OBJECT-ORIENTED FRAMEWORKS
AND COMPONENTS TO SUPPORT
CUSTOMIZATION AND TAILORING IN
GROUPWARE

THESE N. (& definir)

PRESENTEE AU DEPARTEMENT DE SYSTEME DE
COMMUNICATION ,
(MULTIMEDIA COMMUNICATIONS DEPARTEMENT — EURECOM)

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ES SCIENCES
TECHNIQUE

PAR

Jakob Hummes

Diplom-Informatiker, Universitat Karlsruhe, Allemagne
de nationalité allemande

composition du jury:

Prof. J. Labetoulle, président du jury
Prof. B. Merialdo, directeur de these
J. Davy, corapporteur
Prof. R. Molva, corapporteur
Prof. M. Muhlhauser, corapporteur
Prof. C. Petitpierre, corapporteur

Lausanne, EPFL
1999

Contents

1 Introduction 1
1.1 Groupware e 2
1.2 Changing work practices, 2
1.3 Requirements to groupware 3
1.4 Objectives of this thesis 4
1.5 Organization of this document 6

2 Relevant Concepts for this thesis 7
2.1 Relevant concepts in software engineering 7

2.1.1 Reusability 8
2.1.2 Customization and tailoring 9
2.1.3 Frameworks: Towards extensible applications 9
2.1.4 Component Technology 10
2.1.5 Design Patternso oL 11
2.2 Related work in CSCW 11
2.2.1 Demand for adaptability 11
2.2.2 Toolkits and libraries for CSCW 13
2.2.3 Frameworks and platforms for CSCW 14
2.2.4 CSCW applications that use components 15
2.3 Approach of thisthesis 16
2.3.1 Definitions oL 16
2.3.2 Component model: Java Beans 18
2.3.3 Approach L 19
2.4 Conclusion e 20

3 Infrastructure framework for groupware developers and in-
tegrators: Group communication components 23
3.1 Contributiono 24
3.2 Infrastructure components: Group sender and receiver 24
3.3 Design oL 25

3.3.1 Design towards theuser 27

Table of contents

3.3.2 Internal design of the group communication framework 28

3.4 Applicability and needed skills 29
3.5 Examples 31
3.6 Conclusion 32
Reusing components: Decomposition and composition 35
4.1 Contribution 35
4.2 Reuse componentson all levels. 36
4.2.1 JavaBeans 36
4.2.2 Groupware components 38
4.3 Applicability and needed skills 40
4.4 Example: Component based tutoring system 41
4.4.1 Motivation: The “get help” problem 41
4.4.2 Design of the tutoring components 43
4.4.3 Tutoring application examples 45
4.5 Conclusion e 46

Customization by extending groupware frameworks with com-

ponents 49
5.1 Contribution 49
5.2 Design for customization: Framework + components 50

5.2.1 Overview about framework design 50

5.2.2 Framework design for Java Beans 51

5.2.3 Groupware framework 53
5.3 Applicability and needed skills 55
5.4 Example: Redesign of Tutoring framework 55
55 Conclusion 57
Special customization support 59
6.1 Contribution L o 59
6.2 Use of customizers 60

6.2.1 Java Beans Customizers 60

6.2.2 Customization support 61
6.3 Applicability and needed skills 63
6.4 Example: Creating a new questionnaire with active components 64
6.5 Conclusion 66
Customization becomes tailoring I: Code distribution 67
7.1 Contribution. 67
7.2 Motivationo 68

7.3 The two-step approach, .. 68

Table of contents 5

7.4 Enabling Technologies for Extending CSCW Applications . . . 70
7.4.1 Design Pattern for Extensibility 70
7.4.2 Distributing and Inserting Components 73
7.4.3 Framework design for dynamic extension by components 74
7.4.4 Applicability oo oo 76

7.5 Examples 78
7.5.1 Design of a minimally extensible CSCW application . . 78
7.5.2 Design for functional extensions 79
7.5.3 Design of a second application for insertion 82
7.5.4 Otherexamples 83

7.6 Discussion e e 84

7.7 Conclusion e 86

8 Customization becomes tailoring II: Object distribution 89

8.1 Contribution. oo 89

8.2 Frameworks that support object distribution 90

8.3 Applicability and needed skills 93

8.4 Example: Distributing a new questionnaire with active com-
ponentso L. Lo e e 94
8.4.1 Design phase 0. 95
8.4.2 Distribution phase 96
8.4.3 Examphase 98
8.4.4 FEvaluation phase 99
8.4.5 Composed applications 100

85 Conclusion 103

9 Tailoring support within frameworks 105

9.1 Contribution. 106

9.2 Design of tailoring support within frameworks 106
9.2.1 Tailoring support 106
9.2.2 Overview e 107
9.2.3 Design and implementation 108
9.2.4 Alternatives in distributed environments 112

9.3 Applicability and needed skills 112

9.4 Example: Awareness service framework 113
9.4.1 DMotivation 114
9.4.2 Designissueso 115
9.4.3 Implementationissues 116

9.4.4 Extension of the AS Framework with domain-specific
components L. 117
9.4.5 Tailoring example for a laboratory course 119

6 Table of contents

9.5 Conclusion e 122
10 Conclusions 123
10.1 Conclusions 123
10.2 Summary of contributions 125
10.3 Future Research 126
10.3.1 Evaluation of experiences. 126

10.3.2 Patterns 127

10.3.3 Directions in distributed programming 128

Bibliography 129

Chapter 1

Introduction

Computer-supported cooperative work (CSCW) addresses the activity of
groups of people. The computer and network environment supports the com-
munication and coordination between members of the group to help them to
collaborate and thus to fulfill their tasks cooperatively even if they are geo-
graphically dispersed.

Research on computer-supported collaborative work has been interdisci-
plinary from its beginning. CSCW has emerged as an identifiable research
field from a range of disciplines including computer science, artificial intel-
ligence, human-computer interaction, psychology, sociology, organizational
theory, and anthropology [Gre88].

As a computer scientist, my objective in this thesis is to focus on ques-
tions regarding not only the initial development, but also the evolution and
customization of CSCW applications. This thesis delivers solutions, which
enable different user-groups to adapt a CSCW system in different states of
its life-cycle.

I specifically address reusability in the design and implementation of soft-
ware components for CSCW systems, customization of these components by
developers and system users, and tailoring of the software of running CSCW
applications by end-users to their needs on demand.

2 Introduction

1.1 Groupware

Groupware is a synonym for “CSCW application”. 1 will use both terms
interchangeably throughout this document.

A groupware system is an enabling system, which helps the human users
of this system to interact cooperatively. If the users are spatially dispersed,
the groupware system supports the communication and cooperation between
the participants of a collaborating group. This implies that the groupware
system consists of at least one local groupware application per user and
that these local applications communicate with each other either directly or
indirectly.

With the advent of general networking, the Internet, and affordable per-
sonal computers (PCs) and workstations, the infrastructure for distributed
groupware is given in most large and medium companies, institutions, and
universities. Even a large group of home users may now have Internet access.

Already a wide range of groupware products and prototypes exist: video
conferencing systems, application sharing tools, systems for remote educa-
tion, group decision support systems, group calendars, and workflow systems
are examples for CSCW applications.

1.2 Changing work practices

Companies are interested in benefiting from efficiency gains by changing
the structure of both internal and external work processes. During the
last decades, the organization of work has been radically changing. Tra-
ditional hierarchical organized organization are restructuring to build work
teams. Work is generally assigned more dynamically to address current needs
quickly. Groupware plays an enabling role to implement those business en-
gineering processes [KB95].

The work structure inside companies is also changing due to new busi-
ness goals, out-sourcing tasks that have been previously processed in-house,
acquisitions and merger with other companies. The work structure changes
also, because more motivated workers deliver better results, and empowering
employees so that they can make decisions within their teams motivate them.
To accomplish their tasks within a team, the group members must exchange
information with the right persons quickly and coordinate their goals.

1.3 Requirements to groupware 3

Teams are often created around one task. Persons, which are part of one
team can also be part of another team, if they are assigned more than one
task. To investigate and resolve particular issues, ad hoc teams are composed
which spawn formal organizational boundaries [Boc92].

1.3 Requirements to groupware

To be successful, groupware must address the different organizational cultures
with their different work practices. At the same time, groupware must be
adaptable to new work conditions to support the new work practices after
a reorganization. Furthermore, groupware systems must be open for sudden
changes and exceptions.

Since groupware affects the way people are collaborating and thus the
work conditions, the design and deployment of a groupware system should
be coordinated with the actual users. In Scandinavian countries, the labor
unions have proposed in agreement with the companies to let the users par-
ticipate in the design of those systems, which affect the work place. The
research discipline “participatory design” has strong influence on the CSCW

community [SS97, Mgr97¢, SKW97].

To accomplish a constant work with the users, system analysts and de-
signers become part of the entire development cycle of a groupware prod-
uct [Boc92]. Furthermore, since the activity of the group keeps changing,
the development life cycle does not end until the product is replaced.

Since the development of complex software from scratch is expensive,
companies evaluate existing groupware applications. Unfortunately, existing
groupware systems impose also a specific work behavior. This leads to the
question, if the work should be organized around the tool, or a new tool must
be created to support the work characteristics of the company.

The second case is generally considered as the only reasonable choice,
which leads to the requirement that groupware should be adaptable. In
this perspective, recent advances in software engineering can be exploited to
introduce innovative and effective solution in groupware design.

If groupware is designed and developed from building blocks, these soft-
ware components can be assembled to build the groupware product, which
fits the company’s need. When components for groupware become usable
in different products, the development costs per component decrease. More-

4 Introduction

over, the quality of components increase, since they are used and thus tested
in different applications.

To be reusable, these software components must conform to a standard-
ized component model in which they are assembled. The components must
be customizable to work in different configurations. In such an environ-
ment, the developer of the final groupware product for a company is more
an integrator of groupware components than a specialized programmer. The
integrator must have a clear understanding of the organizational structure
of the group activity and works thus as a domain specialist. Tools must
support the integrator to concentrate on combining these high-level business
objects [ES98] instead of programming low-level code.

Since the work structure in organizations does not remain static, neither
the configuration of the installed groupware does. A groupware integra-
tor can change the groupware to reflect these changes. However, also some
technically experienced user, so-called power-users, may posses the ability
to incorporate small changes in the system, if such modifications are well
supported by tools.

Furthermore, some changes need to take effect immediately to support
for example special needs of an ad hoc group or to react on exceptions in
a workflow. To anticipate such changes, groupware should incorporate tai-
loring support, which let the user customize the groupware system without
leaving the application. By enabling the actual user of the groupware sys-
tem to tailor it to its needs this "support for customization is support for
innovation” [BD95].

Companies and institutions have already invested in various hardware
platforms and operating systems. To ease development and deployment of
groupware, the groupware components should offer the same interfaces for all
deployment platforms. Furthermore, a distributed groupware system may be
deployed over several platforms, thus demanding for interoperability across
platforms.

1.4 Objectives of this thesis

The objective of this thesis is to design reusable, customizable, and tai-
lorable software components and frameworks for groupware systems. This
thesis targets the requirements to offer users from different user categories
— component developers, groupware integrators, groupware administrators,

1.4 Objectives of this thesis 5

power-users, and end-users — the means to customize groupware applications
at design-time and at run-time. The level of customization is thereby depen-
dent on the skills of the user category; hence, this thesis provides different
customization and tailoring functionalities to support these different levels

and skills.

From a technical and conceptual point of view, the demand for reusable
and easy adaptable groupware requires that the core groupware function-
ality is separated from its potential customizations and extensions. This
thesis addresses this issue by combining the software engineering concepts
of frameworks and components. I present in this document my approach to
design groupware frameworks, which capture the core functionality of group-
ware tasks, and groupware components, which deliver pluggable extensions
for these frameworks. Both, groupware frameworks and components are de-
veloped to be reusable also in other settings and all implemented frameworks
and components can be combined differently to produce various groupware
systems.

I have chosen the object-oriented language Java to implement my ap-
proaches. I have chosen Java mainly out of three reasons:

1. Java offers with Java Beans a standard component model. Several
commercially available integrated development environments offer vi-
sual composition editors for Java Beans. Visual editors abstract from
the implementation and this thesis propose to use them to offer cus-
tomization towards the end-users.

2. Java compiles to platform-independent byte-code. A Java program can
be deployed on any platform, for which a Java Virtual Machine exists.
Platform independence is vital for groupware systems.

3. By using only the standard and widely used Java and Java Beans tech-
nologies for their realization, my concepts become applicable and usable
by other groupware developers.

The design of my contributions in this thesis are independent from Java.
Some, however, are optimized for the Java Beans component model. Some
implementations greatly benefit from Java language features, such as intro-
spection, reflection, object serialization, and dynamic code loading.

This thesis applies the contributed approaches in examples for remote
education. I have chosen tele-teaching as domain for the proof of concept,
since educational settings demand customizable and tailorable groupware to

6 Introduction

support different course styles. While lectures, exams, and laboratory courses
in universities are similar, they also differ in regard to the teacher’s style, the
class size, the students’ prerequisites, the associated courseware, and the
available infrastructure.

1.5 Organization of this document

Chapter 2 reviews the state of the art in the domain of software engineering
to draw the technical requirements on reusable groupware. This chapter also
presents related work in the CSCW domain, which addresses the building
of customizable groupware. Finally, it introduces the approach taken in this
thesis.

The following chapters present my approaches to deliver design and imple-
mentation for customizable and tailorable groupware. Chapter 3 introduces
group communication components, which deliver groupware component pro-
grammers and groupware integrators the means to distribute events between
applications. Chapter 4 shows how component-based groupware applications
can be visually customized on different levels by composition techniques.
Chapter 5 presents my central approach, which splits the design of a group-
ware system into an invariant part, which is designed as a framework, and
into variant parts, which are implemented as pluggable components for the
framework. Chapter 6 delivers the end-user with a solution to customize
groupware components at design-time within a standard visual builder tool
for Java Beans. Chapter 7 shows my design and implementation, which uses
code distribution, to tailor a groupware system by distributing and inserting
at run-time new components. Chapter 8 introduces my related approach,
which uses the distribution of objects, to extend a running groupware sys-
tem. Finally, chapter 9 presents my generic design to offer the end-user the
ability to change the behavior of a groupware framework at run-time.

Chapter 10 concludes this thesis.

Chapter 2

Relevant Concepts for this
thesis

This chapter introduces first the relevant concepts from the area of software
engineering. These concepts lay the basis of the design and implementation
of my own approaches.

This chapter also presents related work from CSCW researchers. The
section about related work focuses on customization and tailoring in general,
groupware programming toolkits that support customizations, and group-
ware that uses component models.

The last sections from this chapter formulate the objective of this thesis
and the approach that has been followed in this work.

2.1 Relevant concepts in software engineer-
ing

Software engineering tries to optimize the main phases in the software life-
cycle: analysis and design, implementation, and maintenance of software.
Optimizations include reliability, development time and cost criteria.

8 Relevant Concepts for this thesis

2.1.1 Reusability

Software reusability is the key to stay competitive in the Information Tech-
nology (IT) market. The idea of reusing code is not new, but with the ad-
vent of object-oriented languages reusing code through inheritance was highly
touted. Yourdon [You92| sees reusability techniques as one of the major con-
tributions to software productivity and quality in the 1990s, but also warns to
focus only on code reuse. He postulates that analysis and design reuse have
an even higher impact than code reuse. Yourdon proposes an organizational
culture to encourage actual reuse practices. In his famous “No Silver Bullet”
article [Bro87], Brooks identifies causes of failing software projects. He sees
the biggest challenge in the “inherent properties of this irreducible essence
of modern software systems: complexity, conformity, changeability, and in-
visibility.” Another study [Gib94] reveals complexity as the major cause
for huge software disasters. In an answer, Cox breaks the problem down
to a reuse problem and proposes the (re-)use of software components, since
“encapsulated complexity is no longer complexity at all. It’s gone, buried
forever in somebody else’s problem” [Cox95]. This continues Cox’ mission to
deliver chip-level and card-level components for object-oriented technologies

[Cox90].

Although object-oriented development is nowadays wide in use, it has
never delivered the proposed level of reuse of code [Kie98]. Object-oriented
libraries tend to include many interdependent objects, which makes reuse of
small portions difficult if not impossible. Using object-oriented class libraries
often imposes that the application developer calls several library objects in
the right sequence. Customization of library objects is accomplished by in-
heritance to add domain-specific methods or to override existing methods
with specialized code. However, using inheritance can endanger the correct
behavior of a system of objects; composition techniques are safer for the price
of managing inter-object relations [Rya97]. Component based programming
techniques facilitate composition of components by providing standard means
for interconnecting components within a component model.

Reusability also provides a mechanism for prototyping [You92]. Often
software firms discuss the design of a new product by showing a non-functional
prototype, which implements only the user-interface. Reusing existing com-
ponents instead, prototypes can be developed that are already functional,
but need further customization. Those “real” prototypes can be used to de-
tect functional specification problems in the early stages of the development
cycle. Under this observation, it is not surprising that the Software Pro-

2.1 Relevant concepts in software engineering 9

ductivity Consortium (SPC) has adopted Boehms prototype driven spiral
software development cycle [Boe88] as the basis for evolutionary develop-
ment of software systems [Sof96]. The SPC highlights that it has adopted
the spiral model especially because it recognizes important concepts such as
engineering for reuse and incremental development.

2.1.2 Customization and tailoring

Customization and reusability are highly dependent. Artifacts on all levels
of the software development cycle (analysis, design, implementation, testing,
maintenance) can only be reused, if they can be customized to the specific
needs of the new or evolved software product.

System modifications and extensions which were once strictly in the do-
main of the programmer are now being shifted into the domain of the end-
user. Off-the-shelf applications such as word processors and spreadsheets
offer already customization and tailoring facilities. To tailor those applica-
tions, Sumner and Stolze propose a participatory evolutionary development,
which brings together end-user computing and participatory design [SS97].

Customization, which is done by the end users during run-time is called
tailoring. Tailoring is also a form of application evolution, and thus relates
very closely to software reuse [Mgr97b].

Mgrch distinguishes three levels of tailoring [Mgr97a]. These levels are
classified by the design distance which is experienced by the end-user during
tailoring. Generally speaking, with an increasing level the tailoring possibil-
ities for a user increase, but also become more complex.

2.1.3 Frameworks: Towards extensible applications

A framework is a skeleton of cooperating classes that forms a reusable imple-
mentation. An application framework defines the overall architecture of the
applications that are created by adapting the framework. Framework-based
applications are adapted by extending the framework at explicit plug-points
also known as “hot spots” [Pre94].

Frameworks are currently successfully employed for general purpose soft-
ware units, such as graphical user interfaces, system infrastructure, and mid-

10 Relevant Concepts for this thesis

dleware integration frameworks; also application domain specific frameworks
are emerging [FS97].

Frameworks are distinguished into white-box and black-box frameworks
[RJ98]. Object-oriented white-box frameworks use inheritance to offer the
developer extension facilities. To insert extensions into white-box frameworks
the developer must understand the class hierarchy and derive new classes
which have to be relinked with the framework. Black-box frameworks use
object composition and delegation instead. Black-box frameworks anticipate
extensions by defining interfaces and providing hooks to insert new objects.

Applications that can be extended at run-time need hooks like black-box
frameworks. Unfortunately, designing frameworks — and especially black-box
frameworks — is substantially harder than designing an application. However,
the hot spots for a framework can be designed and implemented stepwise by a
sequence of generalization transformations [Sch97]. The evolution of a black-
box framework by several generalization steps is so typical that a pattern
language is proposed to describe these steps [RJ98].

Since applications using a framework must conform to the framework’s
design and model of collaboration, the framework encourages developers to
follow specific design patterns [Joh97]. In the other direction, developers
can use design patterns to generalize an object-oriented application into a

framework [Sch95].

2.1.4 Component Technology

In the field of software engineering, component based software development is
seen as a major factor to facilitate reuse. Components can be purchased from
third party vendors, customized and assembled within a component model.
Examples for major component models are Microsoft’s Component Object
Model (COM) [Rog97] and SUN’s component model Java Beans [Ham97] for
Java. The component technology is predicted to acquire a significantly in-
creasing importance [Kie98]. Furthermore distributed component platforms
are emerging, which allow interaction between components across system

boundaries [KA98].

A component is an independent “unit of software that encapsulates its
design and implementation and offers interfaces to the outside, by which it
may be composed with other components to form a larger whole” [DW98].
Frameworks provide a reusable context for components [Joh97]. Components

2.2 Related work in CSCW 11

become most powerful within black-box frameworks, where they can be used
to extend these frameworks at defined plug-points.

The recursive compositions of components to form larger components
structure component-based applications into layers. Component models al-
low thus to reason on all levels of compositions of such an application [SC98].
Visual composition tools for a component model add a high level of abstrac-
tion to those compositions, allowing even end-users to make changes [Wei97].
Component models and visual builder tools are thus enabling technologies
for customization.

2.1.5 Design Patterns

Design patterns help one to reason about recurring design problems. Object-
oriented design patterns describe “communicating objects and classes that
are customized to solve a general design problem in a particular context”
[GHJV94]. Patterns abstract from the used programming language and pro-
vide a basis for reusable design building blocks: “Design patterns are the
micro-architectural elements of frameworks” [Joh97].

Design patterns are surprisingly useful to detect the hot-spots in an ap-
plication design and to transform it into a domain-specific framework design
[Sch95]. Actually, the idea of hot spots was first introduced as a meta-pattern
for framework design [Pre94]. In the domain of CSCW and user-interface de-
sign some patterns are well-known, such as the Model-View-Controller and
Presentation-Abstraction-Control patterns [BMR*96]. Syri [Syr97] describes
the use of the Mediator pattern to design tailorable cooperation support in

CSCW systems.

2.2 Related work in CSCW

This section introduces related work in the domain of CSCW research re-
garding the key aspects for this thesis: reuse, customization, and tailoring.

2.2.1 Demand for adaptability

Adaptability as a basic requirement for CSCW applications was identified
already in the early stages of CSCW research. Office information systems,

12 Relevant Concepts for this thesis

today known as workflow systems, incorporated in the 1980’s features to
change the order of activities based on conditions. To offer the end-user
this flexibility, very-high-level languages were researched [ENS8S8]. In essence,
workflow systems today use the same principle, although most workflow sys-
tems are programmed visually.

Office automation and workflow systems are contrasted by other CSCW
research that focuses more on the enabling technology for cooperation. Adapt-
ability within this broader spectrum mostly stems from the need to build
prototypes early in the development phase to let the end-users experience
with the system and include their feedback in the further design [SKW97].
The requirement of an early participation of the end-users within the de-
sign and development process of groupware has been also demanded by large
labor unions in Scandinavian countries [SS97, Mgr97c]. To enable rapid
prototyping, reusability is a key concern. To test a prototype in different
environments, the system must be easy adaptable.

Reusability and flexibility in CSCW systems are addressed by new lan-
guages, which can be used by the end-users such as in workflow systems
[EN88], but also on a lower level by groupware toolkits for the system de-
veloper, such as GroupKit [RG96a] and Prospero [Dou96]. These toolkit
approaches, however, do not support directly adaptations by end-users; in-
stead, they offer programming constructs in form of libraries.

The high-level languages approach, on the other hand, often lacks the
expressiveness or performance of general purpose languages: those languages
can be embedded within the CSCW system, but are not suitable for develop-
ers to program groupware [Mgr97¢c|. Having separated toolkits and languages
for the developer and the end-user implies that in those CSCW systems adap-
tation by the users is limited and — more crucial — the level of adaptation is
given by the system developers at design-time.

In most CSCW systems, local application software and group software
are closely coupled [Gre88]. So, software components for cooperative work
must easily integrate with other applications.

Dourish [Dou95] summarizes the following concepts for customization of
groupware: flexibility, by providing generic, reusable objects and behaviors;
parameterizability, by offering a range of alternative behaviors that users can
select; integrability, by linking with other applications in the environment;
tailorability, by allowing users to make changes to the system itself. An
adaptive and evolving system should support the tailoring and the sharing
of adaptions. Such a system should keep core functionality separately from

2.2 Related work in CSCW 13

the tailorings and adaptions to support their potential transportation. Dour-
ish defines coadaption as the mutual evolution of systems and work practices,
which can be gained through tailoring for example. The idea behind coadap-
tion and customization concepts is that the system design and development
does not end with its delivery, which leads to the term of “evolving systems”.

2.2.2 Toolkits and libraries for CSCW

On the implementation level, various toolkits and libraries are proposed to
support the creation of groupware systems. Here, I introduce representative
groupware toolkits and resume their key concepts.

Rendezvous

Rendezvous was one of the first toolkits devoted to groupware development.
The project has meanwhile ceased to exist. Nevertheless, the Rendezvous
architecture is interesting on the conceptual level.

The Rendezvous architecture [HBPT93] introduces the concept of sep-
arating the information common to all users from the user’s view and to
integrated this concept to its groupware development language. The name
“Abstraction-Link-View” (ALV) for this concept is derived from the ob-
ject roles; this principle influenced most of the toolkits developed later, e.g.

GroupKit [RG96a] and Egret [Joh96a].

An abstraction is the centralized entity in Rendezvous that collects infor-
mation common to all users in a single place. Each user has her or his own
view (or views) to the abstraction, i.e. to the common information. A link
connects the abstraction with a view. A link is an object, which contains
constrains between the variables in the abstraction and its respective view to
maintain consistency. It ensures also structural consistency by assuring that
each object in a view has a corresponding object in the abstraction.

GroupKit

GroupKit is a toolkit to build real time groupware [RG96a, RGJ96]. Group-
Kit offers a run-time environment and an API; groupware applications are
written in the scripting language Tcl [Ous94] and use the GroupKit API
to distribute group related information. The run-time consists of the user-

14 Relevant Concepts for this thesis

written distributed applications, which are bound via a registrar client to
a well-known registrar server that stores all conference related information.
Applications built on top of GroupKit are called conferences, because their
group mechanisms act synchronously. A session consists of an ongoing con-
ference; states between conferences are not saved [Joh96b].

Tcl and Tk allow in conjunction with GroupKit rapid development of
groupware prototypes. However, for complex projects, Tcl is not well suited,
since it lacks support for often needed programming constructs (such as ar-
rays and linked lists) [Sta94].

Prospero

Prospero [Dou96] is an approach to deliver a flexible toolkit for CSCW sys-
tems. Prospero use the open implementation approach [Kic96] to change
the cooperative behavior within Prospero frameworks. Prospero implements
possibilities to “reach in” the implementation and to apply changes by using
reflection capabilities of a meta object protocol defined in the Common Lisp
Object System. The invented reflective model is object-oriented and allows
customizations through inheritance and overloading [Dou95].

For this thesis, Prospero’s approach is from interest, since it uses spe-
cial programming language features (reflection) to support customization in
groupware systems. However, the offered customization features are intended
to be used by groupware developers; end-users do not have the necessary skills
to use them.

2.2.3 Frameworks and platforms for CSCW
Egret

Egret has a multi-client, multi-server, and multi-agent architecture, which
offers a framework for CSCW applications [Joh96a]. Egret supports partic-
ularly the development of (hyper-)text based collaborative applications; the
clients and agents are extensions to the XEmacs editor.

Egret’s design philosophy supports applications, which “require the col-
lection, manipulation and propagation of information about state of collab-
oration” [Joh96a]. This includes information about the current state, the
history, and the process of the collaboration. Agents in Egret are viewed as

2.2 Related work in CSCW 15

first-class users; they are used for example to trigger events from the outside
or to collect and display periodically information.

Multiple projects [WJ94] have shown that Egret is well suited to imple-
ment shared editors, learning environments based on hyper-text, or textual

based MUDs.

Clock

Clock is a declarative language to support the development of interactive
applications. Since it also supports distributed multi-media applications, it
fits well the necessities of a groupware development language. The Clock-
Work environment supports the developer with a visual environment to build
Clock applications in an object-oriented way [GMU96, Gra95]. The visual
programming environment can be offered as graphical user-interface so that
the user is able to customize an application.

The visual environment of ClockWork is from special interest for this
thesis. Clock is however not available for the general public. It is still a
research prototype.

2.2.4 CSCW applications that use components
Oval

Oval is a “radically tailorable tool for cooperative work” [MLF95]. It applies
to asynchronous groupware based upon message exchanging, e.g. email sys-
tems. It is said to be radically tailorable, since very large changes by the
end-user are possible without requiring real programming. The name “Oval”
stands for objects, views, agents, and links: its building blocks.

The objects are semistructured representations of things in the real world.
They are semistructured in the sense that the filled-in information does not
necessarily comply to specific types. The views are customizable by the
end-user; they summarize collections of objects. Rule-based agents are used
to perform active tasks without requiring the direct attention of the users.
They are triggered by events, such as arriving messages or time-outs. Links
represent relationships between objects. These hypertext links can be used
for manual navigation between objects, but also for further processing by
agents.

16 Relevant Concepts for this thesis

Oval’s component model is very simple and supports only the four de-
scribed component types. However, these components are optimized for tai-
loring; which makes this approach interesting for this thesis.

TeamWave

TeamWave [RG97] defines and uses an own Component Model for CSCW ap-
plications. TeamWave is originated from TeamRooms [RG96b]. TeamWave
is based on GroupKit. TeamWave allows the users to insert their own com-
ponents within the running groupware system to extend its functionality.

TeamWave relies on the distribution of Tcl code to insert dynamically
new components within all distributed applications in a conference. The
components are realized as Tcl applications, which are inserted and executed
by slave interpreters in the local groupware applications.

2.3 Approach of this thesis

Before this section will introduce my approach, I define some terms, which
will be used throughout this thesis.

2.3.1 Definitions

This section defines some terms that will be consistently used throughout
this thesis.

User group

During the life-cycle of a groupware product different groups of users may
develop, adapt and use the application or its components. The following
groups are identified:

o cnd-users: End-users work with the groupware application to solve
one or more tasks. The skills of end-users include an understanding of
the business process, at least that portion of the business process in
which they are directly involved. End-users are not assumed to have

2.3 Approach of this thesis 17

knowledge in programming. However, they may adapt the groupware
system behavior, if the system supports end user tailoring.

e power-users: Power-users also work regularly with the groupware sys-
tem. Their skills differ from end-users in thus far that they oversee the
whole business process and are capable to modify the groupware system
by using different tools. Power-users often act as translators [Mac90]:
users that tailor an application for other end-users.

e groupware administrators: Groupware administrators are the system
administrators for a groupware system. The role of administering a
CSCW application is often played by power-users. In this thesis they
are distinguished only to denote some more skills. An administrator
does not need to use the administered groupware regularly, but is able
to set-up new applications and to edit configuration files. A groupware
administrator has also the skills to compose new applications from ex-
isting large-grained components and to customize such components.

o groupware integrators: Groupware integrators design and compose new
groupware applications. Integrators are often consultants, who do not
work within the organization, which installs eventually the groupware.
Integrators must be able to analyze the needs of the organization and
need to know the market of groupware products and components. Inte-
grators have domain-specific knowledge about the business processes.
While they need not to be experienced programmers, they can assem-
ble components within integrated development environments and write
small portions of code.

o groupware component developers: Component developers for groupware
primarily program basic components that may be assembled to form a
new CSCW application. Besides programming skills, they need design
practice to shape the components for maximal reuse.

This thesis supports the reuse and adaptation process for each user cate-
gory. The main focus is on the support for reuse for developers and integra-
tors, and the support for customization and tailoring for power-users.

Adaptation definitions

Groupware can be adapted to changing or similar, yet different, business
processes by all user categories, depending on the required skills. The reuse

18 Relevant Concepts for this thesis

of components by developers is based on object-oriented technologies, such as
inheritance and composition. The following definitions characterize adaption
processes that can also be performed by end-users and power-users:

e tailoring: Tailoring denotes the adaptation process during run-time.

o customization: Customization denotes the adaptation process during
design-time, if supported by an integrated development environment.
Customization includes setting of parameters for configuration, but also
the visual composition of components.

The distinction between tailoring and customization is used consistently
within this thesis. In literature, these terms are often found in different con-
texts. Some authors denotes with tailoring all adaptation processes that are
made after the installation of an application (see for example [Mac90, Syr97]).
Mgrch’s taxonomy of tailoring on the other hand defines customization as the
simplest level of tailoring [Mgr97al; tailoring in his model takes place always
at run-time.

2.3.2 Component model: Java Beans

This thesis uses Java as the implementation language. The component model
for Java is Java Beans.

The specification for JavaBeans outlines that “a Java Bean is a reusable
software component that can be manipulated visually in a builder tool”
[Ham97]. Beans are self-descriptive Java classes that follow design patterns
that let builder tools or applications introspect a bean. Properties reflect the
accessible state of a bean. The Java Beans component model uses an event
mechanism to interconnect the beans. A bean sends an event to all beans
that have registered their interest in that event. The standard distinguishes
two extraordinary states in the life-cycle of a bean: A bean can be manip-
ulated in an integrated development environment at design-time or behave
like an ordinary object during run-time.

Properties and events can be manipulated within visual builder tools. The
Java Beans standard offers additional associated classes for each bean, which
contain meta-information about the bean including special customizers and
property editors to support a more intuitive interaction with the developer.

The component-based approach together with visual integrated develop-
ment environments (IDEs) directly support my goal to be able to customize

2.3 Approach of this thesis 19

an existing application at design-time and to be able to build new similar
applications by reusing the components. Beans with associated customizers
allow even non-programmers to customize applications in an intuitive way.
The easy grasp is achieved by the use of graphical and form-based editors
within the IDFEs.

2.3.3 Approach

Groupware tends to be more complex than stand-alone applications. Fur-
thermore, to be successful, groupware must be well integrated within the
organizational structure of the group activities and should be adaptable to
the users’ cooperation modes.

The complexity of groupware demands a heavy investment in develop-
ment. From the argument that groupware must be adapted to the organi-
zational culture of its users follows that a groupware product can hardly be
designed monolithically to fit a large variety of customer’s needs. To allow
the development of groupware at acceptable costs, reusing and customizing
existing designs and code becomes a necessity. Reusable and customizable
components for groupware can be used to facilitate building new products
rapidly, which can also evolve through end-user tailoring after it has been
deployed; this thesis shows an illustrated argumentation for this strategy.

The goal of this thesis is to show how to apply software engineering re-
sults about reusability, maintainability, and support for evolution to group-
ware development. This work uses intentionally only wide-spread accepted
technology, such as a general purpose object-oriented language (Java) and its
component model. This thesis does not intend to invent a new component
model, which is optimized for CSCW applications. Instead, existing tech-
nology features are adapted to provide groupware components that can be
embedded within real-world CSCW applications.

General groupware components need to be adapted to domain-specific
solutions by the application developer. The such created basic groupware
applications can be customized to special and evolving cooperative work
situations by power-users, or even by end-users.

The task of using existing components to create a new groupware ap-
plication is a programming job. For this task, the components should be
manageable with state-of-the-art programming tools. To be available for a
huge group of developers, the components should be based on an accepted

20 Relevant Concepts for this thesis

general purpose language, which allows platform independent development.
The programmer should be supported by off-the-shelf tools to profit from
already existing tools (also a form of reuse). This approach also minimizes
the learning curve of using the offered groupware components, since each
developer can choose her or his preferred tools.

An application can be tailored by using tailoring functionality, which
is offered by the application itself, by using scripting languages to write
macros for a specific application, and by using tools outside the application.
This thesis focuses on the latter, using visual editors to customize and tailor
the application; although specialized components may still offer their own
tailorability interfaces.

This thesis encapsulates groupware functionality within components that
can be assembled and manipulated by different user categories to create
and adapt CSCW software. By relying on a standard component model,
which is well supported by visual builder tools, not only the system developer
is supported, but also the system integrator and power-user. This thesis
shows also that components can be designed and implemented in a way that
they are even usable by end-users, who do not know how to program; those
components are used by drag and drop operations.

2.4 Conclusion

From literature research, I have deduced that groupware systems need to
be adaptable to fit the requirements of modern work environments. As the
structure of group activities is often changing, groupware that aims to sup-
port these activities must be anticipate potential changes.

The goal of this thesis in to research reusability, customization and tailor-
ing for groupware applications. This thesis takes the approach of exploiting
software engineering concepts to reach this goal. Component-based develop-
ment offers the possibility to modularize the support cooperative activities
in components. My approach proposes to build new groupware systems by
composition of — and thus reusing — groupware components and their cus-
tomization to domain-specific requirements.

This thesis offers solutions, which enable users from different categories to
customize and tailor in all states of the software life-cycle groupware systems
and their building blocks: groupware frameworks and groupware components.
Solutions do not only address customization and reconfigurations at design-

2.4 Conclusion 21

time, but include also the insertion of new functionality and the modification
of behavior at run-time.

Chapter 3

Infrastructure framework for
groupware developers and
integrators: Group
communication components

This chapter introduces group communication components, which hide the
complexity of distributed systems from the developer. My approach intro-
duces the notion of a group: senders publish events to a chosen group name,
receivers subscribe to the same group name to receive these events.

My approach provides CSCW application developers and groupware in-
tegrators with easy-to-use components, which hide the complexity of dis-
tributed systems. The components, a GroupSender and a GroupReceiver,
extend the Java Beans event model [Ham97] to the distributed case. The
group communication beans support the manipulation with visual builder
tools, thus easing their usage. The beans are the access points to a frame-
work, which reliably distributes Java events from one sender to multiple
receivers.

All implementations of the examples in the following chapters use these
group communication beans.

Infrastructure framework for groupware developers and
24 integrators: Group communication components

3.1 Contribution

e Requirement analysis for group communication components.

e Design and implementation of group communication beans that offer
the developer easy-to-use access point to the framework, which dis-
tributes Java events.

e Design and implementation of the underlying distributed framework
so that the actual used distribution mechanism can be replaced with-
out affecting the implementation of the access points, i.e. the group
communication beans.

3.2 Infrastructure components: Group sender
and receiver

Since the JavaBeans component model defines only the interaction between
beans in the same virtual machine, I have designed group communication
beans, which act as access points to distribute an event to a group and to
subscribe to a group in order to receive those events.

The design of the group communication beans follow two basic goals:
First, the group communication beans must integrate well with the Java
Beans model. Second, they must be independent from the underlying dis-
tributed system to be able to migrate seamlessly to other distributed mid-
dleware implementations.

So, the group communication beans have to fulfill the following require-
ments:

e explicit access points to send and receive events;
e distribution of arbitrary Java events from senders to receivers;

e independence of the interface of the access points from the actually
used underlying distributed system,;

e visual customizability within integrated development environments for
Java Beans;

3.3 Design 25

e adaption to new event types by inheritance and standard extension,
i.e. only the handle routines for the new event types must be added.

Most distributed middleware tries to hide the differences between local
and remote object communication. The syntax of sending a message to
a remote object is embedded in the normal syntax of the programming lan-
guage. CORBA [Sie96], the advancement of the remote procedure call (RPC)
paradigm [Nel81] towards object-oriented technologies, prominently repre-
sents this approach. This approach is sometimes criticized, since it hides not
only the complexity from the developer, but it also hides potential different
failure semantics [TR88, WWWK94].

In contrast to remote method invocation architectures (e.g. Java RMI,
CORBA), the group communication beans are not tied to a specific object,
but accept Java events to distribute them. So, they make the distributedness
explicit, but do not complicate the programming of the application objects.
In fact, to support the collaboration of spatially dispersed people, messages
must be exchanged between their local applications; location transparency is
often counterproductive for the communication between CSCW applications.

The group communication beans also support directly a one-to-many re-
lationship. An event is passed from a GroupSender to all GroupReceivers
for the same group. Thus the notion of a group corresponds to the pub-
lisher /subscriber pattern [BMR96] of the Java Beans event model.

Figure 3.1 shows an overview about the use of the group communication
beans. The beans are visible at design-time within integrated development
environments (IDE), which support the visual composition of Java Beans.
Within an IDE, the group communication beans expose the Java event model
visually to the developer for remote event communication. Two beans are
necessary: The GroupSender forwards an event to all GroupReceivers, which
are configured with the same group name. The design for group communi-
cation follows the publisher/subscriber pattern [BMR96], where the group
name corresponds to the subscription. The group name is a property of the
beans and so can easily be set within an IDE at design-time or can be exposed
as an option in the user-interface to allow changes at run-time.

3.3 Design

The beans for group communication are designed on a higher level than the
distributed system actually used for the implementation. The same design

Infrastructure framework for groupware developers and
26 integrators: Group communication components

event |:|
GR

% host 2

— —
) et L gs >< GR oo
I:I I:I host 3

components = < event |:|

/

A

communication

host 1 backbone host 4

Figure 3.1: The infrastructure for group communication is provided by a

GroupSender (GS) and a GroupReceiver (GR) bean.

3.3 Design 27

can be used for transport mechanisms provided by the Java Remote Method
Invocation (RMI) API, CORBA object request brokers [MZ95], or reliable
multicast implementations as iBus [Maf97]. The current implementation
uses the agent-enhanced ORB for Java of Voyager [Obj98]. The design of
the beans guarantees that only the interface to the underlying communica-
tion system must be developed in order to exchange the distributed system.!
The higher level beans, the exposed GroupSender and GroupReceiver inter-
faces, are not affected thus that the communication system can be exchanged
without affecting the implementation and configuration of groupware systems
that use these group communication beans. No recompilation of the higher
levels is needed, since a configuration file determines which actual group-
ware framework is dynamically loaded and instantiated at run-time, when
the groupware applications are initialized.

3.3.1 Design towards the user

Figure 3.2 shows the UML diagram, how the group communication beans
represent themselves towards the application programmer. The programmer
has only to deal with the classes GroupSender and GroupReceiver in the in-
dependent groupware communication layer. Their implementation is hidden
from the application programmer.

To use the groupware communication framework with custom events, the
application programmer creates a new sender and a new receiver bean, which
are inherited from GroupSender and GroupReceiver respectively. The only
additions to the new classes are handle and fire methods for the custom event
(handleMyEvent and fireMyEvent in the diagram). In the handleMyEvent
method, the event is passed to the sendEvent method of the superclass;
the fireMyEvent method is invoked automatically by the GroupReceiver,
whenever a new event from that type is received for the subscribed groups.

The creation of a new pair of group communication beans for new event
types is supported by inheriting all methods from the offered beans GroupSender
and GroupReceiver. Most integrated development environments offer wiz-

!This statement is proven by the fact that the original implementation used the first
version of Voyager [Obj97]; the migration to the current implementation, which uses the
second version of Voyager [Obj98], took place without changes on the already developed
applications or the need of recompilation. Note that the Voyager updates came along with
complex API changes. An earlier, yet incomplete version, took Java RMI to distribute
events.

Infrastructure framework for groupware developers and
28 integrators: Group communication components

Logical View

Middleware

GroupSender GroupReceiver
+publishToGroups : String[] +subscribeToGroups : String[]
+sendEvent() +receiveEvent()

Groupware communication

Application components

MyEventGroupSender| MyEventGroupReceiver|

+handleMyEvent() +fireMyEvent()

Figure 3.2: The design of the group communication framework as it is seen
by an application programmer.

ards to add methods for a new event type. An experienced developer can
create a new pair within minutes.

The offered group communication beans can be extended in the same
way to handle more than one event. In this case the newly created group
communication beans must contain handle and fire methods for all supported
event types.

Whenever the developer places a group communication bean in the appli-
cation, a new instance of this bean is created later in the running groupware
application. This is needed to support the individual settings for the group
name property. However, the underlying group communication framework is
only instantiated once; it is the same instance, which serves the GroupSender
and GroupReceiver beans.

3.3.2 Internal design of the group communication frame-
work

The GroupSender and GroupReceiver classes are Java Beans conform and
expose the group communication framework towards the application devel-
oper. To be independent from the actually used middleware, which trans-

3.4 Applicability and needed skills 29

ports the data over the network, they delegate their tasks to classes that
implement the corresponding interfaces. The group communication beans
do never see the actual classes that are middleware dependent. To accom-
plish this separation, the internal design uses the Abstract Factory design
pattern [GHJV94]. Figure 3.3 depicts the design in UML notation.

At initialization time, the group communication beans instruct the ab-
stract BackboneFactory to decide, which implementation to use. The Back-
boneFactory reads the name of the concrete factory from a configuration file,
and instantiates the corresponding class. The group communication beans
then let the factory create the middleware dependent objects, which imple-
ment the interfaces. To highlight the flexible design, figure 3.3 shows not
only the actual used classes with the Voyager backbone, but also the classes
that symbol the usage of an other middleware OtherFactory, OtherGS,
OtherGR.

To avoid huge consumption of resources (e.g. memory, threads) the group-
communication backbone is realized as Singleton [GHJV94]. At initialization
time exactly one instance of the framework is instantiated in each local group-
ware application, which incorporates the group communication beans. This
instance serves both, all GroupSender and all GroupReceiver beans, in the
groupware application.

3.4 Applicability and needed skills

The group communication beans are intended to being used by groupware
application programmers.

The creation of GroupSenders and GroupReceivers for new event types
requires knowledge about Java programming. It involves the creation of a
two new classes, which is simplified by using inheritance and adding only the
methods, which are needed to handle the new event type. This customization
of the group communication beans follows a cookbook: the GroupSender for
the new event type must offer a method, which accepts this event and pass it
to its superclass. The GroupReceiver must provide add and remove methods
for this event type so that local beans can add themselves as listeners. Most
IDEs support the generation of these methods.

To use existing GroupSenders and GroupReceivers for a given event type
within a visual builder tool, the developer uses only composition techniques.
The developer draws event connections to and from these group communi-

Infrastructure framework for groupware developers and

30 integrators: Group communication components

Logical View

BackboneFactory uses GroupSender
+publishToGroups : String[]
+CreateGAPBackbone() +sendEvent()
+CreateGAPSender() +connectToBackbone()
+CreateGAPReceiver() GroupSenderint
+publishToGroups : String[]
+sendEvent() delegates
VoyagerGS OtherGS
uses +publishToGroups : String[]| |+publishToGroups : String[]
+sendEvent() +sendEvent()
VoyagerFactory OtherFactory creates
+CreateGAPSender() +CreateGAPSender()
+CreateGAPReceiver(), +CreateGAPReceiver(), GroupReceiver
creates +subscribeToGroups : String[]
+receiveEvent()
+connectToBackbone()
GroupReceiverint
+subscribeToGroups : String[]
+receiveEvent() Jeleaate
VoyagerGR OtherGR
+subscribeToGroups : String[]| [+subscribeToGroups : String[]
+receiveEvent() +receiveEvent()
creates
creates

Figure 3.3: Application of the Abstract Factory pattern within the design of
the internal classes of the group communication framework.

3.5 Examples 31

cation beans. Those composition techniques can be applied by groupware
developer and groupware integrators, but also by power-users.

If the group communication beans are designed for more than one event
type, the user has to draw connections for all events. If a local component
needs always to register for a large event set, drawing all connections can
become cumbersome. In this special case, the design phase can be supported
more efficiently by implementing methods in the group communication beans,
which automatically call the registration methods for all methods for the
component. The design and implementation of such methods is analog to
the mutual registration methods as introduced in chapter 5.2.

The group communication beans expose the group name as a bean prop-
erty. Events that are sent by GroupSenders are only received by GroupRe-
ceivers for the same event type, if the group name property is set to the same
value. Visual builder tools support setting the group name with a property
editor. While setting the group name is an easy task, end-users normally
should not assign other values, because changing this property has conse-
quences on the interaction between all deployed local groupware applications.
This property is typically used by groupware integrators and administrators.

Other beans can also manipulate the group name property at run-time.
This is useful to create dynamically sessions (e.g. a chat session) or to create
personal receivers, which are often initialized with the login name of the user.

3.5 Examples

Unlike the following chapters, this chapter does not provide a complete ex-
ample on how to use the group communication beans. Instead, I will give
here an overview, where these beans are deployed in the examples of the
following chapters.

Chapter 4 introduces tutoring components as examples for component
composition techniques. The group communication beans are visible at
prominent places, where “help” request are distributed.

In the example of chapter 5, the groupware beans are an integral part of
the presented awareness service framework. The group communication beans
distribute the events internally within this framework, but are no longer
visible without decomposing the framework.

Chapter 7, which introduces the extension of frameworks at run-time, uses

Infrastructure framework for groupware developers and
32 integrators: Group communication components

the group communication beans to deliver information about the component,
which is to be plugged into the framework. This can include the code for the
component itself.

In chapter 8, the group communication components distribute whole, po-
tential large, objects, which are encapsulated within an event. The example
of a tele-teaching application uses the group communication beans to dis-
tribute and receive exams.

3.6 Conclusion

The introduced group communication beans offer uniform access points to
send and receive events in a distributed system. The GroupSender bean
publishes events to a named group. GroupReceivers that have subscribed to
the same group receive these published events.

The group communication beans are optimized for their use in visual
composition editors for Java Beans. The user can visually connect events
to and from the group communication beans with local components. The
group name is exposed as property and can be accessed at design-time with
a property editor; it can also be changed dynamically at run-time to support
the creation of ad hoc groups.

The design of the group communication components follows the Publish-
Subscriber design pattern. The publisher does not know how many sub-
scribers for a given group exist. This design has the advantage that the
implementation of the group communication framework can use true multi-
cast to address scalability issues for larger groups. It also fits well the notion
of an interest group for groupware applications.

Groupware applications, which need to know all connected users before in-
stantiating a cooperation, can implement a two-way protocol with the group
communication beans. First a discover message is sent to the group, which
needs to be acknowledged by all subscribed members. The cooperation is
then only instantiated if the criteria for the group is met.

In the case that a groupware component wants only to display the current
members of a group (e.g. a chat component), the group communication beans
should support join and leave messages.

The group communication components assume that the delivery of events
is reliable; i.e. that an event, which is published is received by all subscribed

3.6 Conclusion 33

applications. The underlying group communication framework should be
implemented to support reliability.

The group communication beans are not well suited to support trans-
actions. While a two-phase commit protocol can be implemented with the
help of the offered beans, it seems to take unnecessary effort to use them for
this reason; especially, since transactions are normally used in a client-server
setup, i.e. the group would exist only of exactly one sender and one receiver.

Chapter 4

Reusing components:
Decomposition and composition

This chapter shows how component based programming fosters reuse tech-
niques by providing the means of decomposing existing components and re-
composition to new components. Through recursive application of compo-
sition techniques, component-based applications become customizable on all
levels.

This chapter also introduces groupware components, which I define as
components that interact with a custom event-based protocol over system
boundaries. To be meaningful, each participating groupware application
needs locally at least one instance of groupware components. With my ap-
proach, groupware components can be customized within visual builder tools
in the same way as local components.

This chapter also introduces the use of visual builder tools for Java Beans,
which simplify component decomposition and composition.

4.1 Contribution

e Principles of decomposition and composition of components to foster
reusability and customizability on all levels of a groupware application.

e Introduction of distributed groupware components, which interact us-
ing a cooperation protocol, and application of the composition princi-
ples on them.

36 Reusing components: Decomposition and composition

e Presentation of the composition techniques in an examples of a dis-
tributed tutoring system, which uses groupware components.

4.2 Reuse components on all levels

A component is an independent “unit of software that encapsulates its design
and implementation and offers interfaces to the outside, by which it may be
composed with other components to form a larger whole” [DW98]. By using
composition techniques recursively, reuse and customization become available
on all levels of a component based application.

With the help of visual builder tools, users can visually compose compo-
nents to larger components, but also decompose a given component into their
parts. One reason why I concentrate on Java Beans as component model is
that a variety of integrated development environments (IDE) exist, which
support visual composition techniques.

This chapter focuses on the design and implementation of groupware
components: components that deliver a solution to a common groupware
problem. These groupware components are composed of smaller, specialized
components that are normally hidden from the user. However sometimes
a similar cooperative task cannot be achieved by using a given groupware
component. Instead of implementing this similar task from scratch and the
library, the groupware component is decomposed, the necessary changes are
made, and the result is composed into a variant of the existing groupware
component. This customization technique leaves the original component
interface intact, thus enabling the seamless integration within the original
groupware application. Figure 4.1 denotes the general customization process
by using composition techniques.

After a short review of the Java Beans component model, I will introduce
the notion of distributed groupware components.

4.2.1 Java Beans

The specification for JavaBeans outlines that “a Java Bean is a reusable soft-
ware component that can be manipulated visually in a builder tool” [Ham97].
Beans are self-descriptive Java classes that follow so called design patterns
that let builder tools introspect a bean and let a bean be self-descriptive. The

4.2 Reuse components on all levels 37

2

4| =

/

Figure 4.1: A subcomponent (3) of a larger component (a) is decomposed
(b) by a user to exchange the internal component (C) with another (C’) and
eventually recomposed (c) with the same interfaces as the original.

standard distinguishes two extraordinary states in the life-cycle of a bean: A
bean can be manipulated in a builder tool at design-time or behave like an
ordinary object during run-time.

Properties reflect the accessible state of a bean. Beans can be customized
during design-time by altering bean properties. The JavaBeans component
model uses an event mechanism to facilitate component compositions. The
event-mechanism allows the coupling of state transitions of a bean with an
action in another bean. The Beans specification describes how the coupling
has to be implemented, thus it can be automated through an integrated
development environment (IDE).

Components and especially Java Beans exist in a range of granularity.
They encompass the range from simple GUI controls (such as the Java
AWT buttons and panels) up to applications (such as spreadsheets or Web
browsers). Smaller components can be assembled to form larger components.
In the same way larger components can be decomposed into its contained
components.

38 Reusing components: Decomposition and composition

4.2.2 Groupware components

Groupware components solve a particular cooperative problem. To assemble
a groupware system, local groupware applications are assembled by using
existing groupware frameworks and components.

Groupware systems are symmetric, if all local groupware applications are
composed by the same components and support the same interactions with
the user; groupware systems are asymmetric, if users play different roles and
have different rights. Especially in educational settings users have different
roles (e.g. tutor and student). The users interact thus with different local
applications, which support their roles.

Local Application A Local Application B

IGWC 1a

GWC 2aK Coop2 GWC 2b

Figure 4.2: A groupware system consists of local groupware applications,
which cooperate by groupware components (GWC). In an asymmetric co-
operation, the groupware components are different, depending on the role,
which is supported by the local application. The groupware components co-
operate by their own protocols (Coopl, Coop2). The groupware components
interact also with local components (LC) within the local applications.

Figure 4.2 gives a high-level overview about cooperating local applications
within a groupware system. The cooperation is actually done by embedded
groupware components, which support the different roles of the local appli-
cations. Each local application embeds also local components, which interact
with the groupware components.

If an groupware system as depicted in figure 4.2 becomes to be changed,
two cases can be distinguished. If the cooperation among the local appli-
cations remains unchanged, only the local components (e.g. the graphical
user interface) needs to be customized. Such a change affects only the local
application. If the cooperation itself is changed, all local applications which

4.2 Reuse components on all levels 39

contains the cooperating groupware components must be updated. This can
be done by decomposing each local application and exchanging the groupware
component with another groupware component, e.g. GWC la with a new
groupware component GWC 3a in the local application A and the change of
GWC 1b with GWC 3b in the local application B.

From this overview, some requirements for groupware components can be
drawn.

e For each different role, a groupware component with specific behav-
ior should exist. This can be accomplished by providing groupware
components with selectable roles at design-time (i.e. the instance of
the component stores the role) or by providing a family of groupware
components for each supported cooperation (i.e. the components are
different, but interact with the same cooperation protocol).

e A groupware component shall encapsulate the cooperation protocol and
hide it from the user. Even if the protocol is provided by different com-
ponents, they should be assembled within the groupware component.
Thus a user cannot break the cooperation protocol unless the group-
ware component itself is decomposed and changed.

e For cooperation with local components, a groupware component ex-
poses its interface; in the Java Beans component model that means
that each groupware bean exposes methods, which accept events from
other components, and fires events, when it wants to signal an ob-
servable state change to the outside. The interface should expose the
control over the cooperation of the groupware components, but should
not provide access to the cooperation protocol itself.

e Groupware components that support similar tasks should implement
the same interface to be easily exchangeable. This requirement for
groupware components can be easily achieved, if they are assembled
by the same developers or producers. Components from different third
parties, however, do normally not implement the same interfaces. In
such cases — and if exchanging groupware components is anticipated
— it is better to build a common adapter, which implements the in-
terface and is taken as the groupware component, than to change the
cooperation with the local components each time, when a groupware
component is exchanged.

40 Reusing components: Decomposition and composition

4.3 Applicability and needed skills

An existing component can be decomposed in its contained components.
This process can be applied recursively until the component is atomic (or no
source code exist).

Although visual builder tools for component based programming support
the decomposition and composition of components, this stays a programming
job. The use of these techniques thus requires knowledge of the component
model, programming skills, and familiarity with the used visual programming
environment.

Groupware components cooperate by their cooperation protocol. In an
asymmetric cooperation, for each supported role a specialized groupware
component exists. The groupware components offer control over their co-
operation, but hide the internal cooperation protocol from the user. Thus
different cooperation protocols can be implemented by groupware compo-
nents that offer the same interface. For example, a textual chat component
and a component that support audio and video conferencing can be used to
support communication between spatially dispersed end users. Both group-
ware components implement the same interface to set-up and control the
communication (e.g. start, stop cooperation or passing a token).

One of the key benefits of assembling CSCW system with groupware
components is that they can be easily exchanged to adapt the system to new
technological developments (such as the availability of real-time audio) and
to adapt the system to changed work situations. However, customization by
decomposing components and their recomposition requires strong skills and
is especially suitable for radical and deep changes.

Groupware components themselves can be composed of other groupware
components. The cooperation protocol of the larger component thus cor-
responds to the protocols of the internal groupware components plus their
coordination.

The skills, which are needed by the user who customizes a groupware sys-
tem by decomposition techniques, depend highly on the customization task
and the supported interfaces by the existing components. On the composi-
tion level, it is a relatively easy task to exchange two groupware components
that implement the same interface. However, this customization technique
requires an understanding of the component-based groupware system, al-
though the exchange can completely be done within a visual builder tool

4.4 Example: Component based tutoring system 41

without writing lines of code. In my definition, a power-user possesses the

needed skills.

If a groupware component should be replaced by another groupware com-
ponent that provides a similar cooperation, but a different interface, the user
must first develop an adapter. This task is already programming oriented.
Those skills are possessed by groupware system integrators and developers.

4.4 Example: Component based tutoring sys-
tem

To support remote laboratory courses in a university, groupware components
for tutoring framework have been developed during this thesis.! The CSCW
system, which is composed of groupware and local components, offers a so-
lution to find a suitable tutor among the group of tutors. Two groupware
components implement the cooperation protocol to contact a tutor; one is
placed in the student application, the other in the tutor application. The
tutoring components allow students to contact a tutor, when they want assis-
tance. The tutor gives peer-to-peer advice by using cooperation components.
The basic tutoring components are extensible by different sets of cooperation
components that implement different cooperation modes and use different
communication components.

4.4.1 Motivation: The “get help” problem

The “get help” problem manifests itself in tutoring situations, as in labora-
tory courses or in hot-line situations. In the traditional teaching environment
of a classroom, students are assigned exercises during a laboratory course.
The students are solving their tasks on computers, while one or more tutors
are in the classroom to instruct, supervise and help the students, when they
need assistance.

Figure 4.3 shows the general setting in a tutoring situation. One of the
students wants assistance and informs a tutor. In classroom situations, the
tutor becomes aware about the student’s wish, when he sees that the student
has raised his hand. The tutor then moves to the student, offers his help and
they solve the problem cooperatively.

L Arnd Kohrs implemented the first version of these components [Koh97].

42 Reusing components: Decomposition and composition

stu_d_e_nts

Figure 4.3: General scenario of the “get help” problem.

When this situation is to become computer-supported, some questions
become obvious.

e What is known about the student’s problem?

In the classroom scenario a tutor sees only that a student has raised
his hand. In a remote laboratory course, where tutors and students
are spatially separated, an analogy for the hand raising must be found.
However, the student may also describe his problem briefly, before he
asks for help or the tutoring system extracts automatically information
from the application, which the student currently uses.

e Which tutor is informed about the help request?

In the classroom scenario all available tutors are aware about the stu-
dent’s request. They also see, when a tutor moves to this student thus
that they can concentrate on the other students. A computer-supported
lab-course could inform all tutors about a request and inform the oth-
ers, when one tutor has decided to help this student. Especially if more
information about the request is available, the tutoring system could
react more sophisticatedly. The system could assign a tutor, who is the
best suited to solve that particular problem or try to balance the work
between several tutors.

e How can the tutor and the student communicate?

In the classroom scenario, the communication is evident: The tutor
moves to the student; they communicate face-to-face with all possible
interactions. In the remote tutoring scenario, this is not possible and
the interaction must also be computer supported. The interaction can

4.4 Example: Component based tutoring system 43

include symmetric communication forms, as audio, video, and text-
based chat. It is also possible to just provide the student with hints in
form of a file containing answers for frequently asked questions (FAQ).
An additional form of interaction would share the application and use
tele-pointers.

These questions and the variety of the possible answers give an example
that a monolithic application that wants to support all degrees of freedom
is not applicable. Instead it is favorable to customize the tutoring system so
that it supports the wanted functionality. This section offers an approach,
how the degrees of freedom in the “get help” problem can be preserved by
using components, which can be assembled and customized easily to be in-
corporated in such a tutoring framework.

4.4.2 Design of the tutoring components

The tutoring components are responsible to manage “get help” requests by
the students and to deliver them to the appropriate tutors. Different strate-
gies on how to find the appropriate tutors are possible. Eventually, the
request are shown to the tutors, who then decide on how to react. Different
means are possible to provide the student with help.

The main goal is to isolate the common functionality and to implement
it in high-level groupware components. These tutoring components delegate
the actual tutor-student cooperation to specialized groupware components,
when the tutor has accepted a “get help” request. Different components for
different tutor-student cooperation facilities can exist. If new cooperation
components has been developed and it becomes feasible to include them
(e.g. audio/video components that require hardware, such as microphone
and speakers), the tutoring applications are decomposed and the cooperation
components are exchanged.

The tutoring components are thus designed to be comprehensible and
manageable by groupware integrators, administrators, and power-users, e.g.
by tutors. So, the components must conform to the following points:

1. Comprehensible units that are powerful enough to support the given
use cases. However, they should not overwhelm the tutor with to many
options.

2. Adaptable to the context of different tele-teaching applications. It

44 Reusing components: Decomposition and composition

might be necessary to pass arbitrary information with a help request
or its answer to support different cooperation forms.

3. Delegation of the actual used tutor-student cooperation to specialized
groupware components. To use a different pair of cooperation com-
ponents, the applications, which contain the tutoring components and
their interaction with the cooperation components, are decomposed
and the cooperation components are replaced.

4. Support for customization. Tutors, groupware system administrators
or integrators use visual builder tools to customize the tutoring sys-
tem. This requires that the tutoring applications are decomposable
and the visual representation of the contained components and their
interactions are comprehensible. This includes especially that the tu-
toring applications themselves do not contain too much components on
the same level. The level after the first decomposition should contain
only high-level components and their events (high-level in the sense:
components, which have a similar abstraction and complexity).

The tutoring groupware components interact with the tutoring protocol.
The tutoring protocol is defined by the events, which are passed between the
distributed tutoring components.

The tutoring component, which resides in the student application, is
named StudentBean, its counterpart in the tutor application TutorBean.

The following events are sufficient to implement a distributed tutoring
system, which also offers the needed degrees of freedom to support various
customizations, such as support events which can trigger different coopera-
tion components. For this reason the events may carry additional arbitrary
information.

NeedTutor: The NeedTutor event is sent from the StudentBean to the
TutorBean (or to the trader, if configured). It carries information to
identify the student (e.g. the name), a call-back address to set up
the cooperation, and an arbitrary object that describes the student’s
problem. The description can be supplied by the student directly or
derived by the state of the student’s tele-teaching application. It is
freely configurable.

OfferTutoring: The OfferTutoring event is the answer to a NeedTutor
event and is sent from a TutorBean to the requesting StudentBean. It

4.4 Example: Component based tutoring system 45

contains information about the identity of the tutor (e.g. the name)
and the help method. The help method is used to lance the facility
of cooperation support, which can include a textual chat, audio/video
conference, or any other method. It is freely configurable.

Other events: A StudentBean can fire a Cancel event to cancel a priorly
issued NeedTutor event. The Finish event can be used by both, the
StudentBean and the TutorBean, to finish a cooperation, after the
problem has been solved.

4.4.3 Tutoring application examples

This section shows examples, how IBM’s Visual Age for Java, which is a
visual builder tool for Java Beans, represents the compositions of the tutoring
applications, which use the introduced tutoring and cooperation beans.

The tutor application could be assembled as shown in figure 4.4, the
student application visually assembled as in figure 4.5.

enter name here | | Tutars

| SendToShudent | | i " GroupReceiver
v ool n ﬁ ---------------------------- f:/f P

i
l‘, OfferTutoring - NeedTutor

S NeedTutor |

ChatPreparer '

Figure 4.4: Decomposed tutor application with chat component.

Both screenshots contain visible, i.e. graphical user-interface, beans and
invisible beans that are only visible in the builder tool at design-time. The
beans named GroupSender and SendToStudent, are customized GroupSender

beans; the GroupSender of the screenshot handles NeedTutor events, SendToStudent

handles OfferTutoring events. PersonalReceiver and GroupReceiver are
customized GroupReceiver beans; PersonalReceiver emits the incoming
OfferTutoring events, the GroupReceiver emits NeedTutor events.

46 Reusing components: Decomposition and composition

_’___H__‘__J

f—m‘wo w7 NeedTutor
PersonalReceiver AddRespondT o

Figure 4.5: Decomposed student application with chat component.

In these examples the NeedTutor event is sent to a group, which can be
reconfigured at run-time, and defaults to the name “Tutors”. The bean for
registration is reused in both components.

When a tutor picks a request for help, the NeedTutor event is forwarded
to a ChatPreparer bean, which issues a 0fferTutoring event back to the
requesting student. The ChatPreparer in the tutor application and the
ChatAnswerer in the student application manage the in this example con-
figured cooperation facility: a (here not shown) chat bean for a text-based
conference. To change the cooperation mechanism only these beans must
be exchanged. During the thesis additional cooperation beans were imple-
mented, such as a frequently-asked-questions (FAQ) components and beans
that set-up and support real-time audio and video conferencing.

4.5 Conclusion

Visual builder tools support well the component based reuse technique of
decomposition of a larger component and the recomposition of those smaller
components into a similar larger component with a similar, yet different
behavior. This technique enables developers to focus on the right level of the
implementation, since not decomposed components hide all their complexity.

My approach introduces concepts to design and implement the stated

4.5 Conclusion 47

requirements for groupware components. The approach benefits from the
existence of third-party visual builder tools for Java Beans, since it does not
change the Java Beans component model. Thus, users can use these tools to
customize groupware components.

Still, this customization activity requires a good knowledge with the used
builder tool and also of the decomposed component and its contained com-
ponents with their interactions. When the experience with customizing large
components, such as the tutoring components, matures, often a redesign into
object-oriented frameworks happens. The next chapter discusses groupware
frameworks and shows a strategy to evolve the here presented tutoring com-
ponents into a more general tutoring framework.

Chapter 5

Customization by extending
groupware frameworks with
components

Chapter 4 has introduced composition techniques for component-based group-
ware applications to foster reuse and to offer customizability on all levels.

This chapter promotes the design of groupware frameworks which antic-
ipates change. The principle is to design the invariant parts as groupware
framework and to offer plug-points to extend the framework with special-
ized components. This chapter introduces the theoretical foundation for this
design paradigm.

In this chapter, I apply this paradigm to show a Java Beans compliant
design of framework plug-points for groupware frameworks. As example, |
present a redesign of the tutoring application, which has been introduced in
the previous chapter 4.4. This redesign encapsulates the core functionality
to contact a tutor within the framework and offers plug-points to insert spe-
cialized groupware components, which handle the peer-to-peer cooperation
between the accepting tutor and the requesting student.

5.1 Contribution

e From literature adapted general design principle for customization: In-
variant framework, which is extended by domain-specific components.

Customization by extending groupware frameworks with
50 components

e Introduction of a Java Beans compliant design pattern for plug-points,
which define the extension points of a black-box framework for special-
ized components.

e Design of groupware frameworks, which offer plug-points for groupware
components, which interact with their proprietary cooperation proto-
col.

e Application of the introduced design principles to redesign the tutoring
example of chapter 4.4 as tutoring framework.

5.2 Design for customization: Framework +
components

In this section, I will give a short introduction in frameworks as found in the
literature to define the technical terms, which are used throughout this the-
sis. Then, this section introduces my design pattern for the extension points
of Java Beans based frameworks and finally apply this framework approach
to distributed groupware frameworks, which are extended by groupware com-
ponents.

The general idea is to design the static parts of groupware applications
as frameworks and to anticipate change by designing the changeable parts as
components, which can be plugged into the groupware framework.

5.2.1 Overview about framework design

Components, which encapsulate collaborating smaller components to offer
common behavior, are easy-to-handle black boxes that communicate with
other components in the application only over defined interfaces. This is
wanted until a developer needs to change a certain behavior within the com-
ponent. Therefore, the component must first be decomposed into its sub-
components and then re-composed to form the new component. A better
design anticipates the potential changes and offers plug-points [DW98], also
called “hot spots” [Pre94]. Plug-points offer an interface of the framework
to the outside, where other components can be plugged in to provide a cus-
tomized behavior. By providing plug-points a component can be seen as an
application framework.

5.2 Design for customization: Framework + components 51

Frameworks are commonly distinguished into white-box frameworks and
black-box frameworks [F'S97] dependent on how they are extended. White-
box frameworks rely on inheritance, black-box frameworks on polymorphic
composition.

Inheritance as extension mechanism results in strong coupling between
the framework and its extending classes; it is static and cannot be easily
changed at run-time. Inheritance, on the other side, offers the developer to
override all visible methods of the super-class, thus extending the class even
if these methods were not anticipated to be changed [RJ98].

Black-box frameworks, on the other hand, use polymorphic composition
as extension technique. To apply composition, the framework developer must
anticipate the potential changes and design special plug-points. Composi-
tions can be changed at run-time. Through composition the framework and
its extending classes are decoupled; any class, which fits the interface can
extend the framework.

5.2.2 Framework design for Java Beans

Component models, such as Java Beans, rely mostly on composition tech-
niques. Components interact via an event model. In Java Beans, a bean
receives an event only, if it has been registered as listener for this event type
by the emitting bean.

Frameworks, which use beans as extensions, are thus designed as black-
box frameworks. The plug-points are realized as interfaces, which define the
event sets for the protocol between the framework and its extending compo-
nents; i.e. the interface contains the necessary methods to add and remove
the listeners for the event types. Since the Java Beans event model is de-
signed for multicast events, this approach automatically allows the insertion
of multiple components for each plug-point.

Visual builder tools that support the Java Beans specification, such as
IBM’s Visual Age for Java, generate at design-time the method calls to add a
bean as a listener for a specific event, when the event is drawn visually. Thus
builder tools for Java Beans support visually the extension of frameworks
with components.

If the framework and its extending component communicate with many
events, drawing the connection within a visual builder tool becomes awkward.
Furthermore, if the correct functioning depends on the correct wiring of all

Customization by extending groupware frameworks with
52 components

events, the developer has to check manually that all event connections are

drawn.

To prevent from potential failures that results from forgetting event con-
nections, but also to offer the developer an easy way to extend a framework,
I propose the design of plug-points as depicted in figure 5.1.

.
{initFWListeners(FWListeners fwl) {
| addFW1Listener(fwl);
| addFW2Listener(fwl);
|/ fwl implements also PIugToPC

+initFWListeners I|I - illlhillnfm i

{ mlllllll“‘"1'““““‘H*‘““'1111""l!!!l!!!!!!lll

 |+addFwi1 Llstener

registration: FW <=

FWiListener

PCi1Listener

+handleFW1Event()

FWListeners

FW2Listener2

+handlePC1Event()

PCListeners
Yg I |

PC2Listener

PlugToFW PlugToPC

initFWListeners() | [+initPCListeners()

+handleFW2Event()

s

B
* create initFWListeners connection
* with visual builder tool

* to generate initialization code

handlePC2Event()

init_|PluggableComponent| [~| * generated code results in:
firePC1Event :/pfw:variable to PlugToFW

firePC2Event pfw.initFWListeners(this);

Figure 5.1: Design of a plug-point in a framework.

Figure 5.1 shows the static structure of my approach to define rigid plug-
points in a framework. They are rigid, because the pluggable component
must implement all event listeners for potential events from the framework
and the framework must implement all defined event listeners for events from
the component.! Additionally, the framework and the extending component
must each implement a interface for mutual registration.

!Chapter 9 introduces a design, which relaxes this rigid approach and allows the inser-
tion of components, whose event set is discovered at run-time.

5.2 Design for customization: Framework + components 53

The key benefit from this design is that the user, who extends the frame-
work, needs to call only one method of the framework, which connects then
automatically the event sources with their listeners; in a visual builder tool
the user draws exactly one connection.

In figure 5.1, the gray boxes contain the interfaces for the plug-point. The
listener interfaces for all events, which are sent from the PluggableCom-
ponent to the Framework are summarized by the PCListeners interface,
which inherits the definition of the event handler methods from the listener
interfaces for these events (left gray box). The Framework must implement
these interfaces to be able to receive the events from the component. Simi-
larly, the right gray box contains the listener interfaces, which must be im-
plemented by the PluggableComponent to be able to receive events from
the framework. Essentially, the listener interfaces define the communication
protocol between the framework and its extending component according to
the Java Beans event model.

In figure 5.1, the middle gray box contains two interfaces, which de-
fine the methods to mutually register the component with the framework.
The Framework implements the interface PlugToFW. PluggableCom-
ponent calls the method initF'WiListeners of this interface with this as pa-
rameter. Its implementation in the framework adds this instance of Plug-
gableComponent as listener for all framework events. Subsequently, the
initPCListeners method of the added component is called. Note that the
user needs only to draw one connection in the visual builder tool to call the
inttF'WiListeners method of the framework to mutually register the instance
of PluggableComponent with the actual instance of Framework. The
by the tool generated code is executed at initialization time.

5.2.3 Groupware framework

A groupware framework is in my definition an application framework, which
provides a groupware service. A groupware framework is distributed. An
instance within a local application interact with other distributed instances
using a proprietary groupware framework cooperation protocol, which is de-
fined by the distributed events that they exchange; an instance also interact
with local components with standard Java Beans events.

Groupware frameworks and groupware components are similar, but differ
in their design. While groupware components are ready-to-use components,
a groupware framework offers plug-points to be extended. In general, an

Customization by extending groupware frameworks with
54 components

extension is needed to adapt a groupware framework with domain specific
components to be usable in a particular CSCW system.

Like groupware components, groupware framework instances use a coop-
eration protocol to interact over system boundaries. In the case of asymmet-
ric groupware systems, the protocol can be provided by different implemen-
tations of a groupware framework or by providing properties to select the
role of the framework instances. On an more abstract level, e.g. the analysis
and design level, its is sufficient to note the role that a groupware framework
plays; figures 5.2 and 5.3 use this approach.

Local Application Local Application
==role: “student” >> <<role: “tutor” ==

|\ o

HEENNEREER

Figure 5.2: Groupware framework extended with groupware components.

The plug-points, which are used to customize a groupware framework,
anticipate domain-specific extensions. The design for groupware framework
plug-points uses the prior introduced design (see figure 5.1). Plug-points
can be defined for local components and for groupware components. Plug-
points that assume groupware components as extensions need to be extended
by suitable components in all distributed instances in order to support the
cooperation protocol of its extending components.

Figure 5.2 gives a general overview about an extension of a groupware
framework with groupware components. The figure shows the cooperation
protocol between the instances of a groupware framework as well as the
cooperation protocol of its extending groupware components. Further, the
framework and the components interact over the by the plug-points defined

5.3 Applicability and needed skills 55

interfaces. This figure assumes an asymmetric setting, with two roles, a
student role and a tutor role.

5.3 Applicability and needed skills

Frameworks often evolve from prior object-oriented or component-based de-
sign [RJ98]. Groupware components, such as discussed in chapter 4, which
are often adapted, are good candidates to evolve into groupware frameworks
by factoring out the common parts and designing plug-points for the specific
parts.

The design of extensible frameworks is a demanding task for designers of
groupware components. However, the use of an existing groupware frame-
work and its extension by domain-specific components is a task, which re-
quires only moderate programming skills and some experience with a visual
builder tool. Groupware integrators, administrators, and power-users have
the skills to adapt groupware frameworks by composing them with domain-
specific components.

5.4 Example: Redesign of Tutoring frame-
work

To illustrate the introduced principles, this section redesigns the groupware
components for tutoring from chapter 4.4 into a tutoring framework.

The basic service of the tutoring framework is to deliver contact requests
from one person to a group of other persons (e.g. a request from a student
to one or more available tutors). The framework offers means to control
the contact request, i.e. it allows to cancel a request, to show the request
only to a sub-group or a specific person and to react on a request. When a
tutor answers a request a specific collaboration tool for peer-to-peer advice
is triggered, which handles the collaboration. So, the design of the tutor-
ing framework includes a plug-point for the groupware component, which
manages this collaboration.

Figure 5.3 depicts the redesign for the tutoring framework. Two different
instances of the tutoring framework exist: One for the requester (e.g. the
student), one for the tutoring provider (e.g. the tutor). Both instances of

Customization by extending groupware frameworks with

56 components
Local Application Local Application
<<role: “student”>> <<role: “tutor”>>
(student-request \ [tutor-request |
ontrol control
L tutoring tutoring <@» View/
GUl <+—»
—O— framework I Lutoring I framework "0~ Control
Cooperation| protocol Cooperation|
Plug-Point Plug-Point
I I
cooperatton cooperatton
t-nnh-n’ pnuﬁ-n]

protocol

Figure 5.3: Tutoring framework with plug-points to local components (GUI,
Model/View) and groupware components (chat).

the framework offer a plug-point for groupware components that provide the
actual cooperation between a student and a tutor, when the tutor wants to
answer a request. In the figure, a chat component is used as an example.

The protocols between the tutoring framework and the local and group-
ware components fulfill the requirements as they have been analyzed in chap-
ter 4.4.2.

The interface of the student access point of the framework offers the
possibility to request assistance by a tutor and to control own requests. In
analogy to the analysis in chapter 4.4.2, the framework accepts the following
events from local components (student-request control): NeedTutor, Cancel,
and Finish.

The plug-point for local components of the tutor access point of the tutor-
ing framework is based on the Model /View/Control design pattern [BMR196].
The model stores the requests by the students and manages them. The plug-
point supports the extension by one or more external view components, which
are updated whenever the contents of the model change. The plugged com-
ponent informs also the framework (and thus the model) about changes, i.e.
when a tutor selects a request to answer. In analogy to the analysis in chap-
ter 4.4.2 the framework accepts the following events: OfferTutoring and

5.5 Conclusion 57

Finish. In contrast to the design of the tutoring component, the framework
internally manages all requests by the students within the model.

The tutoring framework offers for both roles (student and tutor) a plug-
point, which must be extended by components that handle the actual co-
operation between the requester and the tutoring provider. Essentially this
interface controls the begin and the end of the cooperation; i.e. the frame-
work can send events to the extending groupware components to initiate a
cooperation (StartCoop) and to stop a cooperation (StopCoop). However,
also the cooperation components might signal the end of the cooperation;
they use the Finish event.

In this asymmetric case of a tutoring framework, both the student and
the tutor side must be extended by fitting groupware components. Fitting
means that the extending components support the same cooperation pro-
tocol and that the components implement the plug-point interfaces of the
framework. The cooperation components can also be asymmetric but this is
not mandatory. As an example, the chat component in the example figure is
the same at both sides and supports a symmetric cooperation.

The tutoring framework does not only distribute events, but is also checks
on integrity. This means that an event to cancel a call tutor request is only
accepted, if the request is still open. The integrity check includes also that
the model reflects at any time the current state of the requests; regardless if
one or more tutors guide the requesters. How the framework achieves this
integrity is not defined by this high-level design, but a simple implementation
would use a central database to hold all requests and to which all tutoring
framework instances are connected.

5.5 Conclusion

This chapter proposes to split the design of a cooperative service into two
parts. The invariant part is offered by a general groupware framework, which
is extended by the part, which implements the domain-specific behavior.
Plug-points define the interface between the framework and its extending
domain-specific components.

Both groupware frameworks and its extending groupware components
may use their own cooperation protocol to communicate among their remote
instances. This cooperation protocol is not defined by the plug-point, which
only determines the local communication protocol between the framework

Customization by extending groupware frameworks with
58 components

and the components. The user is responsible to extend a groupware frame-
work with fitting groupware components, i.e. with components that interact
with a matching cooperation protocol.

The proposed Java Beans optimized design for plug-points ensures that
users can easily extend a groupware framework with visual builder tools
during design-time.

Chapter 6

Special customization support

This chapter shows how the customization process can be further supported
by specialized components, if the component model foresees such possibilities.
Java Beans offers the ability to link so-called Customizers with a bean, which
act as wizards to help the customization process.

Visual builder tools execute the Customizers, when a user selects a bean
for customization. Customizers offer a graphical user-interface for a bean to
guide the user through the creation of a specific instance of a bean. With the
help of Customizers, the visual creation of complex instances (e.g. a bean
that contain many other beans in a specific instantiation) becomes feasible.
In the extreme, end-users can create large nested components together with
their customized settings by using only visual “drag and drop” operations
together with the support by Customizers.

Customizers can be used to initialize even complex groupware frame-
works and components within integrated development environments without
requiring programming.

The use of Customizers at design-time to create new bean instances inte-
grates very smoothly with the distribution of objects at run-time. Chapter 8
will introduce this approach.

6.1 Contribution

e Use of Customizers to lower the needed skills for customization of par-

60 Special customization support

ticular components; thus allowing even end-users to customize those
components.

e Use of the combination of using a visual builder tool to “drag and
drop” beans into a container and customization of these beans by Cus-
tomizers; thus creation of many new instances, which are encapsulated
within a component.

e Applicability of Customizers to provide different initialization states of
groupware frameworks and components.

e Presentation of the questionnaire example, where new questions are
added by the end-user and their contents are set through Customizers.

6.2 Use of customizers

This section introduces first the concepts of Java Bean Customizers to show
then how they actively support customization.

6.2.1 Java Beans Customizers

The Java Beans component model is specifically designed to support the
visual manipulation of beans within a builder tool [Ham97]. Chapter 4 has
already introduced visual composition techniques to customize a bean. To
use those composition techniques, the user needs to be familiar with the
visual builder tool and its visual programming paradigm.

The naming conventions of Java Beans allow a builder tool to introspect
a bean and thus expose the bean’s properties, event sets, and public methods
towards the user. Additionally the Java Beans specification [Ham97] supports
so called BeanInfo classes. Kach bean can have an associated BeanInfo
class, which — if present — must be used instead of introspection by a builder
tool to present the bean information. A BeanInfo class can link a special
Customizer for the bean.

To change the properties of a bean, a builder tool analyzes the bean and
shows a property editor for the accessible properties. Java already includes
property editors for basic types (such as String, int, etc.). The Java Beans
component model does not constrain the type of a property so that any class
can be used within a bean as property. User defined classes can accompany

6.2 Use of customizers 61

a property editor to let the user set the property value within a graphical
user-interface.

Property editors support well the independent setting of properties, but
they are not tied to a specific bean. Instead the builder tool selects the
appropriate property editor solely on the type information of the property.
Customizers are wizards that are associated with a particular bean to offer
a graphical interface towards the user at design-time in a builder tool. A
Customizer optimizes the ease of setting the properties of a particular bean.
Since it has special knowledge of the bean, the Customizer can call each
visible method of the bean or set instance variables which are not exposed
as properties.

Property editors and Customizers are hybrid in the sense that they are
Java classes, which are instantiated and run by the builder tool. So, the
border between design-time and run-time is fuzzy, since at least these classes
are executed at design-time.!

6.2.2 Customization support

The user experiences a design distance during customization. The distance
is low for setting properties of domain-centered presentation objects (i.e.
selecting a new color, but also setting the group name in the communication
beans (cfg. chapter 3)); the distance is high, if programming lines of code is
involved.

The design distance, which is experienced during customization com-
ponents at design-time corresponds to the distance during tailoring as de-
fined by Mgrch [Mgr94, Mgr97a, Mgr95]. Mgrch distinguishes three lev-
els [Mgr97a]. The first level allows customization by changing the appear-
ance of presentation objects and to change their attributes. This corresponds
to the use of property editors at design-time. The second level allows the
integration of new components or commands by composition of existing func-
tionality within the application. Mgrch gives small user-written scripts or
macros as example. The third level allows the extension of an application
by adding newly developed code of a multi-purpose programming language.
Generally speaking, with an increasing level the customization possibilities
for a user increase, but also become more complex. To overcome the de-
sign distance, Mgrch [Mgr95] proposes to use so called “application units”.

!Customizers can also be integrated within an application and then be executed as
“normal” Java code at run-time [Rod99].

62 Special customization support

Application units consist of three parts: a presentation-object, which is the
user-interface, a rationale that provides meta-information about the intended
use, and the actual implementation.

Although visual builder tools like IBM’s Visual Age for Java offer an even
higher abstraction than scripting languages and are thus usable by end-users
[Wei97], the user needs to learn to use the tool and the visual programming
paradigm. A bean, which is accompanied with a Customizer, however can
be easily adapted by using only the user-interface of the Customizer.

Java Beans Customizers allow to shift the design distance from the second
level to the first level. Customizers can contain a rationale to provide meta-
information, but their biggest advantage is to use them as wizards, which
automatically change the customized object, when the user has committed
her or his choices.

A Customizer works on the implementation. With the help of Customiz-
ers, a user can compose a complex bean without the need to learn (visual)
programming. The customizer guides the user through the options.

Since builder tools execute Customizers, a Customizer can present itself
differently towards users from different user categories. A Customizer may
get the information about the user category either by prompting the user or
by reading a configuration file at initialization time. Customizers themselves
are also beans; by factoring out the test into an own component in which user
category a user belongs, this component can be reused for all Customizers,
which need different behavior corresponding to the user category.

Customizers and visual composition techniques complement each other
very well. Beans that act as containers can be populated by dropping match-
ing beans on their surface within visual builder tools. The user only needs
to select the wanted component within the component library and to drop
it into the container, where the user opens the Customizer to specialize its
content and behavior. Thus, even end-users can assemble and manage large
component structures without having programming knowledge.

The composition of large components by dropping beans within a con-
tainer 1s a common application of a black-box framework. The container
specifies the interfaces, which a component must implement, but may spec-
ify also some additional interfaces. When the container with its components
is instantiated, it searches the components for the implementation of those
additional interfaces and adds their event sets to its listener. The Ques-

6.3 Applicability and needed skills 63

tionnaire bean in the example section discovers so automatically evaluatable
questions and processes them accordingly on return to the professor.

6.3 Applicability and needed skills

Customizers are most useful for two cases: Support of the setting correct
values for dependent properties, and support of the customization by users,
who are not familiar with the visual builder tool.

Although the user needs to know some basic functionality of the builder
tool (such as finding and selecting the bean to customize), knowledge about
visual programming is not required. Customization support for users that are
not necessarily familiar with the use of a builder tool includes especially sup-
port for the following user categories: end-users, power-users, and groupware
administrators.

Visual builder tools support with visual composition techniques and Cus-
tomizers for beans the means to allow end-users the composition of large new
beans even if they do not have programming skills.

Customizers, which present themselves accordingly to the user category,
do not only support the users depending on their actual skills, but also im-
poses customization rights to prevent accidental changes. Restricting and
granting customization rights for different user categories is seen as a re-
quirement for adaptive CSCW systems [SC98]. So, Customizers allow to
provide exactly those customization means which fit the skills of the user.

Within the context of groupware, Customizers are especially useful for
the following tasks:

e Setup modifications of the groupware system by the groupware admin-
istrator.

e Customization of the local components, which interact with a group-
ware framework or a groupware component.

e Ad-hoc composition of active compound documents (see example be-
low) and to prepare them for distribution (see chapters 7 and 8).

64 Special customization support

6.4 Example: Creating a new questionnaire
with active components

This example introduces the creation of an exam by an end-user, typically
a professor. The exam is an instantiated questionnaire bean, which is popu-
lated with specific question bean instances.

The professor uses a visual builder tool for Java Beans to drag and drop
question beans from the component library on the questionnaire container.
The professor then opens the associated Customizer for each question — a
simple double-click within IBM’s builder tool Visual Age for Java, which is
used in all examples.

Since Eurécom is an international institute with two official languages
(French and English), the question beans are designed to hold more than one
language for each question. All users can select at run-time their preferred
languages.

Figures 6.1 and 6.2 show two screenshots during customization. Both
figures show the questionnaire container within the visual composition editor
of Visual Age for Java. Visual Age allow to display beans on a palette (left
side); for the Questionnaires example two question beans have been added
to the palette: A bean for multiple choice questions (the icon marked with
“mc”) and a bean for an integer value question, which includes a scrollbar
for setting the value (the icon marked with “123”). For easier navigation
within the questionnaire, the professor has opened the Visual Age’s Beans
List (the window under the actual Customizer window in both examples);
the currently selected bean is highlighted.

The questionnaire, as depicted in the figures, actually contains two ques-
tion beans. The professor has prior to these screenshots dragged and dropped
the beans from the palette on the questionnaire bean.

Figure 6.1 shows the Customizer for the first question, which is an integer
value question. The Customizer (lower right) let the professor choose the
language and has a text area to enter the question. The range for the solution
for this question is constrained by the numbers, which are entered left and
right from the scrollbar. The scrollbar within the Customizer can be used to
supply a default value.

Figure 6.1 shows the Customizer for the second question, which is a multi-
ple choice question. As the other question type, the multiple choice question

6.4 Example: Creating a new questionnaire with active
components 65

B

T

coenge D08 eangage
s

[

S

T

Figure 6.2: Multiple choice question Customizer.

66 Special customization support

Customizer supports multiple languages and has a text area for the question
itself. The Customizer allows to add an arbitrary number of potential an-
swers, which are displayed with a checkbox. Actually each potential answer
itself is a bean; the Customizer thus adds new beans to the multiple choice
bean, although the user does not notice these internals.

The changes made through a Customizer are committed, when the user
closes the Customizer. The builder tool reflects the changes after commit-
ment or when the user asks for an update of the bean.

Both shown Customizers in the examples intentionally offer user inter-
faces, which are close to the user interfaces of the customized beans. Thus,
the design distance between the customized component and the applied meth-
ods (i.e. the Customizer) are lowered. This nearly what-you-see-is-what-you-
get (WYSIWYG) fashion follows prominent user interface design examples
(such as word processors, or spreadsheets).

6.5 Conclusion

Visual builder tools already offer the means to reason on a higher level (closer
to the application domain) on components and their composition than the
actual source code. However, such general tools do not have an a priori knowl-
edge about the specifics of a component. The Java Beans component model
offer the possibility to further describe a bean in an associated BeanInfo
class, which is evaluated by the builder tool. A wizard, called Customizer,
offers the user a graphical interface to make changes to a bean. Thus the
Customizer guides the user through the possible options and prevents from
accidental incoherent changes. Furthermore, the user needs not to learn to
use the builder tool in detail. Customizers lower thus the design distance,
which is experienced by the user.

The presented example uses Customizers to allow end-users the creation
of questionnaires. This example becomes part of the example in chapter 8,
which distributes questionnaires during a tele-exam from the professor to all
students.

Chapter 7

Customization becomes
tailoring I: Code distribution

This chapter introduces how the design of extensible groupware frameworks
anticipates changes that can be introduced at run-time. The customized
code, which is not known at initialization time of the groupware application
is later distributed and inserted at plug-points of the framework.

7.1 Contribution

e Introduction of my two-step approach of tailoring: Customization and
composition of new components within a visual builder tool at design-
time; insertion of the customized components at run-time.

o A general Extensibility design pattern for plug-points, which allows the
dynamic insertion of components in groupware frameworks at run-time.

e Relation of the Extensibility pattern with the general plug-point design
for Java Beans, which is described in chapter 5.2.2.

e Using code distribution for pluggable components to extend all coop-
erating framework instances at the same time.

e Discussion of applicability of the Extensibility pattern and of the risks
of dynamic code loading.

e Presentation of some examples to highlight possibilities.

68 Customization becomes tailoring I: Code distribution

7.2 Motivation

Inserting new functionality into a running application is an act of tailoring.
Tailoring is recognized in the CSCW literature as the key requirement for
a system to adapt to different cooperative contexts [MLF95, TB94]. For
Bentley and Dourish [BD95], “support for customization is support for inno-
vation”.

This chapter focuses on one important subset of tailoring: the ability to
insert new functionality into an application and thus to change the behavior
of the system. New functionality can be discovered by an extensible appli-
cation at initialization time. It is harder to design applications that can be
extended at run-time. Even harder is the design of extensibility at run-time
in distributed interactive applications, such as synchronous groupware. This
chapter presents a general design pattern to solve the latter problem.

To design CSCW applications and groupware frameworks that are tai-
lorable by extension, their hot spots must be discovered in the design phase
and then implemented as plug-points. To ease the implementation this chap-
ter introduces a design pattern which can be used to insert those plug-points
into a groupware framework. The pattern focuses on the ability to insert new
code at run-time that conforms to an interface. By applying this pattern,
one thus designs an extensible black-box framework for a specific CSCW
problem.

7.3 The two-step approach

The tailoring support for extending a running program is split into two differ-
ent support-systems, the customization and the insertion support. Figure 7.1
illustrates this approach. In the first step, an end-user uses an off-the-shelf
visual builder tool to customize a component at design-time. This compo-
nent is then, in a second step, inserted into the running distributed CSCW
application. Decoupling the customization tool for the components from the
actual CSCW application has the following advantages for the developer:

e The product can be earlier delivered, because the tailoring functionality
is not built into the product.

e The developer can save resources, because a proprietary tailoring tool
needs not to be developed.

7.3 The two-step approach 69

nning CSCW application stom Border ning CSCW applicati
N

Figure 7.1: My approach uses two steps to tailor a running CSCW appli-
cation: A user can customize components within an IDE and then import
them into the distributed application by sending them to all local instances

of this CSCW application.

70 Customization becomes tailoring I: Code distribution

e General off-the-shelf IDEs are continuously improved by third party
vendors.

The end-users profit from the decoupling as well. They can use their favorite
builder tool for that component model and do not need to accustom to a new
tool for every application.

7.4 Enabling Technologies for Extending CSCW
Applications

This section introduces a design pattern, which is used to insert plug-points
in the design of applications. Since CSCW applications are inherently dis-
tributed, the pattern is accompanied with components that allow the distri-
bution of arbitrary events to a group. By using the event mechanism and
encapsulating code within an event, a group communication receiver in the
pattern allows the simultaneous extension of synchronous CSCW applica-
tions at run-time.

7.4.1 Design Pattern for Extensibility

In a component model, applications are developed by interconnecting and
customizing components. The components themselves are composed of other,
smaller components. The design pattern for extensibility, which is introduced
here, can be encapsulated into one component.

The Extensibility pattern is intended to be used to provide a default
behavior, which can be changed at run-time. To change the behavior a new
class can be inserted at a plug-point, which can either add new functionality
or replace an existing class. The application sees only the specified behavior
of a Proxy class.

The structural representation of a pattern is given by the relationship
between the used classes. Figure 7.2 shows the structure of the Extensibility
pattern in the UML notation. This pattern consists of a Proxy, which
extends the interface of a Subject that may be inserted at run-time.! Inside

n this pattern, the Proxy extends the Subject interface to be conform with the Proxy
pattern. However, for the framework developer it is only important that the definition of
the Proxy remains stable, while the developer of the pluggable components (the Real

7.4 Enabling Technologies for Extending CSCW Applications 71

UML legend
Subject

Super-Class
+handieEvent() abstact

% general
ization

Class

Proxy

Freal Subject | Subjec
andleE vent: j .eemeomprhandll2E vert()

association

realSubjed handleEvert()

T aggregation

ject = Creator ot Real Subject Maote:
Proxy realSubject = .xoreatess .)
createSubject() = paeudo-code
To--moreateSubject) | Subjec +handleE vert()

Figure 7.2: Structure of the Extensibility pattern.

the Proxy exists a Creator, which is responsible to create a new object
of an arbitrary class Real Subject conforming with the interface Subject.
Actually this pattern is a combination of the Proxy and the Factory Method
patterns from [GHJV94].

Figure 7.3 shows the interaction between the objects. At initialization
time, the Creator object passes a reference to a default Real Subject to
the Proxy. Any event that the Proxy receives is delegated to the default
Real Subject. When the Creator receives an event (how that happens
will be discussed soon) to create a new Real Subject it instantiates the
respective class and sets the reference in the Proxy to the newly created
object. The Proxy now forwards all subsequent events to this object, unless
the Creator changes the reference to a Real Subject again.

A slight variation of the pattern allows to add instances of new classes
instead of replacing the old objects. This can be easily accomplished by
letting the Proxy store a set of all Real Subjects. All incoming events are
then forwarded to all instantiated Real Subjects. This variation is useful
if new functionality is added, which is independent in the application logic
from the already existing objects.

Subjects) relies on a stable definition of Subject. The Proxy class does not need to
extend the same interface and may act as Adapter or Bridge. Proxy, Adapter, and Bridge
are described in [GHJV94].

72 Customization becomes tailoring I: Code distribution

Proxy Creator
init init
Default Subject
| _instantiate default Subject
handleEvent | [
v handleEvent R
T
. create
New Subject __new Subject
| instantiate new Subject h
handleEvent
g handleEvent g
T T T

Figure 7.3: Interaction diagram for the Extensibility pattern.

7.4 Enabling Technologies for Extending CSCW Applications 73

7.4.2 Distributing and Inserting Components

Readers who ask themselves how the Creator in the Extensibility pattern is
triggered, will get their answers here. The Creator encapsulates a GroupRe-
ceiver that subscribes to a group on which events may arrive that carry the

classes to be instantiated.
[

choose New Class Event»
new class

Chooser Loader

New Class Event‘ insert

>
new class

Figure 7.4: Distribution of a NewClass event.

The distribution of a new component is handled by this design as the dis-
tribution of a NewClass event by the beans for group communication (figure
7.4). The bean, which acts as a Chooser, selects the class, which should be
inserted in the distributed application. Often a Chooser is embedded in the
user-interface to let the user decide, which class should be inserted. Eventu-
ally, the Chooser fires a NewClass event. The event is simply passed by the
Chooser to a bean that is derived from a GroupSender, which publishes it
to the configured group. The event is then received by all beans that extend
a GroupReceiver for this event type and are subscribed on that group. The
GroupReceiver passes the event to a Loader, which instantiates the class.
The resulting object can then be used by the Creator to replace or add a
new Real Subject.

The combination of the Extensibility pattern with the group communi-
cation beans can be used to extend well specified hot spots in distributed
applications; the specification is the interface Subject. If a plug-point de-
fines a lot of methods, each component has to implement these methods,
before it could be used to extend the plug-point. Sometimes, however, it
is not feasible to be constrained by an interface. In the case of truly inde-
pendent components, such as applications, it would be needed to write an
adapter [GHJV94] to insert them. On the other side, even such components
may use some of the available information by the loading component. In-
stead of using the static information provided by the interface, a variation
of the Extensibility pattern uses the reflection mechanisms of Java and Java
Beans to connect to the available plug-points.

Figure 7.5 illustrates this concept. A NewClass event arrives at the
loader (a). Upon arriving, the loader loads the class and instantiates it (b).

74 Customization becomes tailoring I: Code distribution

loader loader

[= % | ¢
e AT
o< event listener

(b) o— event source (c)

loader

K¢t

Figure 7.5: A loader receives a new class (a) and instantiates it (b); then the
loader and the new object can register mutually (c).

Since the loader does not know at this time the features of the arrived bean,
it uses introspection to discover the events, which can be fired by the new
bean. For the events it is interested in, the loading bean adds its interest
by calling the discovered registration methods (c¢). Now, the loading bean
can receive events from the new bean. If the loading bean provides itself
events and has discovered by introspection that the new bean implements
the appropriate method to connect itself, it invokes that method. Then the
loaded bean uses the same mechanism to subscribe itself to the events it is
interested in.

The NewClass event may additionally carry the name of a start method.
If the new class is not a bean, no events are connected, but the start method
will still be called. Thus it is possible to pass arbitrary Java programs and
start them remotely. The newly loaded code can interact with the loading
application by means of two mechanisms: by mutual registration for the
provided events that are discovered during initialization and by the presented
group communication beans. The latter are also used to communicate with
other remote applications.

7.4.3 Framework design for dynamic extension by com-
ponents

Frameworks, which requires that a newly loaded component support a given
event set, use a variation of the rigid design for plug-points as described in
chapter 5.2.2. The communication protocol between the framework and the
extending component is captured by the listener interfaces for the event types.
Additionally, the interfaces for mutual registration are used to automatically

7.4 Enabling Technologies for Extending CSCW Applications 75

register all events between the component and the framework. Figure 7.6
shows this design. Note, that this design differs from the original design
(figure 5.1) only by introducing a new Creator component.

ol

itFWListeners(FWListeners fwl) {

addFW1Listener(fwl);

addFW2Listener(fwl);

// fwl implements also PlugToPC nitFWListeners()

PlugToPC pc= (PlugToPC) fwl; addFW1Listener()

pc.initPCListeners(this); removeFW1Listener
addFW2Listener()

Event-Listeners for PC events Interfaces for mutu Event-Listeners fon FW events
regi

PCf1Listener FWilListener

+handlePC1Event() +handleFW1Event()

PClListeners PlugToFW PlugToPC FWListeners

%7 +initFWListeners() +initPCListeners() %7

PC2Listener 4X FW2Listener2

+handlePC2Event() +handleFW2Event()

init

PluggableComponent Creator

firePC1Event creates

firePC2Event T

// the Creator has got the name of the component to plug (className)
// delegate the actual class loading toa custom classloader (MyClassLoader):
Class clazz=MyClasslLoader(className);

// now, create an instance of this class:
// to notify the framework, this object must be casted to the expected interface:
PClListeners pc= (PCListeners) clazz.newlInstance();

// Creator has reference to framework: fw
// notify framework and connect all event listeners for new object:
fw.initFWListeners(pc);

Figure 7.6: Design of a plug-point in a framework to be extended at run-time.

The Creator component in figure 7.6 implements all the class loading of
the new component, its instantiation and then notifies the framework to con-
nect all event listeners. Creator is designed and implemented as described
for the Extensibility pattern. PluggableComponent in this design can be
any component, which implements the required interfaces. The actual class

76 Customization becomes tailoring I: Code distribution

code of PluggableComponent is retrieved by Creator at run-time and
thus not available at design-time.

The Creator component can be itself part of the framework or be a com-
ponent which is added at design-time by the developer. Having this flexibility,
a framework which implements my plug-point design of chapter 5.2.2 can be
taken without modification to being extensible at run-time by applying the
design as depicted in figure 7.6.

The design shown in figure 7.6 applies the Extensibility pattern. The
event listener interfaces correspond to Subject of figure 7.2. It adds to the
Extensibility pattern the interfaces for mutual registration and the listener
interfaces for events sent to the framework.

7.4.4 Applicability

Extensibility of CSCW applications can be introduced on various levels of
granularity, varying from the one extreme, where only new applications can
be started, to the other extreme, where every component may be extended.
The place and number of plug-points in the design determine the extensibility
of the application framework. But, the number of plug-points does not only
worsen the performance of the application, but it increases also the necessary
effort of maintenance.

extensibility example granulariy understandability
A A

low starting applications coarse high

medium extension at spectally designed hot spots medium mediutn

high v every componentis extendable fine v low

Figure 7.7: Trade-off between application extensibility, component granular-
ity, and understandability for the end-user.

Figure 7.7 shows how the level of extensibility relates with the granularity
of components that can be inserted and the understandability and maintain-
ability for the end-user. The MBone tools [Eri94] may serve as an example
for very small but successful extensibility: the user can click in the session di-
rectory (sdr) on a session, which starts the needed tools to join the audio and

7.4 Enabling Technologies for Extending CSCW Applications 77

video session. The tools are stand-alone applications, which are started in a
different process. Medium extensibility is granted by domain specific frame-
works with some plug-points; TeamWave [RG97] is a groupware application,
which uses a custom made component model on top of GroupKit [RG96a]
to offer extensibility and tailoring support. The highest level of extensibility
would be the usage of the Extensibility pattern for every component in a
system.

If extensibility is only provided by means of starting applications in new
processes, the original and the new application must use a protocol to ex-
change data, which is normally different from local interaction. Therefore,
inserting components into a running application has the advantage that they
can be integrated seamlessly; the new components become part of the ap-
plication. The components can interact locally and use same the interaction
protocol of the component model.

Experiments with the Extensibility pattern and component based CSCW
applications suggest that most extensions of groupware applications happen
at anticipated places. If the application uses design patterns, some plug-
points can be found during the design phase [Sch97]. However, it remains
an art rather than pure engineering to design extensible applications. The
next section will give some examples, how extensibility can be designed and
implemented in CSCW applications.

The skills, which are needed to create new components within a visual
builder tool at design time, are the same as have been discussed in the chap-

ters 4.3, 5.3, and 6.3.

Extending a groupware application by inserting new components at run-
time requires support to access these components at run-time. Basically the
end-user selects the components from a component library.

In the examples, I have used a special application for loading compo-
nents or I have built these loading capabilities directly into the user-interface
of the groupware application. However, the examples lack a design and im-
plementation of a loader, which checks prior to the insertion, if the selected
components fit the plug-point.

78 Customization becomes tailoring I: Code distribution

7.5 Examples

This section gives some examples, how the Extensibility pattern is used to
design extensible CSCW applications. The first example presents a minimal
CSCW component, which is used to distribute and start other cooperative
components. We use a chat component as example to demonstrate the ap-
plication of the Extensibility pattern. The insertion of a voting component
during a chat session highlights the use of the Extensibility pattern to sup-
port unforeseen cooperation modes. Finally, this section summarizes some
experiences of using the Extensibility pattern in tele-teaching components.

7.5.1 Design of a minimally extensible CSCW applica-
tion

An example for a minimally extensible CSCW application is a loader that
offers the functionality to distribute and insert coarse grained components,
which are actually CSCW applications themselves. When the user selects a
new component for insertion, the code is distributed to all participants of
the group and started within their instances of the loader.

Yaur Hame :
Group f
@ gpatticipant]

o

b

nEs

s

FileDialogl Contraller] MewClazsG51 Creator]

Figure 7.8: The loader application in a visual IDE.

Figure 7.8 shows the composition of the loader within a visual IDE?. The
user interface consists of two beans to enter the participant and the group

?This and all subsequent examples are built with IBM’s Visual Age for Java. A puzzle
piece denotes a non-visual bean, a puzzle piece in brackets a variable, an arrow a connection
between an event and a method, and a dotted line a connection between two properties.

7.5 Examples 79

name and a button to insert a new component. When the user presses the
button, a file dialog pops up, which lets the user select a component. After
choosing the component an event is passed to a non-visual Controller bean,
which generates a NewClass event and passes it to a GroupSender, which is
configured with the group name. All loaders of the group members will even-
tually receive the NewClass event and start the associated component by the
Creator. The Creator for the loader is configured to add every received com-
ponent and to use the reflection capabilities to register for available events.
The loaded component can query the properties of the loader via reflection
— in this case it finds the participant and group name.

In the presented form, the loader supports the insertion of symmetric
CSCW applications, i.e. applications that are executed at each participant.
For example, the loader can be used to insert the components of the next
examples: a chat and a voting component. An also developed alternative
is a loader component for asymmetric groupware, which supports the local
insertion of a server component, and distributes clients for this component
to all other participants.

7.5.2 Design for functional extensions

A well-known example for a synchronous CSCW application is a chat. A
chat allows the exchange of textual messages between all members of a group.
This example will focus on the design of an extensible chat and present a
component that can be inserted at run-time to support a simple floor control
policy.

Figure 7.9 shows a running chat application, and the component com-
position at design-time for the input part of the chat. A new message is
distributed by a Chat event to all participants; the output part of the chat
component eventually receives the event and shows it to the user. The re-
action on user input is performed within the bean ChatinputControlProxy,
which has access to the input field and some environment properties. When-
ever the proxy generates a new Chat event, it is distributed by a GroupSender
for this event (Chat(GS) to all participants. In this example, the user-interface
additionally offers a button to insert a new component into the running ap-
plication.

Figure 7.10 shows the internals of the proxy, which allows the replace-
ment of the default strategy. The BeanCreator can receive new beans that
implement the interface ChatInputControll; it takes as default the component

80 Customization becomes tailoring I: Code distribution

Expandable Chat

Input:

Jakoh= |ve written down the expandability pattern.
Bernard= Canwe publish it?

/d‘lalGS'l ChatinputControlProxy1 sendeﬂ\
] (]
groupl this12
Input{ 1 th

Figure 7.9: The design of an extensible input component (right) for a chat
tool (left). The this variable gives access to the methods and variables of the
defining bean (here: the input component).

chatlnputFieldl

this12 Chatlnput Contrall BeanCreator] ChatlnputControll

Figure 7.10: The design of the ChatInputControlProzxy.

7.5 Examples 81

ChatInputControl. The input field and the current instance of the input con-
trol are associated with a variable of the type ChatInputControll. Depending
on the actual input control bean, a Chat event is fired to the proxy, which
forwards it to the GroupSender.

: S—

User Mame: |Jakob Group: | MMedia

Jakoh= |ve written down the expandahility pattern.
Bernard= Canwe publish it?

oose component dialog

PlugPanel.class /
PlugT estBean.class = @ @
PlugT estPanel.class I

FileDialog1 Controller! MewClazsGS1

e i

Figure 7.11: User-interface for insertion of a new component and its imple-
mentation.

This example implements a very simple mechanism to plug a new com-
ponent into the running system (see figure 7.11). When the user clicks on
the “Insert component” button of the chat application, a dialog box pops up
and the user selects the plug-point to extend. Then the user chooses from a
list of available components. The actual design and implementation for the
selection uses the same components as the simple loader, which was previ-
ously described. As will be discussed later, a more sophisticated mechanism
should be used in real-world applications.

To add a floor control mechanism, the default implementation of Chat-
InputControl (figure 7.12, left) can be replaced by ChatInputFloorControl
(figure 7.12, right) during run-time. The new component displays an addi-
tional simple user-interface to request the token for input; the input field
of the chat bean is only enabled, if the user has the token. It also uses
GroupSenders to request and release® a token. The newly inserted compo-

3This implementation implicitly releases the token after a user has sent a message. The
server for the floor control is not shown here.

82 Customization becomes tailoring I: Code distribution

nent interacts seamlessly with the existing components, since it implements
the same interface ChatInputControll.

Default ChatinputControl Pluggable ChatinputFloorControl

\\\‘-
2
inputField1 "'\‘@f - this12

Reguest Token

B~

GiveFloorsl g “FloorCantrall

-

-

FequestFloorGS1

Figure 7.12: The ChatinputControlProzy is configured by default with the
bean ChatInputControl (left); it can be replaced by ChatinputFloorControl
(right) to support a token based floor control policy.

The design of the chat components follows a simplified Model-View-
Controller pattern [BMR*96]. To insert components, which provides new
behavior, the controller of the chat input component is designed to be ex-
changeable; the design uses the presented Extensibility pattern. The other
chat components are designed in a similar way. Another plug-point is de-
signed in the chat output component; a possible extension would be to add
a component to write a log file of the discussion.

The chat example has shown the applicability of the Extensibility pattern
to change the component’s behavior at specially defined plug-points. It is
thus classified in the medium level of granularity.

7.5.3 Design of a second application for insertion

The loader can be used to start more than one cooperative tool for all group
members. For example, the chat tool is inserted for a discussion in a meeting
with remote participants. After a while, a decision must be made about the
discussed topics. The chair decides to create a list of the topics, and each
participant has to vote for one item on the list. So, the chair uses an IDE to
customize a voting component to be inserted and distributed using the loader.

7.5 Examples 83

The voting component is shown to each participant; after a participant has
submitted his vote, a separate frame shows all arriving votes from the others.

om_aind.exam. mcquestion MChoiceQuestionCustomizer

a;;g|||||||||||||||iiii|iiiiiiii|||||||||||||||||||||||||||||||||iii
o Tves

0 ?
’

[[[w-H decide later.

. —

= el
e e
P VoteAnalyser] “m

Wotelas1 WoreGR1

Figure 7.13: A voting component (left) and the associated customizer (right).

The design-time customization of a vote component is a very easy task:
A question component is dropped on the vote panel within a visual IDE
(figure 7.13). The vote panel has an associated customizer to add new ques-
tions, to manipulate them, and to provide different language features. The
customizer offers the user a graphical interface to hide all details of program-
ming. The end-user only performs drag-and-drop operations and fills in text
fields. The customizer constructs a new voting component with this infor-
mation, which can then be inserted by the loader to be distributed to all
participants.

This example has shown the applicability of the Extensibility pattern
for coarse grained components to support the insertion of new cooperation
forms. It also has validated the approach to use off-the-shelf visual builder
tools to let the end user build a new component by design-time customizing
existing beans, which are then distributed and inserted into the running

CSCW system.

7.5.4 Other examples

To prove the applicability, some of the earlier developed remote education
frameworks and components have been redesigned to offer extensibility. As
an example, the Extensibility pattern is placed in remote tutoring compo-
nents (see chapter 4.4) to allow the insertion of arbitrary components sup-

84 Customization becomes tailoring I: Code distribution

porting cooperation among the students and tutors. The tutoring compo-
nents allow students to contact a tutor, if they want assistance in a remote
laboratory course. The tutor gives peer-to-peer advice by using cooperation
beans. In the original implementation the components for cooperation could
be changed only at design-time; the new implementation can use several
cooperation forms by inserting them at run-time. The tutor can now also
distribute questionnaires (see chapter 6.4, but also chapter 8) to all students
at the end of a laboratory course to monitor their learning progress. The
tutor has prepared the questionnaire during the laboratory course based on
the issues that have been discussed with the students. The creation of such
a questionnaire is highly supported by customizers within a visual IDE. The
presented customizer for the vote panel is actually a reused component for
multiple choice questions from this tele-exam framework.

7.6 Discussion

The examples have shown the applicability of the Extensibility pattern within
component based CSCW applications. By using the pattern one actually de-
signs domain specific application frameworks. These application frameworks
can be extended at run-time by inserting new components. The new com-

ponents can be created by the end-user outside the application within visual
IDEs.

The examples have used the Extensibility pattern to insert coarse and
medium grained components. The placement of the plug-points with the
pattern in the examples is based on the anticipation of possible extensions.
This leads to the question whether a rule can be given where the plug-points
should be located.

The main problem is that a conflict exists between the level of extensibil-
ity and the level of understandability (cfg. section 7.4.4). If each component
was made extensible, the design and implementation would become unnec-
essary complex. Even, if the performance affected by the added complexity
could be improved (for example with the Flyweight pattern [GHJV94]), the
maintainability criteria still limits the amount of plug-points. On the other
hand, too few plug-points limits the extensibility of the application. So, a
compromise must be found depending on the domain of the application.

Experience shows that the design of cooperation offers a good starting-
point to insert plug-points in CSCW applications. Components that are

7.6 Discussion 85

triggered by user actions and perform operations depending on these actions
are candidates to be extended. If the design of an application that uses de-
sign patterns, the location of potential plug-points can be derived from the
design [Sch97]. In the case of CSCW applications, patterns used for cooper-
ation must be examined. In the often used Model-View-Controller pattern, a
potential plug-point for extension in each application is located in the Con-
troller, while the View would be a candidate for being extended only locally.
Cooperations that can use different strategies, can change their strategies by
placing the Extensibility pattern within the Strategy pattern [GHJV94]. A
good example for adding a new strategy component would be a new algo-
rithm for video encoding and decoding in conference systems. The Mediator
pattern [GHJV94] can be used to design tailorable CSCW systems by at-
taching cooperation enablers [Syr97] to cooperative artifacts. By placing the
Extensibility pattern within the Mediator new enablers could be introduced
in the running system. This section has presented a non exhaustive list of
potential locations, where plug-points could be useful, it is still up to the
groupware designer to decide, where plug-points will eventually be placed.
Her or his analysis will be oriented on the domain of the application.

New components can be inserted on the demand of other components or
on the demand of the end-user. In the latter case, the end-user must be
supported by a user-interface to select the appropriate hot-spot and com-
ponent to obtain a certain behavior by his extension. I have used a simple
file chooser in my examples. A more sophisticated approach would present
the user the potential plug-points and a list of available components that are
available to extend each one. By introspecting the selected component, such
a list can be created automatically. Additionally, the user should also get a
description of the intent, effects and possible side-effects for each component.

The presented implementation to insert components at run-time uses code
distribution. To inform remote applications to insert a new component, the
group communication beans are applied to distribute arbitrary events. The
needed information about the new components is encapsulated in an event.
So, the implementation is coherent with the Java Beans event model. Thus
it is supported by visual builder tools for Java Beans.

The distribution of code has the advantage that components have access
to the local system properties. Thus user-interface components can also be
distributed. Another advantage lays in increased performance compared with
remote object communication if the inserted component is often used. The
biggest advantage in a cooperative environment is that the component which

86 Customization becomes tailoring I: Code distribution

should be inserted in the running application needs not be installed at the
remote machines before the application is started.

The operation of loading and instantiating classes via the network opens
severe security risks. Since Java is a network language, these risks are well-
known and methods for protection exist. Java code can be signed. A sig-
nature authenticates the creator of the code. If code is manipulated after
signing, this can be detected. Although signed code allows one to only ac-
cept code by trustworthy sources, the problem of who to trust remains. In a
cooperative environment, this question is hard to answer. Even if all persons
that are allowed to distribute new code are trustworthy, failures in the dis-
tributed code can cause damage [Zha97]. The problem can be partly solved
by giving explicit rights for customizing code [SC98]. Another barrier can
be inserted by granting new classes only the rights they need to function. If,
however, a class claims to need full rights and is created by a person of full
trust, the problem remains. This problem can not be generally solved.

7.7 Conclusion

This chapter focuses on the insertion of new components into running syn-
chronous CSCW applications to tailor their behavior. My approach is to
split the act of tailoring into the steps of the design-time customization of
new components within visual IDEs and their insertion into the running
application. This decoupling leads to a shorter development cycle of appli-
cations. Furthermore, the end-user needs only to accustom to one IDE to
tailor different applications. When IDEs will be delivered as components, my
approach can be taken to extend CSCW applications with those pluggable
builder tools.

My approach uses a design pattern, which is focused on modeling plug-
points for remote insertion in a general way. Extensions are implemented
as Java beans and distributed through remote events. They are then au-
tomatically inserted at the provisioned hot spots. Once inserted, the new
components are seamlessly integrated within the running application. Inde-
pendent coarse grained components that function also without information
about their environment can be inserted without conforming to a predefined
interface. Nevertheless they can query their environment via reflection to reg-
ister for events or to read and write properties. Thus arbitrary applications
can be distributed and started remotely.

7.7 Conclusion 87

This chapter discusses the tension between extensibility and understand-
ability in the design. Increasing the extensibility increases also the com-
plexity of the design and thus decreases the understandability. This leads
to the conclusion that a design is not reasonable where all components are
extensible or exchangeable during run-time. It remains still a task for the
application designers to identify the plug-points from their expertise. Once
potential insertion points are recognized, the developer can uniformly design
the plug-points using the introduced Extensibility pattern.

One problem, which should be addressed by further work, is how the ex-
tensibility can be presented to the end-user. The presentation should include
the hot spots of an application and their possible extensions. Such a pre-
sentation must find means for an intuitive graphical user-interface to insert
components at the right places.

Chapter 8

Customization becomes
tailoring II: Object distribution

This chapter introduces another mechanism to insert customized components
within a distributed framework. Instead of distributing the code of the com-
ponents (i.e. the classes), this approach distributes objects (i.e. instantiated
classes). This approach is particular useful to instantiate a group of ob-
jects remotely at run-time, if the static class structure is already known at
design-time.

8.1 Contribution

e Adaptation of the two-step approach of tailoring: Creation of cus-
tomized component instances in a visual builder tool; insertion of these
instances at run-time.

e Design of groupware frameworks, which support the remote insertion
of component instances at run-time through object distribution.

e Discussion of differences between this approach and the approach of
dynamically loading the component code.

e Use of object distribution and insertion at run-time for initialization of
remote groupware applications.

o Presentation of the synergy effects by using Customizers at design-time
together with object distribution at run-time on the example of the

90 Customization becomes tailoring II: Object distribution

Questionnaire framework to create, distribute, recollect, and evaluate
active exams.

8.2 Frameworks that support object distri-
bution

Chapter 7 describes how groupware is extended at run-time by dynamically
loading new code, i.e. by loading new classes and their subsequent initial-
ization. In contrast, inserting objects, i.e. instantiated classes, at run-time
requires that the class code is already accessible by the Java Virtual Machine.

The distribution of objects at run-time has several advantages over the
alternative, which is the remote method invocation to set up the state in
the distributed objects. Since this thesis concentrates on customization and
tailoring, I have chosen to incorporate object distribution to set-up remote
groupware applications, because it facilitates drastically the ease of use. The
distribution of objects instead of using remote method invocations elimi-
nates potential synchronization problems, if otherwise several calls would
been needed. It is also more natural for the user to distribute a whole entity
than to set multiple properties. From the implementation point of view, Java
supports very well object distribution by offering object serialization.

Serialization is used to store persistently an object or to transmit the ob-
ject over system boundaries. The Java Beans specification [Ham97] requires
that a bean is serializable to store its settings, after being manipulated within
a builder tool.! Builder tools may use serialization to persistently store cus-
tomized bean instances for later reuse.

My approach benefits from Java’s serialization possibilities two times:
First, the builder tools generate serialized beans, when the user customizes
these beans. So, this approach integrates very well with the customizer
approach (see chapter 6). Second, the serialized objects are transmitted to
the remote CSCW applications, where they are deserialized and inserted in
the running local application. From the viewpoint of the local applications
they behave like normal objects after the insertion.

While object distribution together with customization features within

! Although the Java Beans specification allows that a builder tool creates initialization
code to set up the properties of a bean, it highlights that serialization should be preferred
and must be supported.

8.2 Frameworks that support object distribution 91

builder tools directly support my goal to tailor groupware frameworks at
run-time, some of my frameworks use serialization to move objects from
one user to another at run-time. The Tele-Exam example (see below) does
not only distribute the customized questionnaires to the students, but also
collects after a given time all questionnaires from the students. By answering
the questions, the students have changed the state of the question beans.
These changes are captured in the serialized questionnaires and the tutor
application allows for persistent storage and automatic evaluation.

CSCW systems can benefit from the possibility of dynamically loading of
objects in other areas, too. Serializing and loading objects facilitates the im-
plementation to save and resume a session, to remotely initiate a cooperation,
and to administer centrally a CSCW system.

My approach uses frameworks as the part of each local groupware ap-
plication, which is initialized at start-up time and does not need a different
configuration each time they are used. Such a framework knows about the
the class structure of those objects which are dynamically inserted; however
that local application, which initiates the cooperation delivers in this ap-
proach all bean instances, which are needed to support the particularities of
this specific collaboration. This is often the case in asymmetric groupware,
which has one “super-user” (in tele-teaching: the professor) and many nor-
mal users (students); but also in symmetric CSCW applications, the actual
cooperation is normally initialized by one user and this user decides — often
implicit — how the components need to be initialized to support the desired
cooperation.

My approach is particularly useful, if at design-time it cannot be deter-
mined how many objects are needed, these objects however are held in a
tree structure and the framework needs only to know how to traverse the
tree and to access the objects. This design pattern is known as Compos-
ite [GHJV94]. The Questionnaire framework is an example, which uses the
Composite pattern to store all questions in one container, which can be then
distributed.

Figure 8.1 shows the framework design, which includes the Object-
Loader component to dynamically insert an instance of PluggableCom-
ponent in the framework. ObjectLoader is responsible to get the serialized
object, to deserialize it, and to notify the framework about its availability.
ObjectLoader get the serialized object by a GroupReceiver (not shown),
if the initialization happens remotely. In the case, the new instance is in-
serted on behalf of the local user it is read from a file or downloaded from

92 Customization becomes tailoring II: Object distribution

T

firePC2Event I_____

// deserialize PluggableComponent object
PluggableComponent pc=(PluggableComponent) Serialize.deserialize(ser);

Figure 8.1: Design of a plug-point in a framework to dynamically insert
objects.

8.3 Applicability and needed skills 93

the network. The ObjectLoader component can be itself part of the frame-
work or be a component which is added at design-time by the developer.
Again, implementations that follow the original framework design (see chap-
ter 5.2.2) do not need to be changed in order to support the dynamically
remote initialization.

8.3 Applicability and needed skills

This approach supports tailoring by the same two-step approach as described
in chapter 7.3: In the first step, an end-user uses an off-the-shelf visual
builder tool to customize a component at design-time. The customized bean
is then distributed and inserted in the local applications of the already run-
ning CSCW system.

For the developer, a framework, which distributes serialized objects, is
easier to develop than to dynamically distribute and insert new code as pro-
posed in chapter 7. Dynamically loading serialized objects is also more secure
than inserting new code, since the class code for the serialized objects is al-
ready known at design-time. On the other side, the knowledge about the
class code at design-time also excludes that the CSCW system is function-
ally extended at run-time.

Combining the framework approach to tailor a CSCW system by the
distribution of prior customized components is most promising, if during the
design phase the structure of the system is known, but its actual instantiation
changes from time to time. The framework consists of the constant parts;
therefore it needs to be deployed only once. The components that are often
customized are factored out during design-time; their instantiations are then
distributed and inserted after their customization.

Within groupware, such a remote instantiation usually happens at the
begin of a new collaborative session, which can however also happen long
after the start of the groupware application. Furthermore my approach is
well suited to support late-comers.

Since this approach supports only the distribution of component instances,
the customization within visual builder tools is restricted to setting proper-
ties by the means of the offered property editors and the customization with
the help of Customizers. Such a customization is relatively easy and well
supported by most builder tools. Users, who customize the components,
need to be familiar with the offered means to customize a bean. Power-users

94 Customization becomes tailoring II: Object distribution

and groupware administrators have these skills. Groupware integrators may
offer libraries of pre-customized beans, which are the selected by the users.
By using Customizers for the dynamically distributed beans, also end-users
profit by this approach (see chapter 6).

This approach can be combined with the approach of dynamically ex-
tending a CSCW system with new components as proposed in chapter 7.
The thus newly inserted components defer their instantiation to a later time,
when the user submits the customized beans.

Another variation is to implement Customizers so that they can also be
executed at run-time. The end-user opens then the Customizer at run-time
to change the bean instance, which is subsequently serialized and distributed.
This variation has the advantage of offering a seamless integration within the
running application on the expense of losing the possibilities of visual builder
tools, which include adding beans by drag and drop from a component library
and using property editors. This variation requires that every customizable
bean is supplied with an executable Customizer, which is accessible from
the user interface. I have decided that these disadvantages overweight the
advantage of seamless integration and focus here therefore on the two-step
approach.

8.4 Example: Distributing a new question-
naire with active components

Exams are held in all educational environments to control the progress of
the learners. Exams can differ not only by their contents, but also by their
purpose and how the questions are being asked. This example focuses on
written exams, which are distributed at the same time to the learners and
must be returned before a certain amount of time has been elapsed.

Figure 8.2 shows a typical life-cycle for questionnaires in an exam; the
figure holds for traditional paper-based exams as well as for tele-exams. A
professor designs the questions for the exam. The resulting questionnaire is
then copied and distributed to all students at the beginning of the exam.
The students fill out the questionnaires. Should they have questions they
may ask a tutor for clarification. The exam must be completed in a given
time; when the period has elapsed all filled questionnaires are collected. The
professor evaluates each exam to grade the students afterwards. Finally all
questionnaires are stored persistently.

8.4 Example: Distributing a new questionnaire with active
components 95

distribution recollection

s

-
design @ exam evaluation

Figure 8.2: Life cycle of a questionnaire.

On-line exams are useful to support spatially dispersed people in remote
education scenarios. On-line exams differ from traditional exams also in the
way that the exams can use the computer to offer capabilities, which are
not available in traditional paper-based exams. Using questionnaires that
contain active code add more features as would be possible in paper-based
exams. The questionnaires offer the students a better and more intuitive user-
interface and let them choose properties, such as the language for presenting
the questions. Animations can be delivered as well to help understanding;
an example would be a rotateable 3D view on a molecule for a chemistry
course.

In order to support exams by computers, not only their distribution must
be solved, but the professor should be given an environment to easily design
the artifacts and to evaluate and store the results after collecting the answers.
Our questionnaire framework supports exams during the whole life-cycle,
from the design of a questionnaire, through the actually held exam, to the
possibility of automatically evaluating the answers.

8.4.1 Design phase

For a tele-exam, the assembling of question-beans to questionnaires needs to
be as simple as possible. Special customizers for all offered question-beans
ensure that a composition at design-time can be done with drag-and-drop.

The professor needs only to drag and drop questions within an IDE in a
questionnaire container. The questions can be customized visually with the
help of Customizers (see also the example in chapter 6.4). The connections

96 Customization becomes tailoring II: Object distribution

IDE questionnaire

Ti’%ég%%’fﬁ:
// gﬁ”f

lllllllllll
/ ﬂﬁ

b “

questionnaire

master

Figure 8.3: Composition of a questionnaire.

for the interactions between the questions and the questionnaire are done au-
tomatically. The resulting questionnaire and questions implement all needed
interfaces to be plugged into the student application and for the final evalu-
ation by a master copy of the questionnaire together with the right answers

(see figure 8.3).

8.4.2 Distribution phase

A questionnaire with the contained questions is for the system an ordinary
Java object. Also a blank questionnaire contains state (e.g. text, animations,
timer). So the distribution takes advantage of the capability of Java to
transmit objects. The questionnaire and the contained questions implement
the needed interfaces to be plug-able in the applications for the students and
the teacher. Other beans could have been used also by the teacher, as long
as they conform to the interfaces.

The introduced beans for group communication are used to transport

8.4 Example: Distributing a new questionnaire with active
components 97

events between distributed parts of the system. The questionnaire is sent
to all students at the beginning of the exam. Figure 8.4 illustrates how
a questionnaire is distributed. The responsible component in the tutor
application (here: a questionnaire manager, see also figure 8.6) signals a
GroupSender bean to send the questionnaire to the group, e.g. all students.
The GroupSender serializes the questionnaire and puts it, encapsulated in
an event, onto the underlying communication system.

teacher

serialize

send questionnaire
-

put serialized questionnaire
onto ORB

ORB

lget serialized questionnaire from ORB

[r—

guestionnaire controi

deserialize

notify

student

register and collaborate

Figure 8.4: Distribution of questionnaires.

All GroupReceivers that are configured to listen on this event, receive
the serialized questionnaire, de-serialize it, and notify the responsible com-
ponents. In a student application, the questionnaire control registers its
interest in some offered events from the questionnaire, and the questionnaire
registers itself for events from the control. After the registration phase, the
components are plugged, and they may start collaborating.

98 Customization becomes tailoring II: Object distribution

During the exam, students answer the questions by filling out the question-
naire. In my current design, the questionnaire itself is responsible to offer an

appropriate user-interface.

student

s
b i

questionnaire

}Illlll]]]]]]]]ll]ﬂllll]l]]]

H

Figure 8.5: Questionnaire in a student application.

Figure 8.5 shows the collaboration between a questionnaire and the con
trol. The student uses the questionnaire control to manipulate properties
of the questionnaire and its questions. Examples are the preferred language
for the questions or to lock the questionnaire against unwanted accidental
overwriting at browsing the questions.

The questio ontrol bean has also the possibility to communicate

with other bea Since also carefully des g ed exams are sometimes am-
biguous, the st d nt needs th e possibility to contact a tutor. Other beans,
such as beans for tutoring (chapter 4.4), can collaborate with the control
to retrieve more information, e.g. the questio wh chc s the problem for
the student.

8.4 Example: Distributing a new questionnaire with active
components 99

A special bean, which can be inserted into the questionnaire, manages
a count-down timer. When the time has elapsed, the timer informs the
control that the exam is over and triggers the GroupSender to send the
questionnaire back to the configured address, e.g. the professor’s application.
The functionality for the collection of the exams is the same as described for
the distributing case. The questions have changed their states due to the
given answers of the students; the serialized questionnaire which is sent back
to the professor reflects the new states, i.e. it contains the answers.

8.4.4 Evaluation phase

The professor uses a questionnaire manager within his application to eval-
uate the returned questionnaires, which are plugged in as described in the
distribution phase. The manager holds all questionnaires and offers for auto-
matically evaluatable questions an evaluator bean, which is connected with
the master copy of the questionnaire as obtained from the design phase (see
figure 8.6), which contains the correct answers.

teacher

.

€
¢

o

SU101

YA sSTE]
RN

questionnaire

Figure 8.6: Questionnaires in a tutor application.

100 Customization becomes tailoring II: Object distribution

The evaluation for each questionnaire is passed to a report generator bean.
The report can be edited manually by the teacher to include corrections of
not automatically evaluated answers, comments and the final grade of the
exam.

8.4.5 Composed applications

This section gives an overview of how student and tutor applications can be
built upon the beans presented in the previous sections. To demonstrate the
usefulness of the component approach, I outline the combination with other
cooperative beans.

Agsociate
e st onnaire Questions Visible v Questions Editable |
QuestionaiieRecei v anguage |

Question Humber

Problem Details i

Figure 8.7: Student application in IDE.

A student uses the questionnaire control during the exam to receive the
questionnaire and set global properties. The questionnaire control bean is
combined with the tutoring beans (see chapter 4.4) to allow the student to ask
the teacher questions during the exam. Figure 8.7 shows the questionnaire
control, which allows one to hide the questions, toggle a lock for editing
and select the preferred language. The settings can be made before the

8.4 Example: Distributing a new questionnaire with active

components 101
Eeceive ‘
completed 'p"iuﬁ“‘ﬁer of returned Guestionnaires i
. . ! ‘ 1
questionnaire | Returned Questionnaires -
Display Selected
Load Master Display Master] Save Master

! Load Al Save Al]

< Send Questionnaire assign

master

uestionnaire

Delete Pick

W showcanceled [showfinished W show answered

dentity ~Timer Q01 QD2 Q03 QD4
| Identity

Englizh v]English -]
ﬂ,ﬂaﬁﬂfﬂler YOUr name.

Update

Figure 8.8: Tutor application in IDE.

questionnaire is received and during the exam. The figure shows also the
bean for getting help by a tutor.

Figure 8.8 shows the beans for the questionnaire manager combined with
the give help facility used by the professor. The shown questionnaire manager
has a button to send a blank questionnaire to all students. After the answered
questionnaires are received, the manager can show them and they can be
compared against the master questionnaire. For automatically evaluatable
questions an evaluator supports the correction. Questionnaires can be saved
persistently and retrieved later.

The help facility shows help requests by the students and can be answered
individually. When the tutor chooses a help request a configured communi-
cation tool is used; currently beans for chatting and sending back a list of

102 Customization becomes tailoring II: Object distribution

answers of frequently asked questions (FAQ) are implemented. Addition-
ally this composition supports the generation of an HTML FAQ from a chat
session during the exam, which can be viewed by the students with Web
browsers. To guarantee that the viewed FAQ shows always the up-to-date
contents, this implementation incorporates additionally the prior developed
beans for active annotations of Web pages [HKM97].

The shown example uses an exam about the C language, how it is held at
Eurecom to test the knowledge of newly arriving students. Since Furecom is
an international university in France, the developed questionnaires support
the languages English, French and German. The design of the question
interfaces however allows one to offer as many languages as wanted.

EACTest -- The C programming language.

English [Ergish ~]

lWhich ofthe following operators are valid in the programming language 7

:I_ ==
'7 ==
= | %%

Figure 8.9: Multiple Choice question.

Questions, which can be evaluated automatically, implement the interface
Evaluatable. Currently, the component library offers two such question
types: an integer value question and a multiple choice question. Both types
are accompanied also with a user-interface, which supports intuitive input.
The multiple choice question type is shown in figure 8.9.

A scrollbar supports the input for the integer value question type, as
shown in figure 8.10. Of course, also other representations could be chosen
during design-time. Note that the language can not only be chosen for all
questions by using the control, but also individually for each question.

Other beans can be included in a questionnaire as long as they are serial-
izable. They are recognized as question type, if they implement the Question

8.5 Conclusion 103

CTest -- The C programming language.
dentity ~ Timer @01 002 Q03 QD4 Q05 QOB
@0z

Francais élFranc:ais - l

Apres I'execution du code snippet, quel valeur de ¥ an a?

intx =8

if(xi=671 ,
| x=1; 5
lelseq :J

50
100 4 r]]mn

Figure 8.10: Integer value question.

interface. Specialized beans for user identification and a timer are normally
included in an exam to get the student name and to constrain the time of
the exam.

8.5 Conclusion

This approach uses also the introduced two-step approach for tailoring. A
groupware system is tailored by inserting customized component instances on
demand of a user without halting the system. These objects are distributed
to all local groupware applications, which insert them at the defined plug-
points.

In contrast to the approach of chapter 7, this approach can only insert
objects for already known classes. However, inserting stateful objects is very
important to ensure that all local groupware applications have the same state
for a specific cooperation. This approach addresses well the needs for remote
instantiations.

Distributing stateful objects instead of code has the advantages that the

104 Customization becomes tailoring II: Object distribution

frameworks and their plug-points are easier to implement and that the code
of the objects is already known thus reducing potential security risks.

As shown by the example, this approach integrates well with the use of
Customizers (see chapter 6). By using Customizers, components with many
encapsulated instances can be easily configured. The component with its
contained configured objects is then distributed as one object and remotely
inserted.

Chapter 9

Tailoring support within
frameworks

As introduced in chapter 5, groupware frameworks offer plug-points to plug
domain-specific components. The application designer or a power-user can
extend the framework at design-time by adding such components to the
framework; the framework can also be extended dynamically at run-time
as shown in chapters 7 and 8.

This chapter focuses on tailoring the behavior of a groupware application
by offering the end-user the means to select the components, which process
specific events. This tailorability goes beyond the abilities of tailoring only
the appearance of the application (e.g. setting the color preferences for the
application); tailoring of the presentation objects is normally directly sup-
ported by these components themselves and is not further discussed here.

This chapter introduces a generic design of a Connector component, which
allows groupware frameworks to offer a default user interface. End-users can
adapt with this user-interface the control flow in their local instances of the
groupware application. I also discuss how this Connector components can be
implemented so that they are independent from extensions of the framework
by allowing to pass new event types, which have not been known at the time
when the groupware framework has been designed and implemented.

106 Tailoring support within frameworks

9.1 Contribution

e Introduction of my design of a Connector component for groupware
frameworks, which offer the end-user tailoring facilities to change the
component composition at run-time.

e Discussion of implementation issues: Using introspection and reflec-
tion to discover automatically tailoring opportunities depending on the
current state within the CSCW system.

e Presentation of an example, which uses filter components in an aware-
ness service framework to dynamically adjust the event processing to
the user’s needs on demand.

9.2 Design of tailoring support within frame-
works

Black-box frameworks are extended by composition. The binding between
the framework and its extending components is deferred until run-time.

My approach benefits from this late binding by offering the user the means
to control this binding dynamically at run-time. Thereby, this approach is
independent from the extension mechanism: whether the framework was
extended at design-time (see chapter 5), which results in binding the compo-
nents in the initialization phase, or later by one of the approaches given in
the chapters 7 and 8.

9.2.1 Tailoring support

Tailoring support beyond the customization of presentation objects often in-
volves end-user programming (e.g. scripting) [Mgr97al. Some groupware
systems, which rely on message exchanging in textual form (e.g. email and
news readers), already allow to set visually rules to filter, sort, and process
incoming messages (e.g. Information Lens [MGL*88] and Netscape’s Messen-
ger). Oval [MLF95] is another example of a radically tailorable tool, which
uses agents to let the end-user define the rules how semi-structured textual
messages are processed.

9.2 Design of tailoring support within frameworks 107

In the Java Beans component model, events define the interaction between
components [Ham97]. 1 present in this chapter an extension of these ideas
by allowing the end-user to define rules for the processing of events in a
component-based groupware application. This approach is thus applicable
on all levels and well integrated in the multiple purpose language Java and
its component model Java Beans.

My approach to support run-time tailoring beyond the appearance level
for component-based groupware systems let the end-user apply visually rules
to the event-flow in the application. The end-user decides at any time, which
component shall receive which events. So, the end-user can manipulate how
events are processed, which can result in a radical dynamic reconfiguration.

9.2.2 Overview

My approach places a Connector component within the framework, which
offers the end-user the means to dynamically decide, which event is forwarded
to which beans. On the implementation side, this means that the Connector
manages the event flow by adding or removing beans as listeners for a specific
event type.

In the case that the framework developer already knows all components
(e.g. because the components reside within the framework), the implemen-
tation of this approach is straight-forward. The developer just needs to add
a user-interface, which offers the means to enable or disable a component.
This chapter will not further discuss this case.

Instead, I present here an approach, which discovers at run-time the
beans, which are added to the framework and which are potential listen-
ers. Furthermore, this approach allows to control the event processing of
event types, which have not been known at the time, when the framework
was designed and developed.

This approach let the user select the event flow in the local groupware
application. In a tele-tutoring example, the tutor may want to tailor the
application to use an additional notification component, such as a bell, which
is triggered, if a student requests help. Or the tutor wants to get alarmed by
the groupware system, if a student is late with answering a prior distributed
questionnaire (see also the example below).

108 Tailoring support within frameworks

9.2.3 Design and implementation

This general solution uses a Connector component, which is placed in the
groupware framework.! The Connector actively manages a mapping table
between event types and listener components. The Connector is specialized
in a specific event type, but accepts also subclasses of this event type.? Every
time a new component is added to the groupware framework, the component
is automatically analyzed and the event types of its event set are forwarded
to the Connector, which updates its mapping table. Similarly, the Connector
updates its table with the accepted event types of the listener methods of
each newly added listener component.

A component is typically added to the groupware framework at design-
time by the groupware integrator or a power-user. These users are supported
by a visual builder tool; adding a component to the framework with a Con-
nector is similar to the activity of adding a component to a framework, which
offers a plug-point as described in chapter 5. However, a component can also
be added later with the introduced approach of chapter 7. Since the Connec-
tor analyzes the component in that moment, when the component actually
registers with the framework, from the viewpoint of the Connector, it makes
no difference, whether this registration method is called at initialization time
or at the time, when a new component is inserted later at run-time by the
end-user.

The user-interface displays the potential events and the matching listener
components. The end-user manipulates with the graphical user-interface
the mapping functions. The user-interface should show only those listen-
ers, which match a given event to prevent forbidden combinations. The
design of the Connector follows here the Model-View-Controller design pat-
tern [BMR196]: the mapping table is the Model, the user-interface contains
the View and the Controller.

1Of course, instead of the direct integration of the Connector component within the
framework, the framework can just use my plug-point approach from chapter 5.2.2 to define
the Connector interfaces. Thus the framework can be extended with different Connectors,
which might implement different strategies. In fact, the AS Framework example uses this
approach. Here, however, I try to keep things as simple as possible.

2This restriction results from my implementation approach and is not from principal
nature. Since the implementation uses introspection to discover potential event types of
senders and also to discover matching listeners, this restriction allows to take only events
and listeners in account, which are meaningful for the framework. This restriction forces
the developer to use inheritance for new event types, but on the other side, the superclass
can be abstract and empty — thus being just a marker.

9.2 Design of tailoring support within frameworks 109

1) introspect xs to get event set
2) put all subtypes from XEvent in Dictionary
\3) add myself as listener for XEvents:

s.addXListener(this);

\

gisterReceiver(Object rec):
1) Introspect rec to get all implemented interfaces
-
m}“}} handleX(XEvent event):
1) Get exact type of event
\ | 2) For each matching listener:
\ |\ Ask mapping table if listener is enabled
\, }} "\ If yes, call corresponding handle method
,_}{I]]ﬂu;mm«ﬁm Mode:
]]m \ K] \ mapping table
.]MI]1 / (event types) x (listeners)
XListener M —-> boolean

Source
ddXListener() ConnectorOut
moveXListener|

registerSource() +registerReceiver

PluggableSource | register PluggableReceiver|
register
fireEvents
X1Listener X2Listener
java.util.EventObject
A +handleX1() +handleX2()
\
XEvent
X1Event X2Event

Example Event Hierarchy

Figure 9.1: Design of tailorable framework with a Connector.

110 Tailoring support within frameworks

Figure 9.1 shows the design of a framework, which incorporates a Connec-
tor component. The design allows to distribute arbitrary events, which are
subtypes of a given event type (in the example: XEvent), from sources to
receivers. The end-user, however, can manipulate which events will actually
be delivered to which components.

The design splits the interface of the Connector component into two
interfaces: one for the source (ConnectorIn) and one for the receiver (Con-
nectorOut). This design anticipates its use in groupware frameworks, where
sources and receivers are usually placed on different hosts. In such groupware
frameworks, proxies will forward the needed information to the Connector
component.

The Connector manages a mapping table of all supported event types
(including newly through introspection discovered types) to all registered lis-
teners. The mapping table holds all potential matching pairs. The Connec-
tor also maintains within the model, if such a pair is enabled or not. The end-
user can manipulated this model with a view component (ConnectorView).

To support this functionality also for event types, which the designer of
the framework has not known, the implementation relies on introspection
capabilities of the Java Beans component model. Since the components,
which can be plugged into the framework, may also fire or receive event
types, which should not be distributed by the framework (e.g. AWT events),
I propose the use of a special abstract event class as marker from which the
event types are inherited (in the example: XEvent), which are accepted by
the framework. The introspection process can thus automatically discard
all event types, which are not subclasses from this abstract event class. An
alternative design would mandate to supply all event types as parameters in
the registration process.

Whenever a new source registers itself, the Connector processes this reg-
istration as follows:

1. The Connector introspects the source component to get its event set, i.e.
all event types, which the source can potentially fire. The introspection
process includes also all superclasses.

2. Each discovered event type is stored in a Dictionary, if it is a subtype
of the event type, for which the framework takes responsibility. The
Dictionary holds only one entry for each type (it is often implemented

as a HashTable).

9.2 Design of tailoring support within frameworks 111

3. The model is updated.

4. The Connector adds itself as listener for the abstract event type from
the source component.

When the source component fires an event, it calls the handle routine of the
abstract class of the ConnectorlIn interface. The source component casts
the actual event to the abstract type prior to this call.

Whenever a new receiver registers itself, the Connector processes this
registration as follows:

1. The Connector introspects the listener component to get all imple-
mented interfaces.

2. Each interface, which is an event listener interfaces for a subclass of
the supported event type, contains the corresponding definition for the
handle method. This handle method is entered in a Dictionary.

3. The model is updated.

When the Connector receives an event in its handle method for the ab-
stract event type (in figure 9.1: handleX), the Connector performs the
following processing;:

1. The Connector get the actual type of the event by using the reflection
capabilities of Java.

2. The Connector looks up the mapping table to get a list of all listeners,
which accept this event type.

3. For each matching listener, the event type asks the model, if the event
should be forwarded to the listener or if it should be discarded.

The model holds all pairs of matching event types and listeners. When
queried, the model returns true or false for a given pair, indicating whether
this listener is enabled. Note, that the model can also delegate the decision
to another component by implementing the Strategy pattern [GHJV94].

The end-user can manipulate the model by using a view component. Usu-
ally this view component shows a graphical representation of the active map-
ping, e.g. it will show which components are enabled for which components.

Whenever the model changes due to the registration of new sources or
receivers, the view is updated accordingly to reflect these changes.

112 Tailoring support within frameworks

9.2.4 Alternatives in distributed environments

In a groupware framework, sources and receivers are distributed. The Con-
nector can be placed in the instance of the framework for the sources, and
in the instance for the receivers. The framework developer chooses the place
according to the users, who should be supported by this tailoring facility.

The Connector is included in the receiver’s framework, if the end-users
need to tailor only the behavior of their local groupware application. The
events, which are distributed by the sources are all received by the Connector
and the end-users may choose those components, which finally process these
events. For this configuration, the interface of the Connector for the sources
(ConnectorlIn) is implemented by a proxy, which analyses the registered
sources and send their event sets to the Connectors. Whenever the sources
fire an event, this event is simply forwarded to the Connectors.

The Connector is included in the source’s framework, if the end-user
needs to tailor which event types should be distributed within the framework.
This allows blocking event types, which carry sensible information, and can
be used to ensure privacy needs. However, this configuration works only,
if the correct function of the framework and its extending components is
independent from the distribution of all event types; i.e. if the semantic
of one event does not depend on a previously distributed event. For this
configuration, a Connector is placed in the source part of the framework,
which offers the end-user a user-interface for tailoring; another Connector is
embedded within the receiver part, which does not offer an interface to the
outside: this Connector simply forwards all incoming events to the connected
components.

A groupware framework can include a Connector for the source part and
a Connector for the receiver part to allow both tailoring forms. Actually, the
during this thesis implemented awareness service framework uses a Connector
in its source part to filter sensitive events and a Connector in the receiver
part to forward the events to the receiver components. This framework is
described in the example below.

9.3 Applicability and needed skills

The design and implementation of my approach for tailorable frameworks is
very demanding for the framework developer.

9.4 Example: Awareness service framework 113

It becomes, however, much less complex, if the developer decides to allow
only the management of event types, which are known at the time, when
the framework is developed, since then the implementation does not need to
rely on introspection. On the other hand, it restricts the extensibility of the
framework. This design decision must be carefully made.

The goal of my approach is to give the end-user the possibilities to tailor
the behavior of the framework. At the same time, this approach allows that
the framework is extended at run-time.

There is a danger that the end-user has difficulties to understand the func-
tioning of the framework, if too many event types and listeners are managed
by the Connector. To prevent this problem, I propose to create an abstract
event class for semantically different events, and only use the same abstract
class, if the events are used in the same context. It is perfectly legitimate to
use more than one Connector component to separate unrelated events and
listeners.

The mapping function, which decides whether a specific event should be
delivered to a given component, can be arbitrary complex. Instead of basing
its decision solely on the event type, this function can also test the values of
contained variables. This allows to trigger some components only if a certain
semantic is present.

In a groupware framework, the design typically includes a Connector
at its receiving part. The end-users may thus tailor their local groupware
application, but there is little risk that they may break the cooperation
of other users by disabling a local components (unless this is a groupware
component). Placing a Connector in the sending part requires more caution,
since the suppression of an event type will affect all receivers. This is only
useful, if such events do not initiate global state changes, which are needed
for the processing of further events.

9.4 Example: Awareness service framework

This example introduces design and implementation issues of the Awareness
Service Framework.? The Awareness Service Framework uses the Connector
component to filter awareness events at sources and receivers. This group-
ware framework can handle arbitrary types of awareness events.

3The Awareness Service Framework was implemented by Verena Fastenbauer [Fas99)].

114 Tailoring support within frameworks

9.4.1 Motivation

Awareness is a key requirement for cooperation [GGC96]. Within groupware
systems, spatially dispersed cooperating users must be notified about actions
of others. Apart from a notification mechanism, an awareness service should
offer a filtering mechanism. Since in a personalized setting, different users
want to be notified in different ways, each user may tailor the filter to personal
needs. For efficient cooperation the notification settings must be tailorable
at any time.

This example introduces a tailorable groupware framework, which offers
a general awareness service. This distributed framework uses the notion of
awareness events, which are passed by producing components to consuming
components. The end-user tailors the appearance and behavior of the frame-
work with the help of filter components. Filters provide the means to select
at run-time the components, which compute and present the awareness data.
This section focuses on the design and implementation issues of the extensi-
ble awareness framework, which supports tailoring functionality at run-time.
I present also an example, which shows how an end-user uses the filter to
tailor the framework’s behavior at run-time.

In the following, I use the short notion AS Framework for the complete
name Awareness Service Framework.

Awareness in groupware systems means that the group members gain
the needed information about the others to perform their work. I use the
notion of awareness events, which are produced by components at the source
and consumed by other components at the receiver. The main intent of the
AS Framework is to offer the enabling infrastructure to support awareness
among a distributed group of persons.

The AS Framework uses the notion “filter” instead of Connector compo-
nent, since the anticipated use of the tailoring facilities is more likely to sup-
press the forwarding of events to its processing components than to connect
additional components. Filtering is used on both ends of the AS Framework:
suppressing the publishing of events at the sources to ensure privacy needs,
and suppressing the processing of the events at the receiver side to prevent
information overload.

9.4 Example: Awareness service framework 115

9.4.2 Design issues

A high-level use case illustrates the requirements of the AS Framework (fig-
ure 9.2(a)). Two different actors are distinguished: Sources and Receivers.
Components at the sources emit awareness events. Filters can be applied by
the user to ensure privacy. The events are then distributed to all receivers.
Users set filters to receive only those events, they are interested in. The
users specify the components which finally process the events. So, different
presentations are achieved by end-user tailoring. The AS Framework itself is
independent of the actual transmitted events. It does not have to be changed
for different scenarios.

source

ework Receiver
Part

Source ASF
Part

SourceFilter

F

i

:

il

"

s

s

C

ASCustom Sourcel ASCustomReceiverl

L/ &
wffj& evﬁﬁts ‘u%w
Filter 7 Filter ; Filter ;

receiver receiver receiver

{a) Mustration of a
high-level use case

{(b) Structure of the
customized AS Framework

Figure 9.2: Overview of the AS Framework

Since the AS Framework offers a general awareness service, future event
types cannot be anticipated. Each specific problem domain will have its own
awareness events. Components which support those events can be plugged
into the framework without changing the AS Framework itself. The compo-
nent developer uses the offered abstract event type to create new awareness
events through inheritance.

Figure 9.2(b) depicts the event flow. After the registration of the cus-
tomized source components to the AS Framework, awareness events are ac-
cepted by the AS Framework. Using a distribution middleware, which is

116 Tailoring support within frameworks

accessed in the current implementation with the already introduced group
communication components, the framework passes the events to every re-
ceiver part of the AS Framework. At the receiver part, the events are passed
to the customized receiver components with regard to the filter’s setting.

Design-time customization covers the creation of the problem specific
event and listener types. In addition, the source and receiver components
of those events are created. These components are plugged into the AS
Framework and integrated into the user application.

9.4.3 Implementation issues

Java Beans offers introspection to analyze components at run-time. In addi-
tion, the reflection API of Java enables very late binding of method calls by
looking up interfaces and methods at run-time [DW98]. This allows to keep
the framework invariant from the plugged domain specific components.

The awareness events may be filtered at the source and at the receiver
side. The filtering mechanism at the source side guarantees the assurance
of privacy needs. The filtering mechanism at the receiver side covers the
ability to select the events and to change the processing of the events. In
the following, this example concentrates on the filtering mechanism at the
receiver side.

The implementation of the filter component follows my approach for de-
sign and implementation of the Connector component.

The standardized event model in conjunction with the introspection mech-
anism of Java Beans allows to offer the filtering mechanism for events without
knowing their specific type at design-time of the framework. The filter dy-
namically manages the connections between the interested listeners and the
AS Framework. In addition, the filter ensures that the end-user is not over-
whelmed with all events that may occur. Only those awareness events which
may be emitted by the sources are considered. Using the filtering mechanism,
the user decides, how the events are processed during run-time.

The filter stores the by introspection discovered event types and the in-
terested receivers in a dictionary. One entry in the dictionary consists of a
key, which is the event type, and a vector containing the references to all in-
terested receivers. The main task of the filtering component is to manage the
entries of the dictionary. Fach entry reflects one filter setting. Every change

9.4 Example: Awareness service framework 117

to the filter settings causes an update of the receiver vector. Furthermore,
the filter vetoes the attempt of incorrect settings.

Apart from the management of the filters settings, the filter is responsible
to process the awareness events properly. Whenever an awareness event
arrives, the filter queries its dictionary and forwards the event to all interested
receivers. Although the receiver components differ, they work with the same
filtering mechanism.

In order to ensure that the filter considers only those events which can
be emitted by a source component, the filtering mechanism must be supplied
with all types of potential awareness events. Therefore, the event types of the
source components are extracted during their registration process. This data
are transmitted to the receivers. Referring to late-comers, a trade-off has
been made in the current implementation. To ensure the tailorability of the
filter, the sources are queried about their supported event types. However,
the current implementation does not supply late comers with those events
that have already been distributed.

9.4.4 Extension of the AS Framework with domain-
specific components

Figure 9.3 shows, how a developer extends the AS Framework at design time.
This example assumes that the receiver components are already developed
and the event types are defined.

The developer drops in a visual composition editor for Java Beans the
proxy for the framework (ASFrameworkProzy), a filter (ASReceiverFilter),
two receiver components (ASLogF'ile and ASDialogAnnouncer) and the viewer
for the log file. The model of the log file is attached to the corresponding
view (1) and plugged into the AS Framework (2). In order to offer the facility
to be informed immediately of certain events, additionally a dialog announcer
is attached to the AS Framework (3). The receiver filter is plugged into the
the AS Framework (4) to provide selection at run-time. These activities
suffice to add two new receiver components among their filter to the AS
Framework at design-time.

118 Tailoring support within frameworks

-

 ogplle |

ASRecerveilter J’-'!SDI-alng-'-’mnc-u rcer

Figure 9.3: Extension of the AS Framework with a log file at the receiver
side.

9.4 Example: Awareness service framework 119

9.4.5 Tailoring example for a laboratory course

The following example combines the tele-exam example (see chapters 6.4
and 8.4) with the AS Framework to support a situation where a profes-
sor supervises students doing exercises with the questionnaire tool, and the
professor needs some feedback on how the students are performing to pro-
vide assistance to the slowest. Such situations typically arise in laboratory
courses, where a pre-test is given to the students to evaluate their knowledge
about the topic of this session.

< 1. Peripheral aware_ ~

2. Alert, if a student
seems to have
much trouble!

uch other

exercises

Verena

Figure 9.4: Setup of example: Use of the AS Framework to monitor student
progress.

Figure 9.4 introduces my example: Two students are answering a ques-
tionnaire, which has been previously distributed by the professor. Student
Verena is currently working on the fourth question, while student Jakob is
still struggling with the second question. The professor has opened a mon-
itoring tool, which shows the progress of the students, but the professor is
only peripheral aware about the students, since he is doing at the same time
other work.

The example will show how the professor tailors this setup so that not only
the monitoring component receives awareness events, whenever a student has

120 Tailoring support within frameworks

completed a question, but alarms the professor in the case that a student
surpasses a time limit, which is associated prior with each question.

Student: Verena
Question 4

Awareness
events

Student: Jakob | Am;-;mzss
Question 2 ;

Figure 9.5: Current state: Verena works on question 4, Jakob on question
2. The questionnaire component emits awareness events, when a student
switches the question or did not proceed within a given time

For this example, I have combined the Questionnaire component with
awareness source components: Each time, when a student switches to the
next question, an awareness event from the type QuestionPerformed is
sent. Additionally, a timer component is associated with each question, which
sends a TimeElapsed event, if the student has not been proceeded within
a given time. Figure 9.5 shows the questionnaires for the two students.

Figure 9.6 shows the current setup of the professor’s groupware applica-
tion. Only events from the type QuestionPerformed are currently pro-
cessed; they are passed to the monitoring tool.

This setup suits the professor’s goal to glance from time to time on the
performances of the students, but not yet the goal to be alarmed, when a
student is late.

Figure 9.7 shows how the professor uses the default graphical user-interface

9.4 Example: Awareness service framewor k 121

Much other
work

Ay
l|llllllllf*Il}|}}ﬂm“m““m“m'm1TlllﬂlllTlllﬂlllTlllﬂlllTlllﬂllllllll||||||||1||||||||1|||||llllllll|llll|||l|llllllll|llllllllllllllllllllIlIIII|IIIlIIII|lllllllllllllllII|IIIlIIII|IIIlIIIlllllllllllllllllllllllll

Figure 9.6: In the ent setup, the professo nly aw ss events
from the type QuestionPerformed, which are passed to the monitoring
tool.

iii1iiii1iii1iiii1iii1iiii1iii1iiii1iii1iiiﬂiiﬂiﬁﬂiﬁ}iﬁﬂﬁ

s HHHHED

Figure 9.7: In the current setup, the professor receives only awareness events
from the type QuestionPerformed, which are passed to the monitoring
tool.

122 Tailoring support within frameworks

of the filter component to tailor the event processing. The professor instructs
the filter to forward TimeElapsed events to the component ASDialogAn-
nouncer. This component pops up, when an event arrives, and thus alerts
immediately the professor.

In this example, student Verena has currently completed question 4 result-
ing in the processing of the QuestionPerformed event by the monitoring
tool. Student Jakob, however, has exceeded the time limit for question 2
resulting in a TimeElapsed event, which is caught by the ASDialogAn-
nouncer component to warn the professor.

9.5 Conclusion

Tailoring support can be included in the design and implementation of a
framework. My approach presented in this chapter is to allow the end-users
to tailor the event flow in their local groupware applications.

This approach uses a Connector component, which is placed with the
framework and which controls the event flow. The Connector component of-
fers the end-user a user-interface to visually map event types to components.
Whenever an event from the given type arrives, the from the user specified
component is triggered, i.e. the event is forwarded to this component.

The presented design defines one event type for which the Connector is
specialized. The Connector handles all event types, which are subtypes of
this event type. However, this design does not require that the Connector
knows all potential sub-types. Instead it relies on introspection to extract the
event type during run-time. So, a framework with an embedded Connector
component does not to be changed, when in future applications events from
other sub-types must be handled. This design maximizes the reusability of
such a framework.

Chapter 10

Conclusions

10.1 Conclusions

Organization of work is not static, but changes frequently. Groupware, which
supports the cooperative work activities among people, must be extensible
to reflect a potential reorganization of work processes. Already the design of
groupware must anticipate future changes and facilitate adaptations. Since
work practices differ among companies and institutions, groupware systems
must be customizable. The design and implementation of a groupware system
should offer different user categories the means to modify the system and its
parts.

Customization and tailoring of groupware is identified as a major research
topic in CSCW literature. This thesis underlines the connection between cus-
tomization and reuse practices, which are mainly researched in the software
engineering domain. So, this thesis applies software engineering concepts
— object-oriented design, framework design, component-based programming
in connection with visual builder tools, and design patterns — to provide
concepts to build customizable and tailorable groupware systems.

This thesis intentionally uses a component model, which is supported
by various integrated development environments (IDE). I have chosen Java
Beans, which is the component model for Java, since Java compiles to plat-
form independent code and the components can thus be deployed on multiple
platforms. Furthermore, by using a widely used multi-purpose programming
language for their implementations, the concepts of this thesis become ap-
plicable for other groupware developers.

124 Conclusions

My approach is to let the user choose her or his favorite IDE to customize
component-based applications on all levels. Customization is anticipated by
all components and frameworks, which are introduced by this thesis. By
offering customization means for these building blocks only through Java
Beans compliant mechanisms, the user in independent from the actual used
tool. Furthermore, this approach invests in the future, since the development
tools are constantly improved from the tool vendors or open source commu-
nities. On the other side, this approach prevents from a tighter integration
of customization within a specific IDE by calling by calling its API. This
strategy also prohibits the creation of an own component model for group-
ware components. In my opinion, the advantages of using off-the-shelf IDEs
compensate potential advantages by defining a new groupware model.

This thesis introduces the concept of groupware components and frame-
works. These building blocks are highly reusable, and can be composed to
create new groupware systems. To customize component-based groupware
applications, the user can decompose the applications on all levels. The
introduced groupware frameworks offer plug-points, which are extended by
components to provide domain-specific adaptations. The black-box design
of the framework provides that they can be easily extended within visual
builder tools, but support also the dynamic extension at run-time. The the-
sis provides design patterns for groupware frameworks, which support the
distribution of components to remote applications, where they are automat-
ically inserted within the running application.

This thesis proposes a two-step approach to tailor a running groupware
system. First the user customizes components visually in an IDE. Second
the user instruct the local application to insert these components; the system
then distributes these components to all local groupware applications, where
they are loaded and integrated.

This thesis discusses the advantages of the two-step approach for tailor-
ing over embedding tailoring functionality in each groupware framework and
component. Although the two-step approach is general and can be used in
many settings, specialized tailoring functionality can and should be placed
in some groupware frameworks. The approach of tailoring the event flow at
run-time is one example for embedded tailoring functionality.

10.2 Summary of contributions 125

10.2 Summary of contributions

This thesis provides solutions to design and implement reusable frameworks
and components for groupware, which support different user categories with
the means to customize and tailor groupware systems.

The contribution of this thesis is in the area of computer supported co-
operative work and software engineering, and consists of the following main
parts:

1. Motivation to use software engineering concepts in groupware: the the-
sis motivates to use software engineering design concepts, such as frame-
works, components, and design patterns to design groupware systems,
which can be customized at design-time and tailored at run-time to the
company’s and user’s needs.

2. General design for groupware components and frameworks: this thesis
presents a general design for distributed groupware components and
frameworks. Both, groupware components and frameworks, can define
their own interaction protocol based on the distribution of events. The
event distribution is uniformly handled by specialized group communi-
cation components. The introduced design concepts focus on reusabil-
ity through customizing and extension. The thesis also presents cus-
tomization wizards, which are used to offer the end-user a convenient
user-interface to customize components. By relying only on the stan-
dard Java Beans component model, users can customize the compo-
nents and their compositions with any available visual builder tool for
Java Beans.

3. Two-step approach of tailoring: the thesis invents a new approach of
tailoring groupware applications by dynamic extensions. The two-step
approach allows the users to customize in a first step components with
their favorite tools for the Java Beans component model. In the second
step, the user inserts the customized components into the local group-
ware application, which distributes them to all remote applications,
where they are integrated within the running groupware applications.

4. Code and object distribution: the two-step approach relies on the pos-
sibility to distribute components over the network and to insert them
dynamically within the running local applications. This thesis presents
and discusses two different approaches. One approach uses the distri-
bution of code to insert newly developed components into the remote

126 Conclusions

applications. The other approach distributes stateful objects to instan-
tiate a cooperation.

5. Design for tailoring support: the thesis introduces a framework design,
which allows the end-user to manipulate the event-flow in the group-
ware application, and thus to tailor its behavior. The design anticipates
future extensions of the framework. This thesis also discusses the im-
plementation issues which arise when the framework must serve new
event types. By using the reflective power of Java, this thesis presents
a solution, which enables that the framework stays invariant, but can
also be extended both at design-time and at run-time.

6. Discussion of applicability: the thesis discusses each concept to show,
where the concepts are applicable and which skills a user needs to use
a given concept. Since one goal of this thesis is to provide all user
categories during the life-cycle of a groupware system with means to
customize the system, the theses relates the needed skills for a specific
customization concepts to the expertise of a user category.

7. Proof of concept implementations: this thesis comprises examples, which
present actual implementations, which use the prior introduced con-
cepts. The examples serve to highlight the concepts; some other im-
plementations are omitted from this document.

10.3 Future Research

In this section, I give a short overview about further research topics, which
I have identified during my thesis work. These topics, all related with this
work, include not only a more formal evaluation of this work, but also recent
trends in researching patterns and distributed programming.

10.3.1 Evaluation of experiences

The presented thesis concentrated on the concepts of designing customizable
and tailorable groupware and on implementation issues, which became ap-
parent during the development of the prototypes. Experiences with actual
customization of the presented components have been limited. Customiza-
tion experiences were made mainly by the developers of prototypes including
myself.

10.3 Future Research 127

Students, which have stayed with Eurécom for an internship, and last year
students have used the introduced groupware frameworks and components to
create new ones. The projects included the creation of components for tutor-
ing [Koh97], for an awareness service [Fas99], audio and video beans [VHJ98],
and beans for controlling Eurécoms Mediaspace [FK97, FPO97]. All students
have appreciated working with component technology and their highly mo-
tivated work has resulted in some publications on international conferences
and workshops [HKM98b, HKM98a, FHM99]. All students have reused prior
developed components and their constructive critics have been incorporated
in newer versions of these components to provide higher reusability.

I used prior developed groupware components to build simple groupware
systems, which were used within two distributed laboratory courses between
Eurécom and the University of Linz in the years 1997 and 1998. Building
these prototypes, I have noted that the developed groupware components are
in fact reusable and customizable.

The next step would be to conduct a formal evaluation of the approaches
of this thesis in a real context. Given that all necessary resources are avail-
able, the concepts introduced by this thesis should be evaluated as follows.
Groupware components are developed by a team of developers, while another
team of domain-specific experts, which are familiar with the use of visual
builder tools assembles them to support different scenarios. The different
forms of tailoring are tested by end-users, who are given specific problems
to solve with tailoring. It is crucial in this set-up that the members of the
groups do not overlap to deduce valid results.

10.3.2 Patterns

This thesis introduced general design approaches for groupware components
and frameworks, and design patterns for runtime extensible frameworks.
These designs have evolved from generalizations of specific problems. In-
teresting would be to analyze the design of existing groupware systems and
to capture similarities in cooperative design patterns.

An interesting research topic would be to analyze how people customize
their work settings. Is it possible to generate patterns from their actions,
which can be translated into design patterns for customizable groupware?

128 Conclusions

10.3.3 Directions in distributed programming

Recently, two new approaches for component-based distributed programming
have emerged. The Open Management Group is standardizing its effort of
an interoperable component model on top of CORBA. Sun has introduced
with Jini a new model for distributed programming. Both efforts are aimed
for different purposes, but further research on the topics of this thesis could
benefit from either of them. Both efforts are not yet matured, and it remains
to see, whether they will be widely accepted in the future.

The CORBA component model [OMGY99] aims to standardize a com-
ponent model for distributed programming, which is independent from the
actual used programming language. If this proposal becomes a standard and
widely accepted, this component model may facilitate the deployment of the
concepts presented in this thesis. By relying on CORBA [MZ95] as distribu-
tion infrastructure, such a standard would especially facilitate the integration
of groupware application with already existing software. A widely accepted
language independent component standard may boost the component devel-
opment efforts by third parties and thus create a larger market. Also, such
a standard would have a positive effect on reuse practices.

Jini [Sun99], on the other side, introduces a new concept for distributed
programming. Jini is based on Java and is designed to automatically discover
services available in a federation on the network. Jini greatly relies on Java’s
ability to move code from service providers to service clients. Jini’s program-
ming model include leasing, transactions, and remote events. A Jini service
can be written as a Java Bean. Jini’s strength is the discovery mechanism
together with code distribution, which enables to find easily services in a
Jini federation and to use these services dynamically in the local application.
Groupware systems can benefit from Jini by defining common groupware ser-
vices, which are inserted in a Jini federation. A local groupware application
would look up the existing services and use them when needed. Jini seems
to be a good platform to be used in conjunction with my two-step approach
for tailoring. Jini is especially interesting for further research on groupware
applications for mobile users, who need to connect to groupware services in
different environments from their mobile devices, such as laptops or Palm
organizers.

Bibliography

[BDY5]

[BMR+96]

[Boc92]

[Boe88|

[Bro87]

[Cox90]

[Cox95]

[Dou95]

Richard Bentley and Paul Dourish, Medium versus mechanism:
Supporting collaboration through customization, Proceedings of
the fourth European Conference on Computer—Supported Co-
operative Work (Stockholm, Sweden) (H. Marmolin, Y. Sund-
blad, and K. Schmidt, eds.), Kluwer Academic Publishers,
September 1995, pp. 133-148.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal, Pattern—oriented software architec-
ture — a system of patterns, John Wiley & Sons, Inc., 1996.

Geoffrey Bock, Introdcution — groupware: The next generation

for information processing?, Groupware: Software for Com-

puter Supported Cooperative Work (David Marca and Geoffrey
Bock, eds.), IEEE Computer Society Press, 1992, pp. 1-6.

Barry Boehm, A Spiral Model of Software Development, IEEE
Computer (1988), 61-72.

Frederick P. Brooks, No silver bullet — essence and ac-
cidents of software engineering, IEEE Computer (1987),
http://www.virtualschool.edu/cox/Publications.html.

Brad J. Cox, Planning the sofware indus-
trial revolution, IEEE Software magazine (1990),
http://www.virtualschool.edu/cox/Publications.html.

Brad Cox, No stlver bullet revisted,
American Programmer Journal (1995),
http://www.virtualschool.edu/cox/Publications.html.

Paul Dourish, Developing a Reflective Model of Collaborative
Systems, ACM Transactions on Computer—Human Interaction

2 (1995), no. 1, 40-63.

130

Bibliography

[Dou96]

[DW9S]

[ENS8S]

[Erio4]

[ES98]

[Fas99]

[FHM99)

[FK97]

[FPOYT]

[FS97]

[GGC6]

Paul Dourish, Open Implementation and Flexibility in CSCW
Toolkits, Ph.D. thesis, University College London, June 1996.

Desmond F. D’Souza and Alan Cameron Wills, Objects, compo-
nents and frameworks with uml: The catalysis approach, Object

Technology Series, Addison-Wesley, October 1998.

Clarence A. Ellis and Gary J. Nutt, Office information systems
and computer science, Computer—Supported Cooperative Work

— A Book of Readings (Irene Greif, ed.), Morgan Kaufmann
Publishers, 1988, pp. 199-247.

Hans Eriksson, MBONE: The multicast backbone, Communica-
tions of the ACM 37 (1994), no. 8, 54-60.

Peter Eeles and Oliver Sims, Building business objects, John

Wiley and Sons, 1998.

Verena Fastenbauer, Components for a generic awareness ser-
vice, Master’s thesis, Eurécom and Johannes Kepler University
of Linz, Austria, February 1999.

Verena Fastenbauer, Jakob Hummes, and Bernard Meri-
aldo, Design and implementation of a tailorable aware-
ness framework, Position Paper at the Workshop on Im-
plementing Tailorability in Groupware, Int. Joint Conf.

WACC’99, San Francisco, CA, February 1999, available at
http://wwwll.in.tum.de/workshops/wacc99-ws-impltailor/.

Wolfgang Fueg and Gregory Kuhlmey, Srms java beans, Tech.
report, Eurécom, 1997, Student project.

Vincent Fayet and David Puig Oses, Srms java implementation,
Tech. report, Eurécom, 1997, Student project.

Mohamed E. Fayad and Douglas C. Schmidt, Object-oriented
application frameworks, Communications of the ACM 40

(1997), no. 10, 32-38.

Saul Greenberg, Carl Gutwin, and Andy Cockburn, Using
distortion-oriented displays to support workspace awareness,
Research report 96/581/01, Department of Computer Science,
University of Calgary, Calgary, Canada, November 1996.

Bibliography 131

[GHIV94]

[Gib94]

[GMUY6]

[Gra95]

[Gre88]

[Ham97]

[HBP+93]

[HKMO7]

[HKMO98a]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design patterns — elements of reusable object—oriented

software, Addison—Wesley, 1994.

W. Wayt Gibbs, Software’s chronic crisis, Scientific American
(1994), 72-81.

Nicholas T.C. Graham, Catherine A. Morton, and Tore Urnes,
ClockWorks: Visual Programming of Component—Based Soft-
ware Architecture, Journal of Visual Languages and Computing
(1996), http://www.cs.yorku.ca/People/graham/pubs.html.

Nicholas T.C. Graham, The Clock Language: Ref-
erence Manual, Tech. report, York University, 1995,
http://www.cs.yorku.ca/people/graham /pubs.

Irene Greif, OQverview, Computer—Supported Cooperative Work
— A Book of Readings (Irene Greif, ed.), Morgan Kaufmann
Publishers, 1988, pp. 5-12.

Graham Hamilton, Java Beans 1.01 API specification, Sun Mir-
cosystems, July 1997, http://java.sun.com/beans.

Ralph D. Hill, Tom Brinck, John F. Patterson, Steven L. Ro-
hall, and Wayne T. Wilner, The Redezvous Language and Ar-
chitecture, Communications of the ACM 36 (1993), no. 1, 63—
67.

Jakob Hummes, Alain Karsenty, and Bernard Merialdo, Ac-
tive Annotations of Web Pages, Voting, Rating, Annotation
— Web4Groups and other projects: approaches and first ex-
periences (Wien, Miinchen) (Roland Alton-Scheidl, Rupert
Schmutzer, Peter Paul Sint, and Gernot Tscherteu, eds.),
Schriftenreihe der Osterreichischen Computer Gesellschaft, vol.

104, Oldenbourg Verlag, Wien, Minchen, 1997.

Jakob Hummes, Arnd Kohrs, and Bernard Merialdo, Question-
naires: a framework using mobile code for component-based
tele-exams, Proceedings of IEEE 7th Intl. Workshops on En-
abling Technologies: Infrastructure for Collaborating Enter-

prises (WET ICE) (Stanford, CA, USA), June 1998.

132

Bibliography

[HKMO8b]

[Joh96a]

[Joh96b]

[Joh97]

[KA9S]

[KBY5]

[Kic96]

[Kie98]

[KM97]

[Koh97]

[Mac90]

[Maf97]

Jakob Hummes, Arnd Kohrs, and Bernard Merialdo, Software
components for cooperation: A solution for the "get help” prob-
lem, COOP’98: Third International Conference on the Design
of Cooperative Systems (Cannes, France), May 1998.

Philip Johnson, Egret: A Framework for Advanced CSCW Ap-
plications, ACM Software Engeneering Notes 21 (1996), no. 2,
file:/ /ftp.ics.hawaii.edu/pub/tr/ics-tr-95-23.ps.Z.

Philip Johnson, State as an Organizing Principle for CSCW
Architectures, Tech. Report 1CS-TR-96-05, Collaborative Soft-

ware Development Laboratory, University of Hawaii, March

1996, file://ftp.ics.hawaii.edu/pub/tr/ics-tr-96-05.ps.Z.

Ralph E. Johnson, Frameworks = (components + patterns),
Communications of the ACM 40 (1997), no. 10, 39-42.

Daniel Krieger and Richard M. Adler, The emergence of dis-
tributed component platforms, IEEE Computer (1998), 43-53.

Setrag Khoshafian and Marek Buckiewcz, Groupware, work-

flow, and workgroup computing, Wiley & Sons, 1995.

Gregor Kiczales, Beyond the black box: Open implementation,
IEEE Software (1996), 8-11.

Don Kiely, Are components the future of software?, IEEE Com-
puter (1998), 10-11.

M. Kyng and L. Mathiassen (eds.), Computers and design in
context, The MIT Press, Cambridge, MA, 1997.

Arnd Kohrs, Development of a generic component based help
request facilty for CSCW, Master’s thesis, Eurécom and Uni-
versity of Karlsruhe, Germany, December 1997.

Wendy E. Mackay, Patterns of sharing customizable soft-
ware, CSCW’90: proceedings of the Conference on Computer-
Supported Cooperative Work (Los Angeles, CA), ACM, Octo-
ber 1990, pp. 209-221.

Silvano Malffeis, iBus — The Java Intranet Software Bus,
Overview paper, Olsen and Associates, 8008 Zurich, Switzer-
land, February 1997, http://www.olsen.ch/export/proj/ibus/.

Bibliography 133

[MGL*88] Thomas W. Malone, Kenneth R. Grant, Kum-Yew Lai, Ra-
mana Rao, and David Rosenblitt, Semistructured Messages
are Suprisingly Useful for Computer—Supported Coordination,
Computer—Supported Cooperative Work — A Book of Read-
ings (Irene Greif, ed.), Morgan Kaufmann Publishers, 1988,
pp. 311-331.

[MLF95] Thomas W. Malone, Kum-Yew Lai, and Christopher Fry, Fz-
periments with Oval: A Radically Tailorable Tool for Coop-
erative Work, ACM Transactions on Information Systems 13

(1995), no. 2, 175-205.

[Mgr94] Anders 1. Mgrch, Designing for radical tailorability: coupling
artifact and rationale, Knowledge-Based Systems 7 (1994),
no. 4, 253-264.

[Mgr95s] Anders Mgrch, Application units: Basic building blocks of tai-

lorable applications, Proceeding Fifth International East-West
Conference on Human-Computer Interaction, Lecture Notes in
Computer Science, vol. 1015, Springer, 1995, pp. 45-62.

[Mgr97al Anders Mgrch, Three levels of end-user taitloring: Customiza-
tion, integration, and extension, In Kyng and Mathiassen

[KMO7], pp. 51-76.

[Mgr97b] Anders I. Mgrch, Fvolving a generic application into a domain-
oriented design environment, Scandinavian Journal of Informa-
tion Systems 8 (1997), no. 2, http://iris.informatik.gu.se/sjis/.

[Mgr97¢| Anders 1. Mgrch, Method and tools for tailoring of object-
oriented applications: An evolving artifacts approach, Ph.D.
thesis, University of Oslo, Norway, April 1997.

[MZ95] Thomas J. Mowbray and Ron Zahavi, Essential CORBA — Sys-
tems Integration Using Distributed Objects, John Wiley and
Sons, Inc., 1995.

[Nel81] B. J. Nelson, Remote Procedure Call, Ph.D. thesis, Carnegie-
Mellon University, 1981.

[Obj97] ObjectSpace Inc., Dallas, Texas, Objectspace voyager — the
agent orb for java — core technology user guide, July 1997,
http://www.objectspace.com/developers/voyager /white/index.html.

134

Bibliography

[Obj9s]

[OMGY9]

[Ous94]

[Pre94]

[RG96a]

[RGI6b]

[RGY7]

[RGJ96]

[RJOS]

[Rod99]

ObjectSpace Inc., Dallas, Texas, Objectspace
voyager. version 2.0.0 user guide, 1998,
http://www.objectspace.com/developers/voyager /white /index.html.

OMG, Omg tc document orbos/99-02-05: Corba components,
March 1999, Joint submission. http://www.omg.org/.

John K. Qusterhout, T'¢l and the tk toolkit, Addison-Wesley,
1994.

Wolfgang Pree, Meta patterns—a means for capturing the
essentials of reusable object-oriented design, Proceedings of

ECOOP’94 (Bologna, Italy), September 1994.

Mark Roseman and Saul Greenberg, Building
Real Time Groupware with GroupKit, A Group-
ware Toolkit, ACM Transactions on Computer

Human Interaction 3 (1996), no. 1, 66-106,
http://www.cpsc.ucalgary.ca/projects/grouplab/papers/papers.html.

Mark Roseman and Saul Greenberg, TeamRooms:
Groupware for Shared Electronic — Spaces, ACM
SIGCHI’96 Conference on Human Factors in Com-
puting System, Companion Proceedings, 1996,
http://www.cpsc.ucalgary.ca/projects/grouplab /papers/papers.html,
pp. 275-276.

Mark Roseman and Saul Greenberg, Simplifying component de-
velopment in an integrated groupware environment, Proceed-
ings of ACM UIST’97 Symposium on User Interface Software
and Technology (Banff, Alberta), ACM Press, October 1997,
pp- 65-72.

Mark Roseman, Saul Greenberg, and Shannon Jaeger, Group-
Kit User’s Manual, University of Calgary, Canada, 1996, deliv-
ered with sources version 3.1.

Don Roberts and Ralph Johnson, Evolving frameworks — a pat-
tern language for developing object-oriented frameworks, Pat-
tern Languages of Program Design 3 (Martin Robert, Dirk
Riehle, and Frank Buschmann, eds.), Addison-Wesley, 1998.

Lawrence Rodrigues, On javabeans customization, Java Devel-
oper’s Journal 4 (1999), no. 5, 24-28.

Bibliography 135

[Rog97]

[Rya97]

[SC98]

[Sch95]

[Sch97]

[Sie96]

[SKW97]

[Sof96]

[$597]

[Sta94]

[Sun99]

Dale Rogerson, Inside com (microsoft’s component object

model), Microsoft Press, 1997.

Ivan Ryant, Why inheritance means extra trouble, Communi-

cations of the ACM (1997), 118-119.

Oliver Stiemerling and Armin B. Cremers, Tailorable com-
ponent architectures for cscw-systems, Proceedings of the
6th Euromicro Workshop on Parallel and Distributed Pro-
gramming (Madrid, Spain), IEEE Press, January 1998,
http://www.cs.uni-bonn.de/ os/, pp. 302-308.

Hans Albrecht Schmid, Creating the architecture of a manu-

factoring framework by design patterns, Proceedings of OOP-
SLA’95 (NY), ACM, 1995.

Hans Albrecht Schmid, Systematic framework design by gen-
eralization, Communications of the ACM 40 (1997), no. 10,
48-51.

Jon Siegel, CORBA - Fundmentals and Programming, John
Wiley and Sons, Inc., 1996.

Oliver Stiemerling, Helge Kahler, and Volker Wulff, How
to make software softer — designing tailorable applications,
Proceedings of DIS’97 Designing Interactive Systems (Am-
sterdam, The Netherlands), ACM Press, August 1997,
http://www.cs.uni-bonn.de/ os/, pp. 365-376.

The Software Productivity Consortium, 2214 Rock
Hill Road, Herndon, VA 10170-4227, FEvolutionary spi-
ral process model guidebook, 1996, SPC-91076-MC.
http://www.software.org/pub/Products/esppd.html.

Tamara Sumner and Markus Stolze, Fvolution, not revolution:

Participatory design in the toolbelt era, In Kyng and Mathiassen
[KMO7].

Richard Stallman, Why you should not use tcl, posting in news-
group comp.lang.tcl on Fri, 23 Sep 94 19:14:52 -0400, Septem-
ber 1994.

Sun Microsystems Inc., Jini architecture specification, revision
1.0, 1999, http://www.sun.com/jini.

136

Bibliography

[Syr97]

[TBY4]

[TRSS]

[VHJIOS]

[Wei97]

[WJ94]

[WWWEKO4]

[You92]

[Zha97]

Anja Syri, Tailoring cooperation support through mediators,
Proceedings of the fifth European Conference on Computer—
Supported Cooperative Work (Lancaster, UK) (John A.
Hughes, Wolfgang Prinz, Tom Rodden, and Kjeld Schmidt,
eds.), Kluwer Academic Publishers, September 1997, pp. 157
172.

Randall H. Trigg and Susanne Bgdker, From implementation to
design: Tailoring and the emergence of systematization in cscw,
Proceedings of the Conference on Computer Supported Coop-
erative Work (Chapel Hill, NC, USA) (Riachard Furuta and
Christine Neuwirth, eds.), ACM Press, October 1994, pp. 45—
54.

Andrew S. Tanenbaum and Robbert van Renesse, A Critique of
the Remote Procedure Call Paradigm, Research into Networks
and Distributed Applications, Wien (R. Speth, ed.), North—
Holland, 1988, pp. 775-783.

Bruno Van Haetsdaele and Arnaud Jacquet, Audio/video con-

ferencing components for java, Tech. report, Eurécom, 1998,

Student project.

R. Weinreich, A component framework for direct-manipulation
editors, Proceedings of TOOLS-25 (Melbourne, Australia),
IEEE, November 1997.

Dadong Wan and Philip M. Johnson, Computer Supported
Collaborative Learning Using CLARFE: the Approach and Fx-
perimental Findings, ACM Conference on Computer Sup-
ported Collaborative Work (North Carolina), Chapel Hill, Oc-
tober 1994, file://ftp.ics.hawaii.edu/pub/tr/ics-tr-93-21.ps.Z,
pp. 187-198.

Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall,
A note on distributed computing, Tech. Report TR-94-29, Sun
Labs, November 1994.

Edward Yourdon, Decline & fall of the american programmer,

Yourdon Press, 1992.

X. Nick Zhang, Secure code distribution, IEEE Computer
(1997), 76-79.

