy, compared with the non-fault-tolerant case. The de-
crease of the throughput is due to the buffer limitations that represent the bottleneck for
CGS with the buffering strategy.

� The throughput of MGS with the parity-based scheme slightly decreases, compared with
the non-fault-tolerant case.

� While CGS performs better than MGS in terms of throughput in the non-fault-tolerant
case (the two highest curves of Figure 4.9(b)), MGS performs much better than CGS
(buffering) in the parity-based case in terms of throughput (the two lowest curves of
Figure 4.9(b)).

CGS-second read We saw that the buffer increases dramatically for a CGS-parity-based
video server that uses the buffering strategy. Instead of temporarily storing all remaining disk
retrieval blocks that belong to the same parity group, one can read every original disk retrieval
block twice: one read to deliver the original block and another read to reconstruct the lost block.
We call this method the second readstrategy. Using a second read strategy, the number of reads
will double and therefore the throughput will be cut in half (QCGS

d
=

Q
CGS
no

2
). Further, an addi-

tional buffer is needed ((D � 1) �QCGS

d
� bCGS

dr
for the reactive mode and D �QCGS

d
� bCGS

dr
for the

preventive mode) to store data during the second read and perform decoding of the missing disk
retrieval block. Let us only consider the preventive mode. Thus the total buffer requirement
BCGS�secread(D) for the second read strategy is:

BCGS�secread(D) = BCGS(D) +D �QCGS

d
� bCGS

dr
= 2 �BCGS(D) (4.6)

5We saw in Figure 3.11 that the throughput for CGS is higher than the one for MGS assuming the same amount
of buffer.

4.3. COMPARISON OF STRIPING AND RELIABILITY SCHEMES 55

50 100 150 200 250 300

50

100

150

200

250

300

350

400
S

ta
rt

−
up

 L
at

en
cy

 (
se

c)
Start−up Latency for CGS and MGS with Parity

Number of Disks D in the Server

CGS
1000K

MGS
100K

(a) Start-up latency for CGS and MGS (Dc = 10).

50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput for MGS and CGS (buffering) with Parity

CGS
NF, 1000K

MGS
NF, 100K

MGS
Par, 100K

CGS
Par, 1000K

(b) Throughput for CGS and MGS for the same
amount of buffer.

Figure 4.9: Start-up latency and throughput for CGS (buffering) and MGS with the preventive
mode in a parity-based video server.

Unlike the buffering strategy, the second read strategy avoids the dramatic increase of the start-
up latency and the restart latency, since disk retrieval blocks needed to reconstruct the missing
block are simultaneously retrieved during one service round. Thus the worst case restart latency
is one service round (�CGS) and the worst case start-up latency is the same as for CGS in a non-
fault-tolerant server.

In Figure 4.10, we show the results of the worst case start-up latency and the throughput of CGS
(second read) and MGS when the video server is based on a parity and preventive model. Figure
4.10(a) shows the decrease of the worst case start-up latency for CGS (second read) (compare
with Figure 4.9(a)).

Analogous to Figure 4.9(b), we plot in Figure 4.10(b) the throughput for MGS and CGS in
both cases, the non-fault-tolerant case (the two highest curves in the Figure), and the parity-
based case (the two lowest curves in the Figure). The throughput results in Figure 10(b) show
that the throughput has been improved for CGS with the second read strategy, compared with
the throughput for CGS with the buffering strategy (Figures 4.9(b) and 4.10(b)). However,
even with the second read strategy, CGS has a lower throughput than MGS using the parity-
based technique. Compared with the results in Figure 4.9, we see that CGS with the second
read strategy is better than CGS with the buffering strategy in terms of both, start-up latency
and throughput. However, the implementation of the second read strategy is more complicated
than the one of the buffering strategy. Indeed, the second read strategy alternates CGS retrieval
for original not lost disk retrieval blocks and FGS retrieval when all remaining retrieval blocks

56 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

of the parity group are read in parallel (during the same service round) to reconstruct the lost
original disk retrieval blocks. The buffering strategy, however, always applies the CGS algo-
rithm.

50 100 150 200 250 300

50

100

150

200

250

300

350

400

S
ta

rt
−

up
 L

at
en

cy
 (

se
c)

Start−up Latency for CGS and MGS with Parity (second read)

Number of Disks D in the Server

CGS
1000K

MGS
100K

(a) Start-up latency for CGS and MGS (Dc = 10).

50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Throughput for MGS and CGS (second read) with Parity

CGS
NF, 1000K

MGS
NF, 100K

MGS
Par, 100K

CGS
Par, 1000K

(b) Throughput for CGS (second read) and MGS for
the same amount of buffer.

Figure 4.10: Start-up latency and throughput for CGS (second read) and MGS with the preven-
tive mode in a parity-based video server.

4.3.3 Data Striping vs. Server Reliability: Discussion

We have compared for a fault-tolerant video server the two striping algorithms CGS and MGS
with respect to the server throughput and the start-up latency. Our results indicate that for
a mirroring-based video server, CGS has a higher server throughput than MGS for the same
buffer space. For parity-based reliability, however, MGS has a higher throughput and a lower
start-up latency than CGS. What remains is to decide whether (i) CGS & mirroring or (ii) MGS
& parity is best for the video server. Before we make this decision, let us look at the potential
bottleneck of a video server. We distinguish two types of servers: a bandwidth-limitedand a
storage-limitedvideo server. Based on these two types, we argue in the following the choice of
the best striping/reliability combination:

� For a bandwidth-limited video server, the bottleneck is the disk I/O bandwidth. Thus
additional disks are only needed to provide the required I/O bandwidth, while their storage
volume is not used. In this case, mirroring may not require any additional disks and
a CGS mirrored video server will be the most cost-effective solution. The Tiger video
server from Microsoft uses CGS and mirroring [BOLO 96].

4.4. SUMMARY 57

� For the storage-limited case, the bottleneck is not the disk I/O bandwidth but the storage
volume of the server. In this case, mirroring is not recommended because it will require
doubling the storage volume, i.e. the number of disks. Instead, a MGS parity-based video
server will be the most cost-effective solution.

4.4 Summary

Chapter 3 has compared data striping algorithms for non fault-tolerant video servers, where
we have shown that the CGS algorithm has the highest overall server throughput for a given
buffer space. In this chapter, we have introduced fault-tolerance within a video server. We
have discussed mirroring-based and parity-based reliability and proposed for each of them its
adequate data layout when both, CGS and MGS are considered. We have then compared CGS
and MGS in terms of server throughput for the same amount of buffer and start-up latency
when we use mirroring-based or parity-based reliability. Our results demonstrate that a video
server based on mirroring has a higher server throughput with CGS than with MGS. For parity-
based reliability, we have considered two modes of retrieving parity data: the reactive mode
and the preventive mode. We have analyzed the video server behavior during disk failure for
CGS and MGS. We found out that CGS (with the buffering strategy) suffers under very high
buffer requirement when the server operates during disk failure and thus CGS has a much lower
throughput than MGS given a fixed amount of buffer. The called second read strategy for CGS
addresses this inefficiency by reading twice the needed original disk retrieval blocks instead
of keeping them in the buffer, which is performed by the buffering strategy. As a result, the
second read strategy reduces the amount of required buffer at the expense of cutting the server
throughput to the half. The results show that MGS achieves a higher server throughput than
CGS (with the buffering and the second-read strategy) for parity-based reliability. Finally, we
have distinguished between bandwidth-limited and storage-limited video servers and argued
the following conclusion: For a bandwidth-limited video server, CGS combined with mirroring
performs best, whereas for a storage-limited video server, MGS combined with parity performs
best[GABI 98c].

We consider in the remainder of the thesis a bandwidth-limited video server. This consideration
relies on the fact that the main video server performance criterion is to serve as many clients
as possible, which is the server throughput, and therefore the disk I/O bandwidth presents the
most critical measure for the video server and is assumed to be the prime server bottleneck.
Consequently, assuming a bandwidth-limited video server leads to make the choice for the
CGS algorithm. For CGS, all of the terms retrieval unit, disk retrieval block, and video segment
are equivalent and have the same size. We will simply use the term block to denote all of these
terms. For the CGS algorithm, we present in Appendix B the storage layout of the original and

58 CHAPTER 4. DATA STRIPING AND SERVER RELIABILITY

redundant data and the data scheduling and retrieval procedures for operating during normal
operation mode as well as during a single disk failure mode. We consider both, mirroring-based
reliability and parity-based reliability.

Until now, we have for CGS only considered a parity group size that equals the total number
of disks D in the server and the doubly striped mirroring scheme that distributes the original
content of a single disk over all remaining server disks. Reducing (i) the parity group size or
(ii) the number of disks, on which replicated data of a single disk are stored, may be decisive
in terms of server reliability and performance. The cost, performance, and reliability of a fault-
tolerant video server that is based on CGS are the focus of the next chapter.

Chapter 5

Video Server Reliability: Modeling and
Performance

5.1 Introduction

We consider the striping algorithm CGS to store/retrieve original blocks on/from the video
server. Making the video server fault-tolerant implies the storage of redundant (repli-
cated/parity)blocks. What remains to be decided is how redundant data is going to be stored
and retrieved. As indicated in the previous chapter, we only focus on shared mirroring/parity
models that distribute redundant data (replica/parity) among all server disks in order to fairly
distribute the load of the video server (see the previous chapter). Further, we consider the case
where only original blocks of a video are used during normal operation mode. During failure
mode, replicated/parity blocks are retrieved to reconstruct lost original blocks that reside on the
failed component.

Let us first review the main characteristics of the shared mirroring and parity models. Mirroring
(equivalent to RAID1 [LEED 93, CLGK 94]) consists in storing copiesof the original data on
the server disks and thus results in a 100% storage overhead. With shared mirroring (also called
interleaved declustering[MERC 95]), original data and replicated data are spread over all disks
of the server. On the other side, parity consists in storing parity blocks besides the original
blocks. When a disk failure occurs, parity blocks together with the surviving original blocks
of the same parity group are needed to reconstruct the content of the failed original block (see
Figure 4.1). With shared parity, parity blocks are spread over all disks of the video server. The
standard RAID5 [CHEN 94a] is a typical example of a shared parity scheme that is based on the
CGS algorithm. Although the additional storage volume is small for parity-based reliability, the
server needs additional resources in terms of I/O bandwidth or main memory when operating
in failure mode. In the last chapter, we have distinguished for CGS combined with parity the

59

60 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

second-read strategyand the buffering strategy. The second read strategy does not increase
the buffer requirement when switching from normal operation mode to failure mode. However,
this strategy sacrifices the half of the total available I/O bandwidth and therefore cuts the server
throughput to the half. Instead, the buffering strategy reads each original block only once and
thus optimizes the utilization of the I/O bandwidth (high throughput) at the expense of a high
buffer requirement [GABI 98c]. We will restrict our discussion to the buffering strategy, since
it achieves about twice as much throughput as the second read strategy [GABI 98c, GAFS 99a].
We will see that the buffering strategy becomes more attractive in terms of server performance
(lower buffer requirement) and also regarding the server reliability as the size of the parity group
decreases.

In this chapter we begin with a classification of several reliability schemes. in section 5.3,
we present related work. Section 5.4 performs reliability modeling for the different schemes
identified. Thereby, we split the discussion to the two cases of independent disk failures and
dependent component failures. In this section, we also propose a novel mirroring scheme, called
Grouped One-to-One mirroring, that achieves highest video server reliability. Video server
performance (per stream cost) for the retained reliability schemes is discussed in section 5.5.
Section 5.6 compares the different reliability schemes in terms of both, per stream cost and
server reliability, and finally section 5.7 summarizes our results.

5.2 Classification of Reliability Schemes

Reliability schemes differ in the technique(parity/mirroring) and in the distribution granularity
of redundant data. We define below the distribution granularity of redundant data.

� For the parity technique, the distribution granularity of redundant data is determined by
whether the parity group comprises All (D) or Some(Dc) disks of the server. For the
latter case, we assume that the server is partitioned into independent groups and that all
groups are the same size, each of them containing Dc disks. Let C denote the number of
groups in the server (C = D

Dc

).

� For the mirroring technique, the distribution granularity of redundant data has two differ-
ent aspects:

– The first aspect concerns whether the original blocks of onedisk are replicated on
One, Some(Dc), or All remaining(D � 1) disks of the server.

– The second aspect concerns how a single originalblock is replicated. Two ways
are distinguished. The first way replicates oneoriginal block entirelyinto onerepli-
cated block [MOUR 96], which we call entire block replication. The second way

5.2. CLASSIFICATION OF RELIABILITY SCHEMES 61

partitions oneoriginal block into many sub-blocksand stores each sub-block on a
differentdisk [BOLO 96], which we call sub-block replication. We will show later
on that the distinction between entire block and sub-block replication is decisive in
terms of server performance (throughput and per stream cost).

Table 5.1 classifies mirroring and parity schemes based on their distribution granularity. We
use the terms One-to-One, One-to-All, and One-to-Someto describe whether the distribution
granularity of redundant data concerns one disk (mirroring), all disks (mirroring/parity), or
somedisks (mirroring/parity). For the One-to-One scheme, only mirroring is possible, since
One-to-One for parity would mean that the size of each parity group equals 2, which consists in
replicating each original block (mirroring). Hence the symbol ”XXX” in the table.

Mirroring Parity

One-to-One Chained declustering [HSDE 90, GOMZ 92] XXX
One-to-All Entire block replication RAID5 with one group [CHEN 94a]

[MOUR 96, Mourad 96]
Sub-block replication [MERC 95]

One-to-Some Entire block replication RAID5 with many groups
Sub-block replication [BOLO 96] [BER 94a, TEWA 96a, OZDE 96a]

Table 5.1: Classification of the different reliability schemes

Table 5.1 distinguishes seven schemes. We will give for each of these schemes an example of
the data layout . Thereby, we assume that the video server contains 6 disks and stores a single
video. The stored video is assumed to be divided into exactly 30 original blocks. All schemes
store original blocks in the same order (round robin) starting with disk 0. What remains to
describe is the storage of redundant data for each of the schemes.

We present in the following examples of the mirroring-based schemes. These schemes have
in common that each disk is partitioned into two separate parts, the first part storing original
blocks and the second part storing replicated blocks.

As illustrated in Figure 5.1, the One-to-One mirroring scheme (Mirrone) simply replicates orig-
inal blocks of one disk onto another disk. If one disk fails, its load is entirely shifted to its
replicateddisk, which creates load-imbalances within the server (the main drawback of the
One-to-One scheme).

In order to distribute the load of a failed disk evenly among the remaining disks of the server,
the One-to-All mirroring scheme is applied as shown in Figures 5.2 and 5.3. Figure 5.2
depicts entire block replication (Mirrall�entire) and Figure 5.3 depicts sub-block replication
(Mirrall�sub). In Figure 5.3, we only show how original blocks of disk 0 are replicated over

62 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

2

8

14

20

26

2

8

14

20

26

3

9

15

21

27

3

9

15

21

27

4

10

16

22

28

4

10

16

22

28

5

11

17

23

29

5

11

17

23

29

6

12

18

24

30

6

12

18

24

30

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���1

7

13

19

25

Original

blocks

Copies

0 1 2 3 4 5

 13

 7

 1

 19

 25

Figure 5.1: One-to-One Organization MirrOne.

disks 1, 2, 3, 4, and 5. If we look at these two Figures, we realize that only a single disk failure
is allowed. When two disk failures occur, the server cannot ensure the delivery of all video data.

����
����
����
����

����
����
����
����
����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
���� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

1 7 13 19 25

2 8 14 20

26

3 9 15

21 27

4 10

16 22 28

5

11 17 23 29

6 12 18 24 30

Original

blocks

Copies

0 1 2 3 4 5

Figure 5.2: One-to-All Organization with Entire block replication Mirrall�entire.

The One-to-Some mirroring scheme trades-off load-imbalances of the One-to-One mirroring
scheme and the low reliability of the One-to-All mirroring scheme. Indeed, as shown in Figures
5.4 (entire block replication, Mirsome�entire) and 5.5 (sub-block replication, Mirsome�sub), the
server is divided into multiple (2) independent groups. Each group locally employs the One-to-
All mirroring scheme. Thus, original blocks of one disk are replicated on the remaining disks
of the group and therefore the load of a failed disk is distributed over all remaining disks of the
group. Further, since each group tolerates a single disk failure, the server may survive multiple
disk failures.

We present next two layout examples of parity-based reliability. These correspond to the One-
to-All parity scheme, Parall (Figure 5.6) and the One-to-Some parity scheme, Parsome (Figure

5.2. CLASSIFICATION OF RELIABILITY SCHEMES 63

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
���� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

Original

blocks

Copies

0 1 2 3 4 5

7.1 7.2 7.3 7.4 7.5

13.1 13.2 13.3 13.4 13.5

19.1 19.2 19.3 19.4 19.5

25.1 25.2 25.3 25.4 25.5

1.1 1.2 1.3 1.4 1.5

Figure 5.3: One-to-All Organization with Sub-blocks replication Mirrall�sub .

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
���� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

1 7

Original

blocks

Copies

0 1 2 3 4 5

Group 2Group 1

13 19

25

 2

 8

20

26

 3

 9

21 27

 14

 15

 4 10

16 22

28

 5

 11

17

 23

29

 6

12 18

 24 30

Figure 5.4: One-to-Some Organization with Entire block replication Mirrsome�entire .

5.7). In Figure 5.6 the parity group size is 6, e.g. the 5 original blocks 16, 17, 18, 19, and 20

and the parity block P4 build a parity group. In Figure 5.7 the parity groups size is 3, e.g. the 2
original blocks 17 and 18 and the parity block P8 build a parity group.

Looking at Figures 5.1 to 5.7, we observe that all One-to-All schemes (mirroring with en-
tire block replication (Mirrall�entire), mirroring with sub-block replication (Mirrall�sub), and
parity with one group (Parall)) only tolerate one disk failure. All these schemes therefore
have the same server reliability. The same property holds for all One-to-Some schemes (mir-
roring with entire block replication (Mirrsome�entire), mirroring with sub-block replication
(Mirrsome�sub), and parity with C groups (Parsome)), since they all tolerate at most a sin-
gle disk failure on each group. Consequently, it is enough for our reliability study to consider
the three schemes (classes): One-to-One, One-to-All, and One-to-Some. For our performance

64 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
��� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 23 24

26 27 28 29 30

1

7

13

19

25

Original

blocks

Copies

0 1 2 3 4 5

7.1 7.2

13.1 13.2

19.1 19.2

25.1 25.2

1.1 1.2 4.1 4.2

10.1 10.2

16.1 16.2

22

22.1 22.2

28.1 28.2

Group 2Group 1

Figure 5.5: One-to-Some Organization with Sub-blocks replication Mirrsome�sub .

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

P1 1 2 3 4 5

6 P2 7 9 8 10

11 12 P3 13 14 15

16 17 18 P4 19 20

21 22 23 24 P5 25

26 27 28 29 30 P6

0 1 2 3 4 5

Figure 5.6: One-to-All Organization Parall.

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

����
����
����

����
����
���� ����

����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

P1 1 2 P2 3 4

5 P3 6 7 8

 9 10 11 12

P4

P5 P6

P7 13 14 P8 15 16

17 P8 18 19 P9 20

21 22 P10 23 24 P11

P12 25 26 P13 27 28

29 P14 30

Group 1 Group 2

0 1 2 3 4 5

Figure 5.7: One-to-Some Organization Parsome.

5.3. RELATED WORK 65

study, however, we will consider the different schemes of Table 5.1 (see section 5.5).

5.3 Related Work

In the context of video servers, reliability has been addressed previously either by applying
parity-based techniques similarly to the RAID2-RAID6 schemes, e.g. [HOLL 94, TEWA 96a,
OZDE 96b, GOLP 98, GABI 98c], or by applying mirroring-based techniques similarly to the
RAID1 scheme, e.g. [BITT 88, MOUR 96, BOLO 96]. However, none of these works has
considered together all of the following aspects:

� Comparison of several parity-based and mirroring-based techniques under consideration
of both, the video server performance and cost issues. Our cost analysis concerns the
storage and the buffering costs to achieve a given server throughput.

� Reliability modeling based on the distribution granularity of redundant data in order to
evaluate the server reliability for each scheme considered. We will perform a detailed
reliability modeling that incorporates the case of independent disk failures and the case
of dependent component failures.

� Performance, cost, and reliability trade-offs of different parity-based as well as mirroring-
based techniques. We will study the effect of varying the group size on the server reli-
ability and the per stream cost and determine the best value of the group size for each
technique.

An extensive amount of work has been carried out in the context of parity-based reliability, see
e.g. [LEE 92, TOB 93b, CLGK 94, HOLL 94, GHAN 95a, COHE 96, OZDE 96a, TEWA 96b,
BIRK 97]. These contributions ensure a reliable real-time data delivery, even when one or some
components fail. They differ in the way (i) they stripe data such as RAID3 (based on FGS) or
RAID5 (based on CGS), and (ii) allocate parity information within the server (dedicated, shared,
declustered, randomly, sequentially, etc.), and (iii) the optimization goals (throughput, cost,
buffer requirement, load-balancing, start-up latency for new client requests, disk bandwidth
utilization, etc.).

Video servers using mirroring have been proposed previously, see e.g. [BITT 88, MERC 95,
Mourad 96, BOLO 96, CHEN 97, HSDE 90, GOMZ 92]. However, no reliability modelinghas
been carried out. Many mirroring schemes were compared by Merchant et al. [MERC 95],
where some striping strategies for replicated disk arrays were analyzed. Depending on the
striping granularity of the original and the replicated data, they distinguish between the uniform
striping (CGS for original and replicated data in dedicated or in chained form) and the dual

66 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

striping (original data are striped using CGS and replicated data are striped using FGS). How-
ever, their work is different from our study in many regards. First, the authors assume that both
copies are used during normal and failure operation mode. Second, the comparison of different
mirroring schemes is based on the mean response timesand on the throughputachieved without
taking into account server reliability. Finally, the authors do not analyze the impact of varying
the distribution granularity of redundant data on server reliability and server performance.

In a general context of RAID, Trivedi et al. [MATR 93] analyzed the reliability of RAID1–
RAID5 and focused on the relationship between disk’s MTTF and system reliability. Their
study is based on the assumption that a RAID system is partitioned into cold and hot disks,
where only hot disks are active during normal operation mode (dedicated model). Instead,
we study reliability strategies for video servers that do not store redundant data separately on
dedicateddisks, but distribute original and redundant data evenly among all server disks (shared
model). Gibson [GIBS 90] uses continuous Markov models in his dissertation to evaluate the
performance and reliability of parity-based redundant disk arrays.

In the context of video servers, reliability modeling for parity-based schemes(RAID3, RAID5)
has been performed in [BAAN 98] and RAID3 and RAID5 were compared using Markov re-
ward models to calculate server availability. The results show that RAID5 is better than RAID3
in terms of the so-called performability (availability combined with performance).

To the best of our knowledge, there is no previous work in the context of video servers that
(i) has compared several mirroring and parity schemes with various distribution granularities in
terms of the server reliability and the server performance and costs and (ii) focused on the per
stream cost and server reliability trade-offs with respect to the group size for parity as well as
for mirroring.

5.4 Reliability Modeling

5.4.1 Motivation

The server reliability(also called the reliability function) Rs(t) at time t is defined as the prob-
ability that the server survives until time t assuming that all server components are initially
operational [STIEW 82]. The server survives as long as its working components deliver any
video requested to the clients. As we have already mentioned, the server reliability depends
on the distribution granularity of redundant data and is independent of whether mirroring or
parity is used. In fact, what counts for the server reliability is the number of disks/nodes that
are allowed to fail without causing the server to fail. As an example, the One-to-All mirroring
scheme with entire block replication (Mirrall�entire) only tolerates a single disk failure. This
is also the case for Mirrall�sub and for Parall. These three schemes have therefore the same

5.4. RELIABILITY MODELING 67

server reliability. In light of this fact, we use the term One-to-All to denote all of them three for
the purpose of our reliability study. Analogous to One-to-All, the term One-to-Some will repre-
sent the three schemes Mirrsome�entire , Mirrsome�sub , and Parsome and the term One-to-One
denotes the One-to-One mirroring scheme Mirrone.

We use Continuous Time Markov Chains (CTMC) for the server reliability modeling [SATR 96]
. CTMC has discrete state spaces and continuous time and is also referred to as Markov process
in [HOYL 94, Randolph 95]. Further, we exploit the strong empirical evidence that the failure
rate �s of a system during its normal lifetime is approximately constant [STIEW 82, GIBS 90].
This is equivalent to an exponential distribution of the system’s lifetime. In other terms, the
system’s reliability function Rs(t) is:

Rs(t) = e��s�t

Assuming that the system’s mean time to failure MTTFs has the property: MTTFs < 1,
MTTFs can be determined as [HOYL 94]:

MTTFs =

Z
1

0

Rs(t)dt =

Z
1

0

e��s�tdt =
1

�s
(5.1)

Note that a system can be a single disk, a single node, or the whole video server. Accordingly,
for a single disk, the mean time to disk failure MTTFd is to get as:

MTTFd =
1

�d

where �d presents the disk failure rate.

Analogously to failure rate, we assume that the repair rate �s of a system is exponentially
distributed and thus the mean time to repair MTTRs can be expressed as: MTTRs =

1
�s

. For
a single disk, the disk’s mean time to repair is then

MTTRd =
1

�d

where �d denotes the disk repair rate.

To build the state-space diagram[HOYL 94] of the corresponding CTMC, we introduce the
following parameters: s denotes the total number of states that the server can have; i denotes
a state in the Markov chain with i 2 [0::(s � 1)]; pi(t) is the probability that the server is in
state i at time t. We assume that the server is fully operational at time t0 = 0 and state 0 is
the initial state. Additionally, state (s � 1) denotes the system failure state and is assumed to
be an absorbing state(unlike previous work [BAAN 98], where a Markov model was used to
compare the performance of RAID3 and RAID5 and allowed the repair of an overall server

68 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

failure). When the server attains state (s � 1), it is assumed to stay there for an infinite time.
Thus: p0(0) = 1, pi(0) = 0 8i 2 [1::(s� 1)] , and p(s�1)(1) = 1. The server reliability
function Rs(t) can then be computed as [HOYL 94]:

Rs(t) =

s�2X
i=0

pi(t) = 1� p(s�1)(t) (5.2)

We present in the remainder of this section the Markov models for the three schemes One-to-
All, One-to-One, and One-to-Some, assuming both, (i) independent disk failures (section 5.4.2)
and (ii) dependent component failures (section 5.4.3).

5.4.2 Reliability Modeling for Independent Disk Failures

The One-to-All Scheme

With the One-to-All scheme (Mirrall�entire, Mirrall�sub, Parall), data are lost if at least two
disks have failed. The corresponding state-space diagram is shown in Figure 5.8, where states
0, 1, and F denote respectively the initial state, the one disk failure state, and the server failure
state.

µd

λd λd

0 1 F

D . (D-1) .

Figure 5.8: State-space diagram for the One-to-All Scheme.

The generator matrix Qs of this CTMC is then:

Qs =

0
B@ �D � �d D � �d 0

�d ��d � (D � 1) � �d (D� 1) � �d
0 0 0

1
CA

The One-to-One Scheme

The One-to-One scheme (Mirrone) is only relevant for mirroring. As the One-to-One scheme
stores the original data of disk i on disk ((i+1) modD), the server fails if two consecutivedisks

5.4. RELIABILITY MODELING 69

fail. Depending on the location of the failed disks, the server therefore tolerates a number of
disk failures that can take values between 1 and D

2
. Thus, the number of disks that are allowed

to fail without making the server fail can notbe known in advance, which makes the modeling
of the one-to-one scheme complicated: Let the D server disks be numbered from 0 to D � 1.
Assume that the server continues to operate after (k�1) disk failures. Let P(k) be the probability
that the server does not fail after the kth disk failure. P (k) is also the probability that no disks
that have failed are consecutive (adjacent). Before illustrating the state-space diagram for the
One-to-One scheme, let us first calculate the probability P (k) that the video server does not fail
after k disk failures for k 2 [1:::D

2
+ 1]. It is obvious that the following holds: P (1) = 1 and

P (D
2
+1) = 0. Now, we consider the values k 2 [2::D

2
]. Theorem 5.4.1 gives the expected value

of P (k) followed by the proof of this result. Thereby, the term Cn

k
denotes the combinatorial

function of the integers n an k as Cn

k
= n!

k!�(n�k)!
.

Theorem 5.4.1

P (k) =
Cn�1�k
k�1 + Cn�k

k

Cn

k

8k 2 [2 � � �
D

2
]

Proof Let us consider the suite of n units. Note that the term unit can denote a disk (used for the
independent disk failure case) or a node (used for the dependent component failure mode). Since we
want to calculate the probability that the server does not fail after having k units down, we want those
units not to be adjacent. Therefore we are looking for the sub-suites i1; i2; � � � ; ik 2 [1; � � � ; n] such that:

8l 2 [1::k� 1]; il+1 � il > 1 (5.3)

Let us call S the set of these suites. We introduce a bijection of this set of suites to the set j 1; j2; � � � ; jk
2 [1; � � � ; n� k + 1] such that j1 = i1; j2 = i2 � 1; j3 = i3 � 2; � � � ; jk = ik � (k � 1).

Introducing the second suite j allows to suppress condition (5.3) on the suite i l, since the suite j is strictly
growing, whose number of elements are thus easy to count: it is the number of strictly growing functions
from [1::k] in [1::n� (k� 1)], that is Cn�(k�1)

k
= (n�k+1)!

k!�(n�2�k+1)!

This result though doesn’t take into account the fact that the units number 1 and n are adjacent. In fact,
two scenari are possible

� The first scenario is when unit 1 has already failed. In this case, units 2 and the n are not allowed
to fail, otherwise the server will fail. We have then a set of n � 3 units among which we are
allowed to pick k � 1 non-adjacent units. Referring to the case that we just solved, we obtain:
C
n�3�(k�2)

k�1
= Cn�k�1

k�1
= (n�k�1)!

(k�1)!�(n�2�k�2)!

� The second scenario is when the first unit still works. In this case, k units are chosen among the
n� 1 remaining ones. This leads us to the value Cn�1�(k�1)

k
= Cn�k

k
= (n�k)!

k!�(n�2�k)!

70 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

The number of possibilitiesNk that we are looking for is given by : Nk = Cn�1�k
k�1 + Cn�k

k

Hence the results in theorem 5.4.1 that gives for a given number k of failed units (disks/nodes), the
probability P (k) that the server does not fail after k unit failures.

Figure 5.9 shows the state-space diagram for Mirrone . If the server is in state i (i � 1) and
failure i+ 1 happens, then the probability that the server fails (state F) equals (1 � P (i+1)) and
the probability that the server continuous operating (state i+ 1) equals P (i+1). The parameters
of Figure 5.9 have the following values:

�1 = D � �d, �2 = (D � 1) � �d � P (2), �3 = (D � 2) � �d � P (3), �n+1 = (D � n) � �d � P (n+1),
A = (D � 1) � �d � (1� P (2)), B = (D � 2) � �d � (1 � P (3)), G = (D � n) ��d � (1� P (n+1)),
H = (D � (n+ 1)) � �d � (1� P (n+2)), Z = D

2
� �d, and � = �d.

0 1 2 D / 2

F

µµ µ

λλ λ1 2

n n+1

A B

n+1

G H Z

Figure 5.9: State-space diagram for the One-to-One scheme.

The corresponding generator matrix Qs of the CTMC above is:

Qs =

0
BBBBBBB@

��1 �1 0 0 � � � 0 0

� �� � �2 �A �2 0 � � � 0 A

0 � �� � �3 �B �3 � � � 0 B

� �

0 0 0 � � � � �� � Z Z

0 0 0 0 � � � 0 0

1
CCCCCCCA

(5.4)

One-to-Some Scheme

The One-to-Some scheme (mirroring/parity) builds independent groups. The server fails if one
of its C groups fails: We first model the group reliability and then derive the server reliability.
Figures 5.10(a) and 5.10(b) show the state-space diagrams of one group and of the server
respectively.

The generator matrix Qc for the CTMC of a single group is:

5.4. RELIABILITY MODELING 71

µd

λdDc . Dc λd(-1) .

0 1 F

(a) State-space diagram of one group.

λcC .

0 F

(b) State-space diagram of
the server.

Figure 5.10: State-space diagrams for the One-to-Some Scheme.

Qc =

0
B@ �Dc � �d Dc � �d 0

�d ��d � (Dc � 1) � �d (Dc � 1) � �d
0 0 0

1
CA

The group reliability function Rc(t) at time t is Rc(t) =
P1

i=0 pi(t) = p(0)(t) + p(1)(t) =

1 � p(2)(t). The group mean lifetime MTTFc is then derived from Rc(t). To calculate the
overall server reliability function, we assume that the group failure distribution is exponential.
The server failure rate is thus C � �c, where C denotes the number of groups in the server and
�c denotes the group failure rate (�c = 1

MTTFc
). The server generator matrix Qs of the CTMC

of Figure 5.10(b) is therefore:

Qs =

�C � �c C � �c

0 0

!
(5.5)

5.4.3 Reliability Modeling for Dependent Component Failures

Dependent component failures mean that the failure of a single component of the server can
affect other server components. We recall that our server consists of a set N of server nodes,
where each node contains a set of Dn disks. Disks that belong to the same node have common
components such as the node’s CPU, the disk controller, the network interface, etc.. When
any of these components fails, all disks contained in the affected node are unable to deliver
video data and are therefore considered as failed. Consequently, a single disk does not deliver
video data anymore if itself fails or if one of the components of the node fails to which this
disk belongs. We present below the models for the different schemes for the case of dependent
component failures. Similarly to a disk failure, a node failure is assumed to be repairable. The

72 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

failure rate �n of the node is exponentially distributed with �n = 1
MTTFn

, where MTTFn is the
mean life time of the node. The repair rate �n of a failed node is exponentially distributed as
�n =

1
MTTRn

, where MTTRn is the mean repair time of the node.

For mirroring and parity schemes, we apply the so called Orthogonal RAID mechanism when-
ever groups must be built. Orthogonal RAID was discussed in [GIBS 90] and [CLGK 94]. It is
based on the following idea. Disks that belong to the same group must belong to different nodes.
Thus, the disks of a single group do not share any (common) node hardware components. Or-
thogonal RAID has the property that the video server survives a complete node failure: When
one node fails, all its disks are considered as failed. Since these disks belong to different groups,
each group will experience at most one disk failure. Knowing that one group tolerates a single
disk failure, all groups will survive and therefore the server will continue operating. Until now,
Orthogonal RAID was only applied in the context of parity groups. We generalize the usage of
Orthogonal RAID for both, mirroring and parity.

In order to distinguish between disk and node failure when building the models of the schemes
considered, we will present each state as a tuple [i; j], where i gives the number of disks failed
and j gives the number of nodes failed. The failure (absorbing) state is represented with the
letter F as before.

The One-to-All Scheme

For the One-to-All schemes (Mirrall�entire, Mirrall�sub , and Parall), double disk failures are
not allowed and therefore a complete node failure causes the server to fail. Figure 5.11 shows the
state-space diagram for the One-to-All scheme for the case of dependent component failures.
The states of the model denote respectively the initial state ([0; 0]), the one disk failure state
([1; 0]), and the server failure state (F).

λd λnλ
d

λn

µ

0,0 1,0 F

d

N .

D . (D-1) . + N .

Figure 5.11: State-space diagram for the One-to-All scheme with dependent component fail-
ures.

The generator matrix Qs is then:

5.4. RELIABILITY MODELING 73

Qs =

0
B@ �D � �d �N � �n D � �d N � �n

�d ��d � (D � 1) � �d �N � �n (D � 1) � �d +N � �n

0 0 0

1
CA

The Grouped One-to-One Scheme

Considering dependent component failures, the One-to-One scheme as presented in Figure 5.1
would achieve a very low server reliability since the server immediately fails if a single node
fails. We propose in the following an organization of the One-to-One scheme that tolerates a
complete node failure and even N

2
node failures in the best case. We call the new organization

the Grouped One-to-Onescheme. The Grouped One-to-One organization keeps the initial
property of the One-to-One scheme, which consists in completelyreplicating the original con-
tent of one disk onto another disk similarly to the chained declustering scheme. Further, the
Grouped One-to-One organization divides the server into independent groups, where disks be-
longing to the same group have their replica inside this group. The groups are built based on
the Orthogonal RAID principle and thus disks of the same group belong to different nodes as
Figure 5.12 shows. Figure 5.12 assumes one video containing 40 original blocks and is stored
on a server that is made of four nodes (N1; � � � ; N4), each containing two disks. Inside one
group, up-to Dc

2
disk failures can be tolerated, where Dc = 4 is the number of disks inside each

group. The Grouped One-to-One scheme can therefore survive N

2
= 2 node failures in the best

case (the server in Figure 5.12 continues operating even after nodes N1 and N2 fail). In order
to distribute the load of a failed node among possibly manyand not only oneof the surviving
nodes, the Grouped One-to-One scheme ensures that disks belonging to the same node have
their replica on disks that do not belong to the samenode 1.

In order to model the reliability of our Grouped One-to-One scheme, we first study the behav-
ior of a single group and then derive the overall server reliability. One group fails when two
consecutive disks inside the group fail. We remind that two disks are consecutive if the original
data of one of these disks are replicated on the other disk (for group 1 the disks 0 and 4 are
consecutive, whereas the disks 0 and 2 are not). Note that the failure of one disk inside the
group can be due to (i) the failure of the disk itself or (ii) the failure of the whole node, to which
the disk belongs. After the first disk failure, the group continues operating. If the second disk
failure occurs inside the group, the group may fail or not depending on whether the two failed
disks are consecutive. Let P(2) denotes the probability that the two failed disks of the group are
not consecutive. Generally, P (k) denotes the probability that the group does not fail after the kth

disk failure inside the group. P (k) is calculated accordingly to theorem 5.4.1 in section 5.4.2.

1Assume that node N1 has failed, then its load is shifted to node N3 (replica of disk 0 are stored on disk 4) and
to node N4 (replica of disk 1 are stored on disk 7)

74 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

1

Original

blocks

Copies

1 2 30

N1 N2

4 5

N3

4

65

 1

4

5

32

6

7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 29 30 31 32

33 34 35 36 37 38 39 40

7

15

23

31

14

22

30

38

12

20

28

36

28

 3

 11

 19

 27

 35

28

16

24

32

40

10

18

26

34

Group 2

Group 1

N4

6 7

39

 9

 17

 25

 33

13

21

29

37

Figure 5.12: Grouped One-to-One scheme for a server with 4 nodes, each with 2 disks (Dc =

N = 4).

The state-space diagram of one group for the example in Figure 5.12 is presented in Figure 5.13.
The number of disks inside the group is Dc = 4. State [i; j] denotes that i+ j disks have failed
inside the group, where i disks, themselves, have failed and j nodes have failed. Obviously, all
of the i disks that have failed belong to different nodes than all of the j nodes that have failed.
We describe in the following how we have built the state-space diagram of Figure 5.13. At time
t0, the group is in state [0; 0]. The first disk failure within the group can be due to a single disk
failure (state [1; 0]) or due to a whole node failure (state [0; 1]). Assume that the group is in state
[1; 0] and one more disk of the group fails. Four transitions are possible: (i) the group goes to
state [2; 0] after the second disk of the group has failed itself and the two failed disks are not
consecutive, (ii) the group goes to state [1; 1] after the node has failed, on which the second
failed disk of the group is contained and the two failed disks are not consecutive, (iii) the group
goes to state F after the second disk of the group has failed (disk failure or node failure) and the
two failed disks are consecutive, and finally (iv) the group goes to state [0; 1] after the node has
failed, to which the first failed disk of the group belongs and thus the number of failed disks in
the group does not increase (only one disk failed). The remaining of the state-space diagram is
to derive in an analogous way. The parameters of Figure 5.13 are the following:

�1 = Dc � �d, �2 = N � �n, �3 = (Dc � 1) � �d � P (2), �4 = (N � 1) � �n � P (2), F1 =

((Dc � 1) � �d + (N � 1) � �n) � (1 � P (2)), �5 = (Dc � 2) � �d �P (3), �6 = (N � 2) � �n �P (3),
F2 = ((Dc � 1) � �d + (N � 1) � �n) � (1� P (2)), �7 = (Dc

2
� �d) + (N

2
� �N), �1 = �d, and

�2 = �n.

The generator matrix Qc for a group is:

5.4. RELIABILITY MODELING 75

λn

λn

λn

F

F

F

µ1

µ1

µ1

µ2

µ2

µ2

λ5

λ7

λ7

λ7

λ7

0,0

1,0

0,1

2,0

1,1

1,1

0,2

λ3

F1

λ1

λ2

F2
λ6

λ4

Figure 5.13: State-space diagram of one group for the Grouped One-to-One scheme with de-
pendent component failures (Dc = N = 4).

Qc =

0
BBBBBBBBBBBB@

��1 � �2 �1 �2 0 0 0 0 0

�1 �A �n �3 �4 0 0 F1

�2 0 �B 0 �5 �6 F2

0 �1 0 ��1 � �n � �7 �n 0 0 �7

0 �2 0 0 ��2 � �7 0 0 �7

0 0 �1 0 0 ��1 � �n � �7 �n �7

0 0 �2 0 0 0 ��2 � �7 �7

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCA

where A = �1 + �n + �3 + �4 + F1 and B = �2 + �5 + �6 + F2.

From the matrix Qc we get the group mean life time MTTFc, which is used to calculate the
overall server reliability. The state-space diagram for the server is the one of Figure 5.10(b),
where the parameter � takes the value C � �c and �c denotes the failure rate of one group with
�c =

1
MTTFc

. The server reliability is then calculated analogously to Eq. C.5.

Note that the example described in Figure 5.13 considers a small group size (Dc = 4). In-
creasing Dc increases the number of states contained in the state-space diagram of the group.

In general, the number of states for a given Dc is: 1 +
PDc

2

i=0 2
i = 2

Dc

2
+1. Below is a general

method for building the state-space diagram of one group containing Dc disks for the Grouped
One-to-One scheme:

We focus on the transitions from state [i; j] to higher states and back. We know that state [i; j]

76 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

represents the total number (i + j) of disks that have failed inside the group. These failures
are due to i disk failures and j node failures. We also know that the number of states in the
state-space diagram is 2

Dc

2
+1. The parameters i and j must respect the condition: i+ j � Dc

2
,

since at most Dc

2
disk failures are tolerated inside one group. We distinguish between the two

cases: (i) i+ j < Dc

2
and (ii) i+ j = Dc

2
. Figure 5.14 shows the possible transitions and the

corresponding rates for the case (i), whereas Figure 5.15 shows the transition for the case (ii).

λn

F

µ2

µ1

F1

 i,j

i,j+1

i+1,jλ1

λ2

µ3

Figure 5.14: Transitions from state [i; j] to higher states and back, for (i+ j) < Dc

2
.

F

 i,j

λ

Figure 5.15: Transition to the failure state for (i+ j) = Dc

2
.

The parameters in the two figures 5.14 and 5.15 have the following values:
�1 = (Dc � (i+ j)) � �d � P (i+j+1), �2 = (N � (i+ j)) � �n � P (i+j+1), F1 =

((Dc � (i+ j)) � �d + (N � (i+ j)) � �n) � (1� P (i+j+1)), �1 = �d, �2 = �n,
�3 = (�d OR �n), and � = (Dc � Dc

2
) � �d + (N � Dc

2
) � �n.

The One-to-Some Scheme

We use Orthogonal RAID for all One-to-Some schemes (Mirrsome�entire , Mirrsome�sub , and
Parsome). If we consider again the data layouts of Figures 5.4, 5.5, and 5.7, Orthogonal RAID

5.4. RELIABILITY MODELING 77

is then ensured if the following holds: Node 1 contains disks 0 and 3; node 2 contains disks 1
and 4; and node 3 contains disks 2 and 5.

For the reliability modeling of the One-to-Some scheme, we first build the state-space dia-
gram for a single group (Figure 5.16(a)) and then compute the overall server reliability (Figure
5.16(b)). The states in Figure 5.16(a) denote the following: the initial state ([0; 0]), the state
where one disk fails ([1; 0]), the state where one node fails resulting in a single disk failure
within the group ([0; 1]), the state where one disk and one node have failed and the failed disk
belongs to the failed node ([0; 1"]), and the one group failure state (F). The parameter values
used in Figure 5.16 are: �1 = Dc ��d, �2 = N � �n, �3 = �n, �4 = (Dc � 1) � �d+(N � 1) � �n,
�1 = �d, �2 = �n, and �3 = min(�d; �n),

λ4

λ4

λ4

0,0

1,0

0,1

0,1"
 F

λ1

µ1

µ2

λ2

µ3

λ3

(a) State-space diagram for one group.

λcC .

0 F

(b) State-space diagram for
the server.

Figure 5.16: State-space diagrams for the One-to-Some Scheme for the case of dependent com-
ponent failures.

The generator matrix Qc for a group is:

Qc =

0
BBBBB@

��1 � �2 �1 �2 0 0

�1 ��1 � �3 � �4 0 �3 �4

�2 0 ��2 � �4 0 �4

�3 0 0 ��3 � �4 �4

0 0 0 0 0

1
CCCCCA

5.4.4 Video Server Reliability: Results

We resolve our continuous time Markov chains using the SHARPE (Symbolic Hierarchical
Automated Reliability and Performance Evaluator) [SATR 96] tool for specifying and evaluat-

78 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

ing dependability and performance models. SHARPE takes as input the generator matrix and
computes the server reliability at a certain time t.

Let us first consider the case of independent disk failures and let us take for the disk’s failure
rate �d the values �d = 1

60000
hours and �d = 1

100000
hours and for the disk’s repair rate �d the

value as �d = 1
72

hours 2. Further, let the total number of server disks considered is D = 100

and the number of server nodes is N = 10, each node containing 10 disks.

Figure 5.17 plots the server reliability for the One-to-One, One-to-All, and One-to-Some
schemes for the case of independent disk failures using the above indicated parameter val-
ues. As expected, the server reliability for the One-to-One scheme is the highest. The One-to-
Some scheme exhibits higher server reliability than the One-to-All scheme. Figures 5.17(a)
and 5.17(b) also show how much the server reliability is improved when mean time to disk
failure increases (�d decreases). For example, for the One-to-One scheme and after 104 days
of operation, the server reliability is about 0:3 for �d = 1

60000
hours and is about 0:66 for

�d =
1

100000
hours.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Independent Disk Failures)

One−2−One
One−2−Some
One−2−All

(a) Server reliability for and �d =
1

60000
hours.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n
Server Reliability (Independent Disk Failures)

One−2−One
One−2−Some
One−2−All

(b) Server reliability for and �d =
1

100000
hours.

Figure 5.17: Server reliability for the three schemes assuming independent disk failures with
�d =

1
72

hours, D = 100, and Dc = N = 10.

For the case of dependent component failures, we assume that �d = �n and �d = �n. Let us first
vary �d (�n) that will take the values 1

60000
hours, 1

100000
hours, and 1

300000
hours, and keep �d

(�n) constant as �d = 1
72

hours. Figure 5.18 depicts the server reliability for the Grouped One-
to-One, the One-to-All, and the One-to-Some schemes for the case of dependent component

2The value �d = 1
72

hours is a pessimistic value. We will later consider more optimistic values of this
parameter.

5.4. RELIABILITY MODELING 79

failures and based on the above parameter values. We observe that the Grouped One-to-One
scheme provides a higher server reliability than the One-to-Some scheme. The One-to-All
scheme has the lowest server reliability, e.g. for �d = �n = 1

100000
hours and after three

years of operation, the server reliability is 0 for the One-to-All scheme, 0:51 for the One-to-
Some scheme, and 0:85 for the Grouped One-to-One scheme. Obviously, the server reliability
increases as �d (�n) decreases, which can be seen in Figures 5.18(a), 5.18(b), and 5.18(c).
Another important result is that the reliability gap between the Grouped One-to-One and One-
to-Some schemes from one side and the One-to-All scheme from the other side increases as �d
decreases.

We are now interested in studying the impact of varying the disk/node repair rate �d/�n on the
server reliability for the different schemes considered. Figure 5.19(a) plots the server reliability
for �d = �n = 1

100000
hours and different values of �d/�n that are 1

72
hours, 1

48
hours,

and 1
3

hours. Figure 5.19(b) takes instead the value �d = �n = 1
300000

hours for these
various values of �d/�n. Obviously, as �d/�n increases, which implies that the mean time to
repair decreases, the server reliability increases as well for all the three schemes considered.
However, the increase in server reliability is more important for the One-to-Some scheme (O2S
with dashed lines) and the Grouped One-to-One scheme (O2O with solid lines) than for the
One-to-All scheme (O2A with dash-dot lines). For the latter scheme, this increase becomes
even invisible for a high value of �d/�n as observed in Figure 5.19(b) with �d = 1

300000
hours.

The results of Figure 5.19 show that an increase in the mean time to failure of disks and nodes
(decrease in the disk/node failure rate �d/�n) and/or a decrease in their mean time to repair
(increase in the disk/node repair rate �d/�n) clearly improve server reliability for both, the One-
to-Some and the Grouped One-to-One scheme, whereas the One-to-All scheme is less sensitive
to these changes and its server reliability remains very loweven when we consider low values
of �d and �n, i.e. 1

300000
hours and high values of �d and �n, i.e. 1

3
hours.

In summary, we have evaluated video server reliability for the three schemes One-to-All, One-
to-Some, and Grouped One-to-One schemes when assuming both cases of independent disk
failures and dependent component failures. We have considered various values of disk/node
failure and repair rates and studied the impact of these parameters on the overall server reliabil-
ity. The results of this section indicate that the Grouped One-to-One scheme always outperforms
the other two schemes in terms of server reliability, whereas the One-to-All scheme always has
the lowest server reliability. For the case of dependent component failures, we have also seen
that the One-to-Some and the Grouped One-to-One schemes well benefit from the increase in
the disk/node repair rate and/or the decrease in their failure rate, where the server reliability in-
creases. The One-to-All scheme, however, remains insensitive to the increase of the disk/node
repair rate or to the decrease of their failure rate. In the remainder of this chapter, we will re-
strict our reliability discussion to the case of dependent component failures, since it considers
both, disk and node failures, and is therefore more realistic than the case of independent disk

80 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Dependent Component Failures)

Grouped One−2−One
One−2−Some
One−2−All

(a) Server reliability for �d = �n = 1
60000

hours.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Dependent Component Failures)

Grouped One−2−One
One−2−Some
One−2−All

(b) Server reliability for �d = �n = 1
100000

hours.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Dependent Component Failures)

Grouped One−2−One
One−2−Some
One−2−All

(c) Server reliability for �d = �n = 1
300000

hours.

Figure 5.18: Server reliability for the three schemes assuming dependent component failures
with �d = 1

72
hours, D = 100, and Dc = N = 10.

failures, where only disks are assumed to fail.

5.5. SERVER PERFORMANCE 81

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Dep.)

O2O−µ=3,48,72h
O2S−µ=3,48,72h
O2A−µ=3,48,72h

(a) Server reliability for �d = �n = 1
100000

hours.

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Time [days]

R
el

ia
bi

lit
y

F
un

ct
io

n

Server Reliability (Dep.)

O2O−µ=3,48,72h
O2S−µ=3,48,72h
O2A−µ=3,48,72h

(b) Server reliability for �d = �n = 1
300000

hours.

Figure 5.19: Server reliability for the three schemes assuming dependent component failures
with �d = 1

72
; 1
48

, and 1
3
hours, D = 100, and Dc = N = 10.

5.5 Server Performance

In the last chapter, we have demonstrated that adding fault-tolerance within a server requires
additional resources in terms of storage volume, main memory and I/O bandwidth capacity. We
will see in this section that the reliability schemes considered differ not only in the throughput
they achieve, but also in the amount of additional resources they need to guarantee uninterrupted
service during failure mode. Server throughput3 is therefore not enough to compare server
performance of these schemes. Instead, we use the cost per streamas performance metric. We
calculate in section 5.5.1 the server throughput for each of the schemes. Section 5.5.2 focuses
on buffer requirements. Section 5.5.3 finally compares the different reliability schemes with
respect to their per stream cost.

5.5.1 Server Throughput

The admission control policy decides, based on the remaining available resources, whether a
new incoming stream is admitted. The CGS striping algorithm serves a list of streams from a
single disk during one service round. During the next service round, this list of streams is shifted
to the next disk. If Qd denotes the maximum number of streams that a single disk can serve

3The server throughput is defined as the maximum number of streams that can be supported during failure
mode and not during normal operation mode.

82 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

simultaneously (disk throughput) in a non fault-tolerant server, then the overall server through-
put Qs can be simply expressed as Qs = D �Qd. Accordingly, we will restrict our discussion
to disk throughput. Disk throughput Qd is depicted in Eq. 2.1 of section 2.2 [GABI 98c]. The
values of the different disk parameters used are those of Seagate and HP for the SCSI II disk
drives [GKSZ 96] and are listed in Appendix A (Table A.1).

To allow for fault-tolerance, each disk reserves a portion of its available I/O bandwidth to be
used during disk failure mode. Since the amount of reserved disk I/O bandwidth is not the same
for all schemes, the disk throughput will also be different.

Let us start with the Grouped One-to-One scheme Mirrone. Since the original content of a sin-
gle disk is entirely replicated onto another disk, half of each disk’s I/O bandwidth must be kept
unused during normal operation mode to be available during disk failure mode. Consequently
the disk throughput Qmirr

One
is simply the half of Qd: Qmirr

One
= Qd

2
.

For the One-to-All mirroring scheme Mirrall�entire with entire block replication, the original
blocks of one disk are spread among the other server disks. However, it may happen that the
original blocks that would have been required from a failed disk during a particular service
round are all replicated on the samedisk (worst case situation). In order to guarantee determin-
istic service for this worst case, half of the disk I/O bandwidth must be reserved to disk failure
mode. Therefore, the corresponding disk throughput Qmirr

All�Entire
is: Qmirr

All�Entire
= Qd

2
.

The worst case retrieval pattern for the One-to-Some mirroring scheme Mirrsome�entire with
entire block replication is the same as for the previous scheme and we get: Qmirr

Some�Entire
=

Qd

2
. Since the three schemes Mirrone, Mirrall�entire, and Mirrsome�entire achieve the same

throughput, we will use the term MirrEntire to denote all of them and Qmirr

Entire

4 to denote their
disk throughput:

Qmirr

Entire
=
Qd

2
(5.6)

For the One-to-All mirroring scheme Mirrall�sub with sub-block replication, the situation
changes. In fact, during disk failure mode, each disk retrieves at most Qmirr

All�Sub
original blocks

and Qmirr

All�Sub
replicated sub-blocksduring one service round. Let us assume that sub-blocks

have the same size ball
sub

, i.e. b = ball
sub

� (D � 1) . The admission control formula becomes:

Qmirr

All�Sub
�
�
(
b

rd
+ trot) + (

ball
sub

rd
+ trot)

�
+ 2 � tseek � �

) Qmirr

All�Sub
=

� � 2 � tseek
b+ball

sub

rd
+ 2 � trot

(5.7)

4These three schemes share the common property that each original block is entirely replicated into one block.

5.5. SERVER PERFORMANCE 83

Similarly, the disk throughputQmirr

Some�Sub
for One-to-Some mirroring with sub-block replication

Mirrsome�sub is:

Qmirr

Some�Sub
=

� � 2 � tseek
b+bsome

sub

rd
+ 2 � trot

(5.8)

where bsome

sub
denotes the size of a sub-block as b = bsome

sub
� (Dc � 1) and Dc is the number of

disks contained on each group.

We now consider the disk throughput for the parity schemes. Recall that we study the buffering
strategy and not the second read strategy for lost block reconstruction. For the One-to-All parity
scheme Parall, one parity block is needed for every (D�1) original blocks. The additional load
of each disk consisting in retrieving parity blocks when needed can be seen from Figure 5.6. In
fact, for one stream in the worst case all requirements for parity blocks concern the same disk,
which means that at most one parity block is retrieved from each disk every D service rounds.
Consequently, each disk must reserve 1

D
of its I/O bandwidth for disk failure mode. The disk

throughput Qpar

All
is then calculated as:

Q
par

All
= Qd � d

Qd

D
e (5.9)

Analogous to the One-to-All parity scheme, the One-to-Some parity scheme Parsome has the
following disk throughput Qpar

Some
:

Q
par

Some
= Qd � d

Qd

Dc

e (5.10)

In Figure 5.20(a), we take the throughput value Qmirr

Entire
of MirrEntire as base line for compar-

ison and plot the ratios of the server throughput as a function of the total number of disks in the
server.

Mirroring schemes that use entire block replication (MirrEntire) provide lowest throughput.
The two mirroring schemes Mirrall�sub and Mirrsome�sub that use sub-block replication have
throughput ratios of about 1:5. The performance for Mirrall�sub is slightly higher than the
one for Mirrsome�sub since the sub-block size ball

sub
< bsome

sub
. Parity schemes achieve higher

throughput ratios than mirroring schemes and the One-to-All parity scheme Parall results in
the highest throughput. The throughput for the One-to-Some parity scheme Parsome is slightly
smaller than the throughput for Parall. In fact, the parity group size of (D � 1) for Parall id
larger than Dc. As a consequence, the amount of disk I/O bandwidth that must be reserved for
disk failure is smaller for Parall than for Parsome. In order to get a quantitative view regarding
the I/O bandwidth requirements, we reverse the axes of Figure 5.20(a) to obtain in Figure
5.20(b) for each scheme the number of disks needed to achieve a given server throughput.

84 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

0 200 400 600 800
0

0.5

1

1.5

2

Number of Disks D in the Server

T
hr

ou
gh

pu
t R

at
io

Server Throughput Ratio

Par
all

Par
some

Mirr
all−sub

Mirr
some−sub

Mirr
Entire

(a) Throughput Ratios.

0 5000 10000 15000
0

100

200

300

400

500

600

700

800

Server Throughput

N
um

be
r

of
 D

is
ks

 D
 in

 th
e

S
er

ve
r

Number of disks for the same throughput

Mirr
Entire

Mirr
some−sub

Mirr
all−sub

Par
some

Par
all

(b) Number of disks required for the same Server
throughput.

Figure 5.20: Throughput results for the reliability schemes with Dc = 10.

5.5.2 Buffer Requirement

Another resource that affects the cost of the video server and therefore the cost per stream
is main memory. We remind that for the SCAN scheduling algorithm, the worst case buffer
requirement for one served stream is twice the block size b. Further, we consider dedicated
buffer management that is to reserve for each stream separately of the other streams its worst
case buffer requirement. During normal operation mode, the buffer requirementB of the server
is therefore

B = 2 � b �Qs

where Qs denotes the server throughput. We calculate below the buffer requirement during
failure modefor the different reliability schemes we consider.

Mirroring-based schemes replicate original blocks that belong to a single disk over one, all, or
a set of disks. During disk failure mode, blocks that would have been retrieved from the failed
disk are retrieved from the disks that store the replica. Thus, mirroring requires the same amount
of buffer during normal operation mode and during component failure mode independently of
the distribution granularity of replicated data. Therefore, for all mirroring schemes consid-
ered (Grouped One-to-One Mirrone, One-to-All with entire block replication Mirrall�entire,
One-to-All with sub-block replication Mirrall�sub , One-to-Some with entire block replication
Mirrsome�entire , and One-to-Some with sub-block replicationMirrsome�sub) the buffer require-

5.5. SERVER PERFORMANCE 85

ment during component failure is:
Bmirr = B

Unlike mirroring-based schemes, parity-based schemes need to perform a X-OR operation over
a set of blocks to reconstruct a lost block. In fact, during normal operation mode the buffer is
immediately liberated after consumption. When a disk fails, original blocks as well as the parity
block that belong to the same parity group are sequentially retrieved (during consecutive service
rounds) from consecutive disks and must be temporarily storedin the buffer for as many service
rounds that elapse until the lost original block will be reconstructed 5. Since buffer overflow
must be avoided, the buffer requirement is calculated for the worst case situation where the
whole parity group must be contained in the buffer before the lost block gets reconstructed. An
additional buffer size of one block must be also reserved to store the first block of the next parity
group. Consequently, during component failure, the buffer requirement Bpar

all
for Parall is:

Bpar

all
= D � b �Qs =

D

2
�B

On the other side, the buffer requirement Bpar

some
for Parsome is:

Bpar

some
= Dc � b �Qs =

Dc

2
�B

Note that the buffer requirement for Parall depends on D and therefore increases linearly with
the number of disks in the server. For Parsome, however, the group size Dc can be kept constant
while the total number of disks D varies. As a result, the buffer requirementBpar

some
for Parsome

remains unchanged when D increases.

5.5.3 Cost Comparison

The performance metric we use is the per stream cost. We first compute the total server cost
$server and then derive the cost per stream $stream as:

$stream =
$server

Qs

We define the server cost as the cost of the hard disks and the main memory dimensioned for
the component failure mode:

$server = Pmem �B + Pd � Vdisk �D

where Pmem is the price of 1 Mbyte of main memory, B the buffer requirement in Mbyte, Pd
is the price of 1 Mbyte of hard disk, Vdisk is the storage volume of a single disk in MByte,

5We remind that we consider the buffering strategy for a CGS striped video server.

86 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

and finally D is the total number of disks in the server. Current price figures – as of 1998 – are
Pmem = $13 and Pd = $0:5. Since these prices change frequently, we will consider the relative
costs by introducing the cost ratio� between Pmem and Pd: � = Pmem

Pd
. Thus, the server cost

function becomes:

$server = Pmem �B +
Pmem

�
� Vdisk �D = Pmem �

�
B +

Vdisk �D
�

�

Consequently, the per stream cost takes the formula of Eq. 5.11:

$stream =
$server

Qs

=
Pmem �

�
B + Vdisk�D

�

�
Qs

(5.11)

To evaluate the cost of the five different schemes, we compute for each scheme and for a given
value of D the throughput Qs achieved and the amount of buffer B required to support this
throughput. Note that we take Dc = 10 for the schemes Mirrsome�entire , Mirrsome�sub , and
Parsome.

Figure 5.21 plots the per stream cost for the schemes Parall, Parsome, MirrEntire,
Mirrsome�sub , and Mirrall�sub for different values of the cost ratio �. We recall that the no-
tation MirrEntire includes the three mirroring schemes Mirrall�entire, Mirrsome�entire , and
the Grouped One-to-One Mirrone that experience the same throughput and require the same
amount of resources. In Figure 5.21(a), we consider � = 13

0:5
= 26 that presents the current

memory/hard disk cost ratio. Increasing the value of � = Pmem

Pd
means that the price for the disk

storage drops faster than the price for main memory: In Figure 5.21(b), we multiply the current
cost ratio by five to get � = 26 � 5 = 130 6. On the other hand, decreasing the value of � means
that the price for main memory drops faster than the price for hard disk: In Figure 5.21(c) we
divide the current cost ratio by five to get � = 26

5
= 5:2 7.

The results of Figure 5.21 indicate the following:

� The increase or the decrease in the value of � as defined above means a decrease in either
the price for hard disk or the price for main memory respectively. Hence the overall
decrease in the per stream cost in Figures 5.21(b) and 5.21(c) as compared to Figure
5.21(a).

6To illustrate the faster decrease of the price for hard disk as compared to the one for main memory, we
consider the current price for main memory (Pmem = $13) and calculate the new reducedprice for hard disk
(Pd = 13

130
= $0:1).

7Analogously, to illustrate the faster decrease of the price for memory as compared to the price for hard disk,
we take the current price for hard disk (Pd = $0:5) and calculate the new reducedprice for memory (Pmem =

0:5 � 5:2 = $2:6).

5.5. SERVER PERFORMANCE 87

0 200 400
10

1

10
2

10
3

Number of Disks D in the Server

S
tr

ea
m

 C
os

t [
$]

Per Stream Cost

Par
all

Mirr
Entire

Par
some

Mirr
some−sub

Mirr
all−sub

(a) � = 13
0:5

= 26.

0 200 400
10

1

10
2

10
3

Number of Disks D in the Server

S
tr

ea
m

 C
os

t [
$]

Per Stream Cost

Par
all

Par
some

Mirr
Entire

Mirr
some−sub

Mirr
all−sub

(b) � = 13
0:1

= 130.

0 200 400
10

1

10
2

10
3

Number of Disks D in the Server

S
tr

ea
m

 C
os

t [
$]

Per Stream Cost

Par
all

Mirr
Entire

Mirr
some−sub

Mirr
all−sub

Par
some

(c) � = 2:6
0:5

= 5:2.

Figure 5.21: Per stream cost for different values of the cost ratio � with Dc = 10.

� Figure 5.21(a) (� = 26) shows that the One-to-All parity scheme (Parall) results in
the highestper stream cost that increases when D grows. In fact, the buffer require-
ment for Parall is highest and also increases linearly with the number of disks D and
thus resulting in the highest per stream cost. Mirroring schemes with entire block repli-
cation (MirrEntire) have the second worst per stream cost. The per stream cost for the
remaining three schemes (Mirrall�sub, Mirrsome�sub , and Parsome) is roughly equal and
is lowest. The best scheme is the One-to-All mirroring scheme with sub-block replication

88 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

(Mirrall�sub). It has a slightly smaller per stream cost than the One-to-Some mirroring
scheme with sub-block replication (Mirrsome�sub) due to the difference in size between
ball
sub

and bsome

sub
(see the explanation in section 6.4.1).

� The increase in the cost ratio � by a factor of five (� = 130 in Figure 5.21(b)) slightly
decreases the per stream cost of Parall and results in a dramaticdecrease in the per stream
cost of all three mirroring schemes and also the parity scheme Parsome. For instance the
per stream cost for Parsome decreases from $78:64 down-to $28:72 and the per stream
cost ofMirrsome�sub decreases from $79:79 down-to $18:55. All three mirroring schemes
become more cost efficient than the two parity schemes.

� The decrease in the cost ratio � by a factor of five (� = 5:2 in Figure 5.21(c)) affects
the cost of the three mirroring schemes very little. As an example, the per stream cost
for Mirrsome�sub is $79:79 in Figure 5.21(a) and is $77:19 in Figure 5.21(c). On the
other hand, decreasing �, i.e. the price for main memory decreases faster than the price
for hard disk, clearly affects the cost of the two parity schemes. In fact, Parsome becomes
the most cost efficient scheme with a cost per stream of $65:64. Although the per stream
cost of Parall decreases significantly with � = 5:2, it still remains the most expensive
for high values of D. Since Parall has the highest per stream cost that linearly increases
with D, we will not consider this scheme in further cost discussion.

5.6 Server Reliability vs. Server Performance

5.6.1 Server Reliability vs. Per Stream Cost

Figure 5.22 and Table 5.2 depict the server reliability and the per stream cost for the different
reliability schemes discussed herein. The server reliability is computed after 1 year (Figure
5.22(a)) and after 3 years (Figure 5.22(b)) of server operation. Table 5.2 shows the normalized
per stream cost for different values of �. We take the per stream cost of Mirrone as base line
for comparison and divide the cost values for the other schemes by the cost for Mirrone. We
recall again that the three schemes Mirrone, Mirrall�entire and Mirrsome�entire have the same
per stream cost since they achieve the same throughput given the same amount of resources (see
section 5.5).

The three One-to-All schemes Parall, Mirrall�sub , and Mirrall�entire have poor server relia-
bility even for a low values of server throughput, since they only survive a single disk failure.
The difference in reliability between these schemes is due to the fact that Parall requires, for the
same throughput, fewer disks thanMirrall�sub that in turn needs fewer disks thanMirrall�entire

(see Figure 5.20(b)). The server reliability of these three schemes decreases dramatically after

5.6. SERVER RELIABILITY VS. SERVER PERFORMANCE 89

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Server Throughput

R
el

ia
bi

lit
y

F
un

ct
io

n Mirr
one

Par
some

Mirr
some−sub

Mirr
some−entire

Par
all

Mirr
all−sub

Mirr
all−entire

(a) Server reliability after 1 year of server operation.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Server Throughput

R
el

ia
bi

lit
y

F
un

ct
io

n

(b) Server reliability after 3 years of server operation.

Figure 5.22: Server reliability for the same server throughput with �d = �n = 1
100000

hours,
�d = �n =

1
72

hours, and Dc = 10.

� = 26 � = 130 � = 5:2

Mirrone

Mirrsome�entire 1 1 1

Mirrall�entire

Parsome 0:688 1:129 0:588

Mirrsome�sub 0:698 0:729 0:691

Mirrall�sub 0:661 0:696 0:653

Table 5.2: Normalized stream cost (by Mirrone) for different values of � with Dc = 10

three years of server operation as illustrated in Figure 5.22(b)). Accordingly, these schemes are
not attractive to ensure fault tolerance in video servers and hence we are not going to discuss
them more in the remainder of this paper. We further discuss the three One-to-Some schemes
Parsome, Mirrsome�sub , and Mirrsome�entire and the Grouped One-to-One scheme Mirrone.
Based on Figures 5.22(a) and 5.22(b), Mirrone has a higher server reliability than the three
One-to-Some schemes Parsome, Mirrsome�sub , and Mirrsome�entire .

From Table 5.2, we see that Mirrone, which has the same per stream cost as Mirrsome�entire ,
has a per stream cost about 1:5 higher than Mirrsome�sub . Parsome has the highest per stream
cost for a high value of � (� = 130) and is the most cost effective for a small value of �
(� = 5:2).

In conclusion, we see that the best scheme among the One-to-Some schemes is Parsome since

90 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

it has a low per stream cost and requires fewer disks than Mirrsome�sub and thus provides a
higher server reliability than both, Mirrsome�sub and Mirrsome�entire . Since Mirrsome�entire

achieves much lower server reliability than Mirrone for the same per stream cost, we conclude
that Mirrsome�entire is not a good scheme for achieving fault tolerance in a video server.

Based on the results of Figure 5.22 and Table 5.2, we conclude that the three schemes: Mirrone,
Parsome, and Mirrsome�sub are the good candidates to ensure fault tolerance in a video server.
Note that we have assumed in Figure 5.22 for all these three schemes the same value Dc = 10.
Mirrone has the highest server reliability but a higher per stream cost as compared to the per
stream cost of Parsome and Mirrsome�sub . For the value Dc = 10, the two schemes Parsome

and Mirrsome�sub have a lower per stream cost but also a lower server reliability than Mirrone.
This difference in server reliability becomes more pronounced as the number of disks in the
video server increases. We will see in the next section how to determine the parameter Dc for
the schemes Parsome and Mirrsome�sub in order to improve the trade-off between the server
reliability and the cost per stream.

5.6.2 Determining the Group SizeDc

This section evaluates the impact of the group sizeDc on the server reliability and the per stream
cost. We limit our discussion to the three schemes: our Mirrone, Parsome, and Mirrsome�sub .
Remember that we use the Orthogonal RAID principle to build the independent groups (see
section 5.4.3). Accordingly, disks that belong to the same group are attached to different nodes.
Until now, we have assumed that the group size Dc and the number of nodes N are constant
(Dc = N = 10). In other terms, increasing D leads to an increase in the number of disks Dn

per node. However, the maximum number of disks Dn is limited by the node’s I/O capacity.
Assume a video server with D = 100 disks and Dc = 5. We plot in Figure 5.23 two different
ways to configure the video server. In Figure 5.23(a) the server contains five nodes (N = 5),
where each node consists of Dn = 20 disks. One group contains Dc = 5 disks, each belonging
to a different node. On the other hand, Figure 5.23(b) configures a video server with N = 10

nodes, each containing only Dn = 10 disks. The group size is again Dc = 5, i.e. a single
group does not stretch across all nodes. Note that the number of groups C is the same for both
configurations (C = 20). When the video server grows, the second alternative suggests to add
new nodes (containing new disks) to the server, whereas the first alternative suggests to add new
disks to the existing nodes. Since Dn must be kept under a certain limit given by the node’s I/O
capacity, we believe that the second alternative is more appropriate to configure a video server.

We consider two values the group size: Dc = 5 and Dc = 20 for the remaining three schemes
Mirrone, Parsome, and Mirrsome�sub . Figures 5.24(a) and 5.24(b) depict the server reliability
forMirrone, Parsome, andMirrsome�sub after one year and after three years of server operation,
respectively. Table 5.3 shows for these schemes the normalized per stream cost with different

5.6. SERVER RELIABILITY VS. SERVER PERFORMANCE 91

N1

1 20... 1 1 120 20 20 20...1...

group 1

group 20

N2 N3 N4 N5

(a) Dc = N = 5 and Dn = 20.

1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10

group 1 group 2

group 20group 19

N1

..

N2 N3 N4 N5 N6 N7 N8 N9 N10

(b) Dc = 5, N = 10, and Dn = 10.

Figure 5.23: Video server configurations with D = 100 and Dc = 5.

values of � and withDc = 5 andDc = 20. We take again the per stream cost ofMirrone as base
line for comparison and divide the cost values for the other schemes by the cost for Mirrone.

Dc � = 26 � = 130 � = 5:2

Mirrone 1 1 1

Parsome 20 0:798 1:739 0:584

Parsome 5 0:695 0:879 0:653

Mirrsome�sub 20 0:678 0:717 0:671

Mirrsome�sub 5 0:745 0:771 0:739

Table 5.3: Normalized stream cost (by Mirrone) for different values of � and Dc.

The results of Figure 5.24 and Table 5.5.3 are summarized as follows:

� The server reliability of Mirrone is higher than for the other two schemes. As expected,
the server reliability increases for both, Parsome and Mirrsome�sub with decreasing Dc.
In fact, as Dc decreases, the number of groups grows and thus the number of disk failures
(one disk failure per group) that can be tolerated increases as well.

92 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Server Throughput

R
el

ia
bi

lit
y

F
un

ct
io

n Mirr
one

Par
some

5
Mirr

some−sub
5

Par
some

20
Mirr

some−sub
20

(a) Server reliability after 1 year of server operation.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Server Throughput

R
el

ia
bi

lit
y

F
un

ct
io

n

(b) Server reliability after 3 years of server operation.

Figure 5.24: Server reliability for the same throughput with �d = �n = 1
100000

hours, �d =

�n =
1
72

hours , and Dc = 5; 20..

� Depending on the value of �, the impact of varying the group size Dc on the per stream
cost differs for Parsome and Mirrsome�sub . For Mirrsome�sub , the cost per stream de-
creases as the group size Dc grows for all three values of � considered. Indeed, the
sub-block size to be read during disk failure is inversely proportional to the value of
Dc. Consequently, the server throughput becomes smaller for decreasing Dc and the per
stream cost increases. For Parsome with � = 26 and � = 130, the per stream cost de-
creases as Dc decreases. However, this result is reversed with � = 5:2, where the per
stream cost of Parsome is higher with Dc = 5 than with Dc = 20. The following explains
the last observation:

1. A small value of � (e.g. � = 5:2) signifies that the price for main memory decreases
faster than the one for hard disk and therefore main memory does not significantly
affect the per stream cost for Parsome independently of the group size Dc.

2. As the group size Dc decreases, the amount of I/O bandwidth that must be reserved
on each disk for the disk failure mode increases. Consequently, the throughput is
smaller withDc = 5 than withDc = 20. As a result, the per stream cost for Parsome

increases when the group size Dc decreases.

3. Since the memory cost affects only little the per stream cost of Parsome for a small
value of �, the weight of the amount of I/O bandwidth to be reserved on the per
stream cost becomes more visibleand therefore the per stream cost of Parsome in-

5.7. SUMMARY 93

creases as Dc decreases.

Note that the per stream cost of Parsome (Dc = 20) is lowestfor � = 5:2, whereas it is
highestfor � = 130.

� Parsome has always a higher server reliability thanMirrsome�sub . Further, for high values
of �, e.g. � = 130, Parsome has a higher cost per stream than Mirrsome�sub given the
same value of Dc. However, for small values of �, e.g. � = 5:2, Parsome becomes more
cost effective than Mirrsome�sub .

� Based on the reliability results and for the high values of �, e.g. � = 26; 130, we ob-
serve that a small group size (Dc = 5) considerably increases the server reliability and
decreases the per stream cost for Parsome. For Mirrsome�sub , the server reliability in-
creases as Dc decreases, but also the per stream cost slightly increases whatever the value
of � is.

In summary, we have shown that the three schemes Mirrone , Parsome, and Mirrsome�sub are
good candidates to ensure fault-tolerance in a video server. The Grouped One-to-One scheme
Mirrone achieves a higher reliability than the other two schemes at the expense of the per stream
cost that is about 1:5 times as high. For Parsome, the value of Dc must be small to achieve a
high server reliability and a low per stream cost. For Mirrsome�sub , the value of Dc must be
small to achieve a high server reliability at the detriment of a slight increase in the per stream
cost.

5.7 Summary

The goal of this chapter was to study reliability and performance of distributed and large video
servers. The first step was to classify several reliability schemes. These schemes differ by the
type of redundancy used (mirroring or parity) and by the distribution granularity of redundant
data. We have retained seven reliability schemes and presented a data layout for each of them.

In order to quantitatively evaluate and compare these scheme, we have modeled server reli-
ability using Continuous Time Markov Chains that were evaluated using the SHARPE soft-
ware package. We have considered both cases: independent disk failures and dependent com-
ponent failures. Furthermore, we have proposed a new mirroring-based scheme, called the
Grouped One-to-One scheme that divides the video server into several independent groups sim-
ilarly to the orthogonal RAID principle. Our results demonstrate that the Grouped One-to-One
scheme outperforms all other schemes with respect to server reliability for both, independent
disk failures and dependent component failures. The results further indicate that the One-to-All
schemes, which only tolerate a single disk failure within the video server, have a very lowserver

94 CHAPTER 5. VIDEO SERVER RELIABILITY: MODELING AND PERFORMANCE

reliability that is not sufficient even for a small video server and dramatically decreases when
the video server grows and is insensitive to the evolution of disk/node failure rate that is likely
to decrease and disk repair rate that is likely to increase. Accordingly, the One-to-All schemes
can not be used to ensure high reliability for large video servers.

A surprising, but very significant result of this chapter is that mirroring-based reliability, which
doubles the storage volume required, can be more cost effective than parity-based reliability (see
also [GAFS 99a, GAFS 99b]). Indeed, if we assume that hard disk prices will decrease faster
than memory prices, mirroring-based schemes will continue to have a lower per stream cost
than parity-based schemes. As an example, the Mirrsome�sub mirroring scheme has a lower per
stream cost than the Parsome parity scheme assuming the same group size. Moreover, if we add
the processing costs to perform XOR decoding that are required for parity but not for mirroring,
the cost advantage of mirroring-based reliability becomes more significant.

Finally, we have seen that out of the seven reliability schemes discussed in this chapter, only
the Mirrone, Parsome, and Mirrsome�sub schemes achieve both, high server reliability and low
per stream cost. We have compared these three schemes in terms of server reliability and per
stream cost for several memory and hard disk prices and also for various group sizes. We found
that the smaller the group size, the better the trade-off between high server reliability and low
per stream cost [GABI 99b].

One of the major results of this chapter is that mirroring-based reliability is very attractiveto
ensure fault-tolerance for a video server. Besides the fact that mirroring is more cost effective
than parity, the former significantly simplifies the design and implementation of a video server.
In fact, mirroring does not require any synchronization of reads or additional processing time to
decode lost blocks, which is needed for parity. Another advantage of mirroring is the disruption
time after a disk failure. Indeed, mirroring takes at most one service round to send the replicated
block expected. Parity, however, takes many service rounds to retrieve all blocks belonging
to the parity group of the lost block and thus the disruption time will be higher. The next
chapter exclusively studies mirroring-based reliability for a video server. We will propose a
novel replica placement scheme that outperforms in terms of the overall server throughput the
existing replica placement schemes such as the one used by the Microsoft Tiger [BOLO 96,
BOLO 97] video server.

Chapter 6

ARPS: A Novel Replica Placement for
Video Servers

6.1 Introduction

The last chapter has demonstrated that mirroring-based reliability is more attractive than parity-
based reliability. Further, besides its cost effectiveness, mirroring significantly simplifies the
design and the implementation of video servers, since in case of failure mirroring does not
require any synchronization of reads or decoding to reconstruct the lost video data. Additionally,
while mirroring doubles the amount of storage volume required, the steep decrease of the cost of
magnetic disk storage, which is about 40% per year, makes mirroring more and more attractive
as a reliability mechanism.

We remind that we are using as before the CGS striping algorithm to store/retrieve original
blocks on/from disks. Now, we only focus on how to replicate original blocks of a single disk
across the other disks of the server. Obviously, original blocks of one disk are not replicated on
the same disk. Mirroring schemes differ on whether a single disk contains original and/or repli-
cated data. The mirrored declustering scheme sees two identicaldisk arrays, where original
content is replicated onto a distinct set of disks. When the server works in normal operation
mode (disk failure free mode), only the half of the server disks are active, the other half remains
idle, which results in load imbalances within the server.

Unlike mirrored declustering, chained declustering[HSDE 90, GOMZ 92] partitions each disk
into two parts, the first part contains original blocks and the second part contains replicated
blocks (copies): Original blocks of disk i are replicated on disk (i+ 1)modD, where D is the
total number of disks of the server. Interleaved declusteringis an extension of chained declus-
tering, where original blocks of disk i are not entirely replicated on another disk (i+ 1)modD,
but distributed over multipledisks of the server [MERC 95]. Note that chained declustering can

95

96 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

be considered as a special case of interleaved declustering where the distribution granularity of
replicated blocks equals 1.

We will restrict our discussion to interleaved declustering schemes, since these schemes dis-
tribute the total server load evenly among all components during normal operation mode. Note
that interleaved declustering only indicates that the replica of the original blocks belonging to
one disk are stored on one, some, or all remaining disks, but does not indicate how to replicate
a singleoriginal block.

Mirroring is the conventional technique to ensure fault-tolerance in a disk-array based system.
It corresponds to the RAID1 organization ([Patterson 88, LEED 93, CLGK 94]). Various video
server designers [MOUR 96, BOLO 96, BOLO 97] have adopted mirroring to achieve fault-
tolerance.

Mourad [MOUR 96] proposed the doubly striped scheme that is based on interleaved declus-
tering, where original blocks of a disk are evenly distributed over all remaining disks of the
sever. Thereby, an original block is entirely replicated on another disk. When a disk fails, it
may happen with this scheme that all expected original blocks residing on the failed disk have
their replica on the same disk (see the previous chapter). To ensure uninterrupted service for
this worst case, half of the available bandwidth of each disk must be kept unused, which cuts
the server throughput into the half. Another drawback of the doubly striped approach is that
it does not tolerate more than one disk failure, which is not sufficient for large servers as our
results have demonstrated in the previous chapter.

The Microsoft Tiger video server [BOLO 96] addresses the inefficiency of the doubly striped
scheme and proposes to (i) divide the server into independent groups and (ii) perform sub-
block replication instead of entire block replication. This scheme avoids to reserve the half of
the available disk bandwidth for failure mode and tolerates a disk failure within each group.
However, after a disk failure, the surviving disks of the group that contains that failed disk must
perform twice as many read operations as compared to normal operation mode: The half of these
read operations is for accessing original blocks, whereas the other half is for accessing replicated
sub-blocks. Consequently, as the number of disk accesses doubles during disk failure mode, the
number of seek operations doubles as well, which lowers the overall server throughput.

The main drawback of the two previous replication schemes is their additional seek overhead
when operating in failure mode. In fact, these schemes require additional seek times to retrieve
replicated data that are stored separatelyfrom original data. Unfortunately, high seek overhead
decreases disk utilization and therefore server performance.

Instead, we present in this chapter a novel data layout strategy for replicated data on a video
server, called ARPS (Adjacent Replica Placement Scheme). In contrast to classical replica
placement schemes that store original and replicated data not colocatedon a disk, ARPS stores
replicated data adjacentto original data and thus does not require additional seek overhead when

6.2. INTERLEAVED DECLUSTERING SCHEMES 97

operating during failure mode. We will show that ARPS considerably improves the server per-
formance compared to classical replica placement schemes such as the interleaved declustering
scheme and the scheme used by the Tiger video server. Our performance metric is the server
throughput that is, as defined in the previous chapters, the maximum number of users that the
video server can support simultaneously.

The rest of this chapter is organized as follows. In section 6.2, we classify the interleaved declus-
tering schemes for mirroring that might exist. We propose in section 6.3 a novel replica place-
ment scheme that we call ARPS (Adjacent Replica Placement Scheme). Section 6.4 compares
ARPS with the classical interleaved declustering schemes in terms the overall server through-
put. Finally, section 6.5 presents our conclusions.

6.2 Interleaved Declustering Schemes

This section briefly classifies different mirroring schemes for video servers. Note that we have
already described most of the interleaved declustering schemes in the previous chapter. How-
ever, for sake of clarity, it is worthwhile to summarize these schemes as indicated below.

We present in Table 6.1 these interleaved declustering schemes, where we adopt two classifi-
cation metrics: The first metric examines how a single block is replicated. The second metric
concerns the number of disksthat store the replica of the original content of a single disk.

We consider for the first metric the following three alternatives:

1. The copy of the original block is entirely stored on a single disk (One).

2. The copy of the original block is divided into a set of sub-blocks, which are distributed
among some disks building an independent group (Some).

3. The copy of the original block is divided into exactly (D � 1) sub-blocks, which are
distributed over all remaining (D � 1) server disks (All).

We distinguish three alternatives for the second metric:

1. The original blocks that are stored on one disk are replicated on a singledisk (One).

2. The original blocks of one disk are replicated on a set of disks that build an independent
group (Some).

3. The original blocks of one disk are replicated on the remaining (D�1) server disks (All).

98 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

The symbol ”XXX” in Table 6.1 indicates combinations that are not useful for our discussion.
The name of each scheme contains two parts. The first part indicates how an original block is
replicated (the first metric) and the second part gives the number of disks, on which the content
of one disk is distributed (the second metric). For instance, the scheme One/Some means that
each original block is entirely replicated (One) and that the original content of one disk is
distributed among a set of disks (Some).

Single disk (One) Set of disks (Some) (D � 1) disks (All)
Entire block (One) One/One One/Some One/All

Set of sub-blocks (Some) XXX Some/Some XXX
(D � 1) sub-blocks (All) XXX XXX All/All

Table 6.1: Classification of interleaved schemes

In the last chapter, we presented data layouts for each of the schemes presented in Table 6.1:
see Figure 5.1 for One/One, 5.2 for One/All, 5.4 for One/Some, 5.5 for Some/Some, and finally
Figure 5.3 for All/All.

Contrarily to the entire block replication organizations (One/One, One/Some, and One/All),
the two sub-block replication organizations (Some/Some and All/All) avoid to reserve the half
of each disk’s I/O bandwidth to ensure deterministic service during disk failure mode as we
have seen in the last chapter. However, for both organizations, the number of seek operations
will double during disk failure mode compared to normal operation mode. Exact values of the
amount of I/O bandwidth to be reserved are given in section 6.4.1.

The main drawback of all replication schemes considered is their additional seek overhead
when operating with disk failure as we will see in section 6.4.1. In fact, these schemes require
additional seek times to retrieve replicated data that are stored separately from original data.
Unfortunately, high seek overhead decreases disk utilization and therefore server throughput.
We present in the following our novel scheme ARPS this problem by eliminatingthe additional
seek overhead. In fact, we will see that our approach requires for the disk failure mode the same
seek overhead as for the normal operation mode.

6.3 A Novel Replica Placement for Video Servers

6.3.1 Motivation

If we look at the evolution of SCSI disk’s performance, we observe that (i) data transfer rates
double every 3 years, whereas (ii) disk access time decreases by one third every 10 years
[Hennessy 90]. Figure 6.1 shows data transfer rates of different Seagate disks’ generations

6.3. A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS 99

(SCSI-I, SCSI-II, Ultra SCSI, and finally Ultra2 SCSI) [Mr.X]. Figure 6.2 depicts the evolu-
tion of averageaccess time for Seagate disks. We see that Figures 6.1 and 6.2 confirm these
observations.

[80−85] [86−92] [93−95] [95−98]
0

20

40

60

80

100

Years

T
ra

ns
fe

r
R

at
e

[M
B

yt
e/

se
c]

Transfer Rate Evolution

Transfer Rate

Figure 6.1: Evolution of data transfer rates for Seagate disks.

[80−85] [86−92] [93−95] [95−98] [98−00]
0

5

10

15

20

Years

A
cc

es
s

T
im

e
[m

s]

Access time Evolution

Average access time

Figure 6.2: Evolution of average access time for Seagate disks.

We gave in chapter 2 an overview of the characteristics of magnetic disk drives. Thereby,
we have concentrated on seek timeand rotational latencythat are the main parts of the seek
operation when accessing a block stored on disk. We remind that seek time is in turn composed
of four phases: (i) a speedupphase, which is the acceleration phase of the arm, (ii) a coastphase
(only for long seeks), where the arm moves at its maximum velocity, (iii) a slowdownphase,
which is the phase to rest close to the desired track, and finally (iv) a settlephase, where the disk
controller adjusts the head to access the desired location. Note the duration tstl of the the settle
phase is independent of the distance traveled and is about tstl = 3 ms. However, the durations

100 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

of the speedup phase (tspeed), the coast phase (tcoast), and the slowdown phase (tslowdown) mainly
depend on the distance traveled. The seek time tseek takes then the following form:

tseek = tspeed + tcoast + tslowdown + tstl

Let us assume that the disk arm moves from the outer track (cylinder) to the inner track (cylin-
der) to retrieve data during one service round and in the opposite direction (from the inner track
to the outer track) during the next service round (CSCAN). If a single disk can support up-to 20
streams, at most 20 blocks must be retrieved from disk during one service round. If we assume
that the different 20 blocks expected to be retrieved are uniformlyspread over the cylinders of
the disk, we then deal only with shortseeks and the coast phase is neglected (distance between
two blocks to read is about 300 cylinders). Wilkes et al. have shown that seek time is a func-
tion of the distance traveled by the disk arm and have proposed for short seeks the formula
tseek = 3:45 + 0:597 �

p
d , where d is the number of cylinders the disk arm must travel. As-

suming that d � 300 cylinders, the seek time is then about tseek � 13:79 ms. Note that short
seeks spend the most of their time in the speedup phase.

6.3.2 ARPS: Adjacent Replica Placement Scheme

The Some/Some scheme ensures a perfect distribution of the load of a failed disk over mul-
tiple disks and reduces the amount of bandwidth reserved for each stream on each surviving
disk as compared to the interleaved declustering schemes (One/One, One/Some, and One/All).
Since the content of one disk is replicated inside one group, Some/Some allows a disk failure
inside each group. We call our approach, which is based on the Some/Some scheme, ARPS for
Adjacent Replica Placement Scheme. The basic idea is to store original data as well as some
replicated data in a continuousway so that when a disk fails, no additional seeks are performed
to read the replica. In light of this fact, ARPS does not divide a disk in two separateparts, one
for original blocks and the other for replicated blocks. Figure 6.3 shows an example of ARPS.

Let us consider only the content of group 1 (disks 1, 2, and 3) and the original block 9 that
is stored on disk 3 (dashed block). The replication is performed as follows. We divide the
original block into 3 � 1 = 21 sub-blocks 9:1 and 9:2 that are stored immediatelycontiguous
to the original blocks 7 and 8 respectively. Note that original blocks 7 and 8 represent the
previous original blocks to block 9 within that group. If we take original block 13, its previous
original blocks within that group are blocks 8 and 9. Now assume that disk 3 fails. Block 9

is reconstructed as follows. During the service round i where block 7 is retrieved, block 7 and
sub-block 9:1 are simultaneouslyretrieved (neither additional seek time nor additional rotational
latency, but additional read time). During the next service round i + 1 , block 8 and sub-block

13 is the group size and therefore the number of sub-blocks is 2.

6.3. A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS 101

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���3

9

15

21

27

1

7

13

19

25

4

10

16

28

22

6

12

18

24

30

3.1

8.2 9.1

2 7.2 8.1

13.214.1

14.215.1 19.220.1

20.221.1 25.226.1

26.227.1

2

8

14

20

26

1 3.2 7.1

9.2 13.1

15.219.1

21.225.1

27.2

5 6.1 10.211.1

11.212.1 16.217.1

17.218.1 22.223.1

23.224.1 28.229.1

29.230.1

Group 1 Group 2

5

11

17

23

29

4 6.2 10.1

12.216.1

18.222.1

24.228.1

30.2

1 2 3 4 5 6

Figure 6.3: Layout example of ARPS for a server with 6 disks and 2 groups.

9:2 are simultaneously retrieved. Sub-blocks 9:1 and 9:2 are retrieved from server in advance
and kept in buffer to be consumed during service round i + 2. Generally, sub-blocks that are
read in advance are buffered for several service rounds before being consumed. The number of
buffering rounds mainly depends on how large the server is (total number of server disks). If
we assume that disk 1 is the failed disk, the reconstruction of block 19 is performed during the
service rounds where blocks 14 (sub-block 19:1) and 15 (sub-block 19:2) are retrieved. The
sub-blocks are kept in the buffer at most during 5 service rounds before they are consumed.
The example shows that in order to simultaneously read one original block and one sub-block
for one stream, data to be retrieved have a size of at most two original blocks. In order to
ensure continuous read, one original block as well as the corresponding replicated blocks must
be contained on the same track. Fortunately, today’s disk drives satisfy this condition. In fact,
the track size is continuously increasing. The actual mean track size for seagate new generation
disk drives is about 160 KByte, which is about 1:3 Mbit. Hence the possibility to store inside
onetrack the original block and the set of replicated sub-blocks as shown in Figure 6.3. ARPS
therefore does not increase seek overhead, but doubles, in the worst case, the read time. Note
that the very first blocks require special treatment: ARPS entirelyreplicates the two first blocks
of a video within each group, which is represented in Figure 6.3 with the dark-dashed blocks (
block 1 on disk 2, block 2 on disk 1 for group 1 and block 5 on disk 4, block 4 on disk 5 for
group 2). Let us take the following example to explain the reason of doing this. If disk 1 has
already failed before a new stream is admitted to consume the video presented in the figure, the
stream is delayed for one service round. During the next service round, the two first blocks 1
and 2 are simultaneously retrieved from disk 2.

We present as follows a generalized data layout algorithm that implements ARPS. The param-
eters needed for this data layout algorithm are depicted in Table C.3.

Figure 6.4 illustrates the generalized data layout for ARPS. We explain below the meaning and
values of the different parameters of Figure 6.4. The data layout formula depends on the disk

102 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

Term Definition

D The total number of server disks
Dc The group size
C The number of server groups
gj The jth group in the server,

with j 2 [1::C]

di;j the ith disk in the jth group,
with i 2 [1::Dc] and j 2 [1::C]

Table 6.2: Data layout parameters for ARPS

position within the group. We indentified three positions for a given group gj .

The first position is the one of the first disk d1;j in the group. On this disk, original block b

is stored adjacent to Dc � 1 replicated sub-blocks that are b1; � � � ; bn with b1 = [b + 1]:[Dc �
1]; � � � ; bn = [b + Dc � 1]:[1], where the notation [�]:[�] identifies the �th sub-block of the
original block �.

The second position concerns all disks di;j with i 2 [2::Dc � 1]. On these disks, an original
block k is stored adjacently to Dc � 1 replicated sub-blocks that are k1; � � � ; km, l1; � � � ; lp with
k1 = [k+1]:[Dc�1]; � � � ; km = [k+Dc�i]:[Dc�i], l1 = [l]:[Dc�(i�1)]; � � � ; lp = [l+(i�2)]:[1]
and l = k + (Dc � i+ 1) + (C � 1) �Dc.

The third position is the one of the last disk dDc;j
in the group. On this disk, an original block

f is stored adjacent to Dc � 1 replicated sub-blocks that are h1; � � � ; hq with h1 = [h]:[Dc �
1]; � � �hq = [h+Dc � 2]:[1], and h = f + (C � 1) �Dc + 1.

6.4 Performance Comparison

6.4.1 Admission Control Criterion

The admission control policy decides whether a new incoming stream can be admitted or not.
The maximum number of streams Q that can be simultaneously admitted from server can be
calculated in advance and is called server throughput. The server throughput depends on disk
characteristics as well as on the striping/reliability scheme applied. In this paper, the difference
between the schemes considered consists of the way original data is replicated. We consider the
admission control criterion of Eq. 6.1. We first calculate disk throughput and then derive server
throughput. Let Qd denote the throughput achieved for a single disk. If we do not consider
fault tolerance, the disk throughput is given in Eq. 6.1, where b is the block size, rd is the data
transfer rate of the disk, trot is the worst case rotational latency, tseek is the worst case seek time,

6.4. PERFORMANCE COMPARISON 103

d1,1 d
cD ,1 d d

cD1,C ,C

Group g1

d1, j d
cD , j

d1, j d
cD , jd

cD -1, j

b1

Group g Group g C j

d2, j

k k1b bn km l1 lp f h1 hq

Figure 6.4: Data layout for ARPS.

and � is the service round duration 2.

Qd �
�
b

rd
+ trot + tseek

�
� �

Qd =
�

b

rd
+ trot + tseek

(6.1)

Introducing fault tolerance (mirroring-based), the disk throughput changes and becomes de-
pendent on which mirroring scheme is applied. Three schemes are considered for discussion:
the One/Some scheme, the Microsoft Some/Some scheme, and our ARPS. Let QOS

d
, QSS

d
, and

QARPS

d
the disk throughput for One/Some, Some/Some, and our ARPS, respectively. Note that

the disk throughput is the same during both, normal operation and disk failure mode.

For the One/Some scheme, half of the disk I/O bandwidth should be reserved in the worst case
to reconstruct failed original blocks and thus QOS

d
is calculated following Eq. 6.2.

2We take a constant value of � , typically � = b

rp
, where b is the size of an original block and rp is the playback

rate of a video

104 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

QOS

d
=
Qd

2
=

�
�

b

r
d

+trot+tseek

�
2

(6.2)

For the Some/Some scheme, in order to reconstruct a failed original block, the retrieval of sub-
blocks requires small read overhead (small sub-blocks to read on each disk), but a complete
latency overhead for each additional sub-block to read from disk. The admission control crite-
rion presented in Eq. 6.1 is therefore modified as Eq. 6.3 shows. The parameter bsub denotes
the size of a sub-block.

QSS

d
�
�
(
b

rd
+ trot + tseek) + (

bsub

rd
+ trot + tseek)

�
� �

QSS

d
=

�
b+bsub
rd

+ 2 � (trot + tseek)
(6.3)

Let us have a look at ARPS and consider the case where a disk fails inside one group. The
following criterion holds for admission control (Eq. 6.4), where bover denotes the amount of
data (overhead) that should be simultaneously read with each original block. In the worst case
bover = b.

QARPS

d
�
�
b+ bover

rd
+ trot + tseek

�
� �

QARPS

d
=

�
2�b
rd

+ trot + tseek
(6.4)

Once the disk throughput Qd is calculated, the server throughput Q can be easily derived as
Q = D � Qd for each of the schemes, where D denotes again the total number of disks on the
server.

6.4.2 Throughput Results

We present in the following the results of the server throughput QOS , QSS , and QARPS respec-
tively for the schemes One/Some, Some/Some, and ARPS. In Figure 6.5, we keep constant the
values of the seek time and the rotational latency and vary data transfer rate rd of the disk.
Figures 6.5(a) and 6.5(b) show that ARPS outperforms the Microsoft Some/Some scheme that
itself outperforms One/Some for all values of rd (20; 80 MByte=sec). Figure 6.5 also shows

6.4. PERFORMANCE COMPARISON 105

0 200 400 600 800
0

2000

4000

6000

8000

10000

12000

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

ARPS
Some/Some
One/Some

(a) Throughput for rd = 20 MByte=sec.

0 200 400 600 800
0

2000

4000

6000

8000

10000

12000

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

ARPS
Some/Some
One/Some

(b) Throughput for rd = 80 MByte=sec.

Figure 6.5: Server throughput for One/Some, Some/Some, and ARPS with tseek = 13:79 ms,
trot = 10 ms, b = 0:5 Mbit, and rp = 1:5 Mbit=sec.

Q
ARPS

QOS

Q
ARPS

QSS

rd = 20 MByte=sec 1:79 1:69

rd = 40 MByte=sec 1:88 1:83

rd = 80 MByte=sec 1:93 1:91

Table 6.3: Throughput ratios.

that the gap between ARPS and the two other schemes (One/Some and Some/Some) consider-
ably increases with the increase of the data transfer rate rd. Table 6.3 illustrates the benefit of
ARPS, where the ratios Q

ARPS

QOS
and Q

ARPS

QSS
are illustrated depending on rd.

We focus now on the impact of the evolution of the seek time tseek and the rotational latency
trot on the throughput for the three schemes considered. We keep constant the data transfer rate
that takes a relatively small value of rd (40 Mbyte=sec). Figure 6.6 plots server throughput
for the corresponding parameter values. The Figure shows that ARPS achieves highestserver
throughput for all seek time/rotational latency combination values adopted. Obviously, the
decrease in tseek and trot increases throughput for all schemes considered. We notice that the
gap between our ARPS and the Some/Some slightly decreases when tseek and trot decrease as
Table 6.4 depicts, where disk transfer rate has also the value rd (40 Mbyte=sec). Note that th
value trot = 6 ms corresponds to a spindle speed of 10000 prm, and the value trot = 4 ms

corresponds to the speed of 15000 prm, which is a too optimistic value. We observe that even
for very low values of tseek and trot, ARPS outperforms the Tiger Some/Some in terms of server

106 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

throughput (Q
ARPS

QSS
= 1:59).

0 200 400 600 800
0

0.5

1

1.5

2
x 10

4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

ARPS
Some/Some
One/Some

(a) Throughput for tseek = 10 ms, trot = 8 ms.

0 200 400 600 800
0

0.5

1

1.5

2
x 10

4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

ARPS
Some/Some
One/Some

(b) Throughput for tseek = 8 ms, trot = 6 ms.

0 200 400 600 800
0

0.5

1

1.5

2
x 10

4

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

ARPS
Some/Some
One/Some

(c) Throughput for tseek = 4 ms, trot = 4 ms.

Figure 6.6: Server throughput for different access time values with rd = 40 MByte=sec,
b = 0:5 Mbit, and rp = 1:5 Mbit=sec.

6.4.3 Reducing Read Overhead for ARPS

The worst case read overhead of ARPS is the time to read redundant data of the size of a com-
pleteoriginal block. We present in the following a method that reduces this worst case amount

6.4. PERFORMANCE COMPARISON 107

Q
ARPS

Q
SS

tseek = 13; 79 and trot = 10 1:83

tseek = 10 and trot = 8 1:78

tseek = 8 and trot = 6 1:73

tseek = 4 and trot = 4 1:59

Table 6.4: Throughput ratio between ARPS and the Tiger Some/Some.

of data read down-to the half of the size of one original block. This method simply consists of
storing different sub-blocks not only on one side of one original block, but to distribute them on
the left as well as on the right side of the original block. Figure 6.7 shows an example, where
each original block is stored in the middle of two replicated sub-blocks. Let us assume that disk
3 fails and that block 9 must be regenerated. While reading block 7, disk 1 continuous its read
process and reads sub-block 9:1. On disk 2, the situation is slightly different. In fact, before
reading block 8, sub-block 9:2 is read. In this particular example, no useless data is read, in
contrast to the example in Figure 6.3.

����
����
����

����
����
����123.2

����
����
����

����
����
����213.1

���
���
���

���
���
���9.178.2

14.21315.1

13.18
��
��
��

��
��
��9.2

20.21921.1

25 26.227.1

14 15.2 15 19.220.1

20 21.225.1 21 25.226.1

3 7.28.1

���
���
���

���
���
���9 13.214.1

2726

7.1

27.2

Group 1

19.1

1 2 3

Figure 6.7: Reducing read overhead for ARPS.

Optimizing the placement of sub-blocks as presented in Figure 6.7 reduces the worst case read
overhead to b

2
for disk failure mode. Accordingly, the admission control formula follows Eq.

6.5. Let us call this new method the Optimized ARPSscheme and its disk throughputQOARPS

d
.

QOARPS

d
=

�
3

2
�b

rd
+ trot + tseek

(6.5)

Figure 6.8 plots the server throughput results of the One/Some, Some/Some, ARPS, and
Optimized ARPS for different values of data transfer rate rd. We observe that Optimized

108 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

ARPS slightly improves server throughput as compared to ARPS. The ratio decreases as
disk transfer rate increases. In fact we notice a 10% improvement in server throughput for
rd = 20 MByte=sec, 5% improvement for rd = 40 MByte=sec, and only 2% improvement for
rd = 80 MByte=sec.

0 200 400 600 800
0

2000

4000

6000

8000

10000

12000

Number of Disks D in the Server

N
um

be
r

of
 A

dm
itt

ed
 S

tr
ea

m
s

Server Throughput

Optimized ARPS
ARPS
Some/Some
One/Some

(a) Throughput for rd = 20 MByte=sec.

0 200 400 600 800
0

2000

4000

6000

8000

10000

12000

Number of Disks D in the Server
N

um
be

r
of

 A
dm

itt
ed

 S
tr

ea
m

s

Server Throughput

Optimized ARPS
ARPS
Some/Some
One/Some

(b) Throughput for rd = 80 MByte=sec.

Figure 6.8: Server throughput for One/Some, Some/Some, ARPS, and Optimized ARPS with
tseek = 13:79 ms, trot = 10 ms, b = 0:5 Mbit, and rp = 1:5 Mbit=sec..

6.5 Summary

In this chapter, we have proposed a novel data replication strategy for video servers, called
ARPS for Adjacent Replica Placement Scheme. In contrast to the classical replica placement
schemes, where each single disk of the server is dedicated to original video data and redun-
dancy data, ARPS splices replicated data and original data and thus does not require any ad-
ditional seek time and rotational latency when operating in the presence of disk failures. The
results show that ARPS achieves 60% to 90% more server throughput than classical interleaved
declustering schemes like the one proposed for the Microsoft Tiger video server. Further, we
have seen that ARPS, for pessimistic as well as for optimistic values of disk transfer rates and
disk rotational and seek times, always achieves highest throughput as compared to the classi-
cal data replication schemes. Finally, we have optimized ARPS to reduce read overhead and
noticed a slight increase in the server throughput [GABI 99a].

ARPS, however, requires an additional processing overhead to treat the different sub-blocks
retrieved with each original block during disk failure mode. This additional processing overhead

6.5. SUMMARY 109

consists of the capture of the expected sub-blocks that must reconstruct the lost original block.
These sub-blocks have to be temporarily stored until they are needed for display during a future
service round. In order to keep the buffer management as simple as possible at the server side,
we propose to shift the additional overhead to the client. Since one disk failure is allowed
within each group, the video server is able to tolerate at most C disk failures. Thus, the client
must reserve C buffers, each of them having the size b of an original block. Whenever the
client receives an original block followed by Dc�1 replicated sub-blocks, it passes the original
block to the display entity and copies the needed replicated sub-block into ots allocated buffer.
Obviously, ARPS ensures that lost blocks are reconstructed well before their deadlines. If
we consider the Optimized ARPS scheme for a group size of 3, during each round, the client
receives the expected original block followed by only one replicated sub-block, which is the
one of the lost orginal block due to a disk failure within that group.

110 CHAPTER 6. ARPS: A NOVEL REPLICA PLACEMENT FOR VIDEO SERVERS

Chapter 7

Implementation of Eurecom’s Video
Server Prototype

7.1 Motivation

Video servers have completely different requirements than classical file systems. In fact, a video
server must store and retrieve video streams that have special constraints: The data intensive
nature of video streams requires large amount of storage and the bandwidth intensive nature
demands high I/O bandwidth at the disk level, but also at the network level. Further, the peri-
odic and real-time nature of video streams require mechanisms such as stream scheduling and
admission control to provide guaranteed stream delivery from server to clients. Additionally,
standard fault-tolerance schemes, e.g. the hardware RAID organizations, that were conceived
for classical disk arrays are not adapted to the video server requirements. Hence the need for
video server reliability to conceive adequate schemes.

Throughout the previous chapters, we have concentrated on video server design and perfor-
mance. The primary criteria we have considered are (i) high server throughput that is the
maximum number of streams that can be serviced concurrently, (ii) scalability and cost effec-
tivenessthat enables the video server to be economically viable, and (iii) guaranteed quality
of service that include continuous and uninterrupted service that holds even in the presence
of failures (server reliability), load-balancing, and start-up latency. One of our challenges is
to build a complete video server designthat addresses all of the different design phases and
collectively satisfies the video server requirements and the criteria (i), (ii), and (iii). Based on
this design, this chapter investigates video server implementation and describes the video server
prototype we have developed at Eurecom.

If we try to combine the two criteria (i) and (ii) cited above, we are conducted to formulate
the following challenge: The video server must achieve high throughput at low costs. Hence

111

112 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

the motivation to use standard hardware (workstations and PCs) to implement the video server.
Besides the price advantage, a video server based on standard hardware can continuously profit
from the technological advances of these components. However, using cheap hardware requires
to shift the video server complexity to the application and therefore to realize the whole intelli-
gence of the server in software. The aim of the last chapters was to design such a video server.
Thereby, we have made various design decisions that we will adopt for the server implementa-
tion. These decisions mainly include the following:

� The server array: In order to ensure scalability and high sever throughput, our video
server architecture is based on the server arraythat contains multiple server nodes, each
of them is connected to multiple magnetic disks. The different nodes of the server ar-
ray are connected via two networks that can be used alternatively: Ethernet allowing
10Mbit=sec traffic and ATM switch allowing 155Mbit=sec traffic.

� Round-based retrieval and SCAN stream scheduling: The SCAN stream scheduling algo-
rithm is used to optimize the disk utilization, whereas data retrieval is based on equal size
service rounds.

� CGS: For data striping, the CGS algorithm is used to ensure high server throughput and
low buffer requirement.

� Mirroring : Server reliability is ensured by mirroring. In order to tolerate even a whole
node failure, the original content of one node is entirelyreplicated on another node of the
server array.

The rest of this chapter is organized as follows. The next section presents related work. In
section 7.3, we describe the different components of the video server prototype that are the
meta server, the disk servers, and the clients. Section 7.4 addresses client-server interaction and
presents the steps to take from the client request until the video playback at the client side. In
section 7.5, we show how our server prototype operates in failure mode. Section 7.6 evaluates
the performance of the video server prototype and finally, section 7.7 summarizes our results.

7.2 Related Work

Various video server implementations have been realized in the past few years, either for com-
mercial purpose or in the context of research prototypes. Several major companies in computer
systems business (IBM, SGI, HP) and computer software (Oracle, Microsoft, IBM) have de-
veloped their commercial video servers. Except the Microsoft Tiger video server, all of these

7.3. VIDEO SERVER COMPONENTS 113

products, however, rely on powerful parallel machines such as the Oracle NCube server solu-
tion. These products provide hugebandwidth capacity and are designed to service thousands of
clients concurrently. In spite of their high throughput promise, these products are very expensive
and are therefore noteconomically viable.

Instead, other companies have developed video servers based on standard and cheap hardware
such as the Tiger video server [BOLO 96, BOLO 97] of Microsoft and the StarWorks video
server [TOB 93b] of Starlight Networks. Whereas the latter is designed to support only up-to
hundred clients simultaneously and is based on the hardware RAID3 parity-based architecture,
the former is based on mirroring-based reliability and implements a scalable architecture that is
able to serve thousands of clients.

Several video server prototypes have been implemented. Many of these prototypes are based on
standard (hardware) RAID architectures [BUD 94, BUD 95, BUDD 96]. Other prototypes are
based on software RAID-like solutions such as the Mitra server of the University Of Southern
California [Ghandeharizadeh 98] and the Fellini server of Bell Labs [Cliff 96]. Mitra is a multi-
media server that is able to deal with heterogeneous magnetic disks regarding storage capacity
and disk transfer rate. It further implements GSS for stream scheduling and is based on a similar
striping algorithm as MGS, where a configuration planer determines the striping granularity of
the video objects to store. Fellini is conceived to support multimedia data and classical data as
well. It further implements the CGS algorithm for data striping and uses a deterministic admis-
sion control criterion, which is similar to ours. Further, Fellini applies a RAID5-like solution to
be fault-tolerant.

We have implemented a video server prototype based on our results presented in previous chap-
ters. Implementation challenges were to (i) develop multi-platform video server, where the
server as well as the clients run on both, UNIX machines (Solaris) and PCs (Windows NT,
Windows 95), (ii) perform distributed scheduling and data delivery that allow for server scala-
bility, and (iii) ensure fault-tolerance, where disk/node failure detection and data recovery are
performed at the application level. The implementation of the video server prototype is the
subject of an industrial project with CNET/France Telecom. The rest of this chapter describes
the implementation of our prototype in more details.

7.3 Video Server Components

Figure 7.1 presents the overall video server architecture. It mainly contains three components:
(i) a central entity, called meta server, (ii) a set of server nodes, also called disk servers, and
(iii) multiple video server clients. We describe as follows functionality and implementation
aspects for each of these components.

114 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

Disk Server Disk Server Disk Server Disk Server

Client

Client

Client

Client

Meta Server

Figure 7.1: Video Server Architecture

7.3.1 Meta Server

The meta server stores and manages all meta information such as the information about the
video objects stored, the list of the disk servers storing a video object, the striping and the
reliability techniques used, etc.. It also handles all connections between the different video
server components, sets up all required connections, and performs admission control for new
incoming requests. We have decided for centralized client admission at the meta server in order
to ensure deterministic service guarantees, since only the meta server knows about the load and
capacity of each of the disk servers and is therefore the only entity that can decide, whether a
new incoming client can be admitted.

Besides the functions cited above, the meta server implements the called striping tool that is
responsible for data striping. The striping tool cuts a video object into multiple video segments
(video blocks) 1 and stores these segments sequentially across the different disk servers as illus-
trated in Figure 7.3. We consider MPEG-1 system streams at the playback rate of 1:5 Mbit=sec.
Obviously, determining the segment size implicitly determines the service round duration. For
instance, if we set the segment size to 1:5Mbit, the service round duration should not exceed
the value of 1sec. In our case, the segment size is a design parameter within the striping tool.

The striping tool operates as indicated in Figure 7.4. First, the striping tool checks whether
there is a new video object to store. Video blocks are generated by splitting the video object.
Subsequently, a video block header(vbi) is created for each video block. vbi contains the current
video time and the length of the video block, the stream id that indicates whether the block is an

1As already mentioned, the terms video segment and (video) block are equivalent for the CGS algorithm used.

7.3. VIDEO SERVER COMPONENTS 115

Meta Server

Meta data storage

Connection handling Admission control

Disk Server Client

Figure 7.2: Meta Server Tasks

Video Segment

~ 1.5 MBits (200kb)

Disk ServerDisk Server Disk Server

Video Object

Figure 7.3: Striping Tool at the Meta Server

original or a replicate one 2, the playback duration of the block, the round index that determines
the relative time at which the block must be played, and the redundancy information. Once the
block header is generated, the video block can be associated to a disk server and a disk. Now,
the vbi of the replicated block is created, simply by altering the stream id value. Thereafter, the
replicated block is, in turn, associated to a disk server and a disk that are, obviously, different
from those storing the respective original video block.

Figure 7.4 indicates how original and replicatedvideo data are striped across the video server
components. As mentioned before, we have implemented is the CGS algorithm for data striping.
For data replication, we have implemented a variety of algorithms including the One-to-All,
One-to-Some, and Grouped One-to-One schemes, where different video objects to store may
be replicated differently.

2The id is 0 for original blocks and is 1 for replicated blocks.

116 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

end

start

file exists ?

generate video segments

read portion of video

generate header

write block to current disk server and disk

generate header for mirror block

write mirror block(s) to appropiate server and disk

all blocks written succesfully ?

file complete ?

choose next server/disk

Figure 7.4: Striping Tool Algorithm

7.3.2 Disk Server

The video server is made of multiple disk servers, each of them containing a set of disks. A disk
server has two primary tasks. The first task consist in storing and managing portions of several
video objects. The second and main task of the disk server is provided by its schedulerthat
reads data from disks and sends them to the clients while guaranteeing continuous video data
delivery. Figure 7.5 globally illustrates the main tasks of the disk server. Besides these tasks,
the disk server performs disk maintenance, where it executes meta server commands such as
writing to disks, renaming or deleting video objects, etc..

Distributed Stream Scheduling

In chapter 2, we have made the choice for a distributedvideo server architecture to ensure high
performance and scalability. Besides this distributed hardware configuration, we also imple-
ment distributed scheduling, where each disk server runs its own stream scheduler without the
need to exchange any information with the other disk servers. The stream scheduler at the disk

7.3. VIDEO SERVER COMPONENTS 117

Client

Disk Server

Meta Server

Video Data storage Scheduler

Network access

Figure 7.5: Disk Server Tasks

server is the subject of what follows.

Before starting to describe the stream scheduler, it it worthy to note the following: The head of
video block vbi contains a field, called timestampthat indicates the current video time of that
block and thus the location of that block in the overall video stream. For each stream, the disk
server associates a timer, called videotime, that is increased with each service round to reflect
the playback time of the corresponding video. It is also important to note that the header of a
video block is not stored adjacently to that block, but to the one that precedes that block and is
stored on the same disk. In other terms, when a block is read from disk, the header (vbi) of the
next block that has to be retrieved from this disk is simultaneously read. This allows to know in
advance, which blocks are to be retrieved in future service rounds.

The scheduling algorithm is illustrated in Figure 7.6. The scheduler starts by building the called
service listthat contains all active services(playing or paused). Each service contains the name
of the video object consumed and the destination address and port number of the respective
client. For each element of the service list, the scheduler checks the respective vbi to decide
whether a block has to be read from disk. The read operation takes place only if the service
is playing and the following holds: timestamp < videotime. After having read a block, the
scheduler passes it to the network interface that sends it to the client. Additionally, the scheduler
reads the retrieved vbi that corresponds to the header of the next block to be retrieved from the
same disk. This retrieved vbi is thereafter inserted into the scheduler service list.

As Figure 7.6 shows, the send operation of a video block can be done synchronouslyor asyn-
chronously. Contrarily to the synchronous mode, where read and send operations are performed
by the same thread, the asynchronous mode separates the read and send operations and assigns a
thread to each of them. The asynchronous mode requires more buffer to put the already retrieved
blocks in the send-queue, which is then emptied by the send thread. It enables the disk server

118 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

build list of services

for each service si do

si terminated ?

Read data from disk i

vbi.timestamp < si.videotime ?

asynch mode ?

Copy data to network

Copy data to send-queue

si paused ?

start

send-queue empty ?

Move data from send-queue
to network interface

end

yes

yes

yes

yes

no

no

no

no

no

yes

sender thread (optional)

Figure 7.6: Stream Scheduling Algorithm

to separate read and send operations and thus increases parallel processing of video data, which
logically results in significant performance increase as compared to the synchronous mode.

7.3.3 Server Client

The client can be considered as the user interface to the video server. It provides the user with an
interface to the video server’s functionality. Thereby, it shows the list of the available videos as
well as the VCR-control interface, receives video data and passes it to the video player process.
It also records user interaction and passes it to the video server via its network interface. Figure
7.7 illustrates a schematic overview of the client’s tasks.

Platform-Independent Video Server Client

We have implemented a platform-independentclient using the Java programming language
[Mancini 99]. This platform-independence concerns the client codeitself and also the MPEG
stream decoder. In fact, there is for the Java code no need to maintain and compile multiple
versions of the client code on multiple platforms (e.g. PC running NT, PC running Linux, or
workstation running Unix) as is the case for C or C++ codes. For stream decoding and video
playback, the client uses the Java Media Player(JMP) package of the Java Media Framework

7.3. VIDEO SERVER COMPONENTS 119

Meta Server Disk Server

Client

User interactionVideo rendering

Network access

Figure 7.7: Client Tasks.

(JMF) library 3. The JMP package decodes and visualizes incoming MPEG1 streams indepen-
dently of the platform, on which the client runs. Note that the MPEG1 decoder is a software
decoderand JMF allows for full screen on PCs as well as on workstations.

Video playback is organized as follows. Due to the CGS algorithm, the client receives onevideo
block during each service round, say during each second. Let us now consider the following
situation. The client has been admitted at the meta server and the disk servers are ready to
deliver video blocks to that client. Each of the blocks received at the client is immediately put
into the buffer. The client is allowed to start with playback, only if the buffer is full. We give
later the reason for doing so. The playback is ensured by the JMP that sequentially reads the
video blocks from buffer and then visualizes them on the screen after performing the necessary
MPEG decoding.

We discuss now, why buffer is needed at the client and how large the buffer must be. Buffer
is required at the client to deal with some network delays and heterogeneity that may exist
between different disk servers. Indeed, buffer at the client allows for reordering some video
blocks that may be delayed. The size of the client buffer is a design parameter and must satisfy
the following two conflictingconstraints. Buffer size must be high enoughto well eliminate
block delays and thus perform reordering within deadlines. On the other side, the duration
of the setup phase and thus the delay of playback is a function of the client buffer size: As
mentioned, video playback is delayed until the client buffer is full. Hence, the delay equals the
maximum number of blocks put in the buffer times the service round duration. Consequently,
increasing the buffer size increases the playback delay and therefore the start-up latency at the

3The Java Media Framework (JMF) library contains a set of packages for capture and visualization of multi-
media data.

120 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

client. As a result, the buffer size must be kept small enoughto get low start-up latency.

The client further provides the user with an interface to the video server functionality. The
interface, as Figure 7.8 indicates, shows the list of the available videos, shows and handles
VCR-control functions, indicates the total duration and resolution of the current video and its
current playback time. Finally. the interface gives the user the option to activate and deactivate
the mirroring-based reliability module. This last option is benefit during test and validation
phases.

Figure 7.8: User Interface at the Client.

Information Flow

In order to service a client, some information must be exchanged between the client and the
video server, which is referred to as client-server communication, and between the meta server
and the disk servers, which is referred to as intra-server communication. Figure 7.9 demon-
strates the client-server and the intra-server communications. Further, we distinguish two types
of information flow; video data flowand control message flow. The former is sent by the disk
servers to the clients, whereas the latter represents the exchange of the control messages be-
tween the clients, the disks servers, and the meta server such as connection setup, video lists,
VCR-control messages (e.g. stop, play, pause, etc.), and maintenance commands. Video control
flow is between the client and the disk servers and is initiated by the client to request a VCR
function like reposition, pause, play, etc.. Meta information flowis between the meta server and
the client and is generated by the meta server during client admission. Server information flow
is between the meta server and the disk servers to issue commands and exchange meta informa-
tion. For control message flows, which are much less time-critical than video data flow, TCP
connections are used. Instead, in order to satisfy the real-time requirements of video stream
delivery, UDP is used for video data flow.

7.4. FROM THE CLIENT REQUEST TO THE VIDEO PLAYBACK 121

Disk ServerDisk Server Disk Server Disk Server Meta Server

Client

Server Information flow

Video Control flow

Video Data flow

Meta Information flow

Figure 7.9: Information Flow between the Server Components

7.4 From the Client Request to the Video Playback

After describing the different components of the video server prototype and their functionalities,
we look now at how a new incoming client gets connected to the meta server and the disk
servers. We then focus on the message flow between client, meta server, and disk servers during
the setup phase.

Client Request Management

There are mainly five steps for managing a new incoming client request. Figure 7.10 illustrates
these steps:

� The client requests a video object (Figure 7.10(a)): The client sends a
MSGCLIENTOPENSTREAMmessage to the meta server. The meta server queries the
client for its address and port numbers, later used as connection points for the disk servers.
It opens the port and waits for a given timeout period.

� The meta Server identifies the video object (Figure 7.10(b)): The meta server determines
the appropriate disk servers and sends them a MSG SERVERADDCLIENTmessage along
with the clients address, port number, and the name of the video object requested.

� The disk Servers connect the client (Figure 7.10(c)): The disk servers try to open connec-
tions to the client.

122 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

� The client issues a PLAY command (Figure 7.10(d)): The client sends a
MSGSTREAMPLAY message to all connected disk servers via the newly established
low-bandwidth control connections.

� The disk Servers send the expected video data (Figure 7.10(e)): Via the established high-
bandwidth connections, the disk servers transmit the video blocks to the client, where
they are then displayed.

Message Flow during Client Setup

At the start up of the video server, the disk servers establish connections to the meta server
(intra-server communication) and thus enabling message exchange within the video server. A
starting client connects to the meta server that responds by sending to that client the list of the
available video objects. Until now, the disk servers are connected to the meta server and the
client is, in turn, only connected to the meta server. All of these connections are referred to
as initial connectionsand are responsible for carrying all the message flow between the three
components (meta server, disk servers, and client), but not for video data. Thus, they can and
should be established over relatively low-bandwidth networks using TCP as transport protocol.
Let us take the message flow example illustrated in Figure 7.11. Thereby, the client on the left
wants to open a video stream. This is carried out as shown below:

� The user’s request for opening a video stream results in the execution of a client procedure
doing the following:

– Pass MSG CLIENTOPENVIDEOSTREAM to the meta server

– Pass the name of the video, the host name and port number

� The meta server determines the appropriate disk servers that store the requested video
object. It then instructs them to open connections to the client and to add the client to
their service list by doing the following:

– Pass MSG SERVERADDCLIENT to the respective disk servers

– Pass host name and port number of the new incoming client and the name of the
requested video.

� Each disk server now tries to establish two connections with the client by connecting to
the port supplied in the message. On success, the disk server passes its handle over to the
meta server and if not it passes FALSE.

7.4. FROM THE CLIENT REQUEST TO THE VIDEO PLAYBACK 123

Disk Server

Meta Server

Disk Server

Client

(a) Client requests video object.

Disk Server

Meta Server

Disk Server

Client

(b) Meta Server requests video object.

Disk Server

Meta Server

Disk Server

Client

(c) Disk Servers connect.

Disk Server

Meta Server

Disk Server

Client

(d) Client issues PLAY command.

Disk Server

Meta Server

Disk Server

Client

(e) Disk Servers send video data.

Connection (established)

Connection request

Message

Video data

Figure 7.10: From Client Request to Video Play-back.

124 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

� The client accepts all connections while waiting in a loop (for a given timeout such that
it will not lock up).

� The meta server collects the responses and passes the handle over to the client on success,
or FALSE on failure.

� The client’s procedure returns control to the main loop, passing the result.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

handle / NOTOK

disk server
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������������
������������
������������
������������

�������������
�������������
�������������
�������������

MSG_SERVERADDCLIENT

handle / NOTOK

client meta server

video name

port

host

MSG_CLIENTOPENSTREAM

video name

port

host

Figure 7.11: Setup Message Flow Example

7.5 Operating in Failure Mode

The video server prototype implements mirroring-based reliability. Only the meta server has
the knowledge about where the replication of a given block is stored on. Further, the detection
of disk or even node failures is performed at the client side. Once a failure is detected, the client
informs the meta server about the blocks that have been lost. The meta server is then able to
determine, which disk has failed. Having this information, the meta server instructs the affected
disk servers 4 to open a mirror stream for that client. We explain as follows how the detection of
disk/node failure is performed at the client and the behavior of the meta server, the disk servers,
and the client when operating in failure mode.

4The affected disk servers are those containing replica of original blocks that reside on the failed disk.

7.5. OPERATING IN FAILURE MODE 125

7.5.1 Client-Based Failure Detection

Figure 7.12 shows the algorithm we use to detect block loss and disk failure. It includes the
following steps:

� The client opens a video stream by sending a request to the meta server.

� The client receives the video info, which contains the number of disks D, on which that
video is striped.

� The client builds an array lossdetect[] of size D and initializes each field with the maxi-
mum number nmaxlost of blocks that are allowed to be lost consecutively before informing
the meta server about disk failure.

� The block ordinal number counter expected is set to 0.

� The client is receiving video blocks.

� By looking at the block headers, the client gets the blocks timestamp and its ordinal
number sequence.

� If the ordinal number is higher than the expected number (sequence > expected), there
is a block missing.

� Video data is striped round-robin, so a simple modulo-operation gives us the (virtual)
number of the disk and thus the position pos within the lossdetect-array:
pos = expected mod D

� lossdetect[pos] is decreased by 1 to reflect the missing block.

� lossdetect[pos] is checked. If it is still in range (> 0) we just go on with the next block.

� If lossdetect[pos] <= 0, the client assumes a disk failure and informs the meta server as
we will see in section 7.5.2

Based on the algorithm presented in Figure 7.12, the failure detection depends on the values of
D and nmaxlost. The client experiences interruptions due to the loss of nmaxlost blocks and it
will take D � nmaxlost blocks until it can detect the failure. Thus, the value of nmaxlost is chosen
as small as possible, but high enough to be sure that the losses are not due to network delays.
We took the value 3 for nmaxlost.

126 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

wait for next packet

end

start

sequence > expected ?

lossdetect[expected % number_of_disks]--

lossdetect[expected % number_of_disks] = 0 ?

Request mirror stream for expected

No

Yes

No

Yes

Figure 7.12: Client-Based Failure Detection

7.5.2 Retrieval of Replicated Blocks

We describe in the following the behavior of the client, meta server, and disk servers when a
disk failure occurs.

Client

The client attributes to each disk a counter that is initially set to 0. When the client detects
a lost block, it increments the corresponding counter, which denotes the disk that contains
that lost block. When one of the counters attains the value nmaxlost, the client sends a re-
quest to open a mirror stream to reconstruct the failed part of the original stream by issuing
a MSG CLIENTOPENMIRRORSTREAM command. The sequence of messages passed leads to
the following:

� The client issues an MSG CLIENTOPENMIRRORSTREAM command and passes the or-
dinary number expected of the last missing block as a parameter.

� The meta server calculates a valid disk server hosting a mirror stream.

� The meta server issues a MSG SERVERADDMIRROR command to the appropriate disk
server.

� The disk server adds the stream to its service list.

7.5. OPERATING IN FAILURE MODE 127

� The meta server repositions all streams to position expected.

� The client receives the expected blocks.

Due to the reactivenature of the failure detection algorithm we use, the client will encounter an
interruption. Two alternatives are possible for repositioning and restarting playback after failure
correction: the first alternative repositions the stream to the first lost block, whereas the second
alternative, which we have implemented, repositions the stream to the last block lost. Note that
in the case where the meta server is not able to open a mirror stream, it returns FALSE as the
result of the operation. The client will notstop playback but continues viewing the video stream
that contains periodical interruptions.

Meta Server

The meta server, on reception of a MSG CLIENTOPENMIRRORSTREAM, queries the origina-
tor for its name and port number as well as the video stream name and the ordinary number
sequence, at which loss was detected, and the stream id. The id field is always 0 for origi-
nal streams and > 0 for mirror streams, so it can be used at the meta server to check whether
a mirror stream is available for a given original stream. Figure 7.13 shows the meta server
algorithm.

� The meta server receives a MSG CLIENTOPENMIRRORSTREAM from the client.

� The video stream name, sequence, id, and the client’s host name and port number are
passed.

� If the id is higher than the available number of mirror streams held in
vi:groupinfo:redundancy, the meta server returns FALSE as result of the operation.

� Knowing the video is striped in round-robin fashion and the ordinary number of the block
sequence, the meta server can calculate the original server and disk.

� The meta server is now able to determine the disk servers and disks that contain replicated
blocks of original blocks that reside on the failed disk.

The same algorithm used during striping of videos returns the server and disk where copy
id of the stream is stored.

� If the disk server is active, the meta server issues a MSG SERVERADDMIRROR and passes
the client’s host name and port number with the name of the mirror stream and the disk
over to the disk server.

128 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

� If the disk server is not active or the former step is not executed correctly (i.e. no response
from disk server), the meta server increases the id and tries again.

id <= vi.groupinfo.redundancy ?

determine original server/disk

calculate mirror server disk

server available ?

issue MSG_SERVERADDMIRROR

server responding?

return FALSE

return TRUE

get video data and host address/port

MSG_CLIENTOPENMIRRORSTREAM received

id++

end

start

yes no

yes

no

no

yes

Figure 7.13: Opening a Mirror Stream (Meta Server)

Disk Server

After (i) the client has detected losses of original blocks and requested a mirror stream and (ii)
the meta server has determined the appropriate disk servers that must reconstruct lost data, each
of these disk servers receive a MSG SERVERADDMIRROR with the client’s host name and port
number, the mirror stream name, and the disk index. Remind that the video server implements
the three mirroring schemes One-to-All, Grouped One-to-One, and One-to-Some. For all of
these schemes, a disk server containing replicated blocks of a video object, obviously contains
original blocks of that video object. As a result, the disk server opens a mirror stream for a client
only if that client is already contained in the disk server’s service list. To deliver the mirror
stream, the disk server must add a new entry to the service list. The algorithm implemented for
retrieving replicated blocks from the disk server is shown in Figure 7.14.

7.6. PERFORMANCE OF THE VIDEO SERVER PROTOTYPE 129

� The disk server receives a MSG SERVERADDMIRROR from the meta server.

� The video stream name, sequence, id and the client’s host name and the port number are
passed.

� The disk server looks up the already existing service representing the client.

� The disk server checks for availability of the mirror stream.

� The mirror stream is added to the existing service.

� The disk server returns TRUE to the meta server.

get video data and host address/port

end

start MSG_SERVERADDMIRROR received

search mirror stream

file available ?

add mirror stream to service

return TRUE

no

yes

return FALSE

a service exists for the client ?

no

yes

Figure 7.14: Opening a Mirror Stream (Disk Server)

7.6 Performance of the Video Server Prototype

This section evaluates the performance of the video server prototype we have implemented.
From the design point of view, we have adopted in the previous chapters the solutions that

130 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

ensure video server scalabilitysuch as the server array architectureand the video wide strip-
ing technique, e.g. the CGS algorithm. These video server design solutions only indicate that
the video server is scalable with respect to the hardware, which means that video server per-
formance in terms of server throughput increases as new components are added to the server.
Theoretically, the performance increase is linear to the hardware growth. However, the fact that
standard hardware is used to build a cost effective video server shifts the whole video server
complexity to the application level and thus to the software. As a result, both, the hardware as
well as the software are candidates to be the potential bottleneck of the video server. Hence
the need for our implementation to determine (i) the exact performance of the server in terms
of server throughput for a given hardware capacity (number of disks and their I/O bandwidth
capacity, number of disk servers) and (ii) the server scalability by considering the evolution of
the server throughput when new components are added to the video server. This section inves-
tigates video server throughput and scalability. The rest of this section is organized as follows.
Section 7.6.1 gives a background of the hardware used and its possible bottleneck. Finally,
section 7.6.2 hands out the video server performance results.

7.6.1 Possible Bottlenecks

In order to avoid a software bottleneck due to a high processing overhead at the meta server,
the functionality of the latter has been restricted. Indeed, the meta server functionality is lim-
ited to the client connection setup and to open-mirror stream commands during failure mode.
However, the disk server can present either a hardware bottleneck or a software bottleneck. We
first examine the hardware characteristics of the disk server. The characteristics of a Sparc20
workstation are illustrated in Figure 7.15. Given that the network side is not considered, the
Figure indicated that the I/O bandwidth of the SCSI interface has the smallest value . As the
weakest part of the machine determines the maximum speed of that machine, the I/O bandwidth
of the SCSI interface presents the machine bottleneck (hardware bottleneck). Consequently, the
maximum number of disks that are connected to the same machine (disk server) is limited by
the capacity of the I/O bandwidth of the SCSI interface. More precisely, the sum over the data
transfer rates of all disks that are connected to the same machine should not exceed the I/O
bandwidth of the SCSI interface.

7.6.2 Video Server Performance: Results

Our performance study neglects network aspects and only concentrates on the throughput that
the video server (disk servers and meta server) is able to achieve. For video data storage, we
use two different SCSI disk families. The first disk family is the Micropolis 4110AV that has
1 GByte storage capacity and a transfer rate of up-to 40 Mbit=sec. The second disk fam-

7.6. PERFORMANCE OF THE VIDEO SERVER PROTOTYPE 131

Processor

Network I/FHarddisk Harddisk

Bus

Memory

10 MBit/sec

>100 MBit/sec

SCSI

~48-80 MBit/sec

20-80 MBit/sec

>200 MBit/sec

>200 MBit/sec

>800 MBit/sec >800 MBit/sec

SCSI I/F

Figure 7.15: Hardware configuration of a disk server.

ily is the Fujitsu 2952S � 512 that has 2 GByte storage capacity and a transfer rate of up-to
80 Mbit=sec. For our experiments, we have four slow (Micropolis) disks and four fast (Fu-
jitsu) disks. We use various video server configurations that involve Sparc10, Sparc20, Ultra1
workstations running Solaris, and pentium PCs running NT. Our performance goals are (i) to
determine the throughputthat a given server configuration can achieve and (ii) to demonstrate
whether the video server prototype is scalable. We use the following scenario. We connect each
of the 8 disks to a single machine (workstation or PC) and thus build 8 server nodes. We add
to the video server progressively server nodes and measure the throughput achieved with each
configuration. The results are illustrated in Figure 7.16. For a video server made of oneserver
node, the throughput is 12 clients for a slow disk and is 22 clients for a fast disk. Remind that
each client is consuming MPEG1 coded streams at a rate of 1:5 Mbit=sec The two curves in
Figure 7.16 present two different scenari. By the first one, we have added first the slow disks and
then the fastest disks within the server. We did the opposite by the second scenario. The Figure
shows that the video server prototype is scalable in terms of the number of server nodes. It also
shows that the server throughput linearly increases for a homogeneous configuration, e.g until
4 slow nodes or until 4 fast nodes. However, as far as the video server contains hybrid nodes,
the increase in server throughput becomes non linear. This mainly due to the round-based data
retrieval that requires from all nodes to retrieve data within the same deadlines and therefore,
the slow nodes are the server’s bottleneck and the fast ones experience high idle times.

132 CHAPTER 7. IMPLEMENTATION OF EURECOM’S VIDEO SERVER PROTOTYPE

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

Number of Server Nodes

M
ax

im
um

 N
um

be
r

of
 S

tr
ea

m
s

Video Server Performance

Fastest First
Slowest First

Figure 7.16: Video server performance.

7.7 Summary

In this chapter, we have described the main characteristics of the video server prototype we
have implemented at Eurecom (see also [Walter 97, GAFS 98b, Exner 99]). The video server
prototype is made of standard (and hence cheap) hardware and is multi-platform, where the
server nodes run on workstations running Solaris as well as on PCs running NT or Windows
95. The client is implemented in Java and is therefore platform-independent. The prototype
performs distributed stream scheduling and data delivery and ensures fault-tolerance with data
replication. Both, disk and node failures can be tolerated. Furthermore, failure detection and
data recovery are implemented in software and are managed at the application level. Moreover,
We have evaluated the server performance, where the results have shown that the video server is
scalable in terms of the number of server nodes. However, the increase of the number of server
nodes does not lead to a linear increase in server throughput. We are currently optimizing the
different components and algorithms of our prototype in order to achieve a linear performance
behavior and therefore total server scalability. Eurecom’s video server prototype should serve
as a test application to validate France Telecom’s ADSL experimental platform.

Chapter 8

Conclusions

Rapid advances in computing and communication technologies led to an explosive growth of
multimedia services. A variety of these services will become increasingly popular in the near
future such as multimedia messaging, interactive television, and video-on-demand. The realiza-
tion of such services requires the development of large scale systems, i.e. video servers, that are
capable of storing, retrieving, and transmitting data to thousands of users. In this dissertation,
we proposed, compared, and validated several algorithms and schemes that are involved in the
different design aspects of a distributed and reliable video server. The result is a complete video
server design that addresses all requirements of digital video storage, retrieval, and delivery in
order to find the best trade-off between video server performance, cost, and reliability.

Throughout this thesis, we have learned that the different aspects that are involved in the design
of a video server are interdependentand must be addressed together. One example of this state-
ment is the relationship between the data striping algorithm and the server reliability technique
used, which was emphasized in this thesis. Furthermore, this dissertation showed that mirror-
ing is a very attractive technique to ensure fault-tolerance for video servers. Indeed, one -at
first glance- surprising result indicated that mirroring is more cost effective than parity. Finally,
the work in reliability modeling has not only allowed to quantitatively evaluate and compare
several reliability schemes for video servers, but it also guided us to propose the Grouped One-
to-One scheme that achieves highestvideo server reliability. Last but not least, the video server
performance, cost, and reliability analysis we performed gave us the intuition to propose the
replica placement scheme ARPS that improves the video server performance by up-to 90%

as compared to existing replica placement schemes. In what follows, we first summarize the
contributions of this dissertation and then explore some open issues.

In this dissertation, we made fiveprimary contributions. Below, we describe our contributions
in detail.

We studied data stripingfor non-fault tolerant video servers. We proposed a striping algorithm,

133

134 CHAPTER 8. CONCLUSIONS

called MGS (Mean Grained Striping)that consists in dividing the video server into independent
groups, where disks belonging to the same group are contained on different server nodes. We
compared MGS with the two well known striping algorithms FGS (Fine Grained Striping) and
CGS (Coarse Grained Striping) in terms of server throughput, buffer requirement, and start-up
latency. The results showed that FGS suffers under buffer explosion and thus achieves a much
lower throughput than CGS and MGS for a given buffer space. CGS has highest server through-
put for the same amount of buffer, whereas MGS has lowest start-up latency. We then introduced
video server fault-tolerance and compared CGS and MGS when considering both, parity-based
reliability and mirroring-based reliability. We analyzed the video server performance during
disk failure and discussed reactive and preventive modes for reconstruction of lost data. We
found out that data striping and server reliability are related: Our results indicated that CGS
combined with mirroring-based reliability and MGS combined with parity-based reliability are
the best combinations with respect to the overall server throughput.

We looked at performance and cost issues for CGS-striped video server and for different relia-
bility techniques. We classified several video server reliability schemes based on the technique
used (mirroring vs. parity) and on the distribution granularity of redundant data. The cost func-
tion includes hard disk and main memory costs. we found out that mirroring-based reliability
is more attractive than parity-based reliability. Indeed, the results indicated that mirroring-
based reliability, despite its 100% storage overhead requirement, is more cost effective than
parity-based reliability, given that hard disk prices decrease faster than memory prices. An-
other advantage of mirroring is the disruption time after a disk failure, where mirroring takes
at most one service round to send the expected replicated block. Parity, however, takes many
service rounds to retrieve all blocks belonging to the parity group of the lost block and thus
the disruption time can be very high, which also affects the start-up latency for new incoming
clients.

We modeled and analyzed the performance of reliability strategies for distributed and fault-
tolerant video servers. We proposed a new mirroring-based scheme, namely the Grouped One-
to-Onescheme that is based on the traditional chained declustering scheme and further divides
the video server into independent groups similarly to the orthogonal RAID principle. We dis-
tinguished seven reliability schemes that differ in whether parity or mirroring is used and in the
distribution granularity of parity/replicated data. We then quantitatively evaluated video server
reliability for these retained schemes by performing reliability modeling based on Continuous
Time Markov Chains (CTMC). We considered two cases of independent disk failures and de-
pendent components failures. We took various values of component’s (disk and node) failure
rate and repair rate and found out that the Grouped One-to-One always achieves highest server
reliability as compared to all other schemes considered. We also realized that schemes that
only tolerate a single disk failure, which we called the One-to-All schemes, suffer from very
poor server reliability that does not increase even with decreasing values of the component’s

135

failure rate and increasing values of the component’s repair rate. Based on these results and
given that the trend of the coming years predicts larger number of disks, there is a pervasive
need for going beyond the reliability provided by these One-to-All schemes. Our focus then
concentrated on schemes that tolerate multiple disk failures and even complete node failures
as is the case for the One-to-Some parity/mirroring schemes that divide the video server into
several independent groups. For these schemes, we studied both, video server performance
and reliability. The results showed that for these One-to-Some parity/mirroring schemes, the
smaller the parity/mirroring group size, the better the trade-off between high server reliability
and low per stream cost.

We proposed a novel replica placement scheme for mirroring-based video servers, the called
ARPS (Adjacent Replica Placement Scheme). In contrast to the classical replica placement
schemes, where each single disk of the server is dedicated to original video data and redun-
dancy data, ARPS splices replicated data and original data and thus does not require any ad-
ditional seek time and rotational latency when operating in the presence of disk failures. The
results showed that ARPS outperforms, in terms of the server throughput, classical interleaved
declustering schemes like the one proposed for the Microsoft Tiger video server. In fact, ARPS
achieves 60% to 90% more server throughput than these schemes considered.

We instantiated our design decisions in a prototype implementation. The video server proto-
type implemented addresses the main goals that were followed during the server design phases,
namely high server performance and scalability, cost effectiveness, and reliable and uninter-
rupted service. The prototype is made of various server nodes, each behaving as single disk
array. The prototype further runs on multiple platforms, where the server nodes run on both,
UNIX machines (Solaris) and PCs (Windows NT, Windows 95). To ensure scalability, the video
server prototype implements distributed scheduling and data delivery such that server nodes de-
liver expected video data without the need to exchange any information. To be fault-tolerant,
the prototype implements various mirroring-based schemes and disk or node failure detection
and data recovery are performed at the application level (software solution). Moreover, com-
ponent failure detection is shifted to the client, which reduces the processing overhead at the
server side and ensures server scalability. Furthermore, the client is implemented in Java and
is thus platform independentwith respect to the code itself and the MPEG1 decoder (the same
code is executed and the same MPEG1 decoder software is used on different platforms). The
experimental results showed that the video server prototype is scalable in terms of the number
of server nodes that are contained on the video server.

136 CHAPTER 8. CONCLUSIONS

Appendix A

Disk Parameters

Table A.1 shows the disk parameters and their values considered. These values are those of
Seagate and HP for the SCSI II disk driv es [GKSZ 96].

Parameter Meaning of Parameter Value
rp Video playback rate 1:5 Mbps

rd Inner track transfer rate 40 Mbps

tstl Settle time 1:5 ms

tseek Seek time 10:39 ms

trot Worst case rotational latency 9:33 ms

bdr Block size different values considered
� Service round duration bdr

rp
sec

Table A.1: Performance Parameters

137

138 APPENDIX A. DISK PARAMETERS

Appendix B

Data Layout and Scheduling for a
CGS-striped Server

We present in this section data layout examples for CGS-striped video server when using parity-
based reliability (equivalent to RAID5) 1 and mirroring-based reliability. We further present
for each of these reliability techniques generic scheduling and retrieval algorithms for normal
operation mode and failure operation mode.

B.1 Parity-Based Reliability

Figure B.1 shows for a video server with D disks, how one video object is stored using the
parity-based scheme (similar to RAID5): A video object is assumed to be partitioned exactly
into Nvs video segments where Nvs = Z �D � (D � 1); Z 2 f1; 2; :::g. Note that for the CGS
algorithm used, the video segment size equals the disk retrieval block size and therefore the two
notations, video segment and disk retrieval block, are equivalent.

The parity disk retrieval blocks are distributed in a round robin fashion. Each original disk
retrieval block of a stored video object is identified by its unique number. Let bs denote an
original retrieval block number , then bs 2 [1; :::; Nvs]. Parity blocks are labeled using the
parity group number. Since each parity group contains exactly one parity block, the parity
block number equals the parity group number, to which it belongs. For example, the parity
disk retrieval block of the original disk retrieval blocks having numbers between 1 and (D� 1)

(first parity group) has the parity number P1. Parity blocks have numbers varying between P1

and PZ�D . Note that the numbers of the original disk retrieval blocks are relative to onevideo
object and are logical numbers. To simplify the discussion, the retrieval of the first disk retrieval

1We use the terms parity and RAID5 interchangeably in this section.

139

140 APPENDIX B. DATA LAYOUT AND SCHEDULING FOR A CGS-STRIPED SERVER

Disk 1

P(1)

D

Line

1

2

i

1

Disk 2

P(2)

(D-1)

Disk D

2.(D-1)

(i-1)

Disk i

P(i)

P(D)D

1

(Z-1).D+1

(Z-1).D+i

Z.D P(Z.D)

P((Z-1).D+i)

P((Z-1).D+1)

Z.D.(D-1)

Z

D+(i-2)

Figure B.1: The RAID5 data layout for one video object stored on a video server with D disks.

block of the video object is assumed to occur during service round 1. In this way, we assign
to each client its relative service round, and the service round number equals the current disk
retrieval block that must be read from the server. As Figure B.1 shows, the data placement
within the server is represented by placing the numbers inside a matrix that contains D columns
(the disks) and (Z �D) retrieval lines (the parity groups). The later discussion will be based on
this (D, (Z �D))-matrix.

In Figures B.2 and B.3 we show the storage layout of the original and the parity disk retrieval
blocks. Figure B.2 gives the number of original and parity disk retrieval blocks that are stored
on a given disk i (i 2 [1; :::;D]) of the server. Figure B.3 gives the storage organization of the
whole (D, (Z �D))-matrix, where the diagonals contain parity disk retrieval blocks and the rest
original disk retrieval blocks. The scheduling procedures described later use figure B.3 to locate
disk retrieval blocks within the matrix (on the right or the left side of the diagonal).

B.1.1 Scheduling and Retrieval for Normal Operation Mode

During normal operation mode, the scheduler retrieves consecutive original disk retrieval
blocks from consecutive disks. Note that consecutive original disk retrieval blocks can be
stored on disks i and i + 1 or on disks i and i + 2 (the second case holds when a parity disk

B.1. PARITY-BASED RELIABILITY 141

Line

1

2

i

D (D-1).D + (i- (D-1))

P(i)

(i-1)

(h-1).D + (i-h)

Disk i

D+(i-2)

h

j (j-1).D + (i- (j-1))

1

Z

(Z-1).D+h (Z-1).D.(D-1) + (h-1).D + (i-h)

(Z-1).D+i P((Z-1).D+i)

(Z-1).D+j (Z-1).D.(D-1) + [(j-1).D + (i - (j-1))]

Figure B.2: Storage layout of original and parity data of one video object on disk i.

1 2 Di

P
P

P

P

left of the diagonal

right of the diagonal

P
P

P

P

left of the diagonal

right of the diagonal

(Z-1).D+1

(Z-1).D+i

Z.D

D

i

2
1

Figure B.3: The (D, (Z �D))-matrix organization.

retrieval block is stored on disk i + 1 between two consecutive original disk retrieval blocks).
Thus, the scheduler needs to know the exact position of each original and parity disk retrieval
block in order to coordinate the retrieval of only original blocks during the normal operation
mode. We formulate the problem as follows: the scheduler currently retrieves blocks of the
parity group with the number g and has already retrieved an original disk retrieval block from

142 APPENDIX B. DATA LAYOUT AND SCHEDULING FOR A CGS-STRIPED SERVER

disk (d � 1). It must decide, whether it next retrieves an original disk retrieval block from
disk d or not. Based on the layout order shown in Figures B.1, B.2, and B.3, the scheduler
uses procedure R seq no(d, g, b) to decide. Depending on the parity group number,
the disk retrieval block contained on disk d can be a parity disk retrieval block (parity group
number equals (j �D + d)) that should notbe retrieved, or an original disk retrieval block that
must be read. In the second case, the sequence number of the original block depends on the
parity group number. To read a disk retrieval block with the sequence number b from disk d, the
scheduler calls the procedure R ret block(d, b).

procedure R seq no(d, g, b)

/* Input parameters */
/* d: disk number */
/* g: parity group number */

/* Output parameter */
/* b: disk retrieval block number (original or parity) */

BEGIN

k = g mod D; /* line of last (D,D)-matrix */
z = g div D; /* number of complete (D,D)-matrices */

IF ((k == d) OR ((k == 0) AND (d == D))) f

/* block is parity data block on the diagonal*/
b = Pg;g

/* NO RETRIEVAL */

ELSE /* disk retrieval block is an original block */
IF (k == 0) f

k = D; g

b = (k � 1) � (D� 1) + d+ z �D � (D � 1);
IF (1 � k � (d� 1)) f /* right of diagonal */

b = b� 1; g

ret block(d,b); /* read block b */
END

B.1.2 Scheduling and Retrieval for Single Disk Failure Operation Mode

During a single disk failure, the retrieval blocks stored on the failed disk are lost and must be
reconstructed using the remaining (D � 2) original blocks and the parity disk retrieval block
that belongs to that parity group. Such a parallel read requires the temporary storage of (D�1)

retrieval blocks for one client. In order to keep the time during which the (D � 1) blocks are
stored in memory as short as possible, our RAID 5 scheme performs a second readof the orig-
inal blocks when the lost block must be reconstructed. Thus, each original disk retrieval block
is read twice during two different service rounds. Therefore, the scheduler must know when to
read the remaining (D�1) blocks in order to reconstruct the lost block: We assume that disk df
fails during the service round Tf when disk retrieval block bf is being retrieved. The scheduler
must be able to locate the disk d from which the original disk retrieval block bf is currently

B.1. PARITY-BASED RELIABILITY 143

retrieved, and the parity group g that block bf belongs to. procedure R disk group(bc,

dc, gc) calculates for a given bc (or Tc) its corresponding disk dc and parity group gc.

procedure R disk group(bc, dc, gc)
/* Input parameter */

/* bc: current disk retrieval block number. It corresponds to the current
service round Tc */

/* Output parameters */
/* dc: current disk */

/* gc: current parity group */

BEGIN

g = bc div (D� 1) ; /* the line */
d = bc mod (D� 1) ; /* the column */

IF d == 0 f /* the last original disk retrieval block in the parity group */
gc = g;

dc = (D � 1);
IF (g mod D 6= 0) f

dc = D g g

ELSE f /* d 6= 0 */
gc = g + 1;

IF (d < (gc mod D)) f /* left of diagonal */
dc = d; g

ELSEIF (d > (gc mod D)) f /* right of diagonal */

dc = d+ 1; g g

END

Now we calculate the service round numbers at which the reconstruction of a lost disk retrieval
block stored on the failed disk df must be carried out. Only the original blocks of disk df must
be reconstructed. Thus, for the parity group numbers [df , D + df ,..., ((j � D) + df),...] no
reconstruction is needed, since disk df stores the parity disk blocks of these parity groups.

procedure R sec block time(df, bf, gc, br, Tr) delivers the block number br of
the lost and neededdisk retrieval block belonging to the parity group gc and the expected time
(scheduling round) Tr of its reconstruction.

144 APPENDIX B. DATA LAYOUT AND SCHEDULING FOR A CGS-STRIPED SERVER

procedure R rec block time(df, bf, gc, br, Tr)

/* Input parameters */
/* df: The failed disk */
/* bf: The sequence number of the disk retrieval block read, when df

fails. bf corresponds to the service round Tf */
/* gc: The current parity group number */

/* Output parameters */
/* br: The sequence number of a lost and needed disk retrieval

block belonging to parity group gc */
/* Tr: the scheduling round where to reconstruct br in parity group gc */

BEGIN
R disk group(bf, d, g); /* returns d and g */

k = g mod D; /* g = z �D + k */

h = gc mod D;

w = gc div D; /* gc = w �D + h */

IF (h == df) /* No reconstruction is needed, since a parity block was
stored on disk df */

ELSE f /* h 6= df */
br = (h� 1) � (D � 1) + df + w �D � (D� 1);
IF (1 � h � (df � 1)) f /* right of the diagonal */

br = br � 1; g

T = Tf + (df � d);
IF (d � k < df) f

T = T � 1; g

Tr = T + (gc � g) � (D � 1);
IF (h > df) f /* left of diagonal */

Tr = Tr + 1; g g /* end ELSE */
END

Using R rec block time(df, bf, gc, br, Tr), the disk scheduler can compute exactly
when a reconstruction is required and which (D � 2) original blocks and parity block are re-
quired to decode the lost disk retrieval block for the parity group gc.

B.2 Mirroring-Based Reliability

We assume one video object to be stored and replicated on the video server. The storage of the
original disk retrieval blocks follows the CGS algorithm. As for the parity-based scheme, we
assume a video object containing Z �D � (D � 1) original disk retrieval blocks. The storage of
the replicateddisk retrieval blocks is round robin in order to distribute the load of a failed disk
over as many disks as possible. A disk di contains Z � (D � 1) original disk retrieval blocks and
additionally Z replicateddisk retrieval blocks from each of the other disks d1,..,di�1 ,di+1,..,dD .
Each disk is assumed to be partitioned into two parts. The first part contains original data and
the second one stores replicated data. Figure B.4 shows the storage layout of original disk

B.2. MIRRORING-BASED RELIABILITY 145

retrieval blocks of one video object, and how the original blocks of disk di are replicated over
the remaining disks.

Line

1

2

j

1

2

n

Disk 1 Disk i Disk DDisk 2

D

2.D

j.D

(D-2).D+i

(2.D-3).D+i

i

D+i

2

D+2

(j-1).D+2

D+i

D.D+i

D+1

1

(j-1).D+1

i

(D-1).D+i

((n-1).D+(1-n)).D+i ((n-1).D+(2-n)).D+i ((n-1).D+(D-n-1)).D+i

(j-1).D+i

Original Data

Replicated Data
of disk i

Figure B.4: Mirroring data layout for one video object stored on a video server with D disks.

In section 3.2, we used for RAID 5 the notation of parity groupto determine the retrieval line
within the matrix. For mirroring we use the term retrieval line . As in section 3.2, we describe
the scheduling order of video data during normal operation and single disk failure operation
mode. We consider one video object that is replicated within the server. In the following
discussion, we describe how to replicate the content (original blocks) of a disk di. procedure
M repl blocks(di, dj, n, rn) delivers the disk retrieval block numbers of the original
blocks stored on disk di that have their replicas on disk dj . This procedure is derived from the
data layout order shown in Figure B.4.

procedure M repl blocks(di, dj, n, rn)
/* Input parameters */

/* di: Disk, where original disk retrieval blocks with numbers i,
D+ i,..,(j � 1) �D + i,.. are stored */

/* dj: Disk that stores some replicas of the original blocks of di, where
j 6= i */
/* n: the number of the replica on disk dj, n 2 [1::Z] */

/* Output parameter */
/* rn: Sequence number of the n

th replica of di on dj */

BEGIN

rn = ((n� 1) �D + (dj � n)) �D+ di;
IF (dj > di) f /* right side of disk di */

rn = rn �D; g

END

146 APPENDIX B. DATA LAYOUT AND SCHEDULING FOR A CGS-STRIPED SERVER

B.2.1 Scheduling and Retrieval for Normal Operation Mode

During normal operation mode, only original data is retrieved. The scheduler retrieves consec-
utive original disk retrieval blocks from consecutive disks. Using (Vws,Sss), one disk retrieval
block is retrieved at each service round. At a service round, the scheduler retrieves a disk re-
trieval block from disk d. During the next service round, a disk retrieval block is retrieved from
disk ((d + 1) mod D). The scheduler of disk di must know when it should retrieve an origi-
nal disk retrieval block. This is resolved using the procedure M disk line(bc, dc, lc)

that delivers the disk dc that must deliver an original block having the number bc. It also delivers
the retrieval line lc that will be needed later when we discuss the single disk failure operation
mode. Note that bc corresponds to service round Tc.

procedure M disk line(bc, dc, lc)
/* Input parameter */

/* bc: Current disk retrieval block number. It corresponds to
the current service round number Tc */

/* Output parameters */
/* dc: Current disk */
/* lc: Current retrieval line */

BEGIN

lc = ((bc � 1) div D) + 1;
dc = bc � ((lc � 1) �D);

END

B.2.2 Scheduling and Retrieval for Single Disk Failure Operation Mode

During single disk failure mode, each lost and needed originaldisk retrieval block must be
reconstructed using its replica. Therefore, each disk scheduler must know when to read which
replicated data.

Assume disk df fails when the disk retrieval block bf is being retrieved during the service round
Tf . The scheduler must determine the disk d from which the original disk retrieval block bf was
retrieved and the retrieval line l of this block. procedure M disk line(bf, d, l) will
be used to get the expected d and l.

We now calculate the service rounds numbers at which the replica of a disk retrieval block stored
on the failed disk df must be retrieved. The solution of this problem is given by procedure
M rec block time(df, bf, lc, br, Tr, dr) as:

B.2. MIRRORING-BASED RELIABILITY 147

procedure M rec block time(df, bf, lc, br, Tr, dr)

/* Input parameters */
/* df: The failed disk */
/* bf: The disk retrieval block read, when df fails */

/* bf corresponds to Tf */
/* lc: The current retrieval line */

/* Output parameters */
/* br: The number of the original block that must be reconstructed for lc

*/
/* Tr: The service round, at which the replica of the disk retrieval
block with number br must be retrieved */

/* dr: The disk that contains the replica of the disk retrieval block with
number br */

BEGIN
disk line(bf,d,lf); /* delivers d and lf */

T = Tf + (df � d); /* time to first reconstruction if d � df */
Tr = T + (lc � lf) �D;

br = (lc � 1) �D+ df;
b = (lc � 1) mod (D � 1); /* disk of the replica */
dr = b+ 1;

IF (dr � df) f /* right side of disk df */
dr = dr + 1; g

END

procedure M rec block time(df, bf, lc, br, Tr, dr) delivers (i) the number br
of the lost and neededdisk retrieval block belonging to the current retrieval line lc, (ii) the ex-
pected time Tr, at which the replica of the disk retrieval block with number br must be retrieved,
and (iii) the disk dr that contains the replica.

148 APPENDIX B. DATA LAYOUT AND SCHEDULING FOR A CGS-STRIPED SERVER

Appendix C

Sommaire d́etaillé en fraņcais

Nous présenterons dans cet appendice un sommaire détaillé en fraņcais du travail effectué dans
cette thèse [Gafsi 99].

C.1 Introduction

La puissance des ordinateurs sans cesse accrue et l’évolution continue des technologies des
réseaux et de stockage ont donné naissance à de nouvelles applications qui supportent les don-
nées multimédia: la vidéo et l’audio, qui sont commément appelées applications multimé-
dia. Malgré l’amélioration considérable de la capacité de stockage et de la bande passante
des systèmes informatiques, l’information multimédia reste premièrement trop volumineuse,
ce qui nécessite sa compression et deuxièmement gourmande en bande passante, ce qui re-
quiert la présence de réseaux haut débit et de systèmes puissants pour la traiter. D’autre part,
l’information multimédia doit être souvent transmise, traitée et présentée dans des délais fixes.
Toutes ces caractéristiques poussent à coņcevoir de nouveaux systèmes de communication pour
mettre en oeuvre les applications multimédia. Ces nouveaux systèmes, appelés aussi systèmes
multimédia, peuvent être des systèmes de création, des systèmes de traitementou encore des
systèmes de stockagede l’information multimédia. Nous nous limitons dans ce chapitre aux
systèmes de stockage de l’information multimédia dont le serveur vidéoprésente un exemple
typique.

Un serveur vidéo est un système de stockage et de livraison de la vidéo qui offre typiquement
le service de la vidéo à la demande (VOD). Le serveur vidéo stocke une large collection de
vidéos. L’utilisateur accède au serveur vidéo à travers un réseau et rȩcoit la vidéo qu’il a choisie.
Ainsi, il n’a pas besoin de quitter son domicile pour regarder sa vidéo préférée. En outre, il peut
regarder sa vidéo favorite quand il le désire et a la possibilité d’interagir en utilisant les com-
mandes d’interactivité classiques telles que pause, fast-forward, fast-backward, etc.. La VOD

149

150 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

permet aussi à un nombre très large d’utilisateurs d’accéder simultanément̀a la même vidéo où
chacun peut se servir des commandes d’interactivité indépendamment des autres utilisateurs.

Les principaux critères de performance d’un serveur vidéo sont le nombre de flux qu’il peut
supporter simultanément et le coût total de son architecture. La conception d’un serveur vidéo
doit donc admettre le plus possible de flux pour une configuration -et donc un coût- donnés.
Avant de se pencher sur les détails de la conception du serveur vidéo, nous introduirons comme
suit l’environnement de ce dernier: Puisque le dispositif de stockage constitue la composante la
plus importante du serveur vidéo, nous discuterons d’abord le choix du dispositif de stockage
qui répond le mieux aux contraintes du serveur vidéo en fait de volume de stockage, débit de
transfert, temps d’accès ainsi que coût du dispositif. Ensuite, nous citerons les divers critères de
performance et de qualité de service du serveur vidéo. Ces critères seront utilisés pour évaluer et
comparer les différents algorithmes et mécanismes que nous allons considérer pour le stockage,
l’ordonnancement, l’extraction des données, ou bien pour assurer la fiabilité du serveur vidéo.

C.1.1 Serveurs vid́eo: environnement et ressources

Le serveur vidéo qui est un système permettant le stockage et la livraison des données vidéo
impose des contraintes qui sont liées à la nature de l’information vidéo. En effet, cette dernière
– même sous sa forme compressée – est volumineuse, gourmande en bande passante et doit être
traitée dans des délais fixes. Par conséquent, la conception et la réalisation d’un serveur vidéo
doivent satisfaire les critères suivants [Chung 96]:

� Afin de servir une large population de clients simultanément, la capacité de stockage
(storage capacity) ainsi que le débit (transfer rate) doivent être élevés.

� Pour offrir à chaque client un service ininterrompu, le serveur vidéo doit intégrer des
mécanismes de contrôle d’admission et d’ordonnancement des différents flux.

� La conception du serveur vidéo et les algorithmes utilisés pour sa réalisation doivent
être adaptés à l’augmentation de l’échelle (scalable) en nombre de vidéos stockées et de
clients.

Stockage de la vid́eo

Commeņcons par un exemple qui donne une idée du besoin du serveur vidéo en matière de
capacité de stockage et de bande passante: supposons que le serveur vidéo stocke 2000 vidéos,
chacune d’une durée de 100 minutes et codée en MPEG-2 à 8Mbit=sec. Admettons aussi que
le serveur vidéo doive servir 1000 clients simultanément. La demande en capacité de stockage
est par conséquent de l’ordre de 12TByte et la demande en débit est de 8Gbit=sec. Il faut que

C.1. INTRODUCTION 151

d’une part le dispositif de stockage que le serveur vidéo utilise réponde à ces besoins en capac-
ité et en débit et que, d’autre part le coût du serveur vidéo soit maintenu le plus bas possible
afin d’assurer sa rentabilité. Plusieurs dispositifs de stockage sont candidats pour le serveur
vidéo: les cassettes (tape), les disques magnétiques (magnetic disks), les disques optiques (op-
tical disks), les disques vidéo digitaux (DVD-ROM) et la mémoire vive (RAM). Un résumé des
différentes caractéristiques de ces dispositifs est donné dans TAB C.1 [Lu 96].

Dispositif Débit (Mbit=sec) Coût/GByte Problèmes

Cassettes 0:8 0:1 débit faible et accès séquentiel
Disques optiques 2:4 250 débit faible
Disques vidéo digitaux 10 50 débit faible et capacité réduite
Disques magnétiques 80 400 coût élevé
mémoire vive 800 10000 coût trop élevé

Table C.1: Dispositifs de stockage (prix env. 1996)

D’après TAB C.1, les disques magnétiques sont le dispositif le plus adapté au stockage de
l’information vidéo au sein d’un serveur vidéo. En effet, un disque magnétique:

� a une grande capacité de stockage qui peut atteindre plusieurs GBytes, contrairement au
disque vidéo digital.

� a un débit élevé de l’ordre de dizaines de Mbit=sec contrairement à la cassette, au disque
optique et au disque vidéo digital.

� permet l’accès rapide et aléatoire à l’information vidéo contrairement à la cassette et au
disque optique.

� a un coût faible comparé à celui de la mémoire vive.

Afin d’optimiser le coût d’un serveur vidéo, des travaux tels que [Doganata 96, Shastri 98,
KIENZ 95, WILK 96] ont proposé des architectures de serveurs vidéo basées sur le stockage
hiérarchique: les vidéos populaires sont stockées dans les disques magnétiques ou même dans
la mémoire vive pour les plus populaires d’entre elles. Les vidéos peu populaires quant à elles
sont archivéesdans les cassettes ou même dans les disques optiques et disques vidéo digitaux.
Le changement de la popularité d’une vidéo la déplace d’un niveau à l’autre dans la structure
hiérarchique.

De nombreux autres travaux ont proposé des serveurs vidéo utilisant les disques magnétiques
comme unique dispositif de stockage de la vidéo. Cette proposition se justifie surtout par la
baisse continue du prix des disques magnétiques. En effet, le coût d’un MByte d’un disque mag-
nétique ne cesse de diminuer (40% par an), et ce depuis presque vingt ans [Grochowski 97a].

152 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

Parallèlement à la baisse du prix des disques magnétiques, leur capacité de stockage ne cesse
de grimper (25% à 50% par an) pour dépasser aujourd’hui 18 GByte. Un autre argument
en faveur du choix des disques magnétiques est leur débit de transfert qui a connu au cours
des dix dernières années une augmentation annuelle de 40%. Ce débit peut atteindre actuelle-
ment 40 MByte=sec [Grochowski 97c]. En revanche, les disques magnétiques connaissent une
réduction faible de leur temps d’accès. Ce temps d’accès, qui comprend le délai de position-
nement sur la bonne piste et le délai de rotation, ne se réduit que de 5% par an. La valeur
moyenne du temps d’accès est actuellement de l’ordre de 10ms. Nous discuterons ultérieure-
ment l’impact du temps d’accès au niveau du disque magnétique sur la performance du serveur
vidéo.

Caractéristiques des disques magńetiques

Afin d’évaluer la performance du serveur vidéo, une connaissance des caractéristiques et perfor-
mances de ses composantes est indispensable. Nous avons opté pour les disques magnétiques
en tant que dispositif de stockage des données vidéo. Cette section décrit ses principales carac-
téristiques.

Un disque magnétique est constitué typiquement de plusieurs [� 20] surfaces(platters) qui ef-
fectuent des mouvements de rotation autour d’un fuseau central(spindle). Chaque surface pos-
sède sa propre tête(disk head) responsable de la lecture des données. Une surface est composée
d’un grand nombre [� 500] de cercles concentriques que nous appelons pistes(tracks). Chaque
piste est composée de blocs physiques de taille fixe de l’ordre de 256Bytes ou 512Bytes. Les
pistes qui appartiennent à des surfaces différentes et qui ont la même distance au fuseau central
forment ensemble un cylindre (cylinder).

Pour extraire un bloc, un disque parcourt deux phases: la première est la phase de localisation
du bloc où la tête du disque doit être ajustée et la deuxième représente la phase où les données
sont effectivement lues. La phase de localisation du bloc contient principalement un délai de
positionnement sur la bonne piste(seek time) et un délai de rotation (rotational latency).
Le délai de positionnement sur la bonne piste est le temps nécessaire pour déplacer la tête du
disque et la remettre sur la piste contenant le bloc à extraire. Le délai de rotation est le temps
nécessaire au sein d’une piste pour repositionner la tête du disque sur le début du bloc à extraire.

La Figure C.1 présente les différentes caractéristiques d’un disque magnétique. Notez que
seules les opérations de lecture des données sont des opérations utiles pour un disque, et le
pourcentage du temps utile pour un disque dépend directement du délai de positionnement sur
la bonne piste et du délai de rotation. En effet, pendant les opérations de positionnement sur
la bonne piste et de rotation, le disque magnétique n’est pas capable d’effectuer des transferts
de données. Par conséquent, une bonne utilisation du disque exige la réduction des délais
de positionnement sur la bonne piste et de rotation. Pour avoir plus de détail sur les disques

C.1. INTRODUCTION 153

magnétiques, nous invitons le lecteur à recourir à [WILK 94, WORT 95, Hennessy 90, Mr.X].

Pistes

Surface du disque

Tete du disque

Fuseau central

Delai de rotation

Delai de positionnement
sur la bonne piste

Figure C.1: Caractéristiques d’un disque magnétique

Environnement du serveur vidéo

La Figure C.2 illustre l’environnement d’un serveur vidéo. Elle distingue trois parties: le
serveur vidéo, un réseau haut débit et les clients.

Client

Client

Client

Client

Matrice a disques Memoire vive

LectureEcriture

Reseau haut debit

Serveur video

I/O Bus

Figure C.2: Architecture et environnement du serveur vidéo

Le serveur vidéo contient principalement trois composantes:

� Une matrice à disques pour le stockage de la vidéo: Afin d’atteindre une grande capacité
de stockage et une large bande passante, le serveur vidéo est typiquement composé de
plusieurs disques magnétiques. Un système qui contient plusieurs disques magnétiques
est nommé une matrice à disques(disk array). Cette matrice à disques est composée
de disques multiples stockant les vidéos. La capacité de stockage de la matrice est donc

154 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

proportionnelle au nombre de disques qu’elle contient. Notez que chaque vidéo est dé-
coupée en morceaux appelés blocs. Ceux-ci sont ensuite stockés sur une ou plusieurs
composantes du serveur vidéo. La méthode de distribution des blocs d’une vidéo fait
l’objet de la section C.2.6.

� Un bus entrée/sortie (I/O bus) (e.g. SCSI) qui sert à transférer les données extraites des
disques vers le buffer. Afin d’exploiter toute la bande passante de la matrice à disques, la
capacité de transfert du I/O bus doit être supérieure à la somme des débits de transfert de
tous les disques de la matrice.

� Une mémoire tampon (buffer): Le débit de transfert des données au niveau d’un disque
magnétique atteint aujourd’hui des dizaines de Mbit=sec. Ce débit dépasse largement le
débit de consommation du flux vidéo chez le client (jusqu’à 8 Mbit=sec pour MPEG-2).
Afin d’absorber cette différence de débit et assurer un flux vidéo continu, les blocs vidéo
extraits de chaque disque sont stockés temporairement au niveau du buffer avant d’être
envoyés vers le client correspondant. Comme indiqué dans la Figure C.2, le buffer est
fondé sur la méthode du double buffer (double buffering): le serveur vidéo réserve pour
chaque flux deux espaces buffer. Chaque espace a la taille d’un bloc et sert soit à l’écriture
d’un bloc provenant du I/O bus, soit à la lecture d’un bloc avant son envoi vers le client.
Notez que les deux espaces buffer alternent leurs rôles d’une unité de service à une autre.

Un réseau haut débit est indispensable pour véhiculer des flots de données à haut débit. En
effet, même sous sa forme compressée, l’information vidéo reste très gourmande en bande
passante (jusqu’à 8Mbit=sec pour MPEG-2). Actuellement, la plupart des réseaux ne sont pas
capables de fournir la bande passante nécessaire pour permettre à un serveur vidéo de servir
des centaines ou des milliers de clients simultanément. Cette limitation en matière de bande
passante au niveau du réseau est le facteur décisif qui empêche le marché de la VOD d’atteindre
une large population.

Chaque client est connecté au serveur vidéo via le réseau haut débit. Il s’agit bien d’un rapport
de producteur-consommateur. En effet, le client envoie sa requête au serveur vidéo. L’entité
centrale du serveur vidéo, appelée aussi meta serveur, fournit à ce nouveau client la liste des
vidéos disponibles. Le client renvoie alors une requête indiquant la vidéo qu’il a choisie. En-
suite, le meta serveur effectue un contrôle d’admission de ce nouveau client. Dans le cas où ce
dernier est admis, le meta serveur informe le serveur vidéo de la présence de ce client, qui, à son
tour, établit une connection avec ce dernier. Le client commence ainsi à recevoir son propre flux
vidéo en temps réel. Le client dispose des fonctions classiques d’interactivité et a la possibilité
d’envoyer des requêtes telles que fast forwardou pauseau serveur vidéo, qui, de son côté, traite
cette demande et exécute la fonction désirée par le client.

C.1. INTRODUCTION 155

C.1.2 Critères de performance et de qualit́e de service du serveur vid́eo

Les critères de performance du serveur vidéo sont le débit du serveur vidéo, le besoin en buffer
et le coût du serveur vidéo. Les critères de qualité de service du serveur vidéo sont sa fiabilit é,
le temps de latence initialainsi que la r épartition de la chargeentre ses composantes.

Les ressources du serveur vidéo sont limitées (débit au niveau des disques, I/O bus, taille du
buffer,..) et par conséquent le serveur vidéo ne peut admettre qu’un nombre limité de clients. Par
définition, le débit du serveur vidéo est le nombre maximum de clients qui peuvent être admis
simultanément. Avant d’admettre un nouveau client, le serveur vidéo effectue un contrôle
d’admission. Si le nouveau client est admis, une quantité de ressources lui est allouée afin
d’assurer un service ininterrompu.

Le buffer est une partie très coûteuse du serveur vidéo et le besoin en buffer affectera donc le
coût du serveur vidéo. Nous verrons dans ce chapitre comment le besoin en buffer peut être
décisif dans le choix des différents algorithmes qu’implémente le serveur vidéo.

La durée moyenne de fonctionnement avant défaillance (Mean Time To Failure (MTTF)) d’un
disque est de l’ordre de 300000 heures. Le serveur vidéo contient typiquement des centainesde
disques fondé sur la matrice à disques afin de répondre aux demandes en capacité de stockage
et en bande passante. Ceci implique que la MTTF du serveur vidéo est beaucoup plus faible que
celle d’un seul disque. D’où la nécessité de concevoir des mécanismes de fiabilité au sein du
serveur vidéo pour le protéger des pannes de ses composantes. Dans le contexte des systèmes de
fichiers classiques, plusieurs variations de matrices à disques incluant des mécanismes de fiabil-
ité ont été proposées; et elles sont connues sous le nom RAID (Redundant Array of Inexpensive
Disks) [Patterson 88]. Six niveaux de RAID ont été distingués, qui dépendent du mécanisme de
fiabilité utilisé et aussi de la granularité de répartition de l’information à travers les différents
disques de la matrice. RAID sous sa forme standard (hardware RAID) n’est pas adapté aux
applications multimédia telle que la vidéo à la demande sous la réserve où il ne répond pas aux
contraintes temps réel de ces applications. Ceci pousse à concevoir des mécanismes de fiabilité
au niveau de l’application pour rendre le serveur vidéo tolérant aux pannes. Nous allons con-
sidérer deux mécanismes de fiabilité qui sont basés sur la redondance: le premier concerne la
simple r éplication des données originales (mirroring qui est analogique à RAID1), tandis que
le deuxième mécanisme concerne la parit é (parity qui est analogique à RAID2-RAID6).

Le concepteur d’un serveur vidéo doit non seulement optimiser le débit et assurer la fiabilité,
mais aussi veiller à ce que les solutions proposées soient économiquement viables. Étant donnée
l’interdépendance du coût total du serveur vidéo et du débit qu’il peut atteindre, une évaluation
précise du serveur vidéo doit considérer le coût par flux, qui est le coût total du serveur vidéo
divisé par le nombre maximal des flux admis.

Le temps de latence est le temps écoulé entre l’instant où le client envoie sa requête au serveur
vidéo et l’instant où la première trame arrive au client. Nous supposons que le temps de latence

156 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

initial ne concerne que les délais dus au traitement de la requête du côté du serveur vidéo et
nous admettons donc que le réseau ne cause aucun délai supplémentaire.

Il est souhaitable pour le serveur vidéo que la charge soit répartie équitablement entre ses dif-
férentes composantes. Notez qu’une répartition inéquitable de la charge peut, dans certains
cas, entraı̂ner la réduction du débit du serveur vidéo ou augmenter le temps de latence initial
pour certains clients. Nous verrons plus tard comment la technique de répartition de la vidéo
influence la performance et la répartition de la charge ainsi que le fiabilité du serveur vidéo.

C.2 Conception des serveurs vid́eo

C.2.1 Motivation

La conception d’un serveur vidéo doit satisfaire à deux critères majeurs: d’une part une per-
formance élevée du serveur vidéo en nombre de clients admis et d’autre part un coût bas par
client servi. Le deuxième critère impose l’utilisation de hardware standard pour la réalisation du
serveur vidéo. En effet, l’utilisation des machines très puissantes est une solution trop coûteuse,
et donc non rentable. L’utilisation d’un matériel (hardware) standard permet la conception d’un
serveur vidéo à la fois flexible, robuste à la largeur de l’échelle (scalable) et surtout bénéfi-
ciant des améliorations sans cesse accrues de la performance de la hardware. Cependant, une
telle décision implique de réaliser toute l’intelligence du serveur vidéo en software. En d’autre
termes, toutes les fonctions du serveur vidéo, telles que la répartition des données ou encore la
fiabilité du serveur, sont gérées par l’application et non dédiées à la hardware. Nous détaillerons
maintenant les différentes étapes de la conception d’un serveur vidéo illustrées dans la Figure
C.3.

La première étape est de définir la configuration et l’architecture du serveur vidéo. Une alter-
native est à envisager: soit on opte pour une architecture centralisée, où le serveur vidéo est
constitué d’une machine unique contenant une matrice à disques, soit on considère un serveur
vidéo distribué contenant plusieurs machines. Nous allons discuter en détail cette deuxième
possibilité dans la section C.2.2 où nous allons argumenter notre choix d’une architecture dis-
tribuée du serveur vidéo.

Une seconde étape est de définir l’algorithme de répartition des données sur le serveur vidéo.
Il faut noter que répartir la vidéo sur le serveur vidéo ne veut pas dire répliquer la vidéo, mais
découper celle-ci en morceaux, appelés blocs, et stocker les différents blocs de la vidéo dans
le serveur vidéo. La manière de stocker ces blocs déterminera la méthode de répartition des
données. Une analyse et comparaison des différents algorithmes de répartition des données
seront détaillées dans la section C.2.6.

Les étapes 3, 4 et 5 de la Figure C.3 ont pour but de définir les techniques d’extraction des

C.2. CONCEPTION DES SERVEURS VIDÉO 157

Repartition des donnees

Extraction des donnees

Ordonnancement des flux

Architecture et Configuration

Controle d’admission

1

2

3

4

5

T
ol

er
an

ce
 a

ux
 p

an
ne

s
(F

ia
bi

lit
e)

M
an

ag
em

en
t d

e
l’i

nf
or

m
at

io
n

(M
et

a
se

rv
eu

r)6 7

Figure C.3: Les différentes étapes dans la conception d’un serveur vidéo.

données (voir section C.2.3), d’ordonnancement des flux multiples (voir section C.2.4) et de
contrôle d’admission des nouveaux flux (voir section C.2.5). Ces trois étapes sont liées comme
nous les verrons ultérieurement.

L’étape 6 de la Figure C.3 représente l’intégration de la fiabilité au sein du serveur vidéo afin
de le rendre tolérant aux pannes de ses composantes. Cette étape, comme nous l’avons présenté
dans la Figure C.3, influe sur toutes les étapes précédentes. Ainsi, la conception de l’architecture
doit prévoir le surcoût que la fiabilité implique en terme de volume de stockage et de bande
passante supplémentaires. La technique de répartition des données doit aussi gérer l’information
redondante et la répartir. L’ordonnancement et l’extraction des flux doivent, pour leur part,
réagir à des pannes. Enfin, le mécanisme de contrôle d’admission doit prévoir le cas des pannes
et réserver la bande passante nécessaire pour satisfaire tous les clients admis durant le mode de
défaillance.

Une étape très importante dans la conception du serveur vidéo est de définir la fonction du
meta serveur qui représente le coeur de tout le système (étape 7 dans la figure). Le meta
serveur est celui qui gère l’interaction entre les différentes composantes du serveur vidéo et
aussi entre le serveur vidéo et le client. C’est uniquement le meta serveur qui a l’information
sur la configuration complète du serveur vidéo ainsi que sur les techniques de répartition des
données utilisées. Le contrôle d’admission se fait également au niveau du meta serveur.

Dans le reste de cet article, nous traiterons les étapes de conception 1 à 6 qui sont présentées
dans la Figure C.3. Pour chaque étape, nous choisirons la méthode ou l’algorithme que notre
serveur vidéo utilisera. Notez que chaque étape est fondée sur les choix qui ont été pris dans les
étapes qui la précédent.

158 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

C.2.2 Architecture et configuration: la matrice à serveur

Les serveurs vidéo sont des systèmes où les solutions distribuées sont essentielles au vu du vol-
ume très large des données à stocker et du débit très haut à atteindre. Nous avons proposé une
architecture de serveur vidéo distribuée dont voici les caractéristiques: étant donnée la demande
en matière de capacité de stockage et de bande passante, le serveur vidéo est typiquement basé
sur la matriceà disquesappelée aussi noeud. En outre, pour pouvoir servir plus de clients,
le serveur vidéo doit voir sa capacité en terme de bande passante augmenter. Cependant, cette
demande en bande passante ne peut pas être satisfaite en ajoutant simplement des disques au
sein du même noeud. En effet, un noeud, à cause des limitations imposées par ses composantes
(buffer, CPU, I/O bus, etc.), ne peut contenir qu’un nombre restreint de disques. Par conséquent,
augmenter la capacité du serveur vidéo pour admettre plus de clients revient à ajouter de nou-
veaux noeuds à côté des noeuds déjà existants.

Traditionnellement, un serveur vidéo est composé de plusieurs noeuds indépendantset au-
tonomes: chaque vidéo est entièrement stockée sur un des noeuds. Cette configuration de
noeuds autonomesprésente deux inconvénients majeurs:

1. La charge du serveur vidéo est distribuée d’une fa̧con inégale entre les différents noeuds.
Les noeuds qui contiennent les vidéos les plus populaires sont surcharǵes (hot spots)
tandis que d’autres noeuds restent sous-chargés.

2. Le nombre de clients accédant à une vidéo très populaire est limité par la capacité du
noeud où cette vidéo est stockée. Afin de permettre à plus de clients d’accéder à la
même vidéo populaire, cette dernière doit être copiéesur d’autres noeuds. Mais, ceci est
inefficace à l’égard de la capacité de stockage du serveur vidéo. En outre, les variations
de popularité des différentes vidéos stockées rendra la mise à jour du contenu du serveur
vidéo complexe.

Notre approche s’inspire de la configuration de la matrice à disques où chaque vidéo est dis-
tribuée sur les différents disques de cette matrice. Nous avons ainsi proposé une architecture
de serveur vidéo où plusieurs noeuds constituent ensemble une matrice appelée la matrice à
serveurs[BERN 96a]. La Figure C.4 illustre l’architecture de la matrice à serveurs.

Chaque noeud de la matrice à serveurs est lui-même une matrice à disques. Contrairement aux
serveurs autonomes, un noeud de la matrice à serveurs ne stocke qu’une partie de chaque vidéo.
En effet, chaque vidéo est découpée en blocs et ces derniers sont répartis sur les différents
noeuds de la matrice à serveurs. Par exemple, le premier bloc de la vidéo est stocké sur le
premier noeud, le deuxième bloc sur le deuxième noeud, � � �, le i ème bloc est stocké sur le
noeud (i mod N) + 1 où N représente le nombre de noeuds qui sont contenus dans le serveur
vidéo. La répartition de la charge entre les noeuds du serveur est équitable et ne dépend pas

C.2. CONCEPTION DES SERVEURS VIDÉO 159

Client

Client

Client

Client

Noeud

Noeud

Noeud

Reseau haut debit

Matrice a Serveurs

Figure C.4: La Matrice à serveurs

de la popularité des vidéos consommées. Cette répartition de la charge est même parfaite si
chaque vidéo est répartie sur tous les noeuds de la matrice à serveurs. De plus, la capacité totale
du serveur vidéo peut être utilisée pour servir un grand nombre de clients, qui, tous, peuvent
utiliser la même vidéo très populaire. Cette répartition a l’avantage d’éviter de copierles vidéos
populaires sur plusieurs noeuds.

L’architecture de la matrice à serveurs indique que chaque vidéo est découpée en plusieurs blocs
et que ces derniers sont stockés sur les différents noeuds de la matrice à serveurs. En revanche,
cette architecture ne précise ni (i) la fréquence d’extraction des données, ni (ii) l’ordre suivant
lequel les différents flux sont servis par les noeuds et des disques du serveur vidéo ni (iii) la
granularité de distribution des données vidéo sur les noeuds ainsi que sur les disques à l’intérieur
d’un noeud. Les sections C.2.3, C.2.4 et C.2.6 examineront en détail ces aspects.

C.2.3 Extraction des donńees (Data Retrieval)

Par définition, le mécanisme d’extraction détermine la fréquence avec laquelle les différents
blocs appartenant au même flux sont lus au niveau du serveur vidéo et ensuite délivrés vers le
client correspondant. Considérons les techniques d’extractions périodiques (round-based data
retrieval) où le temps de service est découpé en intervalles fixes et égaux appelés unités de
service. Chaque flux est ainsi servi une fois durant une unité de service. Afin de bien présenter
les différentes techniques d’extractions, une connaissance de la composition d’une vidéo nous
semble essentielle. Une vidéo est composée de centaines ou milliers de trames. Pour des
raisons d’efficacité de stockage et afin de réduire la bande passante nécessaire, la vidéo est

160 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

compressée avant d’être stockée dans le serveur vidéo. Chaque vidéo a un débit fixe en terme
de trames=sec, mais la taille des trames diffère suivant la méthode de compression adoptée.
Généralement, deux options sont utilisées pour la compression de la vidéo. La première option
génère un flux à qualité constante mais ayant un débit variable (VBR: Variable Bit Rate); une
vidéo codée en VBR est composée de trames de tailles différentes. La deuxième option génère
un flux ayant un débit contrôlé et constant, mais une qualité variable (CBR: Constant Bit Rate);
une vidéo codée en CBR est composée de trames de la même taille. L’avantage de VBR par
rapport à CBR est sa qualité constante. Cependant, CBR permet le stockage de la vidéo en blocs
de même taille et aussi l’extraction de ces différents blocs avec une périodicité fa̧cile à gérer, ce
qui n’est pas le cas pour VBR.

Pour VBR, il faut décider lors du découpage et répartition de la vidéo codée VBR, si les blocs
à stocker auront la même taille ou des tailles différentes. Cette décision définira la technique
d’extraction des blocs appartenant au même flux VBR. Principalement, deux méthodes se dis-
tinguent dans ce contexte: la première méthode est appelée CDL (Constant Data Length); la
deuxième est CTL (Constant Time length) [CHA 94, CHAN 96]. La Figure C.5 illustre ces
deux méthodes pour un flux. Figure C.5(a) montre que pour CTL, les blocs à extraire ont des
tailles variables et durant chaque unité de service, un bloc est extrait du serveur vidéo. Dans
le cas de CTL, chaque flux demande un nombre d’accès aux disque qui est égal au nombre
d’unités de service qui correspondent à la durée de la vidéo consommée par ce flux. La Figure
C.5(b) illustre CDL, où les blocs ont tous la même taille qui est souvent grande. Par conséquent,
l’extraction des blocs ne s’effectue pas d’une fa̧con périodique comme dans le cas de CTL, ce
qui permet à CDL d’optimiser le nombre d’accès aux disques du serveur vidéo et améliore
le pourcentage d’utilisation des disques. Cependant, pour pouvoir extraire plus de données
d’avance et réduire le nombre d’accès aux disques, CDL requiert un buffer assez élevé.

temps
unite de
service

taille
d’un bloc

(a) CTL

temps
unite de
service

taille
d’un bloc

(b) CDL

Figure C.5: Techniques d’extraction pour VBR.

Nous nous limiterons dans le reste de ce chapitre à l’option de codage CBR où les blocs
sont de la même taille et où durant chaque unité de service, chaque flux consomme un bloc.

C.2. CONCEPTION DES SERVEURS VIDÉO 161

Cette limitation facilite la conception du serveur vidéo, notamment pour définir la technique
d’ordonnancement ou encore pour déterminer la technique de contrôle d’admission surtout dans
le cas d’une architecture distribuée constituée de plusieurs noeuds et de nombreux disques.

C.2.4 Ordonnancement des flux vid́eo (Stream Scheduling)

Afin de bien exploiter ses ressources, un serveur vidéo délivre les données vidéo avec un débit
de transmission(transmission rate) qui est égal au débit de consommation(playback rate)
chez le client. Quand on combine cette hypothèse avec la technique d’extraction périodique
que nous avons adoptée, nous constatons que chaque flux est servi une fois durant chaque unité
de service. Plus précisément, la quantité de données que lit un flux du serveur vidéo pendant
l’unité de service i est consommée chez le client durant l’unité de service i+1. Étant donné que
le débit de transfert (transfer rate) au niveau d’un disque est beaucoup plus élevé que le débit
de consommation d’un flux, un seul disque est capable de servir plusieurs flux simultanément.
La technique d’ordonnancement des flux au sein d’un disque durant la même unité de service
peut avoir un impact sur le pourcentage d’utilisation efficace du disque. En effet, la technique
idéale est celle qui réduit le plus le délai de positionnement sur la bonne piste et le délai de
rotation afin de passer le plus de temps possible en effectuant des lectures des données. Nous
considérerons principalement trois algorithmes d’ordonnancement des flux [Gemmell 95]:

1. Round Robin (RR): L’ordre de chaque flux est conservé durant les différentes unités
de service. Par conséquent, le temps qui sépare deux services successifs d’un flux est
exactement égal à la durée d’une unité de service. La demande en buffer pour chaque
flux est ainsi équivalente à la taille d’un bloc. Ce buffer est rempli durant une unité
de service et aura exactement la durée d’une unité de service complète pour être vidé
avant que le prochain bloc n’arrive comme l’indique la Figure C.6(a). Vu que l’ordre de
lecture des différents flux est préservé, RR ne peut pas prendre en compte l’emplacement
physique de blocs multiples à lire pour réduire les mouvements de la tête du disque. Par
conséquent, la tête du disque risque d’effectuer des déplacements inutiles pour localiser
les blocs à lire. Ceci implique des délais élevés de positionnement sur la bonne piste et,
par suite une mauvaise utilisation du disque, ce qui aboutit bien évidemment à un débit
de transfert faible au niveau du disque.

2. SCAN: Afin d’améliorer l’utilisation d’un disque et ainsi sa performance, SCAN est
proposé comme technique d’ordonnancement. Contrairement à RR, SCAN ne conserve
pas l’ordre suivant lequel les différents flux sont servis durant des unités de service dif-
férentes. Ceci permet de reclassifier les flux multiples durant chaque unité de service.
Ainsi, la tête du disque effectue au maximum un mouvement de l’extérieur de la sur-
face du disque vers l’intérieur et un mouvement dans la direction inverse. L’ordre des

162 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

blocs à lire dépend donc de leur emplacement par rapport au chemin parcouru par la tête
du disque. SCAN permet de contrôler les délais de positionnement sur la bonne piste:
la somme de ces délais ne dépasse pas deux fois le délai maximum de positionnement
nécessaire pour bouger la tête du disque de la piste extérieure à la piste intérieure. En
revanche, le temps maximum qui sépare deux services successifs du même flux peut at-
teindre deux fois la durée de l’unité de service comme l’indique la Figure C.6(b). Ceci
est le cas quand un flux est servi en premier lieu durant l’unité de service (i) et en dernier
lieu durant l’unité de service (i + 1). Afin d’éviter la famine du côté du client, cette sit-
uation impose à chaque flux la réservation d’un espace de buffer équivalent à la quantité
d’information qui satisfait la consommation durant deux unités de service. Rappelons que
RR a besoin que de réserver un seul espace buffer; équivalent à la consommation durant
une seule unité de service.

3. GSS: Nous avons vu que RR optimise la demande en terme de buffer mais aboutit à une
mauvaise utilisation du disque et que SCAN optimise l’utilisation du disque au prix d’une
demande élevée en buffer. GSS [YU 93] est proposé pour réunir l’avantage de SCAN en
matière de bonne utilisation du disque et celui de RR en matière du faible besoin en buffer.
Pour cela, l’unité de service est divisée en groupes et chaque flux est associé à un groupe.
Entre les groupes, RR est appliqué, ce qui implique que l’ordre de servir les différents
groupes soit fixe. Cependant, SCAN est utilisé au sein de chaque groupe, ce qui signifie
que l’ordre de servir les flux appartenant au même groupe est variable. GSS peut donc
être considéré comme un compromis entre l’optimisation du temps de recherche pour
atteindre un haut débit de transfert et la réduction du besoin en buffer. Notez que GSS
intègre RR et SCAN comme cas extrêmes. GSS avec un groupe est équivalent à SCAN
et GSS avec autant de groupes que de flux est équivalent à RR. La Figure C.6(c) montre
un exemple de GSS avec deux groupes, chacun contenant trois flux.

Dans le reste de ce chapitre, nous allons considérer SCANcomme technique d’ordonnancement
des flux vidéo.

C.2.5 Contrôle d’admission (Admission Control)

La politique de contrôle d’admission décide si un nouveau flux peut être admis. Les techniques
de contrôle d’admission peuvent être déterministes ou statistiques [Gemmell 95]. Nous consid-
érerons le cas déterministe pour le contrôle d’admission. Le nombre de flux qui peuvent être
servis par un disque magnétique durant une unité de service est limité par le débit de transfert et
par le temps d’accès à ce disque (délai de positionnement sur la bonne piste et délai de rotation).
Soit Qd le nombre maximum de flux que peut admettre un disque simultanément. Admettons
que toutes les vidéos stockées aient le même taux de consommation rp et soient découpées en

C.2. CONCEPTION DES SERVEURS VIDÉO 163

Unite de service (i) Unite de service (i+1)

1 2 3 4 5 6 1 2 3 4 5 6

successifs du meme flux (3)
Temps entre deux services

(a) L’algorithme d’ordonnancement RR.

Unite de service (i) Unite de service (i+1)

3 5 1 6 2 4 1 4 6 52 3

Temps maximum entre deux services
successifs du meme flux (3)

(b) L’algorithme d’ordonnancement SCAN.

Unite de service (i) Unite de service (i+1)

3 5 1 6 2 4 5 1 3 2 6 4

successifs du meme flux (3)
Temps maximum entre deux services

Groupe 1 Groupe 2 Groupe 1 Groupe 2

(c) L’algorithme d’ordonnancement GSS.

Figure C.6: Algorithmes d’ordonnancement périodique.

blocs de la même taille b. La valeur maximale d’une unité de service ne doit donc pas dépasser
b

rp
pour assurer une livraison des flux exempts de gigue (jitter free). Soient tseek le temps max-

imum de positionnement sur la bonne piste et trot le délai maximum de rotation. Étant donné
que l’algorithme SCAN est utilisé, le double du délai de positionnement maximal est néces-
saire dans le pire des cas, pour effectuer toutes les lectures des flux pendant une unité de service
(2�tseek). Cependant, chaque flux a besoin, dans le pire des cas, d’un délai maximum de rotation
(trot). Par conséquent, Qd doit satisfaire la condition suivante: Qd � (b

rd
+ trot) + 2 � tseek � b

rp
.

Si nous considérons la valeur minimale que peut prendre l’unité de service qui est b

rp
, Qd sera

alors déterminé par:

164 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

Qd =

b

rp
� 2 � tseek
b

rd
+ trot

(C.1)

Pour un serveur vidéo composé de plusieurs noeuds contenant chacun des disques multiples, le
contrôle d’admission devient dépendant de la technique de répartition des données à travers ses
différentes composantes comme nous allons le découvrir dans la section suivante.

C.2.6 Ŕepartition des donńees (Data Striping)

La méthode de répartition des donńees(data striping) sur les différents disques et noeuds du
serveur vidéo est décisive en matière de performance et de répartition de la charge du serveur
vidéo. Plusieurs travaux de recherche ont étudié la répartition de la vidéo pour les serveurs
vidéo.

Afin de mieux analyser et comparer les différents algorithmes de répartition proposés, nous
avons défini deux classes de répartition. La première détermine la granularité de répartition
d’une vidéo entière (Vidéo Object Striping) tandis que la seconde détermine la granularité de
répartition de chaque bloc d’une vidéo (Video Segment Striping). La méthode de répartition
d’une vidéo détermine le nombre de disques (noeuds) qui contiennent des données appartenant
à cette vidéo. En outre, sachant que nous utilisons la technique d’ordonnancement périodique
SCAN, la méthode de répartition d’un bloc détermine le nombre de disques (noeuds) qui sont
sollicités durant une seule unité de service pour l’extraction de ce bloc. Nous avons distingué
trois méthodes de répartition d’une vidéo et trois méthodes de répartition d’un seul bloc.

Méthodes de ŕepartition de la vidéo :

1. La vidéo est entièrement stockée sur un seul disque (Video Single StripingVss) [voir
Figure C.7(a)].

2. La vidéo est répartie sur quelquesdisques (noeuds) du serveur vidéo (Video Narrow Strip-
ing Vns) [voir Figure C.7(b)].

3. La vidéo est répartie sur tous les disques et les noeuds du serveur vidéo (Vidéo Wide
StripingVws) [voir Figure C.7(c)].

Méthodes de ŕepartition d’un bloc :

1. Le bloc est entièrementstocké sur un disque (Segment Single StripingSss) [voir Figure
C.7(d)].

C.2. CONCEPTION DES SERVEURS VIDÉO 165

2. Le bloc est réparti sur quelquesdisques (noeuds) du serveur vidéo (Segment Narrow Strip-
ing Sns) [[voir Figure C.7(e)].

3. Le bloc est réparti sur tous les disques et les noeuds du serveur vidéo (Segment Wide
StripingSws) [[voir Figure C.7(f)].

La Figure C.7 donne un exemple de chacune des six méthodes identifiées ci-dessus. Consid-
érons un serveur vidéo contenant six disques di (i 2 1; � � � ; 6). Les termes V O1, V O2 et V O3
représentent trois vidéos différentes, le terme V S, un bloc.

����
����
����
����
����

����
����
����
����
���� ����

����
����
����

����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

d1 d2 d3 d4 d5 d6

VO1 VO2 VO3

(a) Video Single Striping Vss

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ���

���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

d1 d2 d3 d4 d5 d6

VO1 VO2

(b) Video Narrow Striping Vns

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

d1 d2 d3 d4 d5 d6

VO1

VO2

(c) Video Wide Striping Vws

d4 d5d3d2

��
��
��

��
��
��

d1 d6

VS

(d) Segment Single Striping Sss

d6

��
��
��
��

d3 d4 d5

��
��
��
��

d2

��
��
��
��

d1

VS

(e) Segment Narrow Striping Sns

���� ������ ���� ���� ���� ����

d1 d2 d3 d4 d5 d6

VS

(f) Segment Wide Striping Sws

Figure C.7: Méthodes de répartition de la vidéo et d’un bloc.

Un algorithme de répartition des données est identifié par la combinaison de la méthode de
répartition de la vidéo avec la méthode de répartition du bloc que cet algorithme utilise. Fondé
sur notre classification, le Tableau C.2 récapitule les algorithmes de répartition des données les
plus significatifs. Les lignes dans ce Tableau indiquent les méthodes de répartition de la vidéo
tandis que les colonnes indiquent le méthodes de répartition d’un bloc. Le signe XXX dans le
Tableau indique les combinaisons irréalisables.

Vss et Vns n’exploitent pas la totalité de la capacité du serveur vidéo pour servir un grand nombre
de clients qui demanderaient tous la même vidéo très populaire, et ils ont également des prob-
lèmes de répartition de charge. Vws, en revanche, assure une parfaite répartition de la charge au

166 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

Sss Sns Sws

Vss Pas de répartition XXX XXX
Vns Shenoy/Vin [SHEN 97] Shenoy/Vin [SHEN 97] XXX

Berson et al. [BER 94a] Tobagi et al. [TOB 93b] XXX
Vws Oezden et al. [OZDE 96a, OZDE 96b] Berson et al. [BEGH 94] Oezden et al. [OZDE 96b

Mourad [MOUR 96, Mourad 96] Ghandeharizadeh et al.[GHAN 95b]
Tewari et al. [TEWA 96a] Biersack et al. [GABI 98c]

Table C.2: Classification des algorithmes de répartition des données

sein du serveur vidéo indépendamment des vidéos consommées et assure un haut débit pour les
vidéos populaires. Par conséquent, nous allons nous limiter à Vws dans nos comparaisons des
méthodes de répartition des données pour un serveur vidéo. Ceci revient à ne considérer que la
dernière ligne du Tableau C.2.

Comparaison des algorithmes de ŕepartition des donńees (Serveur non Fiable)

Nous nous limiterons dans notre comparaison aux algorithmes de répartition des données qui
sont fondés sur Vws qui utilisent des méthodes différentes de répartition d’un bloc. Ces algo-
rithmes sont l’algorithme de r épartition étroite (Coarse Grained StripingCGS) qui combine
Vws avec Sss, l’algorithme de r épartition large (Fine Grained StripingFGS) qui combine Vws
avec Sws, et finalement l’algorithme de r épartition moyenne (Mean Grained StripingMGS)
que nous avons proposé [GABI 98c] et qui combine Vws avec Sns. MGS divise le serveur vidéo
en plusieurs groupes indépendants où chaque groupe qui contient plusieurs disques, stocke un
bloc de la vidéo. Les disques d’un groupe appartiennent à des noeuds différents, rendant ainsi
le serveur vidéo capable de tolérer la panne d’un noeud entier.

Fondés sur la technique d’extraction périodique, les algorithmes FGS, CGS et MGS se compor-
tent différemment. Dans le cas de FGS qui équivaut RAID3 [Patterson 88], tousles disques du
serveur vidéo sont impliqués durant chaqueunité de service pour délivrer l’information vidéo
à un client donné. Par ailleurs, pour CGS, étant équivalent à RAID5 [Patterson 88], un flux est
servi par un seuldisque durant l’unité de service i et est servi par un disque différent durant
l’unité de service i+ 1. Enfin, dans le cas de MGS, un flux est servi par un groupe de disques
durant l’unité de service i et est servi par un groupe de disques différent durant l’unité de service
i+ 1.

Plusieurs travaux ont comparé FGS et CGS e.g. [OZDE 96a, OZDE 96b, BAAN 98]. Ces
derniers ont prouvé que CGS assure un débit plus élevé que FGS. Dans [GABI 98c], nous
avons comparé CGS, FGS et aussi MGS non seulement en matière du débit du serveur, mais

C.2. CONCEPTION DES SERVEURS VIDÉO 167

aussi en matière du besoin en buffer, temps de latence initial pour un nouveau flux et fiabilité
du serveur vidéo.

Dans le but de comparer FGS, CGS et MGS en matière du débit du serveur vidéo, nous utilis-
erons le critère de contrôle d’admission que nous avons introduit dans la section C.2.5 pour
obtenir le nombre maximum de flux Q que peut admettre le serveur vidéo simultanément. La
valeur de Q dépend surtout des performances des composantes du serveur vidéo, i.e. les valeurs
de rd, tseek et trot d’un disque magnétique. La durée de l’unité de service est égale à � = b

rp

comme indiquée dans Eq. C.1.

Le critère de contrôle d’admission prend la forme des Eq. C.2 (CGS), C.3 (FGS) et C.4 (MGS).
QCGS , QFGS et QMGS désignent le débit total du serveur vidéo pour les trois algorithmes CGS,
FGS et MGS.

Pour CGS, la totalité d’un bloc est stockée dans un disque et pour un flux, un seul bloc est lu
durant une unité de service. Par conséquent, nous pouvons considérer chaque disque comme
entité indépendante du reste du serveur vidéo et le débit Q du serveur vidéo est égal au débit Qd

d’un disque multiplié par le nombre total D de disques qui sont contenus dans le serveur vidéo
comme l’indique Eq. C.2.

QCGS

D
�
�
b

rd
+ trot

�
+ 2 � tseek �

b

rp
= �

) QCGS =

b

rp
� 2 � tseek
b

rd
+ trot

�D (C.2)

Pour FGS, un bloc est découpé en exactement D sous-blocs et chaque sous-bloc est stocké sur
un disque. Chaque disque extrait un sous-bloc de taille b

D
(voir Eq. C.3). Puisque tous les

disques du serveur vidéo servent chaque flux durant chaque unité de service, FGS considère le
serveur vidéo comme un disque unique, d’où la formule dans l’Eq. C.3. Noter que pour FGS,
afin d’extraire un bloc de taille b pour servir un client, D accès de disques sont nécessaires
contrairement au cas de CGS, où un seul accès est réalisé pour lire un bloc de la même taille b.

QFGS �

b

D

rd
+ trot

!
+ 2 � tseek �

b

rp

) QFGS =

b

rp
� 2 � tseek
b

D�rd
+ trot

(C.3)

MGS divise le serveur vidéo en G groupes indépendants. Chaque groupe est constitué de Dc

disques. Au sein d’un groupe, la politique FGS est appliquée et, par suite, un bloc de taille b

168 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

est découpé en b

Dc

sous-blocs. Pour lire un bloc, Dc lectures sont nécessaires et par conséquent
Dc accès aux différents disques du groupe sont effectués. Parmi les groupes, c’est CGS qui
est appliqué, ce qui explique la valeur de Q dans Eq. C.4 qui est égale au débit d’un groupe
multiplié par le nombre de groupes G.

QMGS

G
�

b

Dc

rd
+ trot

!
+ 2 � tseek �

b

rp

) QMGS =

b

rp
� 2 � tseek
b

Dc�rd
+ trot

�G (C.4)

Notez que MGS intègre CGS et FGS comme cas particuliers: Pour G = D, il s’agit de CGS et
pour G = 1, il s’agit bien de FGS.

Nos résultats ont montré que le débit du serveur vidéo avec CGS est nettement supérieur à
celui du serveur avec FGS ou MGS pour la même quantité de ressources (disques, noeuds et
buffer). FGS atteint le débit le plus faible. En effet, pour le même nombre de clients, le nombre
d’accès aux disques que demande FGS est D fois plus élevé que celui que demande CGS et
G fois plus élevé que celui demandé par MGS. Figure C.8 représente le débit du serveur vidéo
pour CGS, FGS et MGS tout en considérant le même nombre de disques et la même quantité
de buffer. Dans [GABI 98c], nous avons discuté en détail ce résultat et nous avons également
montré qu’en matière du temps de latence initial pour un nouveau flux, MGS est le meilleur
algorithme.

50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

Nombre de Disques D dans le Serveur

N
om

br
e

de
 F

lu
x

A
D

M
IS

Debit du Serveur pour FGS, CGS et MGS

CGS
MGS
FGS

Figure C.8: Débit du serveur vidéo pour CGS, FGS et MGS (Dc = 10).

Comparaison des algorithmes de ŕepartition des donńees (Serveur Fiable)

Dans [GABI 98c], nous avons intégré la fiabilité au sein du serveur vidéo et nous avons com-
paré les algorithmes CGS et MGS en matière du débit que peut atteindre le serveur vidéo. Nous

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 169

avons considéré deux techniques de fiabilité: la technique de réplication des données (mirror-
ing) et la technique de parit é (parity). Après avoir étudié le besoin supplémentaire en matière
de bande passante et de buffer que chacune de ces techniques de fiabilité requiert pour CGS et
pour MGS, nous avons abouti à la conclusion suivante: La technique de r´epartition des donn´ees
et la technique de fiabilit´e sontinterdépendantes. En effet, si la réplication est utilisée, alors
CGS atteint la meilleure performance en matière du débit du serveur vidéo, évidemment pour la
même quantité de ressources (voir la Figure C.9(a)). Par ailleurs, si la parité est utilisée, MGS
atteint un débit plus élevé que celui de CGS pour la même quantité de ressources (voir la Figure
C.9(b)). Dans la Figure C.9, l’indice Mirr représente la réplication et l’indice Par la parité.

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Nombre de Disque D dans le Serveur

N
om

br
e

de
 F

lu
x

A
dm

is

Debit du Serveur pour CGS and MGS

CGS
Mirr

MGS
Mirr

(a) Débit du serveur vidéo pour CGS et
MGS avec la réplication.

50 100 150 200 250 300
10

1

10
2

10
3

10
4

Nombre de Disque D dans le Serveur

N
om

br
e

de
 F

lu
x

A
dm

is

Debit du Serveur pour CGS and MGS

MGS
Par

CGS
Par

(b) Débit du serveur vidéo pour CGS et
MGS avec la parité.

Figure C.9: Débit d’un serveur vidéo fiable pour CGS et MGS (Dc = 10).

C.3 Étude de la fiabilité du serveur vid́eo

Dans cette section, nous allons nous limiter à l’algorithme de répartition des données CGS.
Introduire la fiabilité dans un serveur vidéo consiste principalement à y stocker l’information
redondante en supplément de l’information originale. L’information redondante est utilisée en
cas de panne d’une ou de plusieurs composantes du serveur vidéo afin de pouvoir régénérer
l’information perdue sans que les clients s’appeŗcoivent d’une dégradation. Comme déjà évo-
qué, nous distinguons deux techniques de fiabilité d’un serveur vidéo: la réplication et la parité.
Nous détaillerons tout au long de cette section les caractéristiques de chacune de ces techniques
et nous les comparerons en degré de fiabilité du serveur vidéo ainsi que de performance qui est
évaluée par le coût par flux.

170 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

C.3.1 Techniques et ḿethodes de fiabilit́e du serveur vid́eo

Les méthodes de fiabilité utilisées dans le contexte du serveur vidéo se distinguent par la tech-
nique de fiabilité utilisée, mais aussi par la granularité de distribution de l’information redon-
dante. Décrire une méthode de fiabilité revient donc à identifier (i) et (ii).

La Technique de ŕeplication des donńees

La réplication stocke simplement une copie de chaque vidéo. Plus précisément, chaque bloc
original contenu sur disque i est copié sur disque j avec i 6= j. Par conséquent, la réplication
double le volume de stockage et double ainsi le nombre de disques nécessaire, ce qui affecte le
coût du serveur vidéo. Cependant, une augmentation du nombre de disques nécessaire aboutit à
une augmentation du débit total du serveur vidéo, ce qui pourrait amortir le coût supplémentaire
de la réplication en admettant plus de clients. Nous examinerons en détail le coût par flux pour
la réplication dans la section C.3.3.

Plusieurs chercheurs ont proposé la réplication en tant que technique de fiabilité pour un serveur
vidéo, e.g. [BITT 88, MERC 95, Mourad 96, BOLO 96, CHEN 97, HSDE 90, GOMZ 92].
Nous n’allons considérer dans cet article que les mécanismes de réplication qui distribuent
les blocs originaux, ainsi que leurs copies, sur tous les disques du serveur vidéo. Les copies ne
sont pas donc stockées sur des disques dédiés, ce qui permet de distribuer la charge du serveur
vidéo équitablement sur tous ses disques.

Pour la technique de réplication, la granularité de distribution de l’information redondante con-
cerne deux aspects:

� Les blocs originaux d’un disque donné sont soit copiés sur un (One-to-One), soit
plusieurs (One-to-Some), soit tous (One-to-All) les autres disques du serveur vidéo.

� Un seul bloc original est soit entièrement copié sur un autre disque (Réplication en-
ti ère), soit sa copie est découpée en plusieurs sous-blocsqui sont stockés sur des disques
différents (Réplication en sous-blocs).

Déterminer la technique de granularité de distribution revient donc à préciser la combinaison
des deux aspects décrits ci-dessus. Comme ils dépendent de la combinaison utilisée, des critères
divers peuvent être optimisés. Ces critères concernent (i) la distribution de la charge du serveur
durant le mode de panne, (ii) la quantité de bande passante qu’il faut réserver sur chaque disque
pour extraire l’information redondante et, par suite, le débit maximum du serveur vidéo et
enfin (iii) le degré de fiabilité du serveur vidéo. Nous allons étudier plusieurs combinaisons de
granularité de distribution pour la réplication en se fondant sur les trois critères (i), (ii) et (iii).

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 171

Nous distinguerons cinq méthodes différentes de réplication que nous décrirons à l’aide des
exemples illustrés dans la Figure C.10. Dans ces exemples, nous considérons un serveur vidéo
avec 6 disques qui stocke une vidéo composée de 30 blocs originaux.

La Figure C.10(a) donne un exemple de la méthode qui consiste à répliquer les blocs orig-
inaux d’un disque sur un autre disque. Cette méthode est appelée la réplication One-to-One
(MirrOne). L’avantage de cette méthode est le nombre de disques qui peuvent tomber en panne
sans entraı̂ner la défaillance du serveur vidéo. Ce nombre peut atteindre, dans le meilleur des
cas, D

2
si D est le nombre total des disques du serveur vidéo. En effet, dans la Figure C.10(a),

même après les pannes consécutives des disques 1, 3 et 5, le serveur vidéo est toujours capable
de délivrer la totalité de l’information à tous les flux. Cependant, cette méthode présente un
problème de répartition de charge: dans le cas d’une panne d’un disque, les flux qui auraient dû
être servis par ce dernier sont tous déplacés afin d’être servis par unautre disque, ce qui évoque
une répartition inéquitable de la charge du serveur vidéo sur ses disques survivants.

Afin de résoudre le problème de répartition de la charge à la suite de la défaillance d’un disque
du serveur vidéo la méthode One-to-All est utilisée comme les Figures C.10(b) et C.10(c)
le montrent. La méthode illustrée dans la Figure C.10(b) utilise la réplication entière des
blocs originaux (Mirrall�entire), tandis que celle présentée dans la Figure C.10(c) utilise la
réplication en sous-blocs (Mirrall�sub). Ces deux méthodes ne peuvent tolérer que la panne
d’un seul disque, ce qui peut être insuffisant pour un serveur vidéo composée de plusieurs
centaines de disques.

La méthode One-to-Somedivise le serveur vidéo en plusieurs groupes indépendants. La Fig-
ure C.10(d) donne un exemple de la méthode de réplication entière des blocs originaux
(Mirrsome�entire) et la Figure C.10(e) donne un exemple de la méthode de la réplication en
sous-blocs (Mirrsome�sub). Pour Mirrsome�entire et Mirrsome�sub , les groupes sont indépen-
dants et la charge d’un disque en panne est distribuée sur les disques survivants de son groupe. Il
est entendu que chaque groupe est capable de survivre à la panne d’un disque. Par conséquent,
la méthode One-to-Some, sous ses deux formes (Mirrsome�entire et Mirrsome�sub), assure un
compromis entre (i) la distribution de la charge au sein du serveur vidéo pendant le mode de dé-
faillance et (ii) le nombre de disques qui peuvent tomber en panne sans entraı̂ner la défaillance
du serveur vidéo.

La technique de parité

La parité consiste à générer à partir des blocs originaux des blocs de redondance que nous
appelons blocs de parit́eet qui forment ensemble des groupes appelés groupes de parit́es. Un
bloc de parité est créé en effectuant sur les blocs orignaux d’un groupe une simple opération
XOR comme l’indique la Figure C.11, où un bloc P est généré à partir des blocs originaux
1, 2, 3 et 4. Un groupe de parité contient typiquement Dc � 1 blocs originaux et un bloc de

172 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

2

8

14

20

26

2

8

14

20

26

3

9

15

21

27

3

9

15

21

27

4

10

16

22

28

4

10

16

22

28

5

11

17

23

29

5

11

17

23

29

6

12

18

24

30

6

12

18

24

30

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���1

7

13

25

Copies

0 1 2 3 4 5

 13

 7

 1

 19

 25

originaux
19

Blocs

(a) One-to-One: MirrOne.

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

1 7 13 19 25

2 8 14 20

26

3 9 15

21 27

4 10

16 22 28

5

11 17 23 29

6 12 18 24 30

Copies

0 1 2 3 4 5

originaux

Blocs

(b) One-to-All avec la Réplication entière:
Mirrall�entire.

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
����������

��
��
��
��

��
��
��
��

����

��������

����

��
��
��
��
��
��
��
��
����

���
���
���
���

������

������ ������

������

���
���
���
���
���
���
���
���
������ ����

��
��
��
��

��
��
��
��

����

����

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

Copies

0 1 2 3 4 5

7.1 7.2 7.3 7.4 7.5

13.1 13.2 13.3 13.4 13.5

19.1 19.2 19.4 19.5

25.1 25.2 25.3 25.4 25.5

1.1 1.2 1.3 1.4 1.5

originaux

19.3

Blocs

(c) One-to-All avec la Réplication en sous-blocs:
Mirrall�sub.

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
��� 2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 22 23 24

26 27 28 29 30

1

7

13

19

25

1 7

Copies

0 1 2 3 4 5

13 19

25

 2

 8

20

26

 3

 9

21 27

 14

 15

 4 10

16 22

28

 5

 11

17

 23

29

 6

12 18

 24 30

originaux

Groupe 1 Groupe 2

Blocs

(d) One-to-Some avec la Réplication entière:
Mirrsome�entire.

����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����

����

����

����

��������

����

����

����

����

2

8

14

3

9

15

4

10

16

5

11

17

6

12

18

20 21 23 24

26 27 28 29 30

1

7

13

19

25

Copies

0 1 2 3 4 5

7.1 7.2

13.1 13.2

19.1 19.2

25.1 25.2

1.1 1.2 4.1 4.2

10.1 10.2

16.1 16.2

22

22.1

28.1 28.2

originaux

Groupe 1 Groupe 2

22.2

Blocs

(e) One-to-Someavec la Réplication en sous-blocs:
Mirrsome�sub.

Figure C.10: Méthodes de réplication des données pour un serveur vidéo.

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 173

parité où Dc désigne la taille de ce dernier. Dans le cas d’une panne d’un disque, les blocs
originaux stockés sur ce disque sont perdus. La Figure C.11 donne un exemple où le bloc 1 qui
est perdu est reconstruit à la suite d’une opération XOR effectuée sur les blocs survivants (les
blocs originaux 2, 3 et 4 et le bloc de parité P).

���
���
���
���2 3 4 P1

32
���
���
���

���
���
���

P4 1+ + + =

XOR

+ + +
����
����
����
����=1 2 3 4 P

Figure C.11: Exemple de la technique de parité.

Un grand nombre de travaux ont examiné la technique de parité dans le contexte général de
RAID (RAID2-6) et plus précisément dans le contexte des serveurs vidéo [LEE 92, TOB 93b,
CLGK 94, HOLL 94, GHAN 95a, COHE 96, OZDE 96a, TEWA 96b, BIRK 97]. Ces travaux
proposent d’assurer la fiabilité du serveur vidéo en utilisant différentes méthodes de répartition
des données, e.g. RAID3 vs. RAID5, ou différents mécanismes de stockage de la parité dans
le serveur vidéo. Par conséquent, ces travaux n’avaient pas forcément les mêmes objectifs.
Certains essaient d’optimiser le débit du serveur, d’autres le coût du serveur ou le temps de
réponse du serveur à de nouvelles requêtes ou bien encore la distribution de la charge sur les
composantes du serveur vidéo. Comme dans le cas de la réplication, nous n’allons considérer
que les mécanismes de parité qui distribuent les blocs de parité à travers tous les disques du
serveur vidéo.

Dans le contexte de la parité, la granularité de distribution de l’information redondante se déter-
mine par la taille d’un groupe de parité. Admettons que tous les groupes de parité soient de la
même taille et que chaque disque appartienne à un seul groupe. Nous montrons dans la Fig-
ure C.12 deux exemples de méthodes de parité correspondant à RAID5. La première méthode,
fondée sur le principe de One-to-Allet appelée Parall, considère que la taille d’un groupe est
D, ce qui revient à prévoir un seul groupe au sein du serveur vidéo (voir La Figure C.12(a)).
Un serveur vidéo qui utilise cette méthode peut survivre seulement à la panne d’un seul disque.
La deuxième méthode, fondée sur One-to-Someet appelée Parsome, divise le serveur vidéo en

174 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

plusieurs groupes indépendants. La taille de chaque groupe est Dc et chaque groupe peut tolérer
la panne d’un de ses disques (voir la Figure C.12(b)).

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

P1 1 2 3 4 5

6 P2 7 9 8 10

11 12 P3 13 14 15

16 17 18 P4 19 20

21 22 23 24 P5 25

26 27 28 29 30 P6

0 1 2 3 4 5

(a) One-to-All: Parall.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

P1 1 2 P2 3 4

5 P3 6 7 8

 9 10 11 12

P4

P5 P6

P7 13 14 P8 15 16

17 P8 18 19 P9 20

21 22 P10 23 24 P11

P12 25 26 P13 27 28

29 P14 30

0 1 2 3 4 5

Groupe 1 Groupe 2

(b) One-to-Some: Parsome.

Figure C.12: Méthodes de parité pour un serveur vidéo.

C.3.2 Mod́elisation de la fiabilité du serveur vid́eo

Nous avons distingué cinq mécanismes de réplication des données et deux mécanismes de parité
qui peuvent être utilisés pour rendre le serveur vidéo insensible aux pannes. Selon la granularité
de distribution de la redondance (réplication ou parité), nous avons identifié trois classes dif-
férentes qui sont One-to-One, One-to-Allet One-to-Some. Ces classes tolèrent des nombres dif-
férents de pannes, comme nous l’avons vu dans la section précédente. Afin de comparer quanti-
tativementces différentes classes, nous avons effectué des travaux de modélisation de la fiabilité
du serveur vidéo [GAFS 99b, GABI 99b]. Nous nous sommes fondés sur des chaı̂nes markovi-
ennes à temps continu (Continuous Time Markov ChainsCTMC) [SATR 96, HOYL 94]. Nous
supposerons que la durée moyenne de fonctionnementde chaque disque (disk’s Mean Time To
FailureMTTFd) est une fonction exponentielle du temps. Ceci est aussi valable pour la durée
moyenne de ŕeparation d’un disque (disk’s Mean Time To RepairMTTRd). Nous noterons
respectivement �d et �d le taux de défaillanced’un disque (disk’s failure rate) et le taux de
réparation d’un disque (disk’s repair rate): �d = 1

MTTFd
et �d = 1

MTTRd
.

Afin de créer le diagramme d’espace d’état (state-space diagram) d’un CTMC, nous faisons
appel aux paramètres suivants: s désigne le nombre maximum d’états du diagramme. Un état i
prend donc des valeurs entre 0 et (s � 1), où 0 signifie que toutes les composantes du serveur
vidéo sont intactes et où (s � 1) est l’état de défaillance du serveur vidéo. Le paramètre pi(t)
détermine la probabilité suivante: le serveur vidéo se trouve dans l’état i au temps t. Nous
admettons qu’au temps t = 0, le serveur vidéo se trouve dans l’état 0. Lorsque le serveur vidéo

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 175

atteint l’état (s � 1), il est supposé y séjourner infiniment, ce qui revient à admettre que l’état
(s�1) est un état absorbant(absorbing state). Les égalités suivantes sont vérifiées: p0(0) = 1,
pi(0) = 0 8i 2 [1 � � � (s � 1)] et p(s�1)(1) = 1. La fiabilité du serveur vidéo Rs(t) peut être
donc calculée: Rs(t) =

P
s�2

i=0 pi(t) = 1 � p(s�1)(t). Nous nous limiterons dans ce résumé au
cas des pannes indépendantes des disques (voir [GAFS 99b, GABI 99b] pour une étude plus
détaillée).

Modélisation deOne-to-All

Avec la méthode One-to-All, le serveur vidéo tombe en panne dès que deux de ses disques
sont en panne. Le diagramme qui correspond à cette méthode est illustré dans la Figure C.13,
où les états 0, 1 et F désignent respectivement l’état initial, l’état d’une panne d’un disque et
finalement l’état de défaillance du serveur vidéo.

µd

λd λd

0 1 F

D . (D-1) .

Figure C.13: Diagramme pour One-to-All.

La matrice génératrice (generator matrix) Qs du diagramme de la Figure C.13 est par con-
séquent:

Qs =

0
B@ �D � �d D � �d 0

�d ��d � (D � 1) � �d (D� 1) � �d
0 0 0

1
CA

Modélisation deOne-to-Some

La méthode One-to-Somedivise le serveur vidéo en C groupes indépendants. Le serveur est
en défaillance quand un de ses groupes tombe en panne. Nous modélisons la fiabilité d’un seul
groupe (voir la Figure C.14(a)) et déduisons par la suite la fiabilité du serveur vidéo en utilisant
la Figure C.14(b). Les paramètres Dc et �c de la Figure 14(b) désignent respectivement la taille
d’un groupe et le taux de défaillance d’un groupe.

Les matrices génératrices des diagrammes de la Figure 14(b) sont Qc (pour la Figure C.14(a))
et Qs (pour la Figure C.14(b)):

176 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

µd

λdDc . Dc λd(-1) .

0 1 F

(a) Diagramme pour un groupe.

λcC .

0 F

(b) Diagramme pour le
serveur.

Figure C.14: Diagrammes pour One-to-Some.

Qc =

0
B@ �Dc � �d Dc � �d 0

�d ��d � (Dc � 1) � �d (Dc � 1) � �d
0 0 0

1
CA

Qs =

�C � �c C � �c

0 0

!

Modélisation deOne-to-One

La méthode One-to-Oneest seulement significative dans le cas la réplication des données. En
effet, pour la parité, cette méthode signifierait que la taille de chaque groupe de parité est égale
à deux, ce qui revient à copier chaque bloc original, donc à utiliser la réplication. Comme
nous avons dans l’exemple de la Figure C.10(a), plusieurs disques sont autorisés de tomber
en panne sans entraı̂ner la panne du serveur vidéo. Cependant, ceci dépend de l’emplacement
des disques en panne. Si nous considérons de nouveau la Figure 10(a) et nous admettons que
les deux premiers disques (0 et 1) tombent en panne successivement, le serveur vidéo se trouve
dans l’état de défaillance. En d’autres termes, le serveur vidéo tombe en panne dès que deux
disques consécutifs (voisins) tombent en pannes. Le nombre de pannes que peut tolérer le
serveur vidéo peut donc varier entre 1 et D

2
. Ce nombre ne peut pas être déterminé en avance,

ce qui rend la modélisation de cette méthode assez complexe. Admettons que le serveur se
trouve dans l’état (k � 1) et il continue à opérer. Ceci signifie que (k � 1) disques sont déjà
tombés en pannes et tous ces disques ne sont pas voisins. Avec la panne du kme disque, deux
cas de figure sont envisageables: (i) le serveur continue d’opérer ou (ii) le serveur tombe en
panne. Soit P (k) la probabilité que le cas (i) ait lieu 1. Nous présentons dans la Figure C.15
le diagramme correspondant à la méthode One-to-One. Les paramètres de la Figure C.15 ont

1[GAFS 99b] décrit en détail comment calculer P (k) pour chaque valeur de k

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 177

les valeurs suivantes: �1 = D � �d, �2 = (D � 1) � �d � P (2), �3 = (D � 2) � �d � P (3), �n+1 =

(D � n) � �d � P (n+1), A = (D � 1) � �d � (1 � P (2)), B = (D � 2) � �d � (1� P (3)), G =

(D � n) � �d � (1 � P (n+1)), H = (D � (n+ 1)) � �d � (1 � P (n+2)), Z = D

2
� �d et � = �d.

0 1 2 D / 2

F

µµ µ

λλ λ1 2

n n+1

A B

n+1

G H Z

Figure C.15: Diagramme pour One-to-One.

La matrice génératrice Qs de ce diagramme est par conséquent:

Qs =

0
BBBBBBB@

��1 �1 0 0 � � � 0 0

� �� � �2 �A �2 0 � � � 0 A

0 � �� � �3 �B �3 � � � 0 B

� �

0 0 0 � � � � �� � Z Z

0 0 0 0 � � � 0 0

1
CCCCCCCA

Fiabilit é du serveur vid́eo: Résultats

Nous résolvons nos chaı̂nes Markoviennes (CTMC) avec l’outil SHARPE (Symbolic Hier-
archical Automated Reliability and Performance Evaluator) [SATR 96]. SHARPE utilise la
matrice génératrice de chaque modèle pour calculer la fiabilité du serveur vidéo à un instant t
donné. Les résultats en matière de fiabilité du serveur vidéo sont illustrés dans la Figure C.16.
Le nombre total de disques est D = 100. Examinons la fiabilité du serveur pour deux valeurs
de �d = 1

60000
heures (la Figure C.16(a)) et �d = 1

100000
heures (la Figure C.16(b)).

Les résultats montrent que, comme prévu, la fiabilité du serveur vidéo augmente quand la valeur
de �d diminue. A titre d’exemple, après 10000 jours d’opération, la fiabilité du serveur vidéo
qui utilise la méthode One-to-Oneest de l’ordre de 0; 3 pour la valeur � = 1

60000
heures, tandis

qu’elle est de l’ordre de 0; 66 pour la valeur �d = 1
100000

heures. D’autre part, la méthode
One-to-Oneest la plus élevée pour les deux valeurs de �d. La méthode One-to-Allobtient la
fiabilité la plus basse.

Dans [GAFS 99b, GABI 99b], nous avons étudié et modélisé la fiabilité du serveur vidéo (i)
dans le cas des pannes indépendantes où seuls les pannes des disques sont considérées et aussi

178 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Temps [Jours]

F
on

ct
io

n
de

 fi
ab

ili
te

Fiabilite du serveur video

One−2−One
One−2−Some
One−2−All

(a) Fiabilité du serveur vidéo pour �d =
1

60000
heures.

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Temps [Jours]

F
on

ct
io

n
de

 fi
ab

ili
te

Fiabilite du serveur video

One−2−One
One−2−Some
One−2−All

(b) Fiabilité du serveur vidéo pour �d =
1

100000
heures.

Figure C.16: Fiabilité du serveur vidéo avec D = 100, �d = �n = 1
72

heures et pour One-to-
SomeDc = 10.

(ii) dans le cas des panne dépendantes où les disques et les noeuds peuvent tomber en panne.
Les résultats de ces travaux montrent que la méthode One-to-One devance les autres méthodes
en matière de degré de fiabilité en dépit d’un coût par flux élevé. Par ailleurs, la méthode One-
to-Some avec une petite taille de groupe assure le meilleur compromis entre une grande fiabilité
et un faible coût par flux. One-to-All est dans tous les cas la méthode la moins performante
en matière de fiabilité du serveur vidéo et de coût par flux. Nous invitons le lecteur intèressé à
recourir à ces références pour une analyse plus complète.

C.3.3 Performance du serveur vid́eo: Coût par flux

Débit du serveur vidéo

Comme nous utilisons CGS pour la répartition des données, le contrôle d’admission d’un nou-
veau flux est fondé sur l’Eq. C.2 et le débit d’un disque est celui indiqué dans l’Eq. C.1.
Cependant, afin d’assurer une tolérance aux pannes, chaque disque doit réserver une part de sa
bande passante (I/O bandwidth) disponible pour l’utiliser dans le mode de défaillance d’autres
disques. Par conséquent, le débit utile de chaque disque devient inférieur à celui atteint dans
l’Eq. C.1. Nous allons déterminer ce débit utile d’un disque pour chaque méthode de fiabilité.

Pour les méthodes de réplication des données qui utilisent la réplication entière des blocs
(Mirrone, Mirrall�entire et Mirrsome�entire), le débit est simplement la moitié de la valeur
de Qd. Prenons un exemple pour expliquer cela: un disque est tombé en panne au moment où il
doit servir n flux. Au cas échéant, les blocs originaux que ces n flux auraient extraits du disque

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 179

défaillant ont tous leurs copies sur un autredisque. Ce dernier doit donc servir ses propres
flux mais aussi tousles flux du disque défaillant. Ainsi, afin d’assurer un service déterministe,
tous les disques du serveur vidéo ne peuvent utiliser que la moitié de leur capacité en matière
de bande passante pour ces trois méthodes de réplication. Soit Qmirr

entire
le débit d’un disque

correspondant à ces méthodes (Mirrone, Mirrall�entire et Mirrsome�entire). Nous avons donc:
Qmirr

entire
= Qd

2
.

Pour les méthodes de réplication des données qui utilisent la réplication en sous-blocs, la sit-
uation est différente. Prenons tout d’abord la méthode Mirrall�sub (voir la Figure C.10(c)).
Admettons que le débit d’un disque tolérant aux pannes est Qmirr

all�sub
. Dans le cas d’une panne

d’un disque, chacun des disques survivants du serveur vidéo va extraire en maximum Qmirr

all�sub

blocs originaux et Qmirr

all�sub
sous-blocs répliqués durant chaque unité de service. Nous avons la

formule suivante de contrôle d’admission:

Qmirr

All�Sub
�
�
(b

rd
+ trot) + (

b
all

sub

rd
+ trot)

�
+ 2 � tseek � � où � = b

rp
désigne la durée de l’unité

de service. Le débit d’un disque est par conséquent: Qmirr

All�Sub
= ��2�tseek

b+ball
sub

r
d

+2�trot

sachant que

ball
sub

= b

(D�1)
est la taille d’un sous-bloc répliqué.

D’une manière analogique, nous retenons pour la méthode Mirrsome�sub (voir la Figure
C.10(e)) le débit suivant: Qmirr

Some�Sub
= ��2�tseek

b+bsome

sub

r
d

+2�trot
sachant que bsome

sub
= b

(Dc�1)
où Dc est

la taille d’un groupe.

Nous calculons le débit d’un disque pour chacune des méthodes de parité. Pour la méthode
Parall (voir la Figure C.12(a)), chaque disque doit réserver 1

D

me de sa bande passante pour le
mode de défaillance. Soit Qpar

all
le débit d’un disque pour cette méthode: Qpar

all
= Qd � dQd

D
e.

D’une fa̧con analogique, le débit d’un disque Qpar

some
dans le cas de la méthode Parsome est

Q
par

Some
= Qd � dQd

Dc

e.

Besoin suppĺementaire en buffer

La tolérance aux pannes exige aussi une réservation supplémentaire de ressources, notamment
du buffer. Pour un serveur vidéo non fiable, le besoin en bufferB est B = 2 � b �Qs où b désigne
la taille d’un bloc et Qs le nombre de flux admis par le serveur vidéo. Les mécanismes de répli-
cation des données n’ont pas besoin de buffer supplémentaire pendant le mode de défaillance.
En effet, quand un disque tombe en panne, chaque bloc qui aurait dû être extrait de ce disque
est lu par un autre disque contenant la copie de ce bloc. Par ailleurs, les mécanismes de parité
voient leur besoin en buffer augmenter. En effet, pour reconstruire un bloc perdu, les différents
blocs originaux et le bloc de parité qui appartiennent tous au même groupe de parité que le bloc
perdu, doivent effectuer une opération XOR. Tous ces blocs, doivent être contenus temporaire-
mentdans le buffer pour effectuer l’opération XOR. Par conséquent, le besoin en buffer pour

180 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

un flux est Dc � b, avec Dc désigne la taille du groupe et b celle d’un bloc. Soit Bpar

all
le besoin

en buffer pour la méthode Parall et Bpar

some
le besoin en buffer pour la méthode Parsome. Nous

avons donc: Bpar

all
= D � b �Qs et Bpar

some
= Dc � b �Qs.

Coût par flux: R ésultats

Nous dérivons pour chaque méthode de fiabilité considérée le coût par flux qui tient en compte le
débit du serveur vidéo et son besoin en ressources (buffer et disques). Nous calculons d’abord
le coût total du serveur vidéo $serveur et dérivons ensuite le coût par flux $flux comme suit:
$flux = $serveur

Qs

. Le coût du serveur vidéo est: $serveur = Pbuf �B + Pd � Vdisque �D, sachant
que Pbuf = 13$ est le prix de 1 Mbyte de buffer, B est le besoin en buffer, Pd = 0; 5$ est le
prix de 1 Mbyte de disque et Vdisque représente la capacité de stockage d’un disque en Mbyte.
Le coût par flux prend ainsi la forme suivante: $flux =

Pbuf �B+Pd�Vdisque�D

Qs

.

La Figure C.17 illustre le coût par flux des différentes méthodes de fiabilité du serveur vidéo
considérées. Noter que le terme Mirrentire englobe les trois méthodes de réplication des
données qui utilisent la réplication entière des blocs originaux (Mirrone, Mirrall�entire et
Mirrsome�entire). Ces trois méthodes ont le même débit et le même besoin en ressources et
sont donc présentées par un seul terme: Mirrentire .

0 200 400

10
2

10
3

Nombre de disques D du serveur video

C
ou

t p
ar

 fl
ux

 [$
]

Cout par flux

Par
all

Mirr
Entire

Par
some

Mirr
some−sub

Mirr
all−sub

Figure C.17: Coût par flux pour les méthodes de fiabilité du serveur vidéo avec Dc = 10.

Les résultats de la Figure C.17 montrent que la méthode de parité Parall est la plus chère
puisqu’elle a le coût par flux le plus élevé. Pour Parall, l’augmentation du coût est liée à celle
du nombre total de disques D. En effet, le besoin en buffer est très grand pour Parall dans le
mode de défaillance et ce besoin accroı̂t linéairement avec le nombre de disques D du serveur
vidéo. Les méthodes de réplication Mirrentire qui utilisent la réplication entière des blocs ont
un coût par flux relativement élevé. Les méthodes de réplication des données qui utilisent la

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 181

réplication en sous-blocs (Mirrall�sub, Mirrsome�sub), ainsi que la méthode de parité Parsome,
ont des valeurs du coût par flux très proches et elles sont très basses 2.

C.3.4 Fiabilité vs. performance du serveur vid́eo

Nous avons identifié et comparé plusieurs méthodes de fiabilité du serveur vidéo. La compara-
ison s’est effectuée d’abord en fait du degré de fiabilité du serveur vidéo et ensuite en fait de
la performance du serveur vidéo (coût par flux). Cependant, il est nécessaire de considérer à
la fois le critère de fiabilité et celui de performance afin de mieux comparer ces différentes
méthodes. A titre d’exemple, nous avons vu que la méthode Mirrall�sub a un coût par flux très
bas. Néanmoins, cette méthode qui appartient à la classe One-to-Alln’atteint qu’une fiabilité
relativement faible.

La Figure C.18 illustre la fiabilité du serveur vidéo en fonction de sa performance (débit du
serveur vidéo). La fiabilité du serveur vidéo est calculée après un an (Figure C.18(a)) et trois
ans (Figure C.18(b)) d’opération.

Les trois mécanismes de la classe One-to-All(Parall, Mirrall�sub et Mirrall�entire) ont déjà
pour des bas débits une fiabilité trop faible. Ces trois méthodes ne sont donc pas attractives
pour assurer la tolérance aux pannes d’un serveur vidéo. D’après la Figure C.18(a) et la Figure
C.18(b), Mirrone atteint la fiabilité la plus élevée.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Debit du serveur video

F
on

ct
io

n
de

 fi
ab

ili
te Mirr

one
Par

some
Mirr

some−sub
Mirr

some−entire
Par

all
Mirr

all−sub
Mirr

all−entire

(a) Fiabilité du serveur vidéo après 1 an d’opération.

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Debit du serveur video

F
on

ct
io

n
de

 fi
ab

ili
te Mirr

one
Par

some
Mirr

some−sub
Mirr

some−entire
Par

all
Mirr

all−sub
Mirr

all−entire

(b) Fiabilité du serveur vidéo après 3 ans d’opération.

Figure C.18: Fiabilité du serveur vidéo pour le même débit avec Dc = 10, �d = 1
100000

heures

et �d = �n =
1
72

heures.

2Voir [GAFS 99a, GAFS 99b] pour plus de détails.

182 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

En tenant compte des résultats des Figures C.17 et C.18, nous concluons que

� Mirrone atteint la meilleure fiabilité du serveur vidéo en dépit du coût par flux qui est
relativement élevé.

� Les méthodes Parsome et Mirrsome�sub ont un coût par flux très faible et une fiabilité
moyenne du serveur vidéo. Notez que la taille d’un groupe de parité est Dc = 10 pour
ces méthodes. Dans [GAFS 99b], nous avons étudié l’impact que la variation de la valeur
de Dc provoque sur la fiabilité du serveur vidéo et sur le coût par flux. Nos résultats ont
montré que baisser la valeur de Dc, i.e. Dc = 3; 5 assure un bon compromis entre une
haute fiabilité du serveur vidéo et un coût bas par flux.

C.3.5 ARPS: Un Nouvel Algorithme de Placement de la Ŕeplication

La section précédente nous a montré que la technique de réplication des données est attirante
pour assurer la fiabilité d’un serveur vidéo. Cependant, pour toutes les méthodes de réplication
que nous avons identifiées, le serveur vidéo doit sacrifier une partie de sa bande passante pour
offrir un service ininterrompu durant le mode de défaillance. En outre, le nombre des blocs à lire
de chaque disque pendant le mode de défaillance double au pire des cas, ce qui double le temps
de latence (délai de positionnement sur la bonne piste et délai de rotation) nécessaire pour ac-
céder aux différents blocs. Ceci affecte le débit de chaque disque et donc celui du serveur vidéo.
Ce problème nous a guidé à coņcevoir une nouvelle méthode de placement de la réplication qui
évite l’augmentation du temps de latence durant le mode de défaillance et assure un débit plus
haut par rapport aux méthodes classiques que nous avons discuté précédemment. Ainsi, nous
avons proposé un algorithme appelé ARPS (Adjacent Replica Placement Scheme) qui stocke
les sous-blocs repliqués et les blocs originaux d’une manière adjacente. Ainsi pendant le mode
de défaillance, la lecture des sous-blocs repliqués se fait avec celle des blocs originaux sans
qu’il y ait besoin de délai supplémentaire de positionnement sur la bonne piste ou de rotation.
La Figure C.19 donne un example de ARPS où un serveur vidéo est constitué de 2 groupes,
ayant chacun 3 disques.

Prenons par example le bloc 9 qui est stocké sur disque 3. La réplication de ce bloc se fait
comme suit. La copie du bloc 9 est divisée en deux sous-blocs 9:1 et 9:2 qui sont stockés
respectivement sur les disques 1 (adjacent au bloc 7) et 2 (adjacent au bloc 8). Dans le cas où
le disque 3 tombe en panne et afin de reconstruire le bloc 9, les deux sous-blocs 9:1 et 9:2 sont
lus en avance lors de la lecture des blocs 7 et 8.

D’une manière générale, ARPS utilise l’algorithme indiqué dans la Figure C.20 pour le place-
ment de la réplication. Les paramètres utilisés dans la Figure C.20 sont définis dans le tableau
C.3.

C.3. ÉTUDE DE LA FIABILITÉ DU SERVEUR VIDÉO 183

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���3

9

15

21

27

1

7

13

19

25

4

10

16

28

22

6

12

18

24

30

3.1

8.2 9.1

2 7.2 8.1

13.214.1

14.215.1 19.220.1

20.221.1 25.226.1

26.227.1

2

8

14

20

26

1 3.2 7.1

9.2 13.1

15.219.1

21.225.1

27.2

5 6.1 10.211.1

11.212.1 16.217.1

17.218.1 22.223.1

23.224.1 28.229.1

29.230.1

5

11

17

23

29

4 6.2 10.1

12.216.1

18.222.1

24.228.1

30.2

1 2 3 4 5 6

Groupe 1 Groupe 2

Figure C.19: Un example d’ARPS pour un serveur vidéo à 6 disques et 2 groupes.

d1,1 d
cD ,1 d d

cD1,C ,Cd1, j d
cD , j

d1, j d
cD , jd

cD -1, j

b1

 C j

d2, j

k k1b b km l1 lp f h1 hqn

1Groupe g Groupe g Groupe g

Figure C.20: Placement des données avec ARPS.

Comme la Figure C.20 l’indique, la formule de placement de la réplication dépend de la position
du disque au sien d’un groupe. Nous avons identifié trois types e positions pour un groupe gj
donné.

La première position concerne le premier disque d1;j du groupe. Pour celui-ci, un bloc original
b est stocké d’une manière adjacente avec Dc � 1sous-blocs répliqués. Selon Figure C.20, ces
derniers sont b1; � � � ; bn avec b1 = [b + 1]:[Dc � 1]; � � � ; bn = [b + Dc � 1]:[1], où la notation
[�]:[�] identifie le �me sub-bloc du bloc original �.

La deuxième position concerne tous les disques di;j avec i 2 [2::Dc � 1]. SUr ces disques,

184 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

Term Definition

D Le nombre total des disques
Dc La taille d’un groupe
C Le nombre de groupes
gj le jme groupe du serveur,

avec j 2 [1::C]

di;j Le ime disque au sein du jme groupe,
avec i 2 [1::Dc] et j 2 [1::C]

Table C.3: Data layout parameters for ARPS

le bloc original k est stocké d’une manière adjacente avec Dc � 1 sous-blocs répliqués qui
sont k1; � � � ; km, l1; � � � ; lp avec k1 = [k + 1]:[Dc � 1]; � � � ; km = [k + Dc � i]:[Dc � i], l1 =
[l]:[Dc � (i� 1)]; � � � ; lp = [l+ (i� 2)]:[1] et l = k + (Dc � i+ 1) + (C � 1) �Dc.

La troisième et dernière position est celle du dernier disque dDc;j
du groupe. Sur ce disque, le

bloc original f est stocké d’une manière adjacente avec Dc � 1 sous-blocs répliqués qui sont
h1; � � � ; hq avec h1 = [h]:[Dc � 1]; � � �hq = [h+Dc � 2]:[1], et h = f + (C � 1) �Dc + 1.

Les résultats ont montré que ARPS améliore le débit du serveur vidéo de 60 à 90 % par rapport
aux algorithmes de réplication classiques tel que celui du serveur vidéo Tigerde Microsoft.

C.4 Implémentation duServer Arrayd’Eurecom

Nous avons parcouru les différentes étapes de la conception du serveur vidéo: d’abord,
l’architecture du serveur vidéo (la matrice à serveurs) et puis les techniques d’extraction et
d’ordonnancement des flux, ensuite l’algorithme de répartition des données et enfin la méth-
ode de fiabilité. Pour chacune de ces étapes, nous avons étudié plusieurs possibilités avant de
choisir la méthode la plus appropriée pour chacune de ces étapes. Dans cette section, nous
décrirons briévement le prototype de serveur vidéo que nous avons implémenté a Eurecom et
qui est l’objet d’un projet industriel avec France Telecom.

D’abord, le prototype de serveur vidéo intègre plusieurs de nos résultats de recherches
[GAFS 98b]: L’architecture est fondée sur la matrice à serveur (voir section C.2.2). Chaque
vidéo est répartie sur la totalité des noeuds et disques du server array(CGS). Le server array
stocke les vidéos codés en MPEG-1 et dessert un grand nombre de clients consommant cha-
cun des flux MPEG-1 avec 25 trames=s (1; 5 Mbit=s). Il utilise des composantes hardware
standards, ce qui assure son faible coût. SCAN est utilisé pour l’ordonnancement des flux et
l’extraction des données est périodique. La durée de l’unité de service est déterminée par la
taille des blocs à stocker. Il faut remarquer que l’ordonnancement des flux est complètement

C.5. CONCLUSIONS 185

distribué et chaque noeud du server arraysert les différents flux d’une manière autonome sans
échange de messages ou synchronisation avec les autres noeuds (ordonnancement autonome).
La fiabilité est assurée par la technique de réplication des données et plus précisément, le server
array utilise la méthode Mirrsome�entire qui divise le server arrayen plusieurs groupes in-
dépendants (voir la section C.3). Cette méthode est capable de tolérer la panne d’un disque
au sein de chaque groupe, mais aussi la panne d’un noeud entier. La détection de la panne
d’un disque ou d’un noeud est dédiée au client. Ce dernier transmet le message de panne au
meta serveur, qui pour sa part, déclenche la lecture des copies des blocs originaux perdus. Le
client est implémenté en JAVA, ce qui lui permet d’être indépendant de la plate-forme utilisée.
Il utilise en effet la classe JMF (Java Media Framework)qui permet la capture et la visualisa-
tion des trames vidéo codées en MPEG-1. Le client est muni des fonctionnalités interactives
telles que play, pause, reposition, stop, fast forward et fast backward. Finalement, notez que les
deux parties du server array– serveur et client – tournent sur des plates-formes multiples (sta-
tions UNIX et PCs). Les tests de performance effectués prouvent que le prototype du serveur
vidéo est robuste au facteur de l’échelle (scalable): le débit du serveur vidéo augmente quasi
linéairement quand le nombre de noeuds augmente.

C.5 Conclusions

Les applications multimédia comme la vidéo à la demande requièrent un dispositif de stock-
age des données audio et vidéo appelé serveur vidéo. Étant donné l’importance du volume des
données vidéo, un serveur vidéo comporte habituellement de nombreux disques. Par ailleurs,
la vidéo à la demande est particulièrement gourmande en capacité de mémoire et en largeur de
bande passante. Ceci nécessite la conception d’un serveur vidéo avec plusieurs noeuds (ma-
chines) pour servir un grand nombre de clients. L’objectif de cette thèse est de concevoir
et étudier la performance d’un tel serveur vidéo. Cette thèse identifie, propose et compare
plusieurs algorithmes qui interviennent dans les différentes phases de conception d’un serveur
vidéo. Elle étudie en particulier l’architecture du serveur vidéo, le placement et la distribution
des données vidéo et la fiabilité du serveur vidéo. Nous proposons un algorithme de répartition
des données sur plusieurs disques et noeuds du serveur vidéo, appelé Mean Grained Striping,
et nous le comparons avec les algorithmes de répartition des données que nous avons identifié
en matière du débit du serveur (nombre maximum des clients admis simultanément), du besoin
en buffer et du temps de latence initial pour un nouveau client. Nous avons considéré le cas
d’un serveur vidéo non-tolérant aux pannes et celui d’un serveur vidéo tolérant aux pannes.
Nos résultats montrent surtout que l’algorithme de répartition des données et celui qui assure
la fiabilité du serveur vidéo sont interdépendantset le choix de l’un doit être pris en combi-
naison avec le choix de l’autre. En outre, nous comparons plusieurs algorithmes de fiabilité du
serveur vidéo en fait de la performance et du coût du serveur. Les résultats prouvent que pour

186 APPENDIX C. SOMMAIRE DÉTAILLÉ EN FRAŅCAIS

un serveur vidéo, la technique de fiabilité fondée sur la simple réplication des données est moins
coûteuse que celle qui est fondée sur la technique de parité. Afin d’évaluer quantitativement la
fiabilité du serveur vidéo pour les différentes méthodes de fiabilité, nous modélisons la fiabilité
à l’aide des chaines Markoviennes. L’évaluation de ces modèles montre que l’algorithme de
fiabilité Grouped One-to-One, que nous avons proposé, assure la fiabilité la plus importante en
dépit d’un coût par flux relativement élevé. Nos résultats indiquent aussi que diviser le serveur
vidéo en petits groupes indépendants aboutit au meilleur compromis entre une fiabilité élevée
et un coût par flux bas. Dans le cas d’un serveur vidéo qui utilise la technique de réplication
des données, nous proposons une nouvelle méthode de placement de la réplication, appelée
ARPS(Adjacent Replica Placement Scheme). Celle-ci place les données originales directe-
ment à côté des données répliquées de fa̧con d’éliminer les temps de recherche supplémentaire
quand le serveur vidéo opère dans le mode de défaillance. Nous montrons que ARPS améliore
le débit du serveur vidéo de 60 � 90% par rapport aux méthodes classiques de placement de
la réplication. Finalement, nous implémentons un prototype de serveur vidéo qui reflète les
décisions que nous avons prises durant la phase de conception. Le prototype implémente un
nouvel algorithme distribué d’ordonnacement et d’extraction des données. En outre, nos résul-
tats expérimentaux montrent que le prototype du serveur vidéo est robuste au facteur d’échelle
en matière du nombre de noeuds contenus dans le serveur vidéo.

Bibliography

[BAAN 98] S. A. Barnett and G. J. Anido, “Performability of Disk-Array-Based
Video Servers”, Multimedia Systems, 6:60–74, 1998.

[BEBA 97] S. A. Barnett, G. J. Anido and P. Beadle, “Predictive call admission
control for a disk array based video server”, Proceedings in Multimedia
Computing and Networking, pp. 240, 251, San Jose, California, USA,
February 1997.

[BEGH 94] S. Berson, R. Muntz, S. Ghandeharizadeh and X. Ju, “Staggered
Striping in Multimedia Information Systems”, Proceedings in ACM-
SIGMOD Conference, 1994.

[BER 94a] S. Berson, L. Golubchik and R. R. Muntz, “Fault Tolerant Design of
Multimedia Servers”, Proceedings of SIGMOD’95, pp. 364–375, San
Jose, CA, May 1995.

[BERN 96a] C. Bernhardt and E. W. Biersack, “The Server Array: A Scalable
Video Server Architecture”, W. Effelsberg, A. Danthine, D. Ferarri and
O. Spaniol, Eds., High-Speed Networks for Multimedia Applications,
Kluwer Publishers, Amsterdam, The Netherlands, 1996.

[BERN 96b] C. Bernhardt and E. W. Biersack, “The Server Array: A Scalable
Video Server Architecture”, W. Effelsberg, O. Spaniol, A. Danthine and
D. Ferrari, Eds., High-Speed Networking for Multimedia Applications,
Kluwer Publishers, Amsterdam, The Netherlands, March 1996.

[BIRK 97] Y. Birk, “Random RAIDs with Selective Exploitation of Redundancy
for High Performance Video Servers”, NOSSDAV97, LNCS, Springer,
May 1997.

[BITT 88] D. Bitton and J. Gray, “Disk Shadowing”, Proc. of the 14th int. confer-
ence on VLDB, L. A., Aug. 1988, pp. 331–338, 1988.

187

188 BIBLIOGRAPHY

[BOLO 96] W. Bolosky et al., “The Tiger Video Fileserver”, 6th Workshop on
Network and Operating System Support for Digital Audio and Video,
Zushi, Japan, April 1996.

[BOLO 97] W. Bolosky, R. F. Fritzgerald and J. R. Douceur, “Distributed Schedule
Management in the Tiger Video Server”, Proc. Symp. on Operating
System Principles, pp. 212–223, October 1997.

[BUD 94] M. M. Buddhikot and G. M. Parulkar, “Design of a Large Scale Mul-
timedia Storage Server”, Computer Networks and ISDN Systems, pp.
504–524, December 1994.

[BUD 95] M. M. Buddhikot, G. M. Parulkar, A. Merchant and J. R. Cox, “Dis-
tributed Data Layout, Scheduling and Playout Control in a Large Scale
Multimedia Storage Server”, April 1995.

[BUDD 96] M. M. Buddhikot and G. M. Parulkar, “Efficient Data Layout, Schedul-
ing and Playout Control in MARS”, to apperar in ACM/Springer Mul-
timedia Systems Journal, 1996.

[CHA 94] E. Chang and A. Zakhor, “Admission Control and Data Placement for
VBR Video Servers”, Proceedings of the 1st International Conference
on Image Processing, pp. 278–282, Austin, Texas, November 1994.

[CHAN 93] J. Chandy and A. Reddy, “Failure evaluation of disk array organiza-
tions”, Conf. on Distributed Computing Systems, May 1993.

[CHAN 96] E. Chang and A. Zakhor, “Cost Analyses for VBR Video Servers”,
IEEE Multimedia, 4(3):56–71, 1996.

[Chen 90] P. Chen and D. Patterson, “Maximizing Performance in a Striped Disk
Array”, ACM SIGARCH Conference on Computer Architecture, Seattle,
WA, May 1990.

[CHEN 93] P. Chen, E. Lee, A. Drapeau, K. Lutz, E. Miller, S. Seshan, K. Sher-
riff, D. Patterson and R. Katz, “Performance and Design Evaluation
of the RAID-II Storage Server”, Journal of Distributed and Parallel
Databases.

[CHEN 94a] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson,
“RAID: High-Performance, Reliable Secondary Storage”, ACM Com-
puting Surveys, 26(2):145–185, June 1994.

BIBLIOGRAPHY 189

[CHEN 97] M.-S. Chen et al., “Using Rotational Mirrored Declustering for Replica
Placement in a Disk-Array-Based Video Server”, Multimedia Systems,
5(3):371–379, December 1997.

[CHENMS 93] M.-S. Chen, D. D. Kandlur and P. S. Yu, “Optimization of the Grouped
Sweeping Scheduling (GSS) with Heterogeneous Multimedia Streams”,
Proc. 1st ACM Conference on Multimedia, Anaheim, CA, August 1993.

[Chervenak 94] A. L. Chervenak, Tertiary Storage: An Evaluation of New Applications,
Ph.D. Thesis, University of California, Berkeley, 1994.

[Chung 96] S. M. Chung, Ed., Multimedia Information Starage and Mangement,
Kluwer Academic Publishers, Boston/London/Dordrecht, 1996.

[CLGK 94] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson,
“RAID: High-Performance, Reliable Secondary Storage”, ACM Com-
puting Surveys, 1994.

[Cliff 96] M. Cliff, N. P.S., O. Banu, R. Rajeev and S. Avi, The Fellini Multime-
dia Storage Server, chapter 5, pp. 117–146, Multimedia Information
Starage and Mangement, Kluwer Academic Publishers, 1996.

[COHE 96] A. Cohen and W. Burkhard, “Segmented Information Dispersal
(SID) for Efficient Reconstruction in Fault-Tolerant Video Servers”,
Proc. ACM Multimedia 1996, pp. 277–286, Boston, MA, November
1996.

[DENG 96] J. Dengler, C. Bernhardt and E. Biersack, “Deterministic Admission
Control Strategies in Video Servers with Variable Bit Rate Streams”,
Proceedings of the European Workshop on Interactive Distributed
Multimedia Systems and Services, Lecturenotes in Computer Science,
Springer, March 1996.

[Doganata 96] Y. N. Doganata and A. N. Tantawi, Storage Hierarchy in Multimedia
Servers, chapter 3, pp. 61–94, Multimedia Information Storage and
Management, Kluwer Academic Publishers, 1996.

[Exner 99] J. Exner, “A Reliable Video Server Based on Mirroring: Design, Im-
plementation, and Performance Analysis”, M.S. Thesis, University of
Karlsruhe/Institut Eurecom, Sophia Antipolis, France, January 1999.

[GABI 97] J. Gafsi and E. W. Biersack, “Comparison of Shared and Dedicated
Buffer Management Strategies”, , Institut Eurecom, December 1997.

190 BIBLIOGRAPHY

[GABI 98c] J. Gafsi and E. W. Biersack, “Data Striping and Reliablity Aspects in
Distributed Video Servers”, In Cluster Computing: Networks, Software
Tools, and Applications, 2 (1):75–91, February 1999.

[GABI 99a] J. Gafsi and E. W. Biersack, “A Novel Replica Placement Strategy
for Video Servers”, Proceedings of the 6th International Workshop
On Interactive and Distributed Multimedia Systems IDMS’99, Toulouse,
France, October 12-15 1999.

[GABI 99b] J. Gafsi and E. W. Biersack, “Modeling and Performance Comparison of
Reliability Strategies for Distributed Video Servers”, to appear in IEEE
Transactions on Parallel and Distributed Systems, February 2000.

[GAFS 98b] J. Gafsi, U. Walther and E. W. Biersack, “Design and Implementation
of a Scalable, Reliable, and Distributed VOD-Server”, Proceedings of
to the 5th joint IFIP-TC6 and ICCC Conference on Computer Commu-
nications, October 1998.

[GAFS 99a] J. Gafsi and E. W. Biersack, “Performance and Cost Comparison of
Mirroring- and Parity-Based Reliability Schemes for Video Servers”,
Proceedings of KiVS’99, Darmstadt, Germany, March 1999.

[GAFS 99b] J. Gafsi and E. W. Biersack, “Performance and Reliability Study for
Distributed Video Servers: Mirroring or Parity?”, Proceedings of the
IEEE international conference on multimedia computing and systems
(ICMCS’99), Florence, Italy, June 1999.

[Gafsi 99] J. Gafsi and E. W. Biersack, Serveurs Video: Architecture et Perfro-
mance, Applications Multimedia, Hermes Science Publications, 1999.

[GB 97a] J. Gafsi and E. Biersack, “Impact of Buffer Sharing in Multiple Disk
Video Server Architecture”, Proceedings in the 6th Open Workshop on
High Speed Networks, Stuttgart, Germany, October 1997.

[Gemmell 95] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan and L. A. Rowe,
“Multimedia Storage Servers: A Tutorial and Survey”, IEEE Computer,
28(5):40–49, May 1995.

[GHAN 95a] S. Ghandeharizadeh and S. H. Kim, “Striping in Multi-disk Video
Servers”, Proc. High-Density Data Recording and Retrieval Technolo-
gies Conference, SPIE, October 1995.

BIBLIOGRAPHY 191

[GHAN 95b] S. Ghandeharizadeh and H. K. Seon, “Striping in multi-disk video
servers”, Proceedings in the SPIE International Symposium on Pho-
tonics Technologies and Systems for Voice, Video, and Data Communi-
cations, 1995.

[Ghandeharizadeh 98] S. Ghandeharizadeh, R. Zimmermann, D. Ierardi and T.-W. Li, Mitra:
A Scalable Continuous Media Server, chapter 3, pp. 63–90, Multimedia
Technologies and Applications for the 21st Century, Kluwer Academic
Publishers, Furth, Borko edition, 1998.

[GIBS 90] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary
Storage, Ph.D. Thesis, University of California at Berkley, December
1990.

[GKSZ 96] S. Ghandeharizadeh, S. H. Kim, C. Shahabi and R. Zimmermann,
Placement of Continuous Media in Multi-Zone Disks, chapter 2, pp.
23–59, Multimedia Information Storage and Management, Kluwer Aca-
demic Publishers, Soon M. Chung edition, 1996.

[GOLP 98] L. Golubchik, J. C.-S. Lui and M. Papadopouli, “A Survey of Ap-
proaches to Fault Tolerant Design of VOD Servers: Techniques, Anal-
ysis, and Comparison”, Parallel Computing Journal, 24(1):123–155,
1998.

[GOMZ 92] L. Golubchik, J. C. Lui and R. R. Muntz, “Chained Declustering: Load
Balancing and Robustness to Skew and Failures”, In Proceedings of the
Second International Workshop on Research Issues in Data Engineer-
ing: Transaction and Query Processing, Tempe, Arizona, pp. 88–95,
Tempe, Arizona, February 1992.

[Grochowski 97a] E. Grochowski, “Disk Drive Price Decline”, , IBM Almaden Research
Center, San Jose, California, 1997.

[Grochowski 97b] E. Grochowski, “IBM Hard Disk Drive Evolution”, , IBM Almaden
Research Center, San Jose, California, 1997.

[Grochowski 97c] E. Grochowski, “Internal (Media) Data Rate Trend”, , IBM Almaden
Research Center, San Jose, California, 1997.

[Hennessy 90] J. L. Hennessy and D. A. Patterson, Computer Arcitecture A Quantative
Approach, Morgan Kaufmann Publishers, Inc., 1990.

192 BIBLIOGRAPHY

[HOLL 94] M. Holland, G. Gibson and D. Siewiorek, “Architectures and Algo-
rithms for On-Line Failure Recovery in Redundant Disk Arrays”, Jour-
nal of Distributed and Parallel Databases, 2(3), July 1994.

[HOYL 94] A. Hoyland and M. Rausand, System Reliability Theory: Models and
Statistical Methods, volume 518, John Wiley and Sons, 1994.

[HSDE 90] H. I. Hsiao and D. J. DeWitt, “Chained Declustering: A New Availabil-
ity Strategy for Multiprocessor Database Machines.”, In Proceedings of
the Int. Conference of Data Engeneering (ICDE), 1990, pp. 456–465,
1990.

[Kaddeche 98] H. Kaddeche, Etude des Performances et de la Tolerance aux Pannes
de Serveurs Multimedias Multidisques, Ph.D. Thesis, Universite Pierre
et Marie Curie (Paris 6), July 1998.

[KATZ 92] R. Katz, P. Chen, A. Drapeau, E. Lee, K. Lutz, E. Miller, S. Seshan
and D. Patterson, “RAID-II: Design and Implementation of a Large
Scale Disk Array Controller”, UCB/CSD-92-705, Computer Science
Division, UCB, Berkeley, CA, October 1992.

[KIENZ 95] M. G. Kienzle, A. Dan, D. Sitaram and W. Tetzlaff, “Using Tertiary
Storage in Video-on-Demand Servers”, Proceedings of the IEEE COM-
PCON’95, San Francisco, CA, March 1995.

[Korst 97] J. Korst, “Random Duplicated Assignment: An Alternative to Striping
in Video Servers”, ACM Multimedia, Seattle, USA, 1997.

[LEE 92] E. K. Lee et al., “RAID-II: A Scalabale Storage Architecture for High-
Bandwidth Network File Service”, UCB/CSD 92/672, University of
California, Berkeley, February 1992.

[LEED 93] E. K. Lee, Performance Modeling and Analysis of Disk Arrays, Ph.D.
Thesis, University of California at Berkley, 1993.

[Lu 96] G. Lu, Communication and Computing for Distributed Multimedia Sys-
tems, Artech House Publishers, Boston/London, 1996.

[Mancini 99] T. Mancini and B. Frison, “Conception et Implementation en Java de la
Partie Client d’un Serveur Video”, , Insitut Eurecom, April 1999.

[MATR 93] M. Malhotra and K. S. Trivedi, “Reliability Analysis of Redundant Ar-
rays of Inexpensive Disks”, Journal of Parallel and Distributed Com-
puting, 17:146–151, 1993.

BIBLIOGRAPHY 193

[MERC 95] A. Merchant and P.-S. Yu, “Analytic Modeling and Comparisons of
Striping Strategies for Replicated Disk Arrays”, IEEE Transactions on
Computers, 44(3):419–433, March 1995.

[MOUR 96] A. Mourad, “Doubly-Striped Disk Mirroring: Reliable Storage for
Video Servers”, Multimedia, Tools and Applications, 2(3):253–272,
May 1996.

[Mourad 96] A. Mourad, “Issues in the Design of a Storage Server for Video-On-
Demand”, Multimedia Systems, 4(2):70–86, 1996.

[Mr.X] Seagate Disc Home, http://www.seagate.com/disc/disctop.shtml.

[OZDE 96a] B. Ozden et al., “Fault-tolerant Architectures for Continuous Media
Servers”, SIGMOD International Conference on Management of Data
96, pp. 79–90, June 1996.

[OZDE 96b] B. Ozden et al., “Disk Striping in Video Server Environments”, Proc. of
the IEEE Conf. on Multimedia Systems, pp. 580–589, Hiroshima, Japan,
jun 1996.

[Patterson 88] D. A. Patterson, G. Gibson and R. H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID)”, Proceedings of the 1988 ACM
Conference on Management of Data (SIGMOD), pp. 109–116, Chicago,
IL, June 1988.

[Randolph 95] N. Randolph, Probability, Stochastic Processes, and Queeing Theory,
Springer-Verlag, 1995.

[REDD 93] A. Reddy et al., “Design and Evaluation of Gracefully Degradable Disk
Arrays”, J. of Parallel and Distributed Algorithms and Architectures,
17:28–40, 1993.

[REDD 96] A. Reddy and R. Haskin, “Video Servers”, The Communications Hand-
book, CRC Press, 1996.

[SaGa 86] K. Salem and H. Garcia-Molina, “Disk Striping”, IEEE International
Conference on Data Engineering, 1986.

[SATR 96] R. A. Sahner, K. S. Trivedi and A. Puliafito, Performance and Reliabil-
ity Analysis of Computer Systems: An Example-Based Approach Using
the SHARPE Software Package, Kluwer Academic Publishers, 1996.

194 BIBLIOGRAPHY

[Shastri 98] V. Shastri, V. P. Rangan and S. Sampath-Kumar, DVDs: Much Needed
”Shot in the Arm” for Video Servers, chapter 2, pp. 31–61, Multimedia
Technologies and Applications for the 21st Century, Kluwer Academic
Publishers, 1998.

[SHEN 97] P. Shenoy and H. Vin, “Efficient Striping Techniques for Multimedia
File Servers”, G. Parulkar, Ed., NOSSDAV 97, May 1997.

[Srivastava 97] A. Srivastava, A. Kumar and A. Singru, “Design and Analysis of a
video-on-demand server”, ACM Multimedia Systems, 5:238–254, 1997.

[STIEW 82] D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable
Systems Design, Digital Press, Bedford, Massachusetts, 1982.

[TEWA 96a] R. Tewari, D. M. Dias, W. Kish and H. Vin, “Design and Performance
Tradeoffs in Clustered Video Servers”, Proceedings IEEE International
Conference on Multimedia Computing and Systems (ICMCS’96), pp.
144–150, Hiroshima, June 1996.

[TEWA 96b] R. Tewari, D. M. Dias, W. Kish and H. Vin, “High Availability for Clus-
tered Multimedia Servers”, Proceedings of International Conference on
Data Engineering, New Orleans, LA, February 1996.

[TEWA 96c] R. Tewari, R. King, D. Kandlur and D. M. Dias, “Placement of Multime-
dia Blocks on Zoned Disks”, Proceedings of IS and T/SPIE Multimedia
Computing and Networking, San Jose, January 1996.

[TOB 93b] F. A. Tobagi, J. Pang, R. Baird and M. Gang, “Streaming RAID(tm) –
A Disk Array Management System For Video Files”, Proceedings of
the 1st ACM International Conference on Multimedia, Anaheim, CA,
August 1993.

[Walter 97] U. Walter, “Design and Implementation of a distributed, reliable MPEG
Video Server on ATM Networks using Forward Error Correction Meth-
ods”, M.S. Thesis, University of Karlsruhe/Institut Eurecom, Sophia
Antipolis, France, December 1997.

[WILK 94] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling”,
IEEE Computer, 27(3):17–28, March 1994.

[WILK 96] J. Wilkes, R. Golding, C. Staelin and T. Sullivan, “The HP AutoRAID
Hierarchical Storage System”, ACM Transactions on Computer Sys-
tems, 14(1), February 1996.

BIBLIOGRAPHY 195

[WORT 95] B. L. Worthington, G. Ganger, Y. N. Patt and J. Wilkes, “On-Line Ex-
traction of SCIS Drive Characteristics”, Proc. 1995 ACM SIGMET-
RICS, pp. 146–156, Ottawa, Canada, May 1995.

[YU 93] P. S. Yu, M.-S. Chen and D. D. Kandlur, “Grouped Sweeping Schedul-
ing for DASD-based Multimedia Storage Management”, ACM Multi-
media Systems, 1(3):99–108, 1993.

196 BIBLIOGRAPHY

List of Publications

Journal Papers

[GABI 98c] J. Gafsi and E. W. Biersack, “Data Striping and Reliablity Aspects in
Distributed Video Servers”, In Cluster Computing: Networks, Software
Tools, and Applications, 2 (1):75–91, February 1999.

[GABI 99b] J. Gafsi and E. W. Biersack, “Modeling and Performance Comparison of
Reliability Strategies for Distributed Video Servers”, to appear in IEEE
Transactions on Parallel and Distributed Systems, February 2000.

[Gafsi 99] J. Gafsi and E. W. Biersack, Serveurs Video: Architecture et Perfro-
mance, Applications Multimedia, Hermes Science Publications, 1999.

Conference Papers

[GAFS 98b] J. Gafsi, U. Walther and E. W. Biersack, “Design and Implementation
of a Scalable, Reliable, and Distributed VOD-Server”, Proceedings of
to the 5th joint IFIP-TC6 and ICCC Conference on Computer Commu-
nications, October 1998.

[GAFS 99a] J. Gafsi and E. W. Biersack, “Performance and Cost Comparison of
Mirroring- and Parity-Based Reliability Schemes for Video Servers”,
Proceedings of KiVS’99, Darmstadt, Germany, March 1999.

[GAFS 99b] J. Gafsi and E. W. Biersack, “Performance and Reliability Study for
Distributed Video Servers: Mirroring or Parity?”, Proceedings of the
IEEE international conference on multimedia computing and systems
(ICMCS’99), Florence, Italy, June 1999.

[GABI 99a] J. Gafsi and E. W. Biersack, “A Novel Replica Placement Strategy
for Video Servers”, Proceedings of the 6th International Workshop
On Interactive and Distributed Multimedia Systems IDMS’99, Toulouse,
France, October 12-15 1999.

BIBLIOGRAPHY 197

MISC

[GB 97a] J. Gafsi and E. Biersack, “Impact of Buffer Sharing in Multiple Disk
Video Server Architecture”, Proceedings in the 6th Open Workshop on
High Speed Networks, Stuttgart, Germany, October 1997.

[GABI 97] J. Gafsi and E. W. Biersack, “Comparison of Shared and Dedicated
Buffer Management Strategies”, , Institut Eurecom, December 1997.

