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ABSTRACT

Most of the present mobile communication standards include a training sequence to es-
timate the channel. Blind techniques allow the estimation of the channel without requiring
training symbols, thus increasing bandwidth efficiency, but lack from robustness. The pur-
pose of semi-blind equalization is to exploit the blind information as well as the information
coming from the known symbols. Semi-blind techniques robustify the blind problem and al-
low the estimation of longer impulse responses than possible with a certain training sequence
length; for a desired estimation quality, they also allow the use of shorter training sequences.
Furthermore, they offer better performance than blind and training methods.

We present identifiability conditions for semi-blind FIR multichannel estimation: semi—
blind methods are able to estimate any channel, even when the position of the known symbols
in the burst is arbitrary. Performance bounds for semi—blind multichannel estimation are pro-
vided through the analysis of Cramér-Rao bounds and a comparison of semi-blind techniques
with blind and training sequence based techniques is done. A study on performance under
constraints is proposed to characterize blind performance.

The proposed semi—blind methods are mainly based on Maximum—Likelihood which can
incorporate the knowledge of input symbols. For grouped known symbols, suboptimal criteria
appear as a linear combination of a training sequence based criterion and the blind ML
criterion. In order to build powerful semi-blind ML methods, we also focus on the study
of blind ML methods. At last, we present methods that combine a blind criterion with a
training sequence based criterion.

Receiver structures are also presented. The structure of the burst mode equalizers are
studied and especially the structure of the ISI canceller that we call Non—Causal Decision—
Feedback Equalizer (NCDFE): an implementation of the NCDFE is proposed based on
soft decisions. At last, performance bounds on Maximum Likelihood Sequence Estimation
(MLSE) are given when the channel order is underestimated.
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2 Introduction Chapter 1

1.1 Training Sequence based Methods and Blind Methods

The development of wireless communications has given rise to a host of new research prob-
lems in digital communications, but has also refocused attention on some classical problems.
Equalization is one of the main signal processing issues in digital communications over chan-
nels with InterSymbol Interference (ISI). In mobile communications, the ISI problem, due
to multipath propagation, is particularly difficult as the propagation channels characteristics
are severely subjected to pathloss and fading, and propagation characteristics change rapidly.

Traditional equalization techniques are based on training. The sender transmits a training
sequence (TS) known at the receiver which is used to estimate the channel coefficients or to
directly estimate the equalizer. Most of the present mobile communication standards include
a training sequence to estimate the channel. In GSM [1], the data is organized and transmitted
in bursts. Each normal burst contains a middamble training sequence used to estimate the
channel, considered as time—invariant over the duration of a burst. A Viterbi equalizer based
on the estimated channel is applied to estimate the transmitted data symbols of the actual
burst.

In most cases, training methods appear as robust methods but present some disadvan-
tages. Firstly, bandwidth efficiency decreases bandwidth efficiency as a non—negligible part
of the data burst can be occupied: in GSM, for example, 20% of the bits in a burst are
used for training. Furthermore, in certain communication systems, training sequences are
not available or exploitable, when synchronization between the receiver and the transmitter
is not possible.

These reasons motivated the introduction of the blind methods in the 70s with the work
of Sato [2]. The idea behind blind equalization techniques is to estimate the channel or the
equalizer based only on the received signal without any training symbols.

The first wave of blind techniques was based on the exploitation of the finite alphabet
(decision directed, constant modulus algorithms, etc) while the second wave was based on
Higher—-Order Statistics (HOS) [3]. The HOS techniques use a Single Input Multiple Output
(SISO) model, where a single input symbol stream is transmitted through a single linear
channel and sampled at the symbol rate: from the second—order moment of the data, only the
amplitude of the transfer function of the filter can be determined but not the phase function.
Based on a condition of non-gaussianity for the sources (otherwise only first and second-
order statistics are available), the higher—order methods can identify the phase function. The
major disadvantage of HOS methods is that they often need a large amount of data resulting
in a high computational cost.

The introduction of multichannels, or SIMO models where a single input symbol stream
is transmitted through multiple linear channels, has given rise to a whole bunch of new blind
estimation techniques that do not need higher—order statistics. When the received signal is
oversampled at a rate higher than the symbol rate, the resulting sampled signal is cyclo-
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stationary. Gardner [4], Tong, Xu and Kailath [5] proved that, due to spectral redundancy
properties, both the amplitude and the phase function of the channel can be identified from
the Second-Order Statistics (SOS) of the data. This temporally oversampled model was
shown to be equivalent to a spatially oversampled model where the signal is received through
multiple antennas [6]. As discussed in section 1.4, all the methods based on the multichannel
model are not strictly based on second—order statistics of the data but rather on the structural
properties of the received signal itself. We will however call these methods SOS methods as
they do not use HOS. This thesis focuses on SOS techniques.

As detailed in section 1.4, some SOS estimation techniques suffer from a lack of robustness:
channels must verify diversity conditions and the methods can fail when the channel length
is overestimated. Furthermore, the blind techniques leave an indeterminacy in the channel or
the symbols, a scale or phase factor (possibly discretely valued). This suggests that SOS blind
techniques should not be used alone but with some form of additional information. However,
the same is true also for training sequence based methods, especially when the sequence is
too short to estimate the data. Semi-blind techniques are proposed here to overcome these
problems.

1.2 The Semi-Blind Principle

In this thesis, we shall focus on blind and semi-blind FIR multichannel estimation that are
further used to feed a Viterbi equalizer, or a linear or decision—feedback equalizer.

The data is transmitted by burst and we assume here that known symbols are present in
the burst in the form of a training sequence aimed at estimating the channel or simply some
known symbols used for synchronization or as guard intervals, like in the GSM or DECT
burst. In this case, when using a training or a blind technique to estimate the channel,
information gets lost. Training sequence methods base the parameter estimation only on
the received signal containing only known symbols, and all the other observations, containing
(some) unknown symbols, are ignored. Blind methods are based on the whole received signal,
containing known and unknown symbols, possibly using hypotheses on the statistics of the
input symbols, like the fact that they are i.i.d. for example, but no use is made of the
knowledge of some input symbols. The purpose of semi-blind methods is to combine both
training sequence and blind information (see figure 1.1) and exploit the positive aspects of
both techniques stated in section 1.1.

Semi-blind techniques, because they incorporate the information of known symbols, avoid
the possible pitfalls of blind methods and with only a few known symbols, any channel,
single or multiple, becomes identifiable. Furthermore, exploiting the blind information in
addition to the known symbols, allows one to estimate longer channel impulse responses
than possible with a certain training sequence length, a feature that is of interest for the
application of mobile communications in mountainous areas. For methods based on the
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Figure 1.1: Semi-Blind Principle: example of a GSM burst.

second-order moments of the data (which we will call Gaussian methods), one known symbol
is sufficient to make any channel identifiable. In addition, semi—blind tachniques allow one
to use shorter training sequences for a given channel length and desired estimation quality,
compared to a training approach. Apart from these robustness considerations, semi-blind
techniques appear also very attractive from a performance point of view, as their performance
is superior to that of training sequence or blind techniques separately. Semi-blind techniques
are particularly promising when TS and blind methods fail separately: the combination of
both can be successful in such cases.

1.3 The Multichannel Model

We consider here linear modulation (nonlinear modulations such as GMSK can be linearized
with good approximation [7, 8]) over a linear channel with additive noise. The received signal
after a linear receiver filter is then the convolution of the transmitted symbols with an overall
channel impulse response, which is itself the convolution of the transmit shaping filter, the
propagation channel and the receiver filter. The communication system is as figure 1.2.

The overall channel impulse response is modeled as FIR which for multipath propagation
in mobile communications appears to be well justified. In mobile communications terminol-
ogy, this thesis will mostly consider the single-user case; some work has also been done for
the multi-user case in which the received signal contains a mixture of multiple users.

We describe the FIR multichannel model used throughout the thesis. This multichannel
model applies to different cases (see figure 1.3): oversampling w.r.t. the symbol rate of a
single received signal [5, 9, 10] or the separation into the real (in—phase) and imaginary
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Transmitter Channel Receiver
Source, Shaping Filter, Equalization,
source and channel coding, communication channel, decoding,
modulation reception filter decision

Figure 1.2: Communication system.

(quadrature) component of the demodulated received signal if the symbol constellation is
real [11, 12]. In the context of mobile digital communications, a third possibility appears in
the form of multiple received signals from an array of sensors (figure 1.3(b)). These three
sources for multiple channels can also be combined.

Let us further develop the case of oversampling. The received signal which is cyclosta-

tionary [4] can be written as
y(t) = > h(t—kT)a(k) + v(1) (1.1)
k

where the a(k) are the transmitted symbols, 7" is the symbol period and h(t) is the channel
impulse response. The FIR channel is assumed of duration NT (approximately). If the
received signal is oversampled at the rate m (or if m different received signals are captured by
m sensors every 1" seconds, or a combination of both), the discrete input-output relationship

can be written as:

N-1
y(k) = ) h(Ha(k—i) +v(k),
=0
y1 (k) vy (k) hy (k) (1.2)
y(k) = P ek) = PG h(k) = :
Ym (k) U (K) him ()
where the subscript ¢ denotes the i*” channel. In the case of oversampling, y;(k),i =1,...,m

represent the m phases of the polyphase representation of the oversampled signal: y; (k) =

yv(to + (K + %)T) In this polyphase representation of the oversampled signals, we get a
discrete-time circuit in which the sampling rate is the symbol rate.

For real symbols, it will be advantageous to treat the real and imaginary parts of the
channel and received signal separately:
Re(u(k)) |\
Im(yi(k)) |

=0

Re(hu(i))
Im(fy (7))

] a(k—1) +
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Figure 1.3: Multichannel model: case of oversampling, multiple antennas and separation
of inphase and quadrature components when the input symbols are real. Example of a
multichannel with 2 subchannels.



1.3. The Multichannel Model 7

where n now denotes the product of the oversampling factor and the number of sensors.
The vector signals now become y(k) = [Re(ys (k) Im(yy (k)) - - -Re(y, (k) Im(y, (k))]* and
similarly for h(k) and v(k). This leads to a representation similar to (1.2). However, the
number of channels gets doubled: m = 2n, which corresponds to an increase in diversity [11,
12]. With this reformulation of the case of real symbols, which we will henceforth assume,
all quantities are real when the symbols are real.

In all cases, we can write the input-output relationship as

y(k) = HA(k) +o(k),

H = [h(0) - -h(N—1)], AK) = [a(k) - --a(k—N+1)]" | (14

The output is a vector signal corresponding to a SIMO (Single Input Multiple Output) or
vector channel, consisting of m SISO discrete-time channels. Note that monochannels appear
as a limiting case of multichannels for which all the zeros are in common (except that in the
multichannel case, the white noise variance is identifiable).

Let H(z) = Zf\;_ol h(i)z~" = [Hy(2) - - -H,(2)]" be the SIMO channel transfer function.
Consider additive independent white Gaussian noise v (k) with ryy(k—i) = Ev(k)of (i) =
021, 83;, and Ev(k)vT (i) = 0 in the complex case (circular noise). Assume we receive M
samples:

Yor(k) = Tar(h) Anr(k) + Var(k) (1.5)

where Yy (k) = [yT (k) - - -yT (k—M+1)]T and similarly for V p; (k). Tas(h) is a block Toeplitz
matrix with M block rows and [H 0,,,(p—1)] as first block row:

h(0) h(N-1) 0 0
Ty = | O h(0) h(N-1) 16)
0 0 h(‘(;) h(]g—l)
and
h=[hT(0)- -RT(N-1)]". (1.7)

The channel length is assumed to be N which implies h(0) # 0 and h(N—1) # 0 whereas
the impulse response is zero outside of the indicated range. We shall simplify the notation in
(1.5) with k = M—1 to

Y=T(MhA+V. (1.8)

Commutativity of Convolution We will need the commutativity property of convolution:

T(h)A = Anh (1.9)
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where: A, = A1 ® I,,,

a(M-1) a(M-2) a(M—N)
A . (1.10)
a(‘O) ‘ ‘ a(—N+1)

Sometimes, we will simplify A,, to A.

Ak

U
Ax are the Mg known symbols and Ay the My = M+ N—1—Mpg unknown symbols. The
known symbols may be dispersed in the burst and P designates the appropriate permutation
matrix. For blind estimation A = Ay, while A = Ag = Arg for TS based estimation. We
can split both parts in the channel output as 7(h)A = Tx (h)Ax + To(h) Av.

Semi—Blind Model The vector of input symbols can be written as: A =P where

Irreducible, Reducible, Minimum-phase Channels A channel is called irreducible if its
subchannels H;(z) have no zeros in common, and reducible otherwise. A reducible channel
can be decomposed as:

H(z) = Hi(2)H.(2), (1.11)

where Hj(z) of length Ny is irreducible and H.(z) of length N. = N —N;+1 is a monochannel
for which we assume H.(oco) = h.(0) = 1 (monic). A channel is called minimum-phase if
all its zeros lie inside the unit circle. Hence H(z) is minimum-phase if and only if H.(z) is
minimum-—phase.

Minimum Zero-Forcing (ZF) Equalizer Length, Effective Number of Channels The Be-
zout identity states that for an FIR irreducible channel, FIR ZF equalizers exist [13]. The
minimum length for such an FIR ZF equalizer is

M = min {M : Tar(h) has full column rank} . (1.12)

One may note that Tas(h) has full column rank for M > M. In [14], it is shown that if the
mN elements of H are considered random, more precisely independently distributed with a
continuous distribution, then

M = [N—_ﬂ with probability 1. (1.13)

m —

In this case, the channel is irreducible w.p. 1. One could consider other (perhaps more
realistic) channel models. Consider e.g. a multipath channel with K paths in which the
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multichannel aspect comes from m antennas. Without elaborating the details, it is possible
to introduce an effective number of channels m. which in this case would equal (w.p. 1)

me = rank(H) = min{m, N, K} . (1.14)

N-—-1
me — 1-‘
w.p. 1. Note that in the first probabilistic channel model leading to (1.13), if m > N, then in
fact m. = N, but this does not change the value of M = 1. Another type of channel model

With a reduced effective number of channels, the value of M increases to M = [

arises in the case of a hilly terrain. In that case, two or more random non-zero portions of
channel impulse response are disconnected by delays. If these delays are substantial, then for
the purpose of determining M, the problem can be approached as a multi-user problem by
interpreting the different chunks of the channel as channels corresponding to different users.
Multi-user results for M [13] could then be applied.

In general, for an irreducible channel, M < N—1 [15] in which the upper bound would
correspond to m. = 2. Note that m. = 1 corresponds to a reducible channel (in which case
M = o).

We summarize here the main notations that will be used in the thesis:

M : Output Burst Length
My Number of Unknown Symbols

My Number of Known Symbols
N : Channel Length
m : Number of Subchannels

H(z) =Y 5" h(i)2=" : Transfer Function of the Multichannel
H : Channel Matrix
T(h) : Convolution Matrix

A Input Symbol Vector

Arx : Vector of Known Symbols

Ay ¢ Vector of Unknown Symbols
V. Output Noise

Y=T7T(h)A+V : Input-Output Relationship
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1.4 Channel ldentification Methods

We will see that semi-blind methods are based on TS and blind methods, and consist some-
times simply of a linear combination of a training based criterion and a blind criterion.
Semi—blind methods inherit the characteristics of blind methods which is why the study of
blind techniques is important. We propose here a brief state of the art of the main blind
methods which will help to understand the motivation behind our methodological choices.
The reader already familiar with this subject may proceed to section 1.5.

Blind methods can be classified according to the increasing a priori knowledge on the

input symbols exploited!, as follows (see figure 1.4):
1. No information exploited: the deterministic methods.
2. Second-order statistics: the Gaussian methods.
3. Higher—order statistics.
4. Finite symbol constellation alphabet: the Finite Alphabet (FA) methods
5. Complete Symbol Distribution: stochastic methods.

HOS methods are not the subject of this thesis, so we limit the remainder of this discussion

to information levels 1, 2, 4 and 5. The proposed review follows this classification.

Part of Part of
Second-Order Joint Joint Joint
No Information Statistics Distribution Distribution Distribution
HIGH ORDER FINITE . -
DETERMINISTIC GAUSSIAN STATISTICS ALPHABET STOCHASTIC  Increasing A Priori

Knowledge Exploited

1 | | 1 |
| | | L |

Increasing

Non Convexity

Figure 1.4: Classification of the channel identification methods according to the a priori

knowledge about the input symbols exploited.

1.4.1 Deterministic Model

In the deterministic model, both input symbols and channel coefficients are assumed to be
deterministic quantities. Deterministic methods proceed either to the joint estimation of h
and A or to the estimation of i with A considered as a nuisance parameter (the estimation
of h and A is decoupled from the estimation of 02). The estimation is done directly from

"between information level 3 and 4, the order could be inversed
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the received signal Y = T (h)A 4+ V, and the channel can be estimated up to a scale factor:
deterministic methods are often solved under the constraint ||i||* = 1 (although it leaves a
phase ambiguity, as explained in Chapter 3).

Consider the noise-free vector of M received samples Xas = Tas(h)Ays. Determining h
and Aps from Xy consists in solving a system of equations. As h can be determined up to a
scale factor, the system contains Nm — 1 unknowns for the channel and M 4+ N — 1 unknowns
for the symbols, and there are Mm equations. If m > 2, provided that M > N+ [2%—‘ , the
system contains more equations than unknowns. This simple observation does not provide a
proof of identifiability (a rigorous proof is given in Chapter 2), it is just intended to give an
insight on how, from a multichannel deterministic point of view, the parameters A and h can
be determined. For a monochannel, the number of equations will always be smaller than the
number of unknowns, and deterministic methods fail.

Deterministic methods are based on structural properties of the received signal and es-
pecially on the low-rank property of 7 (h). For an irreducible channel and under certain
conditions on the burst length and input symbols, the channel can indeed be determined
uniquely (up to a scale factor) from the column space of 7(h) that is called the signal sub-
space or from its orthogonal complement called the noise subspace. As detailed in Chapter 2,
the signal or noise subspace can exactly be obtained from the noise—free signal X and esti-
mated from the noisy data.

Subspace Fitting Methods Consider the sample covariance matrix of the received signal
Y, of length L and its expected value (w.r.t. the noise only, as A is deterministic):

M—-L-1
Ry,y, = [ Z Ar(k (k) TH( )+ U] (1.15)
M-L-1
provided some regularity constraints are fulfilled Z Ap (kYA (k) is a square invertible
k=0

L-1

M—
matrix, so the space spanned by 71 (h [ Z Ak TH( ) is the signal subspace.

Ry,y, admits M + N — 1 (the dimension of the signal subspace) eigenvectors belonging to
the signal subspace, and Mm — (M 4+ N — 1) eigenvectors belonging to the signal subspace
all associated to the eigenvalue o2. The eigendecomposition of Ry, y, is:

Ry,y, = VsAsVE + ViyAy Vi (1.16)

where the columns of Vs span the signal subspace and the columns of V) the noise subspace,
Ay = 02l. Let Vs et Vy be estimates of the signal and noise eigenvectors obtained from the
sample covariance matrix. The Signal Subspace Fitting (SSF) tries to fit the column space
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of T(h) to its estimates through the quadratic criterion:

min (1P, T, (1.17)

Another form of subspace fitting is noise subspace fitting:
P T(h)[?. 1.18
V{ﬂ;ﬂg\! ve !l (M) (1.18)

The two criteria are quadratic in h, but the two methods require an eigendecomposition,

which can be costly. A method avoiding the eigendecomposition was proposed in [16].

Subchannel Response Matching (SRM) SRM [17], which is also called Cross-Relation
(CR) method [18], is based on a linear parametrization of the noise subspace. In the case
m = 2 where the multichannel H(z) = [HT () HI(2)]” has 2 subchannels, a parametrization
of the noise subspace is H'(2) = [~Hy(2) Hy(2)]: T(h1)T(h) = 0 where 7 (h') is the con-
volution matrix built from HJ'(Z) and spans the entire noise subspace. In the noise free case,
T(RYH)Y (= T(hH)T(h)A) = 0. Using the commutativity of convolution T (h1)Y = Yh,
where ) is a structured matrix filled out with the elements of Y: the channel coeflicients
can be identified uniquely from this equation as the minimal left eigenvector of Y [18, 19].
When the received signal is noisy, h is obtained by solving the least—squares quadratic cri-
terion min = [|7(AH)Y[|* < miny = |[VA|*. For more than 2 subchannels, different
noise parametrizations are possible [20]. In the case of 2 subchannels, SRM and SF are the
same [21].

Blocking equalizers determined by linear prediction A minimum parameterization P of

the noise subspace can be found in terms of prediction quantities [9, 13, 22]: P can be

obtained from the prediction filters or through the SRM-like criterion min |7 (P)Y||* with
P

specific constraints on several coefficients of P [23]. The channel is then determined uniquely
by the subspace fitting criterion: min =y [[P7(h)||*>. Such a parametrization of the noise
subspace offers the advantage to hold in a multi—user context also: this is not true for the
parametrization in terms of channel coeflicients, which is intended exclusively for single user

cases.

Two-sided Linear Prediction or Least—-Squares Smoothing Recently a certain number of
equivalent blind methods have been developed independently. Let X n (k) be the noise free
received signal of length N, the channel length, at time k.
Xn(k)= h a(k) +
N——
- contributioniof the symbol of interest - - (1 19)
hoja(k — 1)+ -+ h_yyra(b = N+ 1) +hja(k+1)+ -+ hy_ra(k+ N — 1) '

past contributions future contributions
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h is a block-wise flipped version of the vector h, and h; contain a truncated version of h.
What these methods try to do is remove the past and future contributions, so that the
resulting signal is A a(k) from which the channel coefficient can be recovered. & a(k) can
also be seen as the prediction error of the two-sided linear prediction of X n(k), which is
estimated as the minimal eigenvector of a submatrix of R}_/LIYL' This last interpretation is
given in [24] based on [25], in which the Capon principle for linearly constrained minimum
variance beamforming is applied to blind equalization. A Least—Squares smoothing solution
is proposed in [26]. Other works give related techniques [27]. A joint order detection and
channel estimation [26, 24] can be done, which is a major advantage for a deterministic
method. In [24], the link between all these methods is established; it furthermore provides
a correction of the methods [25, 26] which consider noisy quantities, which gives biased
estimates.

Deterministic Maximum-—Likelihood (DML) As detailed later in this thesis, the DML cri-
terion is:

: _ 2
Aﬁ}”n:lHY T (h)A|". (1.20)

This criterion can be solved directly in this form by minimizing alternatively w.r.t. A and
h [28, 29]. This algorithm possesses some nice properties (see Chapter 7): at each iteration
of the alternating minimization, the cost function decreases, and, for an asymptotic number
of data, converges to the DML global estimate. It suffers, however, from slow convergence
speed.

Another way of solving (1.20) is to eliminate A (by minimizing w.r.t. A and substituting
its expression in (1.20)) to get a DML criterion in h:

min Y7Pz, Y. (1.21)

Computationally less intensive solutions to solve this criterion are based on a linear parametriza-
tion of the noise subspace. Using the parameterization H*(2):

(1:21) = min YOI () [T T (0] Ty (1.22)

The Iterative Quadratic Maximum-Likehood (IQML) method was proposed in [19]: at each
iteration, the denominator 7 (h*)7H (k') is considered constant, evaluated from the previous
iteration, so that the DML criterion becomes quadratic. In [9, 30], the IQML strategy was
also proposed based on the blocking equalizers. At low SNR, IQML is biased and performs
poorly: SRM used to initialize IQML in [19] performs in fact better at low SNR conditions.
Solutions are proposed in this thesis to remove this bias due to the noise, one of which will
be proven to asymptotically attain the DML performance.
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DML is the most powerful method among all the deterministic methods. SRM however
performs nearby as illustrated in this thesis. The optimally weighted subspace fitting method
does not strictly belong to the deterministic category as the optimal weighting assumes the
input symbols as i.i.d. and uses their statistics: they are located between the deterministic
and Gaussian methods. For some weighting (not the optimal one), subspace fitting will have
the same performance as DML asymptotically in the number of data, as in the Direction Of
Arrival (DOA) context, but also in the size of the covariance matrix considered.

1.4.2 Gaussian Model

In the Gaussian model, the input symbols are considered to be i.i.d. Gaussian random vari-
2

ables with mean 0 and variance o;. This model may appear inappropriate as the input
symbols are in fact discrete-valued.

The purpose of the Gaussian model is to take into account first and second—order moments
of the data, which appear to play a predominant role in the multichannel context. In the
blind case, the mean is zero (but it will not be the case for the semi-blind techniques) and

the second—order moment is:
Ryy (0) = O'ZT(h)TH(h) + 031. (1.23)

Unlike the deterministic case, the input symbols in the Gaussian model are no longer nuisance
parameters for the estimation of h. The parameters to be jointly estimated are the channel
coefficients and the noise variance. The channel is identifiable up to a phase factor and
Gaussian methods should be solved using a phase constraint.

Already existing blind methods which base channel estimation on the second—order mo-
ments of the data, and in which the input symbols are considered i.i.d. random variables,
can be classified into the Gaussian category as the three first methods described below. The
Gaussian assumption is intended for the Maximum-Likelihood (ML) approach for which the
complete distribution is required. The Gaussian distribution is the simplest distribution,
leading to simple derivations and allowing to incorporate the first and second-order moments
of the data: Y ~ AN (my (), Ryy(0)); the Gaussian hypothesis for the symbols leads to a
Gaussian distribution for Y.

Linear Prediction Approach Linear prediction based techniques applied to multi—user chan-
nel identification were first approached in [31] using HOS. Independently, Slock [9] elabo-
rated this method based on SOS, which was pursued by Abed Meraim [32] and finalized by
Gorokhov [33]. Let P(z) be the MMSE linear prediction filter of the data. In the single chan-
nel case, the optimal prediction filter is of infinite length; in the multichannel case however,
P(z) is finite. The fundamental equation is here:

P(2)H(z) = h(0). (1.24)
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The prediction error is 07 = o2h(0)h(0). P(2) is estimated from an estimate of the denoised

covariance matrix of the data, and h(0) as the maximal eigenvector of the prediction error.
H (z) is determined from (1.24) using a least-squares criterion or, giving better performance,
by the weighted least—squares criterion [33]. The prediction method can be solved with
different levels of complexity: the one based on the Levinson algorithm [34] has the lowest
cost (compared to the one which bases the computation of the predictor on the pseudo-inverse

of the covariance matrix.)

The Schur Method It can be proven that the LDU factorization (done by the Schur al-
gorithm) of the denoised covariance matrix is: Ryy = Ry Ryy Ryy = LDLH7 where Y
is the prediction error vector. Considering denoised data, the prediction error signal is
9(k) = h(0)a(k) (obtained by equation (1.24)) and using y(k) = SN h(i)a(k — i), the
block (k, k') of Ry is Ry (k, k') = E(y(k)g™ (k")) = o2h(k — k') (0), so that the channel
coeflicients can be deduced from the columns of the triangular factor L. For more details,
see [35, 36]. For the same level of complexity, the Schur method gives better simulated
performance than the prediction method [34].

Covariance Matching (CM) Method The covariance matching method performs a weighted
least-squares fit between the model of the second—order statistics of the received signal and
their sample estimate built from the data. Let the vector r(#) containing the non-redundant
elements of Ryy (see Chapter 9) and 7 the corresponding sample estimates. The covariance

matching criterion is

min(r(8) — A)IW(r(8) — 7) (1.25)

h,o?2
where W is a weighting matrix. In [37, 38], only the first N non zero correlation coefficients
are considered in the CM criterion. The optimal performance is obtained when the number
of covariance lags involved tends to infinity, as stated in [39]: covariance matching is then
asymptotically the best method exploiting the SOS.

Gaussian Maximum Likelihood (GML) As Y ~ A(0, Ryy (6)), the GML criterion is:

9_%32] Indet Ryy () + Y7 Ry1(0)Y . (1.26)
The Gaussian hypothesis is only used to build the GML criterion, which is solved using the
true symbol distribution. A semi-blind ML method based on this model was proposed in [40]
and shown to give better performance than ML based on the deterministic model [41]. The
Gaussian hypothesis for the sources is also regularly used in direction of arrival finding and
the associated ML is proven to give better performance than the deterministic ML meth-
ods [42].
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The blind optimally weighted CM method [39] based on an asymptotically large covariance
matrix will be shown, by numerical evaluation of the theoretical performance expressions, to
be equivalent to blind GML. So GML, although based on a inaccurate hypothesis, appears
to be the best method using SOS along with the optimally weighted CM. CM and GML are
further studied in Chapter 9.

In [33], it is proven that the optimally weighted SSF has the same performance as the
optimally weighted CM (computed with the constraint ||k||*> = 1 and a phase constraint),
for a covariance matrix of infinite length and that optimally weighted SSF has the same
performance as the weighted least squares based prediction method.

1.4.3 Methods Exploiting the Finite Alphabet

These methods are based on ML and exploit the finite alphabet (denoted A,) constraint of
the input symbols:

min Y = T (h)A. (1.27)

hAE A,

Some FA methods proceed by alternating minimizations between h and A, with A constrained
to the finite alphabet. Both estimations are done in a least-squares way: the most problematic
estimation is that of the symbols because of the FA constraint. The Viterbi algorithm can
be used; a trellis search technique was proposed in [43], as well as a reduced—state sequence
estimation in [44]. Talwar [45] proposed a much less complex solution: the FA constraint is
first ignored and the symbols are estimated by a quadratic least—squares criterion (they are
the output of a burst mode MMSE-ZF equalizer), then the estimates are projected onto the
nearest discrete value of the finite alphabet. Some methods also exist that give closed form
solution [46].

1.4.4 Stochastic ML Methods

SML considers the input symbols as random variables. Their true distribution is taken into
account: the symbols are assumed zero mean, i.i.d., equiprobable, and with values of the

finite alphabet. f(Y'|h) = f(Y[A,h)f(A) =3 4c4, f(Y]A, h), so the SML criterion is:

1 1 :
min — Z exp [—;HY - T(h)A|| . (1.28)
"o v AG-Ap v

Direct optimization of the SML criterion represents a costly solution. The Expectation—
Maximization (EM) [47] algorithm is used to solve SML using the Hidden Markov model
(HMM) framework: see [48], for a description of different methods. The EM algorithm will
converge to the SML solution given a good initialization. Semi-blind SML is formulated
in [49].
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1.4.5 Further Characterization of the Blind Models

It appears that the more knowledge about the input symbols is incorporated in the model,
the better performance one gets. This also comes with an increase in complexity. In the
following, we further characterize the different models.

Identification Indeterminacies The different methods are also classified according to de-
creasing severe identification indeterminacies. For example, for complex input constellations,
blind deterministic methods can identify the channel up to a complex scale factor, h = ah?,
with o € C; in the Gaussian case, the channel can be identified up to a phase factor h = eIPho,
with ¢ € R; FA and stochastic methods can identify the channel up to a discrete-valued
phase factor, h = €/9h°, with ¢ taking a finite number of discrete values (depending on the

symmetry properties of the symbol constellation).

Robustness to Channel Length Overestimation. Blind deterministic methods are not ro-
bust to channel length overestimation: in general, the different channel lengths have to be
tested to detect the right one. The blind Gaussian, FA and stochastic methods will automat-
ically give the right channel order. Note however that the deterministic semi-blind extension
will profit from the robustness of TS based methods to channel order overestimation.

Performance. The above classification respects the order of increasing performance. The FA
methods are particularly powerful: indeed, a performance bound for FA methods corresponds
to the case in which all the input symbols would act as training sequence. Computationally

less complex methods like [45] are particularly interesting.

In view of the different points mentioned above, one may wonder why we would like to
use deterministic methods instead of Gaussian methods and Gaussian methods instead of FA
methods. Blind deterministic methods possess the remarkable property of providing, in the
noiseless case and with a finite amount of data, the exact channel (apart from indetermina-
cies). This property is also true for FA methods but not for Gaussian methods, in general
(GML is high-SNR consistent). For a finite amount of data, exact second-order statistics
cannot be estimated exactly and Gaussian methods will not be able to estimate the channel
exactly.

The blind deterministic methods also offer the advantage of allowing closed—form solu-
tions, or convex cost functions, thus avoiding local minima. These methods are one-shot
methods (or almost) and so assure a high speed of convergence. For solving blind Gaussian,
FA or stochastic techniques, generally iterative and more computationally intensive algo-
rithms need to be used with the risk of falling into local minima if not correctly initialized.
This risk is particularly high for the FA techniques: the exploitation of the finite alphabet
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leads indeed to highly multimodal cost functions.

1.5 Motivation for the Chosen Methods

1.5.1 Models

The above discussion was about blind estimation. The associated semi-blind versions inherit
from their blind counterpart properties, advantages or disadvantages.

Semi-blind FA methods like [45] are powerful techniques but require a good initialization
quality. When the training sequence is too short to give a good channel initialization or when
blind methods fail, the initialization may be too bad for the iterative FA methods to work
directly. One can instead proceed in smaller steps by first using a semi-blind deterministic
method to initialize a semi-blind Gaussian method, which could in turn be used to initialize
a semi-blind FA method.

It should be noted that the performance difference for the deterministic and Gaussian
models gets smaller as more and more symbols are known. Performance differences are

mostly visible in the case of blind methods, especially for ill-conditioned channels.

1.5.2 Methods

To develop semi-blind methods, we focused on deterministic and Gaussian ML methods and
to a certain extent on FA ML methods for several reasons:

e ML are the most powerful methods.

e They allow to naturally incorporate the knowledge of known input symbols and con-
stitute optimal semi-blind criteria in the sense that no information coming from the

known symbols or no blind information is lost.

e When the known symbols are grouped, suboptimal criteria can be found appearing as
a linear combination of a training sequence based criterion and a blind criterion. These
suboptimal criteria offer the advantage to keep the structure of the blind problem which

allows to build fast algorithms.

1.6 Thesis Outline and Contributions

The thesis is divided onto three parts. The first one is aimed at determining semi-blind
identifiability conditions and performance bounds. It has given rise to a certain number of
theoretical studies as detailed below. In the second part, we focus on blind and semi—blind
multichannel estimation techniques mainly based on deterministic and Gaussian ML. At last,
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in the third part, receiver structures applied to a burst mode transmission of the data are
studied. Most of the chapters in this thesis correspond entirely or partly to journal papers
in preparation.

1.6.1 Partl

Chapter 2 Blind identifiability conditions are first studied and semi-blind conditions are
then derived in terms of channel characteristics, burst length and input symbol characteristics.
Identifiability is guaranteed if the parameters can uniquely be determined from the probability
density function of the data. To assure semi-blind identifiability, one needs as many known
symbols as the number of parameters that blind methods cannot determine. A remarkable
property is that this last condition holds even if the known symbols are dispersed all over the
burst. For example, a single channel cannot be identified by a blind deterministic method;
provided that there are 2N —1 known symbols present in the burst and not necessarily grouped
together, semi-blind techniques will be able to estimate the channel. This result is proved in
chapter 5: in fact, we only prove that there is local identifiability and conjecture that there
is global identifiability. These results were presented partly in:

E. de Carvalho and D.T.M. Slock, “Identifiability Conditions for Blind and Semi-
Blind Multichannel Estimation,” in Furopean Association for Signal Processing

EUSIPCO 98, Island of Rhodes, Greece, September 1998.

Identifiability conditions for blind and semi-blind multi—user multichannel estimation are give
in:

Luc Deneire, Elisabeth de Carvalho, and Dirk Slock, “Identifiability Conditions for
Blind and Semi-Blind Multiuser Multichannel Identification,” in 9th IFFE Signal
Processing Workshop On Statistical Signal And Array Processing, Portland, Oregon,
USA, September 1998.

Chapter 3 This short chapter gives theoretical elements on the FIMs and CRBs. Their
expression is given for Gaussian distribution data. In this case, local identifiability from the
density distribution is equivalent to FIM regularity under certain mild conditions. In blind
estimation, not all the parameters can be estimated: we have seen for example that a scale
or phase factor cannot be estimated in the deterministic or Gaussian model. This results in
singularities in the FIM and the CRB (which is the inverse of the FIM) is not defined. In
this chapter, we provide a general study for estimation under constraints. These results are
applied to the characterization of blind performance in Chapter 4. In particular, we propose
a bound, the pseudo—inverse of the FIM, which gives for a minimal number of independent
constraints, the lowest CRB.
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Chapter 4 and Chapter 5 One of the objectives of these chapters is to compare semi—
blind to blind and training sequence based estimation through their CRBs. We illustrate
the superiority of semi—blind techniques already described in section 1.2. This study was

initiated in:

E. de Carvalho and D.T.M. Slock, “Cramér-Rao Bounds for Semi-blind, Blind and
Training Sequence based Channel Estimation,” in Proc. SPAWC 97 Conf., Paris,
France, April 1997.

1.6.2 Part ll

Chapter 6 The formulation of blind and semi-blind DML and GML is undertaken and
theoretical performance is derived for an asymptotical number of data (unknown and known
input symbols); the case of high SNR is also treated. Although DML is a popular method,
its performance has never been derived except at high SNR. We prove that DML does not
reach the CRB except at high SNR. The CRB for the Gaussian model of Part I is derived
assuming the symbols are Gaussian. Here we compute the performance of GML considering
the true symbol distribution. Performance is below the CRB. Simulations show that GML
performs better than DML. These results are presented in:

E. de Carvalho and D.T.M. Slock, “Asymptotic Performance of ML Methods for
Semi-Blind Channel Estimation,” in Proc. Asilomar Conference on Signals, Sys-
tems €& Computers, Pacific Grove, CA, Nov. 1997.

Chapter 7 We devote this chapter to fast solutions for solving DML. IQML is a popular
method to solve DML: it appears that IQML gives biased estimates and performs poorly
at low SNR. We propose two solutions to remedy this situation. The first solution removes
an estimate of the noise contribution in the IQML criterion. The second one computes the
gradient of DML and at each iteration attempts to null it: this algorithm can also be seen as
a form of denoised IQML. We compute the asymptotical performance of DIQML and PQML:
PQML performs better than DIQML and has the same asymptotic performance as DML.
Some properties of the alternating minimization strategy are also stated and the algorithm is
compared to DIQML and PQML. PQML appears to be the best method to solve DML. These
blind algorithms as well as their semi-blind extensions treated in Chapter 8, were presented

in:

J. Ayadi, E. de Carvalho, and D.T.M. Slock, “Blind and Semi-Blind Maximum
Likelihood Methods for FIR Multichannel Identification,” in Proc. ICASSP 98
Conf., Seattle, USA, May 1998.
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Chapter 8 This chapter proposes semi-blind DML based algorithms. We consider the
known symbols as grouped. Three (slightly) suboptimal semi-blind criteria are derived based
on three different training sequence based criteria. The criteria appear as a linear combination
of blind DML and a training sequence criterion. The coefficients of this linear combination are
optimal in the ML sense. We also derive a semi-blind criterion based on a linear combination
of the (denoised) SRM criterion and the TS criterion to initialize the semi-blind DML based
algorithms. Some semi-blind algorithms have been proposed that linearly combine a certain
blind criterion with a training sequence based criterion. The right weighting seems difficult
to find in that case. We propose a solution to this problem and give a first approach to a
subspace fitting based semi-blind criterion. This results are given partly in the Icassp 98

paper, as well as in:

E. de Carvalho and D.T.M. Slock, “Maximum-Likelihood FIR Multi-Channel Esti-
mation with Gaussian Prior for the Symbols,” in Proc. ICASSP 97 Conf., Munich,
Germany, April 1997.

An extension of the blind and semi—blind PQML to the multi—user case can be found in:

Elisabeth de Carvalho, Luc Deneire, and Dirk Slock, “Blind and Semi-Blind Maxi-
mum Likelihood Techniques for Multiuser Multichannel Identification,” in Furopean
Association for Signal Processing FUSIPCO 98, Island of Rhodes, Greece, Septem-
ber 1998.

Chapter 9 GML is interpreted as a form of covariance matrix criterion. The performances
of GML and of optimally weighted covariance matching are numerically evaluated and com-
pared: they appear to have the same asymptotic performance. The scoring algorithm is
used to solve blind and semi-blind GML which is compared to the DML based methods.
We furthermore develop two computationally low algorithms based on approximations of the
steepest descent algorithm and of the scoring algorithm for blind GML. Part of these results
can be found in:

E. de Carvalho and D.T.M. Slock, “Semi-Blind Maximum-Likelihood Estimation
with Gaussian Prior for the Symbols using Soft Decisions,” in /8th Annual Vehicular
Technology Conference, Ottawa, Canada, May 1998.

E. de Carvalho and D.T.M. Slock, “A Fast Gaussian Maximum-Likelihood Method
for Blind Multichannel Estimation,” in Signal Processing Advances in Wireless
Communications (SPAWC), Annapolis, Maryland, USA, May 1999.

Chapter 10 The soft decision strategy is particularly well suited to the general semi-blind
framework. From a semi-blind channel estimate, an equalizer is built. Hard decisions are
taken on the more reliable equalizer outputs, i.e. the ones that are the closest to the decision
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point: those hard decisions are considered as known. The other non-reliable outputs are
left undecided and then remain unknown. A new semi-blind criterion can then be derived
based on the augmented number of known symbols. This strategy could be seen as an
intermediate step between pure semi—blind and the FA method [45] and could prevent the
latter to fall into local minima due to errors in the hard decisions. Unfortunately, this strategy
introduces correlations between the known/unknown symbols and the noise: as a result, the
semi-blind criterion based on the augmented number of known symbols becomes erroneous.
We introduce a way of choosing the reliable symbols which allows partly to alleviate the
correlation problem. This idea of soft decisions can be found in the VIT'C 98 paper previously
cited.

1.6.3 Part 1l

Chapter 11 The optimal structure of burst mode equalizers is derived: the structure of
the classical equalizers are derived as well as that of the ISI canceller that uses past and
future decisions and that we call Non Causal Decision Feedback Equalizer (NCDFE). The
performances of the different equalizers are compared. The optimal equalizer filters are
time—varying which implies an increasing complexity w.r.t. continuous processing equalizers.
By correctly choosing the number and position of some known symbols, (time-invariant)
continuous processing filters applied to burst mode can be organized to give sufficiently good
performance, so that optimal (time-varying) burst processing implementation can be avoided.
The results of this study can be found in:

D.T.M. Slock and E. de Carvalho, “Unbiased MMSE decision-feedback equalization
for packet transmission,” in Proc. FUSIPCO 96 Conf., Trieste, Italy, September
1996.

E. de Carvalho and D.T.M. Slock, “Burst Mode Equalization: Optimal Approach
and Suboptimal Continuous—Processing Approximation,” Submitted, Signal Pro-
cessing, Special Issue on Signal Processing Technologies for Short—Burst Wireless

Communications.

Chapter 12 When there are no errors in the non—causal feedback, the NCDFE attains
the ISI-free situation and appears to be the most powerful equalizer, representing a less
complex alternative to the Viterbi equalizer. As for the classical DFE, errors in the non—
causal feedback can cause error propagations. Instead of using hard decisions, we use soft
decisions which reduce error propagation. The structure of the NCDFE was derived in the
following first paper, along with an implementation of MLSE based on the NCDFE; the soft

decision strategy was applied in the second paper.

D.T.M. Slock and E. de Carvalho, “Burst Mode Non-Causal Decision-Feedback
Equalization and Blind MLSE,” in Proc. GLOBECOM 96 Conf., London, Great
Britain, November 1996.
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E. de Carvalho and D.T.M. Slock, “Burst Mode Non-Causal Decision-Feedback
Equalizer based on Soft Decisions,” in 48th Annual Vehicular Technology Confer-
ence, Ottawa, Canada, May 1998.

Chapter 13 The usual Matched Filter Bound (MFBs) provides the optimal symbol detection
performance of receivers i.e. when no ISI is present, when the channel is perfectly known.
We propose two MFBs to characterize the optimal performance using reduced-order channel
models. These bounds are of interest when the physical channel is infinite and needs to
be truncated: for the Viterbi equalizer implementation for example, it may be desirable to
reduce the channel length in order to lower the complexity. The associated papers are:

E. de Carvalho and D.T.M. Slock, “Maximum-Likelihood Blind Equalization of
Multiple FIR Channels,” in Proc. ICASSP 96 Conf., Atlanta, USA, May 1996.

D.T.M. Slock and E. de Carvalho, “Matched Filter Bounds for Reduced-Order
Multichannel Models ,” in Proc. GLOBECOM 96 Conf., London, Great Britain,
November 1996.
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Identifiability Conditions and
Performance Bounds






Chapter 2

IDENTIFIABILITY CONDITIONS

The deterministic and Gaussian models for the unknown symbols are consid-
ered here. We investigate the identifiability conditions of blind and semi-blind
FIR multichannel estimation in terms of channel characteristics, received data
length, input symbol excitation modes as well as number of known symbols for
semi-blind estimation. Semi-blind methods appear superior to blind and train-
ing sequence methods, and allow the estimation of any channel with only a few
known symbols. Furthermore, the Gaussian model appears more robust than
the deterministic one as it leads to less demanding identifiability conditions.
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2.1 Identifiability Definition

Let @ be the parameter to be estimated and Y the observations. In the regular cases (i.e. in
the non blind cases), 6 is called identifiable if [50]:

VY, f(Y|0)=f(Y]0) = 6=0. (2.1)

This definition has to be adapted in the blind identification case because blind techniques
can at best identify the channel up to a multiplicative factor a: o € C in the deterministic
model and |o| = 1 in the Gaussian model. The identifiability condition (2.1) will be for 8 to
equal 6’ up to the blind indeterminacy.

For both deterministic and Gaussian models, f(Y]0) is a Gaussian distribution: identifi-
ability in this case means identifiability from the mean and the covariance of Y.

2.2 ldentifiability in the Deterministic Model

In the deterministic model, Y ~ N(T(h)A,02I) and 6 = [A]; RT]T. Identifiability of  is
based on the mean only; the covariance matrix only contains information about o2. Ay and
h are identifiable if:

ThA=TMH)A =
Ay = Ap; and h=1h  for semi-blind and TS based estimation (2.2)
A= lA’ and h = ah’ for blind estimation
a

with a complex, for a complex input constellation, and real, for a real input constellation.
Identifiability is then defined from the noise—free data which we shall denote by X = 7 (h)A.

2.2.1 TS Based Channel Identifiability

We recall here the identifiability conditions for TS based channel estimation. From (1.9),
T(h)A = Ah: h is determined uniquely if and only if A has full column rank, which corre-
sponds to conditions (i) — (¢7) below.

Necessary and sufficient conditions [TS] The m-channel H(z) is identifiable by TS
estimation if and only if

(i) Burst Length M > N.

(ii) Number of input symbol modes*> N.

Condition (7) is equivalent to: number of known symbols M > 2N —1. The burst length M
is the length of Y, expressed in symbol periods.

Yor a definition of the notion of modes, see for example [19, 18]
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2.2.2 Blind Channel Identifiability

The deterministic blind identifiability definition (2.2) corresponds to what is called strict
identifiability in [51]. The authors of [18, 19] define identifiability based on the Cross—Relation
(CR) method: a channel is said CR-identifiable if the channel can be identified uniquely (up to
a scale factor) by the noise-free CR method. In [19], identifiability is based on the (complex)
FIM matrix: a channel is said identifiable if the FIM has exactly one singularity. In [19, 51],
those three identifiability forms were found to be equivalent. [18, 19] give sufficient conditions,
and necessary conditions separately for the channel, the burst length and the symbol modes
for the CR-identifiability (extended to the FIM and strict identifiability in [19, 51]). In [18],
necessary and sufficient conditions on the channel and the modes (but not on the burst length
though) are also given and a coupled relation between the channel and the input symbols
modes appears, which usefulness is not guaranteed.

We give here necessary and then sufficient conditions for deterministic blind identification
in terms of channel characteristics, burst length and input symbol modes. Our original
objective was to prove that sufficient conditions [DetB] are also necessary conditions. We

have not been able to prove it for the moment, but we highly conjecture that this is true.

Necessary conditions [In the deterministic model, the m-channel H(z) and the unknown

input symbols Ay are blindly identifiable only if

(i) H(z) is irreducible.

N-1
(ii) Burst length M > N+ [2—-‘ .

m—1
(iii) Number of input symbol modes > N + 1.

Proof: (i): If the channel is not irreducible, then 7 (k) does not have full column rank. If A
is in the null space of 7(h), X = T (h)A = 0 and identifiability is not possible: either A =0
and h cannot be identified, or A # 0 and A’ = 0 and any b/ verifies 7 (h')A’ = 0. If A is not
in the null space of 7(h), we can find A’ # 0 verifying 7 (h)A’ = 0 and A" = A+ A’ linearly
independent from A verifies T(h)A” = X. The irreducibility condition is also a necessary
condition for the subspace fitting method, which, if the channel is reducible, can only identify

its irreducible part.

(22): Condition (i7) says that the number of equations (= mA) should be greater than the
number of unknowns: Nm—1 unknowns for H, M+ N —1 for the unknown symbols.

(2i2): A proof of condition (i2¢) can be found in [51].
g

Sufficient conditions [DetB] In the deterministic model, the m—channel H(z) and the
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input symbols A are blindly identifiable if
(i) H(z) is irreducible.
(ii) Burst length M > N +2M.
(iii) Number of input symbol modes > N + M.

Proof: see Appendix A.
O

These conditions express the fact that one should have enough data with the right prop-
erties to be able to completely describe the signal (or noise) subspace. The proof is based
on subspace fitting results. An alternative proof based on linear prediction and blocking
equalizers has been given in [52].

Note that the sufficient conditions above are sufficient conditions for the subspace fitting
method. A priori, sufficient conditions for identifiability asin (2.1) could be weaker than the
sufficient conditions for the subspace fitting method. These conditions appear to be sufficient
for all the deterministic methods listed in section 1.4 except for SRM [19].

Note that when 2M = [2%—‘ (which happens in the case m = 2), the burst length
condition is necessary and sufficient.

2.2.3 Semi-Blind Channel ldentifiability

Consider the general case of a reducible channel: H(z) = Hy(2)H.(2). We first give necessary
and then sufficient conditions for semi-blind identifiability in the case of grouped known
symbols. We denote M as the smallest M for which 7ps(hy) has full column rank.

Necessary conditions [In the deterministic model, the m-channel H(z) and the unknown
input symbols Ay are semi—blindly identifiable only if
2N—-Mp—1
m—1 -‘ '

(i) Burst length M > N+ [

(i) Number of grouped known symbols My > 2N.—1.

Proof: Condition (¢) says that the number of equations (= mM) should be larger than the
number of unknowns: Nym unknowns for Hy, N.—1 unknowns for H. and M+N—1-Mp
for the unknown symbols. H.(z) and the ambiguous scale factor can only be identified thanks
to the known symbols: condition (i¢) gives the minimal number of grouped known symbols
necessary to identify those parameters.

g

Sufficient conditions [DetSB] In the deterministic model, the m-channel H(z) and the
unknown input symbols Ay are semi—blindly identifiable if
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(i) Burst length M > max(Nj+2M 7, N.—Nj+1)

(i) Number of excitation modes of the input symbols: at least Ny+M ; that are not zeros of
H(z) (and hence H.(z)).

(iii) Grouped known symbols: number My > 2N.—1, with number of excitation modes > N..

Proof: See Appendix C.
O

For an irreducible channel, 1 known symbol is sufficient. For a monochannel, 2N—1
grouped known symbol are sufficient. If 2N —1 grouped known symbols containing N inde-
pendent modes are available, condition (¢i) becomes superfluous.

We do not prove identifiability in the case where the known symbols are not grouped. We
conjecture however that identifiability is guaranteed with the same number of known symbols
even in that case. Indeed, we show in Chapter 4, that FIM regularity holds under conditions
almost similar to [DetSB], which implies local identifiability (result of Chapter 3).

In case the known symbols are dispersed and all equal to 0, the sufficient conditions still
hold (except that (7ii) can be relaxed to Mx > 2N.—2) but the channel is now identifiable
up to a scale factor only. When those zero known symbols are not sufficiently dispersed
however so that at least N, of them are grouped, it is easy to find configurations in which
identification cannot be guaranteed, even up to a scale factor.

2.2.4 Semi-Blind Robustness to Channel Length Overestimation

A major disadvantage of the deterministic methods is their non robustness to channel length
overestimation. Semi-blind methods allow to overcome this problem. We consider again a
reducible channel: H(z) = H;(2)H.(2).

Sufficient conditions [DetSBR] In the deterministic model, the m-channel H(z) and the
unknown input symbols Ay are semi-blindly identifiable when the assumed channel length N’

is overestimated if
(i) Burst length M > max(Nr+2M;,2(N'=N;4+1)—-N).
(i) Number of input symbol excitation modes: at least Ni+M; that are not zeros of H.(z).

wi) Known symbols: My > 2(N'—N)+1, grouped.
(iit) y ; group
Number of known symbol modes > N'—N+1.

Proof: See Appendix D.
O
These results are also valid (with probability one), with the same number of known
symbols but now arbitrarily distributed.
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2.3 Identifiability in the Gaussian Model

2.3.1 Gaussian Model

The parameters to be estimated are the channel coefficients and the noise variance: 6 =
[hT 02]T. Recall that identifiability is identifiability from the mean and covariance matrix,
so identifiability in the Gaussian model implies identifiability in any stochastic model, since
such a model can be described in terms of the mean and the covariance plus higher—order
moments.

2.3.2 Blind Channel ldentifiability

In the blind case, my (#) = 0, so identifiability is based on the covariance matrix only. In the
Gaussian model, the channel and the noise variance are said identifiable if:

Cyy (h,0?) = Cyy (W, 0¥) = h' = /%h, and 0 = o2. (2.3)

When the signals are real, the phase factor is a sign, when they are complex, it is a complex
unitary number.

Blind identifiability conditions based on the second-order statistics of the noise—free out-
puts of a FIR multichannel driven by a white stationary input sequence were given in [53, 54].
Only conditions on the channel are given: in [53, 54], a channel is said blindly identifiable
up to a phase factor if the channel is irreducible. In fact, it is possible to identify blindly
the channel based on the second-order moments even for a reducible channel, it is only not
possible to determine if the zeros are minimum or maximum-—phase. We give conditions on
the channel and the correlation sequence length. (The conditions on the input symbols are
that they are white).

Irreducible Channel

Sufficient conditions [GaussB1] In the Gaussian model, the m—channel H(z) is identi-
fiable blindly up to a phase factor if

(i) H(z) is irreducible.
(ii) Burst length M > M + 1

Proof: 'When condition (i) is verified, 7i7(h) is (strictly) tall and 2 can then be uniquely
identified as the minimal eigenvalue of Cyy (). H(z) can then be identified up to a phase
factor from the denoised covariance matrix Cyy (8) — 021 by linear prediction [10]: under
conditions (¢) and (i¢), one can find P(z), the multivariate prediction filter of order M and
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h(0) (the first coefficient of H) up to a phase factor from the denoised covariance matrix,
and they are related to H(z) via the relationship:

P(2)H(z) = h(0) . (2.4)

This relationship allows to recover uniquely H(z) from P(z) up to a phase factor.
O

If the noise variance was known, condition (¢¢) would be M > M. These conditions are
also sufficient conditions for the covariance matching method and the Gaussian ML method.
Note that not all the non-zero correlations (time 0 to N — 1) are needed for identification
but only the first M + 1.

Identifiability could also have been established from a spectral factorization point of view.
The spectral factorization of Syy(2) = 02H(z)H'(2) is unique provided that H(z) is irre-
ducible and gives H(z) up to a unitary constant (02 being known). This point of view however
requires the knowledge of the whole non-zero correlation sequence.

Reducible Channel
Let H(z) be a reducible channel: H(z) = H;(2)H.(2).

Sufficient conditions [GaussB2] In the Gaussian model, the m—channel H is identifiable
blindly up to a phase factor if

(i) H.(z) is minimum-phase.
(ii) M > max(M;+1, No.—Nj+1).

Proof: ~ Under condition (i), 7 (hy) is strictly tall and o2 can be identified as the min-
imal eigenvalue of Cyy (#). The irreducible part Hj can be identified up to a scale fac-
tor thanks to the deterministic method described in section 2.2.2 [13] provided that M >
M;+ 1: let by = ahr be this estimate of hy. (TH(h’I)T(h’I))_l TH(RY) [Cyy (0) — o21]
T (h%) (TH(h’I)T(h’I))_l = 2T (e h)TH(a™*h.). @~ H.(2) can now be identified up to
a phase factor by spectral factorization provided that aH.(z) or hence H.(z) is minimum-
phase and 7 (h.)7 " (h.) contains the N, non—zero correlations, i.e. M + Ny —1 > N, or
M > N.—Nj+1.

U

Monochannel Case

2

< cannot be estimated and so neither h. How-

In the monochannel case, the noise variance o
ever, if we consider o2 as known, the channel can be identified by spectral factorization. The
sufficient conditions are for the monochannel to be minimum-phase and the burst to be at

least of length N.
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2.3.3 Semi-Blind Channel ldentifiability

In the semi—blind case, identifiability is based on the mean and the covariance matrix.

Identifiability for any Channel

In the semi-blind case, the Gaussian model presents the advantage to allow identification
from the mean only. my (8) = Tk (h)Ax = Axh: if Ak has full column rank, i can be
identified. The difference with the training sequence case is that in the identification of h
from my (#) = Tk (h) Ak, the zeros due to the mean of Ax also give information, which lowers
the requirements on the number of known symbols. For one non-zero known symbol a(k)
(with 0 < k < M—N, i.e. not located at the edges), the non-zero part of Ag is a(k)Inm.
The Gaussian model appears thus more robust than the deterministic model as it allows
identification of any channel, reducible or not, multi or monochannel, with only one non-zero
known symbol not located at the edges of the input burst.

Sufficient conditions [GausSB1] In the Gaussian model, the m-channel H(z) is semi-

blindly identifiable if
(i) Burst length M > N.

(i1) At least one non-zero known symbol a(k) not located at the edges (0 <k < M—N ).

Identifiability for an Irreducible Channel

Sufficient conditions [GausSB2] In the Gaussian model, the m-channel H(z) is semi-

blindly identifiable if
(i) H(z) is irreducible.
(ii) At least 1 non-zero known symbol (located anywhere) appears.

Proof:  Let us assume that Y contains a block of at least M + 1 samples y(k) that contain
only unknown symbols (this implies a condition on the burst length which we do not specify
above because it depends on the number of known symbols and their position). Then A can
be identified blindly up to a unitary constant from the corresponding covariance matrix as
indicated in section 2.2.2: b/ = e/¢h. This unitary scale factor can then be identified thanks

to the mean ’lef(h’)my = e /¥ Ag: one non-zero element of this quantity suffices to identify
.
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2.4 Conclusions

Identifiability conditions for the two main models studied in the thesis were given in terms of
channel characteristics, burst length, input symbol excitation modes and number of known
symbols for semi-blind estimation and in the case of grouped known symbols. The semi-
blind approach appears more robust than blind estimation, as it allows the estimation of
any channel with only a few known symbols. In the deterministic case, 1 known symbol
is required for an irreducible channel, 2N, — 1 for a reducible channel and 2N — 1 known
symbols for a monochannel. We have also proved that semi-blind methods allow to solve
the deterministic non robustness to channel length overestimation. The Gaussian model only
requires 1 known symbol (not located at the edges of the burst) and is hence more robust than
the deterministic model. Identifiability conditions for multi—user multichannel estimation are

given in [55].
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A Proof of Sufficient Conditions [DetB]

To show that conditions [DetB] are sufficient, it is sufficient to prove that A and A can be
uniquely identified from the mean X = 7 (h)A by a blind method: we prove identifiability
by the signal subspace fitting approach.

The signal subspace is defined as the column space of T (h), for T(h) tall, and the noise
subspace as its orthogonal complement. The signal subspace can be formed from X. Indeed,

let X' of size m(M+1) x (M—M) and A of size (M+N) x (M—M) defined as:

x(M-1) e z(M) a(M-1) e a(M)
X = : : ; Av = : :
e(M-M-1) --- x(0) a(M—M—-N) --- a(-N+1)
(2.5)
and related as

Conditions (i¢) and (7:7) are necessary and sufficient for A to have full row rank: (7¢) indicates
that A should have at least as many columns as rows and (7¢7) that the rows are independent.
Given that A has full row rank, the column space of X" equals the column space of Tar41(h),
so we can write in particular:
L _ pl
Py =Fram (27)

where Py = X(XHX)"'XH and Pj; = I— Py are the projection operators on the column space
of X and its orthogonal complement. We are searching for a pair lAz, A so that X = TM(iL)A\
or X = Tar41(h)A. The matrices Tasi1(h) and A have the same dimensions as Tpz41 (k) and
A. So the rank of A equals the column dimension of TM_H(iL) and also the row dimension of

o~

A which hence have full column rank and row rank respectively. Hence

Py Tus1 (R A=0 = Pf Tz (h) = 0 & range {TMH(/})} C range { Tar41(h)}
(2.8)
Now, in appendix B? (with M = M+1 here) it is shown that this implies h = ah where a is
some complex scalar. Now also A can be estimated up to a scale factor: A=

N .
(TH(h)T(h)) TH(h)X = A/a (i.e. the output of the MMSE zero-forcing equalizer built
from h).

B Channel Identifiability from the Signal Subspace

Theorem 1 (Subspace Fitting) Let h and h' be causal channel impulse responses of length

2The proof in B is a shorter alternative to the proof in Appendix A of [56], generalized to an extended

range of signal space dimension M.
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N and N' respectively. If h is irreducible, then for M > M

H(z)=H(z)a(z) , NN>N

2.
=0 , NN < N (2.9)

range {’TM(h’)} C range{Tm(h)} = {

where a(z) is a scalar polynomial of order N'—N.

Proof: range {Tas(h')} C range {7Tas(h)} implies that there exists a transformation matrix 7'
of size (M+N—1) X (M+N'—1) such that Tas(h') = Tar(h) T. So Tar(h) T is block Toeplitz
and hence

Tar—1(h) TipreN—21:m+N—2 = Tar—1(h) Tov4N-1,2:M+N—1 (2.10)

which implies that Ty.ar4N—21:M+N-2 = To:Mm+N-1.2:M+N—1 since Tas_1(h) has full column
rank. Hence T is Toeplitz.
Now, Tar(h) and Tas(h') are not only block Toeplitz but also banded. So in particular,

0= [TM(h/)]m-I—I:mM,l = TM—I(h) TovieN—-1,1 (2.11)

which implies To.pr4n—1,1 = 0 since Tar—1(h) has full column rank, and

0= [T (A vma—iymen—1 = Tar—1(h) Tiary N—2, M N/—1 (2.12)

which implies Ty.pr4n—2 m4n87—1 = 0 since again Tar—1(h) has full column rank. Since T is
also Toeplitz, this implies that T is zero if N’ < N and is banded with N'—N+1 nonzero
diagonals if N’ > N. Hence in this last case, the coefficients of T specify a scalar polynomial
a(z) of order N'—N such that H'(z) = H(z) a(z).

To summarize the proof in words, a linear transformation that transforms a linear time-
invariant (LTI) filter into a LTI filter can only be a LTI filter. If furthermore the filters are
FIR and causal, then the transforming filter can only be causal and FIR of order equal to
the difference of the orders of the filters.

O

C Proof of Sufficient Conditions [DetSB]

The semi-blind problem can be decomposed into a blind problem and a TS problem. Condi-
tions for identifying the part of H(z) that can be identified blindly up to a scale factor, i.e.
H;(z), and then conditions for identifying by TS the rest, i.e. the parameters in H.(z) and
the scale factor, are derived.

Consider the m(M+1) x (M—-M;) data matrix X' = Ty, 41(h1)Ta,+n, (he) A Then
Px = Pry, ., (ny) if and only if Tas 4, (he) A has full row rank. Condition (i) expresses that
the number of columns of this last quantity should be greater than its number of rows, plus
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the fact that in general M > My —N+1, which gets combined with condition (i¢¢). Let p be
the number of modes of A (which are assumed to be unrepeated, the extension to the case

P
of higher multiplicity being straightforward [19]): a(k) = Zaizf. It can be shown that A

=1
can be decomposed as
A= MiMyMs =
i 1 1 Tew 0 oo oo 0 [ M-t M2 21MI_
z7t e 0 ap . e M-t M- M
M ‘ N-1 M N-1 0
I 1—(_1+ —) p—(_1+ - ) 11 0 0 a, || Z]])W—l 2,2]7\4—2 ZpMI |
(2.13)
so that we can write
T(hc)./l = 8182./\/12./\/13 with (214)
i 1 .. 1 1T He(z1) 0 0 ]
o S 0 H(z)
T(he) My = BBy = '
M, —Ny+1 M, —Ny+1 : ’ o 0
e ! sz 1L o ce oo 0 He(z) |
(2.15)

If p> Mj;+ Ny, the rank of 7 (h.).A is determined by the rank of By and has full row rank
if rank(Bz) > M+ Nyp, i.e. A has at least M+ N; modes which are not zeros of H.(z). So
under conditions (i) and (i7), we can identify h; = ahy by subspace fitting.
. SN .
Now (TH(hI)T(h[)) TH(h1)X = T(h:)A/a. Under conditions (i) and (iii) h. and
the scale factor a get identified by TS estimation.

D Proof of Sufficient Conditions [DetSBR]

Assume a channel A’ of length N” and a symbol sequence A’ satisfy Tas(h)A = X = Tar(R')A'.
The sequence A’ is of length M+N'—1, with its training sequence part synchronized to that
of A (A} = Ax). The channel A’ may be reducible so that it can be decomposed in general
as H'(z) = H}(z)H.(2) with Nj+N/—1= N’. To the irreducible h/ corresponds a minimum
ZF equalizer length M. Consider

X = Tagy 1 (D) T (he) A = Tagy 1 (WD T (h) A (2.16)
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Assume for a moment that the conditions are satisfied for 7 (h.).A to have full row rank; we
shall see below what this entails. Then (2.16) implies

range { X'} = range {TM’I-I—l(hI)} C range {TM’I-I—l(hII)} . (2.17)
According to appendix B, this implies

hr=0 , N7 > Ny
by =ah;p . N =Ny (2.18)
hr reducible | Nj < N

Hence necessarily b, = ahy and M} = M so that T(h.).A has full row rank under conditions
(i) — (44). Since Ty, (hr) has full column rank, (2.16) implies 7 (h.)A = oT (h.)A’. Let’s
denote hy = [hCT 0-- -O]T and Ay = [AT 0-- -O]T, hq and Ay being of the same length as h/,

and A’ respectively. Then we can also write
T (ha)Ag = T (ahl) A (2.19)

where the LHS is known. From this we can identify aH’(z) with 2N/—1 = 2(N'=Nj)+1
grouped known symbols and we get aH/(z) = Hy(z) = H.(z). We conclude that H'(z) =
H(z).
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Chapter 3

CRAMER-RAO BOUNDS:
THEORETICAL ELEMENTS

In some estimation problems, not all the parameters can be identified, which
results in singularity of the Fisher Information Matriz (FIM). The Cramér-
Rao Bound, which is the inverse of the FIM, is then not defined. To reqularize
the estimation problem, one can impose constraints on the parameters and de-
rive the corresponding CRBs. The correspondence between local identifiability
and FIM regularity is studied here. Furthermore the number of FIM singular-
ities is shown to be equal to the number of independent constraints necessary
to have a well-defined constrained CRB and local identifiability. In general,
many sets of constraints can render the parameters identifiable, giving differ-
ent values for the CRB, that are not always relevant. When the constraints
can be chosen, we propose a constrained CRB, the pseudo-inverse of the FIM,
which gives, for a minimum number of constraints, the lowest bound on the
mean squared estimation error.
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3.1 Introduction

The Cramér-Rao Bound (CRB) is a powerful tool in estimation theory as it gives a lower
performance bound for parameter estimation problems. It is computed as the inverse of the
Fisher Information Matrix (FIM). When the parameters cannot be completely identified, the
FIM is singular, and the classical CRB results cannot be directly applied.

The main underlying motivation of this work is the study of the performance of blind
(deterministic and Gaussian) channel estimation problems where the parameters can indeed
be identified only up to a scale or phase factor. Blind estimation is done under certain
parameter constraints to regularize the problem. The performance of blind methods is not
correctly evaluated in general or remains somewhat vague. A constraint often used [56] is to
consider one coefficient of the channel as known (which is sufficient to render the estimation
problem regular): the resulting performance and its bound depend on the choice of this
coeflicient and appear arbitrary. One of the contributions of this work will be to give a less
arbitrary bound and the corresponding set of constraints. Another motivation comes the
comparison we will make later between blind and semi-blind methods through the CRBs.
To get a significant comparison, semi-blind and blind CRBs have to be computed under the
same constraints. For that purpose, this study, which is valid for the regular or the non
regular estimation problem, was then necessary.

The first part of this chapter focuses first on the FIMs and especially the correspondence,
for a Gaussian data distribution, between the FIM regularity and the parameter identifiability,
defined in terms of probability density function. For the blind channel estimation applications
considered here, FIM regularity and local identifiability are equivalent.

In a second step, we study the CRBs for estimation under parameter constraints. A
similar study was done in [57] for the case where the unconstrained problem is identifiable,
t.e. the FIM is regular. We adapt here the results to the case where the unconstrained
problem leads to nonidentifiability, i.e. the FIM is singular. We furthermore outline the
correspondence between the number and characteristics of FIM singularities and the number
and characteristics of independent constraints needed in order to regularize the estimation
problem and to be able to define the constrained CRB. In a last step, assuming that we can
choose the set of constraints, we propose a particular CRB for the case of an unidentifiable
unconstrained estimation problem: this CRB is the Moore-Penrose pseudo-inverse of the
FIM. It corresponds to a minimum number of particular constraints and gives the lowest
bound on the mean squared estimation error, i.e. tr(CRB).

3.2 CRBs for Real and Complex Parameters

We assume here the FIMs to be regular.
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3.2.1 CRBs for Real Parameters

Let 6 be a deterministic real parameter vector and f(Y|6) the probability density function
of the vector of observations Y. The FIM associated with 6 is:

B dln f(Y]0)\ [0l f(Y|9)\7T
Let 6 be an unbiased estimate of # and # = 6 — @ the estimation error. Hence E§ = 0

and Cj5 = E#T is the error covariance matrix. When Joe is nonsingular and under certain
regularity conditions [58], 7,;' is the Cramér-Rao Bound:

Cj5 > CRB =T . (3.2)
Equality is achieved if and only if:
- In f(Y|0
h—0= je—@l%(em . (3.3)

3.2.2 CRB for Complex Parameters, Complex CRB.

When 6 is a complex deterministic parameter, the previous results can be applied to 0 =
[Re(67) Im(OT)]T and Y = [Re(Y7) Im(YT)]T7 the associated real parameters and real
observations.

It is however possible to define the FIM for g w.r.t. complex FIM-like matrices. Let
Joy be defined as:

dln f(Y]0)\ [0In f(Y]|0)\T
Jow = Ey g ( 0 e (3.4)
where f(Y|0) = f(Yr|0) = f(YRr|0r). Derivation w.r.t. the complex vector § = a + jj3
d 1

is defined as: (see [58] for some properties of complex derivation).

.0
96 = 2\3a '35
Remark that we denote real and complex FIMs by [J and J respectively.

The parametrization in (Re(#), Im(#)) is equivalent to a parametrization in terms of

(0, %) via:
6 1 I I

where M is non-singular. Knowing that Jag = Jju s« and Jgg« = Jj., (true here as wa(O, 6*) =

wa(O*, 8)), equation (3.5) implies:

J Jog+
Toron = M fé’ 6’5 M (3'6)
J@@* J@@
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Jon0, can be determined from Jgg and Jgg+ as follows:

Re(Jggx)  Tm(Jggx)

=2
jeReR Im(Jgg*) —R@(J@@*)

Im(Jgg) R@(J@@) (3'7)

R@(J@@) —Im(Jgg) ] +2

We denote CRBr = je;leR. To quantify the estimation quality, the quantity of interest
will be tr(CRBR), i.e. the lower bound on the mean squared estimation error, which can be

1
expressed directly in terms of the quantities Jyg and Jggs. Since MM = 5], (3.6) implies:

-1
Joo  Joor
Tk =am| w0 M (3.8)
Jé’é’* J€€
Then:
t(CRBR) = to(J; ) =4 tr (Jog — Jog=J 35" Jie) T (3.9)

Theorem 2 When Jgg» = 0, Jg,6, is completely determined by Jgg. In that case, Jgg can
be considered as the complex FIM and the corresponding complex CRB is such that:

< B
Cy5=F98" > CRB = J,;' . (3.10)
If Jgox # 0, Jé,_é,1 is also a lower bound on Cjy;, but not as tight as the (real) CRB, C RBpg.

In that case (Jgg« = 0), a single complex singularity of the complex FIM .Jg corresponds

to two real singularities since if 5 is a singular vector, then so is j6;.

3.3 CRBs for a Gaussian Data Distribution

3.3.1 Real Parameters

The CRB for a Gaussian data distribution:

Y ~ N(my(0),Cyy(8)),  my(0) =Eyj (Y)

Cyy () = Eypp (Y —my (0) (¥ —my(8)? &1V

is [58]:

. omIN . fomINT 1 e . [aC
i = (G ) e (i) +aeien () o () ) o

where, to simplify, the mean and the covariance matrix are denoted my and Cyy.

The FIM can also be expressed in a closed form. Let’s define ¢ to be a vector including
the elements of the mean and covariance of the data as:

¢ = [ "y . (3.13)

vec{Cyy }
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Using the properties: tr{AB} = vec! {AT}vec{B} and vec{ABC} = (CT @ A)vec{B}, we
find:

877”&)7; -1 877”0)7; ’ 8V€CT{ny} _T _1 8VGCT{ny} T
FIM = ( 0 )CYY ( 0 ) +(T) (CYY®CYY) (T) (3.14)

= (%) (%) 315

From this expression, the following theorem, also given in [59], is deduced:

or
Cyy 0
0 Oy @Cyy

T
Theorem 3 The FIM for a Gaussian data distribution is regular if and only if (88%) has

Sfull row rank.

3.3.2 Complex Parameters

In a properly formulated blind channel estimation problem, Y and # are simultaneously real
or complex. If Y is complex, we shall assume it is circular, i.e. EYYT = 0. In that case, it

is possible to define a complex Gaussian conditional probability density function for Y:

1
aMm det Cyy (0)

f(Y18) = exp |~ (Y —my (6))" Cy3-(8) (Y — my (9)) (3.16)

where my () = Ey|g(Y) and Cyy(8) = Ey g (Y —my(0)) (Y — my (0)). Based on the

complex probability density function f(Y]8), the computation of the complex FIMs Jgy and
Jog= gives (straightforward extension of [58]):

(?mH 8mH oC' (?ny "
o v 1 Y 1 l L —_—
J@g(l,]) = (—80:K ) CYY (—80;‘ ) + tr {CYY ( ;K ) C v ( ; ) } ( )
3.17

T
o omiN | [ omi! 1 [0C 1 [ 0C
Joox (1,]) = (WK) Cyy (Wg) +tr {le/ (GTY;Y) Cyy (GTY;Y)} -
2 7 T J

Proceeding as in the real case, the FIM for 8 becomes:

a7 (o aoT 1"
_ 00 YY 0 00* H
a0 a0

Theorem 4 The FIM for a complex Gaussian data distribution is regular if and only if
oot

00~
Jor has full row rank.

90
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3.4 Correspondence between ldentifiability and FIM Regularity for
a Gaussian Data Distribution

3.4.1 Regular Estimation

Recall that for a Gaussian distribution, identifiability is based on the mean and covariance
of the data: @ is said identifiable if

my(@) = my(@’) and ny(@) = ny(@’) = 6= g . (3.19)

We have local identifiability at 6 if identifiability holds for €’ being restricted to some open
neighborhood of 8. In the Gaussian distribution case, there is a correspondence between FIM
regularity and local identifiability.

Theorem 5 If 6§ is not locally identifiable at 8, then the FIM is singular at 0 [59].

If a parameter can only be identified up a continuous ambiguity, for example a scale factor
for the deterministic model or a phase factor for the Gaussian complex model, it cannot be
locally identifiable and the corresponding FIM is singular. However, when the parameter is
identifiable up to a discrete ambiguity, like, in the Gaussian model, a sign factor in the real
case or the inability to determine if a zero is minimum or maximum phase, local identifiability
holds, and the FIM can be non—singular. Under weak conditions, local identifiability implies
FIM regularity [59]:

Theorem 6 Assume that the FIM is of constant rank in the neighborhood of 8. If 8 is locally
identifiable, then the FIM is reqular at 6.

And so we have the following theorem:

Theorem 7 Assume that the FIM is locally of constant rank at point 8, then 0 is locally
identifiable if and only if the FIM is regular at 6.

For the deterministic and Gaussian models, we shall see (Chapter 5) that this equivalence
holds without the local rank assumption for the FIMs.

3.4.2 Blind Estimation

In the deterministic and Gaussian input cases, local blind identifiability will be guaranteed if
and only if the FIM has as many singularities as the number of continuous blind ambiguities:

Number of Deterministic | Gaussian
Continuous Ambiguities Input Input
real 1 0
complex 2 1

Furthermore, there will be as many independent constraints needed as the number of singu-
larities to regularize the estimation problem.
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3.5 CRBs for Estimation with Constraints

In this section, we consider real parameters (hence 8 stands for 0 if 6 is complex). When
the estimation is (locally) unidentifiable, the FIM is singular and the classical CRB result
(3.2) cannot be applied; e.g. the channel cannot be estimated by blind estimation and the
CRB is then in fact trivially +oo.

In order to characterize the non-regular estimation performance, we define regularized
CRBs for which a certain a priori knowledge on the parameter 8, under the form of a certain
set of equality constraints, is assumed: this set of constraints should allow to adjust the
parameters that cannot be identified and then to regularize the estimation problem. The
introduction of a priori information on # requires knowledge of # in general, which is not
available in practice. However, the point here is to evaluate the estimation performance (e.g.
to compare different estimation algorithms), which implies that we compare g to the true
f which hence needs to be available. The sample estimation error covariance matrix will
furthermore be compared to the CRB which also depends on 8.

We determine a CRB for estimation under constraints for both cases of regular and
singular unconstrained estimation problems. These results are also used in [60], to compare
blind and semi-blind channel estimation performance under the same constraints.

CRBs for parametric estimation under constraints were derived in [57] in the case where
the unconstrained estimation problem is regular. A simpler derivation of these results was
presented in [61]. The main ingredient of this simpler derivation was used in [62] to give an
alternative expression for the CRB in the case where the unconstrained problem is unidenti-
fiable. We shall succinctly restate these results, which appeared already in [63] for the case
of linear constraints. In these references, and also here, we shall assume that the constraints
are sufficient to regularize the estimation problem, i.e. to render the CRB finite. So, consider
a k—fold constraint of the form:

Ks=0 (3.20)

where Kg : R® — R* is continuously differentiable and k& < n, n being the number of
parameters in the vector 6. A constrained parameter estimator g is called unbiased if it
satisfies the constraints (K; = 0) and if the parameter estimation bias is zero for all parameter
values that satisfy the constraints [61]. The constrained CRB depends on the constraints only
through the tangents to the constraint set at the true value of :

T
MQ:{ZeR”; ZT%%:O} : (3.21)

We note that dim(My) can be larger than n—=Fk; the results of [61] can be generalized to
the case in which the constraints are not independent. We can introduce a matrix Vy of full
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OKT\*
column rank such that Vy = (8—06) , meaning

IKI\\ "
range {Vp} = My = (range {8—00}) . (3.22)

The key step now [61] is that the unbiasedness leads to a particular correlation between the
parameter estimation error and the loglikelihood gradient restricted to Myg:

Lemma 1 Assume the estimator 8 and the true parameter 0 satisfy the constraints, then
unbiasedness implies

dln f(Y|0
pyyns1)

Using this lemma, the CRB derivation becomes an application of the following theorem.

@-0T =vI. (3.23)

Theorem 8 (Cauchy-Schwartz inequality for correlation matrices) Let X; and X,
be random vectors with correlation matrices R;; = EXZ'X]T7 1,7 = 1,2. Assume that Ry is
nonsingular. Then

E(Xy— Ry R X1)(Xy — R R X1)T = Ryg — Ry R} Ri2 > 0 (3.24)

with equality iff X = R21R1_11X1 in m.s.

d1n f(Y|6)

With Xy = 6 — 6 and X; = V[ 56

result.

, this leads immediately to the following main

Theorem 9 (Constrained CRB) Assume the constrained estimator 0 to be unbiased (é
and 6 satisfy the constraints Kg = 0), then

Cis > CRBo = Vy (V] JasVe) ™ VI, (3.25)
with equality iff I
6-0 = CrRBe L2 ];(0 9 i s, (3.26)

A necessary and sufficient condition for the boundedness of C' RB¢ is the nonsingularity of

VEToeVs.

3.5.1 Interpretations and Remarks

The key points to understand how constrained CRBs work are:

e the constrained CRB depends on the constraints only locally (as the CRB is based on
derivatives),
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6466 oKT
09

Tangent to the M,

\ Constraint Set ™ ~

Constraint ||f| =1

Figure 3.1: Example with constraint [|8|| = 1.

e locally, the constraint set can be linearized.

To make things clearer, we distinguish between the variable # and its true value 8°. Locally,
a point 8 belonging to the constraint set can be approximated as 8 = 6° + g, where 6 belongs
to My, i.e. :

0 =6°+ Vg€ . (3.27)

In figure 3.1, we show an example with constraint ||f|| = 1 (for a complex § with n = 1).

From (3.27) and applying the chain rule, we get

96T 96T\ "
Tee = (8—5) Too (8—5) = VL& To6 Voo . (3.28)

The estimation of £ is regular provided that Vé,TojMVgo is nonsingular. If we now get back to
the initial parameter 8 = 6° 4+ Vyo&, using the CRB for a transformation of parameters [58],
we find:

CRBgy = (ﬁ)Tj‘l (%) = Voo (VETosVer) ™ VE = CRBg . (3.29)
85 3 85 goJGg Ve go C'
We see that the constrained CRB can be interpreted in terms of regular estimation: VeTj%VQ
can be considered as the FIM for a minimal parameterization £ of #, and the results of
equivalence mentioned in section 3.4 between FIM and local identifiability could also be
applied here.
The C'RB¢ is independent of the choice of V4 and can in fact also be written as:

CRBc = Ag (AgTjeeAe)+ Aj (3.30)

where Ag is a n X ¢ matrix, ¢ > dim(My), such that My = range{A4g}. In particular,
T

oK
denoting 8—00 = K}, we can take Ag = P%, = Py, and obtain

, =
6

CRBc = Py, (Py,Jee Pv,)t Py, = (Py, Jea Py,) T . (3.31)
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There is a direct correspondence between the number of FIM singularities and the num-
ber of constraints necessary to have a finite constrained CRB, which is also the number of

constraints necessary to have local identifiability.

Theorem 10 For the constrained CRB to be defined, it is necessary and sufficient to fulfill

the following conditions.

o The number of independent constraints should be at least equal to n—r (r = rank(Js) ).

Ki

06

o At least n — r independent columns of should not be orthogonal to the null space

of Jse-
A constraint of the form Ky = 0 has only a local effect and can be locally linearized

Theorem 11 The constrained CRB (3.25) can also be interpreted as the CRB under the
linear constraint:

oKt oKt
T —2 =T =0 (3.32)
80 f=6° 80 f=6°
| | KT
which means that the components of 8 in range 20 are known.
6=g°

3.5.2 Minimal Constrained CRB
Constraint on the Global Parameter

We assume here that Jyg is singular. When range {Vy} = range {Jps} and since Vy has full
column rank, ngMV@ is regular (minimal number of independent constraints in this case)
and the constrained CRB is:

CRBc = J,) . (3.33)

This is a particular constrained CRB: we prove in appendix A that, among all sets of a mini-
mal number of independent constraints, C RBg = ‘_76,‘5 yields the lowest value for tr {C'RB¢}.
This means that if we want to introduce a priori information in the form of independent
constraints, enough to regularize the estimation problem, but not more (minimal number),

then all the constraints should concentrate on the unidentifiable part of the parameters
T

(range {88%} = null {Jps}) to minimize tr {C RB¢}.

Constraint on a Parameter Subset

Consider the case of the joint estimation of two parameter vectors #; and 63 of length ny
and ng (n1 + ng = n). We are interested in the estimation of #; with #; being nuisance
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parameters. The overall parameter vector is 6 = [6] OQT]T.

N/ NN
Joo = o B 3.34
[ Jo,0,  To0, (3.34)
We consider the case in which Jyg is singular but Js,, is regular. To regularize the estimation
problem, we consider the introduction of (independent) constraints on 6, only: Ky = 0,
Ko, : R™ — R,
T
okT | o .
a0 - 801 ( . )
Oy
g \ " )
(assumed full column rank). Let Vg, = 50 be a ny x (ny — k1) matrix of full column
1

rank. We can choose

V= (3.36)

V91 07117712 ]

0712 3711 n2,n2

The constrained CRB for 6 is:

H H
Vé’l '-791 01 V91 Vé’l '-791 b2

-1
vi 3.37
Jo,6, Vo, Jo,6, b ( )

CRBe = Vs (VE TosVe) " VI =V,

and the constrained CRB for 8, separately is:

VH = Vo, Vo 09n) V!
(3.38)
where we introduced the notation Jp, g, (9) for Js,0, — Jo,06, ‘76’;;2 Jo,06,- This notation will be
reused below. jﬁ:él (#) would be the unconstrained CRB for 6, if Jyy were regular. Note that
with Jg,0, being regular, Jp,¢, () has the same number of singularities as Jgg in the singular

CRBC,é’l = V@l (Vé;ll |:j€1€1 - j€1€2j€;é2j€291:| V@l)

case. Now assume that the constraints are such that range{Vy, } = range{Js,4,(0)}. Then
it can be proven that such constraints give the minimal constrained CRB for 6y,

CRBg, = Jgity,(0) (3.39)

over all sets of a minimal number of independent constraints on 6y only.

3.6 Conclusions

This chapter has emphasized on the study of FIMs and CRBs when the estimation problem
is not identifiable. There is equivalence between FIM regularity and local identifiability, and
there is as many singularities in the FIM as number of continuous ambiguities left in the
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estimation of the parameters. The expression for the CRB under constraints has been given
and a particular constrained CRB has been derived corresponding to the pseudo—inverse of
the FIM. All these results are next applied to the study of blind deterministic and Gaussian
models.
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A Minimal CRB

For a minimal number of independent constraints, we prove that CRBg = ‘_76,‘5 is the con-

strained CRB which gives the lowest value for tr {C'RB¢} and is attained when range {_@IC@ } =

04
null(Jg9).
KT

L
Let Ky = 0 be an arbitrary set of constraints on 8; Vg = (W) has full column rank

and we assume that VeTj%VQ is invertible. The corresponding constrained CRB is:

CRBe = Vs (VETasVe) ™ VI (3.40)

Introduce the eigendecomposition of Jyg = SlAlslT +550 SQT. In general, Vy has components
along 51 and Sy: Vy = 51Q1 + S2()2. The fact that the constraints Ky are independent and
minimal in number implies that (¢ is square and invertible. Then we obtain

CRBo = Vs (VISiA15 V) VT
= Vi (QTAQy) VT
= VeQy'AT'QTTVT
= (S1 4 9207 AT (S + S20.Q71) "

(3.41)

The difference between the C RB¢ and ‘_76,"6,' = SlAl_lslH may be indefinite in general, how-

ever:

tr (CRBo) = tr (755) + tr (QuQ7'AT'QT 7 QY ) (3.42)
The second term is non-negative, so tr (CRB¢) > tr (‘_76,‘5), with equality iff )2 = 0, ¢.e.

T
range {88%} = null(Jpg) or range {Vy} = range {Jypg}. In that case CRBc = ‘_76,"6}.
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Chapter 4

CRAMER-RAO BOUND FOR BLIND

CHANNEL ESTIMATION

We study here the FIMs and CRBs for blind deterministic and Gaussian chan-
nel estimation. We distinguish between the real and complex parameter case
since they lead to different FIMs, with different singularities, and require differ-
ent reqularization constraints. The blind deterministic CRB is computed under
the commonly used norm constraint which imposes the norm of the channel
to be constant. This constraint is sufficient to reqularize the problem when
the channel is real, but not when it is complex, in which case an additional
constraint is required to adjust the phase of the channel. This phase constraint
s chosen so that the resulting constrained CRB is the Moore—Penrose pseudo—
nverse of the FIM and corresponds to a minimal constrained CRB. When the
channel is real the Gaussian FIM is regular, when it is complex however, the
FIM is singular: a constraint on the phase is necessary as in the deterministic
case and the constrained CRB is again the pseudo—inverse of the FIM.
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4.1 Deterministic Model

The deterministic model considers the joint estimation of the unknown input symbols A and
the channel coefficients h. The parameter vector is 8 = [AT hT]T.

4.1.1 FIMs

Circular Complex Input Constellation As Y is circular, we can work with the complex prob-
ability density function of the Gaussian random variable Y ~ N (7 (h) A, ¢2I) (see Chapter 3,
section 3.3.2). We denote by X = T(h)A the signal part of Y.

As Jggx = 0, the complex FIM Jgg is equivalent to the real one Jy,4, and is equal to:

Ty — 1(aXH)(aXH)H::i_[THM)]{TUU A} @)

T o2\ 06 96~ o | AH
xH " ox"
because T T (h) and o AL

Real Symbol Constellation The FIM is the same asin (4.1). This equality of the expressions
will allow us to treat the complex and real cases simultaneously.

4.1.2 Singularities of the FIMs

Under the blind deterministic identifiability conditions [DetB], (h, A) are identifiable up to
a scale factor. This results in one (complex) singularity of the complex FIM (see theorem
below). We examine here the singularities in that case. The singularities of the FIM can be
considered at the level of 6 (joint estimation of A and h) or at the level of h (estimation of
h with A considered as nuisance parameter).

! [T(h) A" [T(h) A]admits as null vector: §; = [—AT hT]T.

a?
Indeed, [T (h) A][-AT hT]T = —T(h)A+ Ah = 0, by exploiting (1.9). When 7 (h) and A
have full column rank, the nullity of Jgy is the dimension of the intersection of the column

spaces of 7 (h) and A, which is one.

Singularities of Jyy. Jgg =

2

1
Singularities of .J;;,(9) —QAHP%(h)A. If Jyn(0) were regular, its inverse would be the
O-'U

CRB for h. However, Jy;(6) is singular. Indeed, assume that A’ is a singular vector of
Jnn(0): AHP%(h)Ah’ = 0. Then, as A has full column rank, this means that AR’ €
range{7 (h)}: there exists an A’ such that AR = T(h')A = T(h)A’. This last relation
is satisfied for (h’, A’) = (h, A). Hence, J;;,(#) has one singularity with h as its singular
vector (AHP%(h)Ah = AHP%(h)T(h)A = 0) and the singularity of J; () is due to the same
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mechanism that leads to the singularity of the global FIM Jgg.
In the complex case, Jg,4,, Will have 2 singularities spanned by:

Re(h)
Im(h)

_ —Im(h)
hs = Re(h)

. = hp and hg, =

Re(jh)
m(ih) ] . (4.2)

The first null vector can be interpreted as corresponding to the ambiguity in the norm of the
channel and the second one to the ambiguity in the phase factor.

4.1.3 Equivalence between FIM Regularity and Local Identifiability

The link between blind identifiability and FIM singularities in the specific case of the blind
deterministic model was already studied in [19, 51]:

Theorem 12 For M > 2(N —1), or M > N for 2 subchannels (m = 2), a channel is blindly
wdentifiable up to a scale factor if and only if the complex FIM Jyy has exactly one singularity.

Proof: see [51].

In general, there is a correspondence between local identifiability and FIM regularity.

Theorem 13 A channel is locally blindly identifiable up to a scale factor if and only if the
complex FIM Jyg has exactly one singularity.

T
Proof: Assume that the FIM has a singular vector ' = {h’T A’T} different from [hT —AT] T
T(h)A +T(W)A=0. (4.3)
Then for € > 0 arbitrarily small:

my (84 €0') —my () = T(h+eh)[A+eA]—T(h)A
[TV + T(W) 4]+ O() (1.4)
O(€%)

which implies that # is not locally blindly identifiable.
Now assume that 6 is not locally blindly identifiable. Then one can find Ah and AA,
where [|AL|| and ||AA| are arbitrarily small, and not simultaneously colinear with i and A

resp. verifying T(h)A = T (h 4+ Ah)(A+ AA). Then:

T(h+ AR)(A+ AR) =T (R)A = AAR+T(h)AA+ O(||AR||[|AA])

. (4.5)
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]T is a singular vector of the FIM, non colinear to [hT —AT]T.
O

Using a similar derivation, we can also show the equivalence between the regularity of
VfJ@gV@ and local identifiability under the constraint Ky (with definitions of section 3.5):

This implies that [AhT AAT

Theorem 14 The estimation problem under constraint Kq is locally identifiable if and only
if the regqularized FIM VfJ@gVe s reqular.

The same theorem will hold for the Gaussian model in section 4.2 also but will not be restated
there.

4.1.4 Regularized Blind CRB

To define a regularized blind CRB, we assume some a priori knowledge. Different forms of
a priori knowledge are possible. A technique often used consists in assuming a coefficient of
the channel to be known. This is however not robust as performance depends heavily on the
choice of this known coefficient (which can be arbitrarily small). The proposed regularized
CRB, the Moore—Penrose pseudo—inverse of the FIM, appears less arbitrary and is directly
related to the blind scale factor ambiguity.

Blind methods commonly consider the quadratic constraint: A h = 1 (see [62]). This
constraint does not render the problem identifiable: it leaves a sign ambiguity when A is real
and a continuous phase ambiguity when A is complex. In the former case, the computation
of mean squared error (MSE) assumes the right sign (the right sign could be taken as the
sign giving the smallest error). In the complex case however, which phase factor should be
chosen? A frequent choice consists in imposing one element of h to be real and positive; again
the resulting CRB depends on the choice of this element.

The blind regularized CRB proposed here is computed under the following constraints:

(1) A quadratic constraint:
hh = hot po (4.6)

(equivalent to the usual constraint A h = 1) which allows one to adjust the norm of the

channel.

(2) In the complex case, an additional constraint is necessary to adjust the phase factor:

heThp = heThy =0 . (4.7)

In both real and complex cases, these constraints leave a sign ambiguity which does not
lead to FIM singularity. For MSE evaluation, the ambiguity can be resolved by requiring
ReTh > 0.
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Result 1 Under constraint (4.6) (and (4.7) for the complex case) the CRB for h is the
Moore-Penrose pseudo-inverse of Jpp,(6):

_I_
CRBep = 13,8) = % (A" PH,A) (4.8)

Proof: Following the notations of section 3.5, the constraint is:

hThR _ hOThO
Knp=|"" TR =0 4.9
hr hOS2ThR ( )
leading to
8I(:%‘—‘}_\“, o o
T = [2h% hS,]. (4.10)
As hp and hg, are the singular vectors of J ., (8) (which corresponds to the previously de-
oKt
fined complex Jp,(6)), the orthogonal complement of range ath } equals range {Jh .1, (0) }.
R
According to section 3.5.2, the CRB under constraint (4.9) is:
CRBcy, = Iy, (6) (4.11)
and the corresponding complex contrained CRB can be proven to be:
CRB¢ = Jif () (4.12)
a

The choice of the first constraint is not only motivated by its common use. As mentioned
in section 3.5.2, this constraint (possibly combined with the linear constraint on the phase)
leads to the minimal constrained CRB.

In Figure 4.1, we illustrate the importance of the choice for a constraint by comparing the
proposed CRB tr{J}\, (§)} to a constrained CRB for which one of the channel coefficients (of
varying position) is assumed known. Two channels are tested: a randomly chosen channel
and a channel with slowly decreasing coefficients:

0.9477 —1.1156 1.1748  1.6455
H, = (4.13)
—0.5257 —1.5923 0.4851 —0.4542
| 10000 0.5000 —0.1500 0.0695 (4.14)
27| 1.5000 —0.9500  0.3050 0.0550 '

One observes that when the channel coeflicient which is assumed known is small, the corre-
sponding C'RB¢ can get quite large (arbitrarily large as the coefficient magnitude shrinks).
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tr{C'RB} for different constraints tr{ C'RB} for different constraints
T T T T T ’ T T T T T

One Coefficient of the Channel Known

One Coefficient of the Channel Known

Pseudo-Inverse of the FIM

Pseudo-Inverse of the FIM

I I I I I I I I I I I I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Channel Coefficient Known Channel Coefficient Known

Figure 4.1: Comparison between CRBs with different a priori knowledge. The coefficients
designate the coefficients of the vector h for the random channel H; (left) and the decreasing
channel impulse response Hj (right).

Some Equivalent Constraints Another choice for the constraint, which leads to the same

hr

oK, | . - :
range is the following linear constraint:

dhr
hoHp = poHpo (4.15)

This constraint, which leaves no sign ambiguity, corresponds to forcing the components of i
in the nullspace of .Jy, to their true values.

Often, h is estimated under a unit norm constraint ||2|] = 1, and the scale factor is
adjusted in different ways. The following adjustments lead to the same minimal CRB.

e The norm of the channel is adjusted so that ||| =

|| and the phase using the phase

constraint (4.7). We denote the resulting estimate hyo.

e The scale factor is adjusted in the least-square sense [64, 65]: min, ||h° — ah||?%. To be
more precise, in this case the trace of the corresponding constrained CRB is tr {C'RB¢ }
of equation (4.8).

Proof: The solution of the least-squares problem is ;LLS &ah = P;h?. Then, A/ﬁe =
Pyho —h* = =Pth; C s o = EPShOROH P,
eleg) = {eren e e i
- {EP,%O ) Bl B}
- {EP}}O(AhNo)(AhNo)HPhLO} = tr{P,jOCMNOMNOP}#}

v

tr {P}#CRBQ;LP}#} = tr {CRBQh}
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Il =1~ h

Figure 4.2: Deterministic case: asymptotically equivalent constraints.

O
Another way to adjust the scale factor consists of adjusting a by the following linear
constraint A° HszIN = hoHoh = heH pe, leading to the following channel estimate:
A iLhOH
hrin = =h?
hoHh

When the estimation of h is consistent, then, asymptotically, the CRB for this constrained
channel estimate is the same CRB¢, of (4.8)

(4.16)

In figure 4.2, we show the solutions ﬁNo, iLLS, iLL[N for a real channel of length ¥ = 1
and with 2 subchannels.

4.1.5 Reducible Channel Case

In this case, H(z) = Hy(2)H.(z) where H.(z) is a monic (first coefficient equal to 1) poly-
nomial in z7'. In the time domain, this becomes h = T.h; where T, = 7?\7TI(hC) & I,,. This
decomposition leads us to introduce Ay = T (h¢)A, the input signal filtered by H.(z) and we
can write the noise-free received signal in the following ways

X=T(h)A = T(h)T(h)A=T(h;) A= A; hy
Ah=AT.hy = Arhy

where Ay = AT.. Since T(h) = T(hs)T(h:), we have Pr;y = Pr;). In the reducible

case, the quantities that are blindly identifiable are hy, Aj, up to one scalar indeterminacy

(4.17)

(assuming certain identifiability conditions for the burst length M and the excitation modes
in A in [DetSB]).

To get h =T, h; from hy, there are N.—1 indeterminacies (the coefficients of h.). To get
A from Ar = T (h;)A, there are also N.—1 indeterminacies (modes of A that are potentially
coinciding with zeros of H.(z); alternatively, one needs N.—1 ”initial conditions” to get
A from Aj, given h. (which was already needed to get h from hj)). So there are 2N.—1
indeterminacies all in all and hence Jgs has 2N.—1 singularities. Now,

1 1

v v
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has N, singularities. Indeed, an alternative decomposition for h is h = T h, where T} is
block Toeplitz with [h? OIX(NC—I)m]T as first column. Now consider A" = T h/c where h/c
is arbitrary (not monic). Then Ah" = T(h') A = T(hy)T(h.)A. Hence Jy,(0)h = 0 and
null {J5(0)} = range{T7}. So we get:

Result 2 The CRB for estimating a reducible channel h under the constraint TIOHh =
TeH pe s

CRBe, = J3f, (6) = o2 (A" PE, AT (4.19)

Note that this set of constraints 1mphes in particular h°Hh = h°Hh°. Note also that
under these constraints, an estimate h will not necessarily be of the form h= T[h with h
equal to h. or not: % is not necessarily reducible. Nevertheless, the constraints mentioned
are sufficient to make h identifiable. Indeed, identifiability of & with deterministic symbols
implies being able to determine h from the noise—free signal. If we do that with for instance
the subspace fitting method, then the signal subspace will be range {7 (h$)}. Subspace fitting

(
will force range {T(?L)} C range {7 (h9)} which implies H(z) = H$(z) He(2). The application
of the constraints now leads to ﬁc(z) = H¢(z) and hence h=h.

If we want the estimated channel to be reducible, then we have to apply the explicit
constraint h = T hy, which can be reformulated as the following implicit constraint: Ky, =

P%‘oh =0 (#; = h). It turns out that in this case of deterministic input symbols, we can
H

61 PJ-

= Pj, and we
* c
87

can take Vg, = Pro. Hence, the constrained CRB for h satisfying the constraints P%-oh =0
(compare to (3.31)) and h*"h = hoH h? is

remain working in the complex domain, which we shall do. So we get

CRBe,, = o) (Pr. A" P2 APr,)* = (Pr, Jun(6) Pr,)* (4.20)

which in general will be smaller than J;f, (§) since more a priori information is introduced (in
the form of m(N.—1)+1 constraints, compared to the minimal number of N, constraints to
ensure identifiability).

4.2 Gaussian Model

In the Gaussian model, the estimation of % is not decoupled from the estimation of o2 and
the estimation parameter is 8 = [hT O'E]T. Unlike in the deterministic model, as Jgg« # 0,
we cannot treat the complex and real constellations together.
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4.2.1 FIMs

Circular Complex Symbol Constellation When the input constellation is complex, the FIM
computation is based on the complex probability density function of Y:

Y ~ N(my,Cyy), with Cyy =o2T(R)TH(h)+02I, my =0. (4.21)

Let hp = [Re(hT) Im(hT)]T and Op = [h] 02]7, the real parameter vector. As Jpg+ is non
zero, we cannot consider the complex CRB anymore: the real FIM N determined via
(3.7) thanks to the quantities:

H
- —1 (9Cyy \ -1 [ 0Cyy
Joo (i, j) = tr {Cﬁ (G—Oj) Cyy (8—0]*) } (4.22)
- —1 (0Cyy \ =1 [ OCyy
Jogx (1,7) = tr {CY)I, (—802»* ) Cyy ( 067 ) } (4.23)
—8;; Y _ 27y T (—glf)
where: i i (4.24)
ICyy 1
=-1I.
do? 2

Real Symbol Constellation When the input constellation is real, the FIM is:

1 ., [8C _, (0Cyy \ T
j%<m>:5tr{cy; (%) ey (260) } (125)
ICyy :

do2
4.2.2 FIM singularities

Circular Complex Symbol Constellation Under the Gaussian blind identifiability conditions
[GausB], a complex channel h is identifiable up to a phase factor. This corresponds to one
singularity of the global FIM T5.85"

Thnhn  Thpo?
s o = Rt 4.27
j [ jcr%hR jcr%cr% ] ( )

as well as of:
-1

Tnhw(OR) = Tnphn — Thpot (To202) " To2py - (4.28)
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jh;lhR (6r) would be the unconstrained CRB for & if its estimation were regular. The null
space of Jp, np (0R) is spanned by

hs = [~Im(hT) Re(hT)]" = hs, . (4.29)

Real Symbol Constellation The real FIM 7y is regular under the identifiability conditions,
as well as Ju1(0).
4.2.3 Equivalence between FIM Regularity and Local Identifiability

Theorem 15 The (complex or real) FIM is singular if and only if there exist a vector h'

(complex or real) and a scalar o2 such that:

2T () TH (Y + 2T (WYTH (h)+ 02 T=0. (4.30)

Proof:
_ AT
Complex case: The complex FIM is singular if there exists a 5 = {Re(h’T) Im(#'7) o2'|
such that:
ovec {Cyy ) g ovec {Cyy ) g ovec {Cyy ) g }f/
= I vy g vy T vy h*|=0 (4.32)
oh* oh do? 2!
O-'U
o0y " oC |
YY ' YY 1% L 2/ _
& Xj:(ah;) h]+zj:(ah;)h]+2zfvl 0. (4.33)
0Cyy [ Oh ohyN ., , ‘
We have: ol =o,T(h)T oh; and zj:’f oh; R = T(h'), then:
1 5
(4.31) & a2T(W)TH(h) + 2T (W) T (R + 503 I1=0. (4.34)
This is equivalent to equation (4.30) (with %03/ — 2.
g
T
Real case: The real FIM matrix is singular if there exists a 6/ = {h’T o? } , such that:
Toeb' =0 (4.35)

= [ (%)H (%)H ]H[ " ] —0 (4.36)
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8CYY H / 21! o
zj:(ahj) Wt ol T=0. (4.37)
We have oh, =0, T(h)T oh: +o.T oh: T (h). Then:
(4.35) < G2T(WYTH) + 2T T () +02'T=0. (4.38)
U

From (4.30), we can deduce the following theorem.

Theorem 16 The real/complex channel is locally blindly identifiable if and only if the FIM
is reqular/1-singular.

Note that locally a complex channel is identifiable up to a continuous phase factor but a real
channel is locally identifiable strictly speaking.

Proof: Assume that the FIM has a null vector # = [h'T 21T which in the complex channel
case is non colinear to hg. Then theorem 15 says that 6 satisfy (4.30). Now, with ¢ > 0
arbitrarily small,

Cyy (0+e6')—Cyy (8) = (agT(h+eh')TH(h+eh') ( 24 ¢02 ) ) (02T (h)TH (h)+021)
= aZT(W)TH (b )+ T (eh ) TH (h)+e of T+0(e 2) ( ?)

(4.39)

This means that the covariance matrix is locally constant in the direction of ¢’ around 8.

Similarly to the proof of theorem 13, one can show that if the channel is identifiable, the FIM
is regular or 1-singular.

O

In appendix A, we study the conditions on the characteristics of the channel to have

local identifiability. The results are contained in the theorem below. The channel is assumed

reducible: H(z) = Hy(2)H.(z).

Theorem 17 The Gaussian FIM for a real/complex multichannel is regular/1-singular and
the channel is locally blindly identifiable if:

(1) M > max(M;+1,N.— 1),

(2) the channel has no conjugate reciprocal zeros, i.e. there exists no z, € R/C such that
H(z) = H(1/27) =

Proof: appendix A.
O
The no conjugate reciprocal zeros condition was also given in [38], but for the real channel

case only, without mentioning that the complex case is singular in any case. Remark that,
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in particular, the Gaussian FIM is regular if there are arbitrary zeros (not in conjugate
reciprocal pairs) due to the fact that a minimum phase channel is identifiable (example of
local identifiability).

The monochannel case is treated in appendix A: the results mentioned above for a mul-

2

- cannot be identified, which

tichannel are valid here also except that the noise variance o
results in an additional singularity of the FIM when the channel has no conjugate reciprocal

zeros (when the channel has conjugate reciprocal zeros, there is no additional singularity).

4.2.4 Regularized Blind CRBs

Complex Symbol Constellation As in the deterministic case, we need to define a regularized
CRB, by introducing some a priori knowledge on the parameters, allowing us to determine
the ambiguous phase factor. We assume that the channel is (blindly) identifiable: we do not
treat the monochannel or conjugate reciprocal zeros.

The estimation of hpr is considered under the constraint:

heThr =0 (4.40)
which leads to the constrained CRB for hp:
CRBchy = J;7 ) (0) - (4.41)

This linear constraint does not allow to estimate the phase factor completely and a sign
ambiguity is left but not reflected in the FIM singularities as it is a discrete ambiguity. For
MSE computation purposes, the sign ambiguity can be resolved by requiring h%ThR > 0,
which together with (4.40) can be stated as h°7h > 0.

Real Symbol Constellation No regularization is necessary and the CRB is [7;;'(6). To
compare the MSE for an estimator to this CRB, the knowledge of the right sign and right
phase of the zeros (e.g. minimum phase in the reducible case) should be used.

4.3 Conclusions

In this chapter, we have focused on the FIMs and CRBs for blind deterministic and Gaussian
estimation. The singularities of the FIM and local identifiability conditions have been studied.
For deterministic estimation, a norm constraint on the channel have been imposed. A phase
constraint, often ignored, has also been chosen for the deterministic and Gaussian case, such
that the resulting CRBs are the pseudo—inverse of the FIMs for the channel and correspond
to the minimum CRBs for a minimum number of independent constraints.
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A Local Identifiability Conditions for the Gaussian Model

2/
v

In this appendix, we study the solutions (h’, o7 ) of the equation:

TMYTHRY + T)TH(h) + 02 T=0. (4.42)

We first treat the monochannel case for a complex or real channel, which allows us to then
treat the multichannel case.

A.1 Complex Monochannel

We assume that M > N —1; in this case, equation (4.42) can be written in the z—domain as:
o2H(z)H" (2) + o?H'(2)HT(z) + 02 = 0 (4.43)

where HT(2) = H¥ (1/2%). Let’s denote p(z) = H(Z)H/T(Z), then:

!

(4.43) = p(2) +p(2) + 02 =0. (4.44)

Solutions of the form [+ « 0]7: 02’ = 0.

d; dp
p(z) = Z ;2" and pi(z) = oz (4.45)
i=—dp i=—dj,
p(z) -I-pT(Z) =0= d; =d, (and oy =—-0a7;). (4.46)

As H(2) and HT(2) are respectively causal and anticausal, deg(H(z)) = deg(H'(2)) = N -1 =
d,. In the following, we assume that H(z) is monic. Equation (4.44) is also equivalent to:

p(z) = —p'(2) . (4.47)

From this equation, we can deduce that if z, is a zero of p(z), so is 1/z%, which implies that
p(z) is of the form:

Ni—1
p(z) =« H (1-— ziz_l)(l — 2z) [(1 - 2_1)(1 + z)]N2 . (4.48)

where N1+ Ny = N —1. We will differentiate the zeros that are equal to 1 or —1: {z }i=1.n7,-1
are different from 1 or —1. z equals 1 or —1.

The number of singularities depends on the characteristics of the channel H(z) and namely
the presence of conjugate reciprocal zeros.
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(1) H(z) has no conjugate reciprocal zeros:

The N — 1 zeros of H(z) are among the zeros of p(z), this implies that p(z) has no zeros

equal to 1 or —1:

N-=-2 N-=-2
=a [J -z J] (1 - 22) = Hz)H(2) (4.49)
=0 =0
furthermore, without loss of generality, we can assume that:
N-=-2
Hz) = JT (1 - 227" . (4.50)
=0
In that case:
N-1
H'(z) = a [T (1 - 272) = alit(z) (4.51)
=0
(4.44) = H'(2) = jH(z) . (4.52)

The FIM is 1-singular. Its null space is spanned by [~Im7 (h) ReT(h)]T

(2) H(z) has 1 pair of conjugate reciprocal zeros: (z,,1/2}), z, # 1, z, # —1.

Again, without loss of generality, we can assume that:

N-3
H(z) = (1 - 2027 (1 = 222)2 7 2" T (= 227 (4.53)
=1
Hl(Z)

There are 2 degrees of freedom in H'(z) coming from the fact that H'(z) can admit 1 and
—1 as zeros or not. Two possible choices for H'(z) are then:

(5) = 70 = 2neaz ) = 2Rz M)
{H(z) (- =) = 1)z, Hy (2) (%5

The FIM has 2 singularities coming from the pair of conjugate reciprocal zeros, and 1
singularity corresponding to jH(z).

(3) H(z) has one zero equal to 1 or —1.
We assume that this zero is equal 1. H'(z) can be chosen as:

N-3

H(z) = (1 - 271 H (1—z2"Y, H(2) = (14+ 27 H(2) . (4.55)

=0

H1 (Z)
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(4) H(z) has several conjugate reciprocal zeros:

Then, to each pair of conjugate reciprocal zeros different from 1 and —1, correspond 2
singularities, and to each zero equal to 1 or —1 corresponds 1 singularity.

Solutions of the form [+ * 02']7: 62’ #£0

(1) H(z) admits conjugate reciprocal zeros z,:

plzo)+pt(z) 402 =0= 02" =0. (4.56)

So there is no singular vector of the desired form in this case.

(2) H(z) has no conjugate reciprocal zeros:

N-2
H(z) is of the form H(z) = H (1 — z;271). One can verify that
=0
N-2
H'(z) = [T+ 227" (4.57)
=0
is such that:
N-2
OPH () (2) + oW (2)1(2) = 02251 T] (1 = 1)) . (1.59)
1=0
N-2
And so H'(z) and 02" = —g22N-1 H (1 —||2*) verify (4.43); and it can also be proved
=0

that this is the only singular vector due to the unidentifiability of ¢2. It can also be

verified that H'(z) is not a solution of (4.43) if H(z) has conjugate reciprocal zeros.

A.2 Real Monochannel

Solutions of the from [+ x 0]7: 2" = 0.

Similar reasonings apply here.

(1) H(z) has no pair of conjugate reciprocal zeros:

p(2) 4+ pT(2) = 0 can only be satisfied by p(z) = 0. So the FIM is regular.

(2) H(z) has 1 pair conjugate reciprocal zeros: (z,,1/z%), z, # 1, z, # —1.

N-3
H(z) = (1 — 2,27 ) (1 — z,2) 27 L2t H (1—zz7H(1 = %2) . (4.59)

Hl(Z)
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There is now only 1 H'(z) possible (the first solution in (4.54) is not valid here):
H(z) = (1 - 211 - 2)27 2, Hy (2) . (4.60)
The FIM has 1 singularity.

(3) H(z) has one zero equal to 1 or —1.

We assume that this zero is 1. H'(z) can be chosen as:

N-=2
H(z) = (1 -2~ H (1— 2271, H(z)=(1+2"HH(2). (4.61)

Hi (2)

(4) H(z) has several conjugate reciprocal zeros:

Then, to each pair of conjugate reciprocal zeros different from 1 and —1, and to each
zero equal to 1 or —1 corresponds 1 singularity.

Solutions of the form [x * ¢2']7: 62" £ 0

The same singularity as in the complex case, due to the inidentifiability of o2, appears (except
again if the channel H(z) has conjugate reciprocal zeros).

A.3 Multichannel

Assume now that H(z) is a true multichannel, possibly reducible:

H(z) = H;(z)H.(2) . (4.62)
As for the monochannel case, we search first the solutions of the form: [Re(h/) Im” (k) 0] T
Then A’ verifies:

TH)THMRY+T(RYTHE () =0. (4.63)

The burst length is assumed to be M > M + 1 which can be lower than N — 1 (so the
transposition to the z-domain is not as convenient as in the monochannel case). The previous
equation implies that 7 (h’) should have for effect to reduce the previous quantity to at least
the same rank as 7 (h). So:

range{7T (h")} C range{T (h)} (4.64)
which implies, using theorem 1:

H'(z) = Hy(2)H.(2) (4.65)
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H'(z) = Hj(2)H.(2) / / _
{ H(z) = Hj(Z)Hc(Z) = T(h)T (he) TR T (W) +T (k) T () T (he) TH (A1) = 0 .

(4.66)
As T (hy) is full column-rank,

(4.66) = T (he) TH (W) + T(R)TH(h.) = 0. (4.67)
As T (h.) is of length at least N.—1 according to the identifiability conditions, (4.67) implies:
H.(z)H'(2) + H'l(z)H,(2) = 0 (4.68)

which leads to the monochannel case treated previously.

2'T

As for the solutions of the form {* O'U} ) 03/ # 0, there are none in this case (02 is

identifiable in any case).



72

Cramér—Rao Bound for Blind Channel Estimation Chapter 4




Chapter b

PERFORMANCE COMPARISON
BETWEEN SEMI-BLIND, BLIND
AND TS CHANNEL ESTIMATION

We study the performance of semi-blind FIR multichannel estimation com-
pared to blind and training sequence estimation through the analysis of the
associated Cramér—Rao Bounds (CRBs). Deterministic and Gaussian models
are considered, but some words will be said about finite alphabet methods. The
superiority of semi—blind methods over blind and training sequence methods
is demonstrated. Semi-blind estimation allows a significant gain of perfor-
mance and for a given desired energy allows us to reduce the length of the
training sequence. It is also more robust, making possible the estimation of
channels that cannot be estimated by training sequence techniques, because the
training sequence is too short, or by blind techniques because the channel is
ill-conditioned. Furthermore, we show the influence of the number of known
symbols on semi—blind performance, and mention some optimization results on
the characteristics of the training sequence. Numerical evaluations illustrate

all these aspects.
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5.1 Introduction

Apart from a performance study, an important issue indirectly treated in this chapter are
deterministic semi—blind identifiability conditions for the non-trivial case of arbitrarily dis-
tributed known symbols. This case can be solved by examining the Fisher Information Matrix
(FIM) regularity as FIM regularity implies local identifiability. If we call N. — 1 the number
of zeros of the multichannel, then under certain conditions, 2N, — 1 known symbols, with
arbitrary positions, are necessary and sufficient to allow identifiability. The case of known
symbols all equal to 0 is also treated.

In the performance study of semi-blind estimation, the following points are treated:

e Theinfluence of the number of known symbols on the semi—blind performance is studied.
Specifically, we see how the knowledge of only a few symbols allows one to improve the

estimation performance significantly.

e The case of monochannels and reducible channels (multichannels with zeros) is studied.
We underscore the ability of Gaussian blind methods to estimate (locally) the zeros of
a channel in general. In the deterministic case, monochannels can only be estimated by
the training symbols, while the blind part brings no information. For reducible channels,
blind information for the estimation of the zeros is asymptotically negligible. For the
Gaussian methods, blind information is useful in the estimation of monochannels and

of the zeros of reducible channels.

e We compare the CRBs for pure training sequence and semi-blind modes and illustrate
some of the most interesting properties of semi-blind estimation. The addition of the
blind information to the training sequence information results in a significant gain w.r.t.
the training sequence mode; also, for a desired performance level, semi-blind allows one
to reduce the training sequence length. It is also more robust, allowing the estimation
of channels that cannot be estimated by training sequence techniques, if the training

sequence is too short.

e We compare the blind and semi—blind modes. Blind methods have to be applied cer-
tain constraints: we use the results on CRBs under contraints to compare blind and
semi-blind estimation modes under the same constraints. The addition of the training
sequence information allows a significant gain of performance w.r.t. blind estimation.

This is particularly true for ill-conditioned channels.
e We furthermore compare the deterministic and Gaussian CRBs.

e Some optimization issues are also mentioned: the value of the known symbols, their
distribution in the burst and the position of a training sequence in the burst.
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5.2 Deterministic Model

In the semi-blind case, the estimation parameter is § = [h” AE]T, where Ay designate the
unknown symbols in the burst. As in the blind case, we work with the complex FIM Jyy for
circular complex input constellation and treat the real and complex input symbols together.

5.2.1 Semi-Blind FIMs

1 foxHN foxNT 1 [ ()
Jog = o (aT) ( X ) - [ i [ [ A (5.1)
. X! (T (WA + Tu(W) AN ax" 4
since A5 = AT, =T (h) and Ih* = A"

When the FIM is regular, the semi-blind CRB for complex and real symbols is:

CRBsp = o[ A" PE Al (5.2)

5.2.2 FIM Regularity

We treat here the general case of a reducible channel H(z) = Hy(2)H.(2). Sufficient condi-
tions for the semi—blind FIM to be regular are given. The conditions hold for grouped known
symbols, as well as arbitrarily dispersed known symbols. They will be very useful as FIM
regularity implies local identifiability: for arbitrarily dispersed known symbols, identifiability
appears indeed difficult to show directly.

In fact the following general theorem holds for the semi-blind deterministic model.

Theorem 18 The channel h is locally identifiable if and only if the semi—blind FIM is regular.

Proof: Assume that the FIM has 1 singularity ¢/ = [A’}, /7T
To(h) Ay + AW =0 < To(h)Ay+ T(K)A=0. (5.3)
For ¢ > 0 arbitrarily small:

my (0 + ) —my (8) = T(h+ch')[A+eAl] - T(h)A

= TeWAL - T A+OE@) = o) oY

where A7} has the same length as A, is equal to A}, at the position of the unknown symbols,
and has zero entries at the positions of the known symbols: T (h)A}, = T (h)Af,. This
implies that (A, k) is not locally blindly identifiable.
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Now assume that (Ap, h) is not locally blindly identifiable, then one can find Ak and

AAf;, where AAJ; has zero entries at the positions of the known symbols and ||Ah|| and
IAAL|| are arbitrarily small verifying 7 (h)A = T (h + Ah)(A + AAy), then:

T(h+ AR (A+ AAy) = T(MA = To(h)AAy + AAL + O(ARAAy)

o (5.5)

]T is a null vector of the FIM.

This implies that [ART AApT
Furthermore, we make the following conjecture:

Conjecture 1 In the deterministic model, FIM regularity implies global identifiability.

In the case of grouped known symbols it can be proved that local identifiability implies global

identifiability, so the conjecture can be proved in this case'.

In appendix A, we examine the singularities of the FIM: the conditions for the FIM to
be regular and then for the channel to be locally identifiable are studied. The results can be
summarized as follows.

Non-Zero Known Symbols

Theorem 19 The FIM is reqular and the channel H(z) is identifiable with probability 1 if
(i) Burst length M > max(Ny+2M;, N.—Ny+1).

(i) Number of excitation modes > N + M.

(iii) Number of known symbols > 2N, — 1, which is also a necessary condition.

As far as the position of the known symbols in the burst is concerned:

o [f the known symbols are grouped in a single sequence, with a number of independent
input symbol modes > N., the channel is identifiable.

o [f the known symbols are arbitrarily distributed, the channel is identifiable with proba-
bility 1.

The notion of probability 1 here assumes a probability distribution for h with a support
that has positive measure (no deterministic relations between the coefficients of h exist). For
grouped known symbols, the conditions are the same as the global identifiability conditions

[DetSB].

'Pinding h and Ay from T (h)A corresponds to solving a set of polynomial equations: there may exist some
theoretical results from polynomial algebra which would allow to prove the conjecture for arbitrarily dispersed
symbols. We did not pursue this however.
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Zero Known Symbols

When the known symbols are all equal to 0, the channel can at best be identified up to a
scale factor. Indeed, T (h)A = T(h')A’, with b/ = ah, A’ = A/a and Ag = A} = 0. We can

prove the following:

Theorem 20 When the known symbols are all equal to 0, the channel is semi-blindly locally
identifiable up to a scale factor if and only if the FIM is 1-singular.

Strictly speaking we can prove only local identifiability, but then apply Conjecture 1.

The position of the known symbols cannot be totally arbitrary. If the known symbols are
grouped for example, it can be shown that the FIM has N, singularities. In Appendix B, we
prove the following theorem:

Theorem 21 The FIM is 1-singular and the channel H(z) is identifiable with probability 1
up to a scale factor if

(i) Burst length M > Ny +2M;.
(i) Number of excitation modes > N + M.
(iii) Number of known symbols > 2N, — 2, which is also a necessary condition.

(iv) The known symbols are “sufficiently” dispersed: there are at least N. — 1 symbols that
do not belong to a group of N. or more known symbols.

If the known symbols are only partially equal to 0, Theorem 19 can be applied: if there
are more than N, — 1 known symbols that are zero, then there should have at least N, — 1

zero known symbols that are not in a group of N, or more zero known symbols.

5.2.3 CRB for Training Sequence Based Channel Estimation

To compute the CRB for the TS case, we can use the semi-blind deterministic CRB for the
case in which all the input symbols are known:

CRBrs = o?[A7A] 7" (5.6)

The CRB depends on the value of the symbols present in the training sequence. It is mini-
mized for a given training sequence energy when A7 A is a multiple of identity [66]. The CRB
2

v
o2

is then equal to I. This indicates a condition on the choice of a deterministic training

sequence for good channel estimation. When on the other hand the training sequence is
drawn from a sequence of uncorrelated symbols and its length increases, it is interesting to

1
note that — A" A tends to 021 (law of large numbers), which again leads to the minimal

value of the CRB.
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5.2.4 Semi-Blind CRB: Monochannel and Reducible Channel Cases
Monochannel

Assume the My known symbols are grouped in a single sequence, and, for simplicity reasons,
are located at the beginning of the burst. It can be shown that:

0 0
Pt = 5.7
Tor(h) [ 0 Ineros ] (5.7)
so that the FIM is: .

FIMsp = ;A%’SATS = FIMryg. (5.8)

Arg is such that Yrg = Trs(h)Ax = Trs(h)Ars = Arsh where Yrg includes the first
My —N+1 first observations containing only known symbols.

Result 3 In the case of grouped known symbols, the blind information is useless in the esti-
mation of a monochannel, which is done by the training sequence only. The semi-blind CRB
EX

CRBSB = U?} (.AQHS.ATs)_l = CRBTS . (5.9)

When the known symbols are grouped in several training sequences, we observed that blind
information plays some transient effect, but the CRB tends to a constant when the number
of unknown symbols increases.

Reducible Channel

The CRB (5.2) does not exploit the structure of the channel, i.e. the fact that the true
channel has zeros or not. Here we assume that the channel is reducible and that we have
detected the number of zeros. We compute the CRB for the irreducible and the reducible
part of the channel. The estimation parameter is: 8 = [Ag h? BCT]T, h. is deduced from h.
by removing the 15" (known) coefficient. We have:

axH
on;

axH
DAz

ox? o u
ohx  T°

= TH (h) = A7 (5.10)
where Ay is such that 7 (h;) [T (ho)A] = Arhp; T(he)A = Ache. and A, = T(h))A., A. is

deduced from A, by removing its 1* column. After some calculations, the FIMs for h; and
h. are:

(CRB);,, = 0. (A]I;IP%U(h)'AI) — o, (A]I;IP%U(h)A/c) (A/CHP'%U(h)A/C)_l (AICHP%U(h)AI)
(5.11)
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(CRB);Y =0 (AP PE A = o2 (A1 PE AL ) (ATTPE ) A)) B (A PE AL
(5.12)

It can be explicitly shown that for grouped known symbols, the CRB for h; decreases as in
MLU and M—K, as My and My increase: blind information is useful in the estimation of Aj.
In general, My > My, so that the blind information dominates in the estimation of L. As
the number of unknown symbols grows to infinity, the CRB for h. becomes constant, so we

have the following result.

Result 4 In the case of grouped known symbols, the blind information is asymptotically (in
the number of unknown symbols) useless in the estimation of the zeros of the channel, which

is asymptotically done by the training sequence only.

For dispersed known symbols, the same behavior was observed. A similar study (as for
the estimation of the zeros) can be done for the estimation of the ambiguous scale factor: the
blind information plays asymptotically no role either in the estimation of this factor.

Remark For a number of grouped known symbols at the beginning of the burst of at least
2N.—1, it can be verified that Pr, sy = Prs(s,;), where T/;(hr) is T (hy) truncated of the first
Mj. = Mg —N.+1 columns. The semi-blind CRB for & is then:

CRBsp = oy | A" Pr Al (5.13)

The CRB does not depend on the values of the zeros (if any) but only on their number.

5.2.5 Semi-blind CRB with constraints

The regularized blind CRB in (4.8) corresponds to the estimation of the channel but with
constraints (4.6), (4.7). The regular semi-blind CRB (5.2) does not use these constraints.
This is why a direct comparison between blind and semi-blind modes through these CRBs
is not possible. To allow a comparison, we use a semi-blind CRB computed under the blind

constraints:

_I_
CRBspc = o> (P,iAH P%(h)APhL) . (5.14)

5.2.6 Comparisons and Numerical Evaluations

We compare here the different estimation modes through their CRBs. These comparisons are
illustrated by curves showing the trace of the CRBs w.r.t. the number of known (or unknown)
symbols in the input burst for a complex input constellation, QPSK, and a real one, BPSK.
In the case of a BPSK, the number of channels gets doubled as in (1.2). The known input
symbols are randomly chosen and grouped at the beginning of the burst. The SNR, defined
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2 2
ok
as LZH (average SNR per subchannel), is 10dB; M = 100. The different channels tested
mo
were chosen randomly, our purpose being not to study specific channel cases but rather to
see the general mechanism of semi-blind estimation. Four different types of channels were
tested: an irreducible channel H .y, an ill-conditioned channel with a nearly common zero
H;;, a monochannel H,,,,, and a reducible channel with irreducible part H; and reducible

part H.. The different channels are given in Appendix D.

Semi-Blind

Figure 5.2 shows the semi—blind CRB w.r.t. the number of known symbols using a BPSK, for
the well-conditioned channel H,.; (left) and the ill-conditioned channel H;; (right). When
very few symbols are known, performance is bad: this is due to the difficulty of estimating the
scale factor of the channel or the nearly common zero with few known symbols. However, we
observe that after the introduction of (very) few more known symbols, performance increases
dramatically, especially in the case of the ill-conditioned channel. After this threshold of
improvement, the estimation of the channel being already sufficiently good, it is necessary
to introduce a large number of known symbols to get a significant further improvement.
These numerical evaluations indicate that semi—blind techniques could improve performance
drastically w.r.t. blind techniques with only few known symbols.

Figure 5.11 (left) shows the CRBs using a QPSK for the monochannel H,,,,,. We plot
the CRB for a fixed number of 10 known symbols grouped at the beginning of the burst
w.r.t. the number of unknown symbols in the burst: it can be seen that the blind part brings
strictly no information to the estimation of the monochannel. We present also the case of
a reducible channel H(z) = Hy(z)H.(z) in Figure 5.11 (right). The difference in the slope

My
between the CRBs for h; and h, is visible as M—B — 0 and it can be seen that the CRB for
U
h. becomes constant.

Semi-Blind vs Training Sequence (TS)

The known symbols used in the TS mode are the same (same symbols and same number)
as the symbols known in the semi-blind mode, as indicated in Figure 5.4. A comparison
between the FIMs gives:

AfsArs < ATPL A (5.15)

Hence, the CRB for the T'S mode is greater than that for the semi-blind mode.

Figure 5.5 is one of the most important figures of this study. We can see that semi-blind
estimation represents an important gain w.r.t. the TS mode, especially when few symbols
are known. In Figure 5.5 (left), we have a gain of factor 20 for 10 known symbols and of

3 for 25 symbols. Besides, for the same performance, fewer known symbols for semi-blind
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estimation are needed compared to TS based estimation. To get the performance of semi-
blind estimation with 10 or 25 known symbols, one needs respectively 50 and 70 TS symbols.
The CRB when all the M+N—1 input symbols are known is given as a reference.

Semi-Blind vs Blind

In this comparison, the input bursts are the same (same symbols and same length) but part
of the symbols is known in the semi-blind mode, as indicated in Figure 5.7. We use the
constrained CRBs (4.8) for blind estimation and (5.14) for semi-blind estimation. Figure 5.8
shows the CRBs (Mg = 0 corresponds to the blind case) for H .y and H ;. The introduction
of very few known symbols is sufficient to improve performance significantly w.r.t. blind
estimation, again especially in the case of the ill-conditioned channel.

5.3 Gaussian Input Model

5.3.1 Semi-Blind FIMs

Circular Complex Symbol Constellation The FIM computation is based on the complex
density probability function of Y:

Y ~ N(my,Cyy) with  Cyy = o2Tu(h)TH (h) + 021, my = T (h)Ax . (5.16)

Let hr = [Rel (k) ImT (h)]T and Or = [hE 02]7, the real parameter vector. Jpp« being non
zero, we cannot consider the complex CRB anymore: the real CRB ‘75353 is determined via
(3.7) thanks to the quantities:

H
. _ . _ aC" _ oC
Jog(i,7) = (.A%CY%/.AK) (4,7)+ tr CY)l/ (87}?/) CY)l, (GT};Y) (5.17)
i J

, [ocC
Y( aeY;Y)} (5.18)

aC oh
T = ()
where: 80;}/

do2 2

.. _ oC'
Joox(1,7) = tr {Cy)l/( GOY;Y)C

7

(5.19)

We have introduced Ay from T (h)Ax = Axh.
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Real Symbol Constellation When the input constellation is real, the FIM is:

o _ o1 e, L, [0Cyy \T
Tali-§) = (ARCyyAx) (1.0) + 5 {CY; (8—0‘”) Cyy ( 80?‘”) } (5.20)
¢ J
h h
0Cvy _ 2T ()T (8 ) + 02Ty ( 0 ) T (R)
Cyy :
do?

In (5.17) and (5.20), (AL Cyy-Ak) (4,5) = 0 when ¢ and/or j equal mN+1 (corresponding
to o2).
Here also, we have the equivalence between local semi-blind identifiability and FIM reg-

ularity:
Theorem 22 The channel h is locally identifiable if and only if the semi—blind FIM is regular.

Proof: 1t can be shown that the semi-blind FIM is singular if and only if there exits a vector

{h’T UQI}T such that:

Arch' = 0 and o275 (R)TE () + To () TH (h) + 62 T=0. (5.22)

The equivalence now follows using the same method as for theorem 18.
O
As derived in [67], for 1 non—zero known symbol not located at the edges of the burst, we
have (global) identifiability and then also FIM regularity:

5.3.2 Semi-Blind CRBs: Reducible Channel

2]T‘

v

We now treat the case of a reducible channel: § = [h? Rl o

Circular Complex Symbol Constellation Let ig = [Re(h?) Im(hT) Re(hl) Im(h1)]T and

0r = [hE 02]T be the parameter vector. The quantities of interest are:

H
. - _ - .. _ oC _ aC
Jé’@(lvj) = ([AIK ACK]HCY)l/ [AIK ACK]) (27«7) +tr {CY)l/ (GT);Y) CY)1/ (W?/) }
i J

(5.23)
. _1 [0C 4 [ oC
t J
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ICyy _ 4 e o [ Ohr
oy =0, T(MT"(he)T Jhr
) oC oh.
with: 8?22/ = UZT(h)TH (3761) TH(hI) (5.25)
ICyy 11
do2 27

Ar, and A., are such that:

{ T (k) [T (he) AR = Archi (5.26)

7}((}%)14]&" = -Acth .

Ac,. is A, truncated of its first column.

Real Symbol Constellation When the input constellation is real, the FIM is:

. - _ - o1 L (0CYY N .y (0Cyy\ T
Too(i,7) = ([Ane Ac]” Oy [Are Acr]) () + st O (—)G ; (—)
6’6’( ) ([ I 1] YY[ I 1])( ) 5 YY 90; YY 80],

(5.27)
8CYY_ 2 T T(%) 2 (%) T
g = TWTI T (G )+ a2 (Gt ) T 7" 1)
ICyy T(%) T 2 (%C) T 5.28
g =TT (G5 ) T o2 TnT () TN (5.28)
oCyy 7
do2

The blind and training sequence information are both useful to the estimation of both Ay

_ 1
and h.. The CRBs for h; and h. evolve as I when My — oo and as when My — oo.

K
Some numerical evaluations of the corresponding CRBs will be given in the next section.
Result 5 Unlike in the deterministic model, in the Gaussian model, blind information is

useful in the estimation of the zeros of the channel.

Semi-Blind CRBs for a monochannel can also be derived in the same way.

5.4 Comparison between Deterministic and Gaussian Models

5.4.1 Comparison between CRBs

This comparison is not obvious in general. If we consider the simple case of an instantaneous
channel, N = 1: for the real and complex constellation cases, it can be verified that the
difference between the Gaussian and the deterministic FIM is indefinite and that the sign of
the difference between the trace of the FIMs depends on the value of the parameters. The
results here are then different from those obtained in DOA [42] for which blind deterministic
CRBs are below blind Gaussian CRBs.
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5.4.2 High SNR

2
We assume that —g — 0. For simplicity reasons, we will consider the irreducible channel case

only. For the Gaussian model, at high SNR and large My, the terms J,2,2, Jj,2 and Jppe are
M, M,

of order —f; the term Jyy, is of order —;] So, at high SNR, the influence of the estimation
o o

o2 on the estimation of h becomes negligible, and the term Jgg+ can be neglected. The FIM
for h is then the complex FIM Jp,(6) (as in the deterministic case). In Appendix C, we

prove the following result:

Result 6 Asymptotically in the number of unknown symbols and in SNR, the deterministic

and Gaussian semi-blind FIMs are equal.

5.4.3 Comparisons and Numerical Evaluations

The parameter values are the same as in the deterministic case. In our numerical evaluations,
the estimation of o2 had nearly no influence on the estimation of #. The semi-blind curve
(Figure 5.3) shows again a significant improvement when more and more symbols in the burst
are known, especially for few known symbols. The CRB for the monochannel in (5.45) for 10
known symbols with a variable number of unknown symbols is plotted in Figure 5.11: it can
be seen that the blind part brings information to the estimation of the monochannel. The
case of a reducible channel (see (5.46)) is shown in Figure 5.12 for QPSK: we remark the
same asymptotic behavior of the CRBs for Ay and h, w.r.t. the number of unknown symbols.

In Figure 5.6 semi-blind appears again better than the training sequence mode. Direct
comparison between blind and semi-blind estimation is possible when the input constellation
is real because the FIM is invertible: see Figure 5.6. We do not show here the complex case.

In Figure 5.3, both deterministic and Gaussian semi-blind curves can be compared. In
the various examples we evaluated we observed that the Gaussian model allows better per-

formance than the deterministic model.

5.5 Methods Exploiting the Finite Alphabet of the Input Symbols

In [67], a classification of blind methods in terms of the a priori knowledge of the input
symbols exploited was proposed. The methods exploiting the Finite Alphabet (FA) nature of
the input symbols perform joint symbol sequence detection and channel estimation and seem
particularly interesting from a performance point of view. What is the CRB for the channel in
this case? Assume the symbol detections to have a low probability of error. Then all symbols
present in the problem act as training sequence for the channel estimation (with possibly
some erroneous symbols). Hence the CRB for (error-free) training-sequence based channel
estimation (with the training sequence being all input symbols) constitutes a lower bound
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for the channel estimation error covariance matrix. The tightness of this bound depends on
the probability of error. Nevertheless the error covariance matrix can be expected to be very
small.

The disadvantage of the FA algorithms is that their cost function is highly multimodal:
they require a very good initialization which could be provided by semi-blind deterministic

or Gaussian algorithms [67].

5.6 Optimization Issues

Values of the Known Symbols (Deterministically) white input symbol sequences, in the
sense that AY A = Mo?1, optimizes the performance of training sequence based estimation.
Optimization of the semi-blind CRB w.r.t. the known symbols depends on the channel; we
expect however that such white sequences, even if they do not strictly optimize the semi—blind
performance, would be among the best choices.

Distribution of the Known Symbols over the Burst Should the known symbols be grouped
or separated? The answer seems again to depend on the channel. In this section we will call
“minimum-phase” multichannel, a multichannel for which all the subchannels are minimum-—
phase, the energy is then concentrated in the first coefficients of the multichannel; a “maxi-
mum” phase multichannel will have maximum—phase subchannels.

We did some test to compare the deterministic CRBs for a minimum and maximum
phase channel H,,;, and H,,,, and a randomly chosen channel H,,,4. In the tables below,
we show the trace of the CRBs for the three channels for a fixed sequence of 10 known
symbols, randomly chosen from a QPSK constellation (top table) or equal to 0 (buttom
table), grouped in the middle of the burst or uniformly dispersed all over the burst. The
burst length is M = 100. The CRBs are averaged over 1000 realizations of the unknown
symbols in the case of QPSK.

‘ Known Symbols H H,,, ‘ H,,, ‘ H,na ‘

grouped 0.36 0.79 0.22
separated 1.33 2.38 0.24

Known Symbols H H,.., ‘ H,,. ‘ H, g ‘

grouped 3.23 9.99 0.78
separated 0.53 1.36 0.16

When the known symbols are chosen randomly, for the minimum and maximum-phase
channels, performances are better when the known symbols are grouped than uniformly
separated in the burst. For the random channel, both choices seem equivalent. When the
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known symbols are all equal to 0, it is however better to have them dispersed all over the

burst in all cases.

Position of the Training Sequence in the Burst Again, the answer depends on the char-
acteristics of the channel. What could be done is study the CRBs w.r.t. the position of the
training sequence for a stochastic channel model.

Besides performance, other considerations such as algorithm complexity have to be taken
into account. When the known symbols are grouped, a semi-blind criterion can be formed as
the linear combination of a training sequence criterion and a blind criterion. This combination
looses some information, but offers the advantage to keep the structural properties of the
blind estimation problem which is the most costly part and allows to build fast semi—blind

algorithms.

5.7 Conclusions

We have proposed a study on Cramér—Rao Bounds for blind and semi-blind FIR multichannel
estimation. Semi-blind methods appear more robust and powerful than blind and training
sequence methods, especially for a small number of known symbols. In the following part of
the thesis, we concentrate on semi-blind methods based on DML and GML.
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A Semi-Blind ldentifiability Conditions for Non—Zero Arbitrarily
Dispersed Known Symbols

We examine the conditions for the semi-blind FIM to be regular in the case where the known
symbols are all non-zero. The channel is assumed reducible H(z) = H;(z)H.(2).
The semi-blind global FIM is [Tir(h) A7 [T (h) A]. [Tor(h) Al is tall under condition
(¢) of theorem 19, so the FIM is singular if and only if one can find 2" and Aj; verifying:
+ T T / / /
| Toh) A AT 0T =0 o Tu(h)Ap = AR = T(H)A. (5.29)
This is also equivalent to:
T(h)A"=T(h)A, with SgA"' = AL =0 (5.30)
which is the blind problem except that the constraint A% = 0 is imposed:
(5.30) & T (h1)T (he)A" = T(R')A, with A} =0 (5.31)

Equivalent Monochannel Problem
Result 7 (5.31) is equivalent to finding A" and h!. such that:

T (h)A" =T (h))A, with A} =0 (5.32)
which corresponds to a blind monochannel problem.

Assume that H'(z) = H}(2)H.(z), H}(2) is of length N} and H/(z) of length N/, N} +
N!.—1=N. M; and M/ are defined as:

{ M;=min {M : Tas(hs) has full column rank} (5.33)

M’ = min {M : Tar(h}) has full column rank}

Let X' be a matrix of length (M7+1) x (M7+N7), with M7 = max(M;, M}) and N} =
max(Ny, N7): X is filled with the element of X = T(h)A’ = T(h)A. Ais a (M7 4 NJ) x
(M —M7) matrix.

z(M-1) - z(M]) a(M-1) e a(M7)
X = : S A= : R
(M4U{-1) - 2(0) a(M=M{=Np) -+ a(=Np+D)
M1 ()
A = : - :
o (M—M"-Nj) - d(=Nj+1)

(5.34)
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X = TM'I'—I—I(hI)TM’I’-l—NI(hc)A/ = TM'I’H(h/I)TMHN}(h/c)A (5.35)
If M > 2MY% + N} and A has at least L/ + N} modes that are not zeros of H/(z), then
Tarynt—1 (7o) A has full row rank and:

(5.35) > range { Ty () } C range { Taryp (h1) § (5.36)

Using theorem 1, we have then H'(z) = aH (z). We conclude that H'(z) = H(2)H.(2)
(N! = N.), M} = M} = Mj, so the previous condition M > 2M7 + N} is equivalent to
condition (7). The condition that A should have at least L7+ N; = L7+ N; modes that are
not zeros of H.(z) is verified if there are at least Ly + Ny + N. — 1 = Ly + N — 1 which is
condition (7¢).

(5.31) & T(h)A = T(K)A, with Aj =0 (5.37)

as T (hr) is full column rank.
Next, we study the singularities of the matrix: [T (h.) A.], with T (h.)A = A.h..

FIM regularity and necessary number of known symbols

Result 8 The FIM has exactly 2N, — 1 singularities

Result 9 For the FIM to be regular, it is necessary to have 2N, — 1 known symbols. This
result is valid whatever the distribution of the known symbols over the burst.

[T (he) Alisa M x (M + 2N, — 1) matrix, which has at least 2N, — 1 singularities: the
M x M submatrix Tan—1(h.), where Ton_1(h.) is the version of 7 (h.) with the 2N.—1 first
columns removed, is a triangular matrix with non-zero elements on the diagonal and hence
is invertible. The matrix has then exactly 2N, — 1 singularities, and 2N, — 1 known symbols

are necessary for the matrix to be regular and also for identifiability. The condition (¢) states
that M > Mg—N+1> 2N,—1N+1.

Result 10 Let [AST - hST]T be a singular vector of the blind FIM. The semi-blind FIM is
reqular if and only if As is not equal to 0 at the position of the known symbols:

SgAs =4, #0 (5.38)
This happens with probability one.

The explicit description of these singular vectors has been omitted due to lack of space.
The vector [AT — th]T is a singular vector of the blind FIM. If Tk (h.)Ax = 0, the FIM
is singular. This happens if Ax = 0, which case is not considered here, or if h. is a singular
vector of Ag, with Tx(h.)Ax = Axh.. This latter case will occur with probability 0 in
general. However, if one assumes the Ax to have at least N, modes then Ag is of full rank

and Ax h. cannot be equal to 0.
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Grouped Known Symbols Assume that the known symbols are grouped and, for simplicity
reasons, are situated at the beginning of the burst. Considering the N, first equations of
(5.31), with A% = 0 we get:

0="Trs(h)Ax = Arsh (5.39)

which is impossible if the known symbols have at least 2/V. — 1 modes In this case, the FIM

is always regular.

B Semi-Blind ldentifiability Conditions for All-Zero Arbitrarily Dis-
persed Known Symbols

We examine the conditions for the semi-blind FIM to be 1-singular in the case where the
known symbols are all equal to 0. We examine only the monochannel case which is sufficient
to solve the general multichannel case. The conditions on burst length and number of modes
are then the same as for the case treated in Appendix A.

We assume that we have 2N, — 2 zero known symbols in the burst. If among these known
symbols, N. are grouped, then the matrix [77(h.) A] will have one row equal to zero. Its
rank is at most M — 1: the FIM is at least 2-singular and there is no identifiability.

If there are no N grouped known symbols, there will be no row equal to zero and there
is at least 1 singularity. Now, we eliminate one of the columns of Ti7(h.) to get T (he):
this columns is chosen in order not to have N consecutive columns removed from 7 (h.).
Then, with probability 1, the column space of A does not belong to Ty (h.), according to
Appendix A and the FIM is exactly 1-singular.

C Asymptotical Equivalence of DML and GML

2

.o
Up to 1% order in —2:
o2

a

_ ol -2
oI = Py + S0 () [T ()T () T () (5.40)
Then for the Gaussian FIM, we have:

T = (A}"{PTU( VAR [is 1+ . {TU (SS)PTU To (aaz?)} . (5.41)

For My — oo, by the law of large numbers, the deterministic semi—blind FIM is equivalent

to its expected value w.r.t. Ay:

. 1 1 dh dh
IOl = 5B (A" PrpA) (0= {TH (ahi) P’ (8h ) EAU(AAH)} |
(5.42)
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AI( A%
0 o2l

o a1 oh oh o2 oh oh
v ? 7 t J

v

Now since 4, (AAT) =

] , we get:

(A%P%U(h)./t]{) [7/7 ]]
(5.43)

D Channels used in the Simulations

e Irreducible Channel:

—0.4326-0.02805 0.1253-0.1584;7 —1.14654-0.33667
—1.6656—1.54205 0.2877+0.09117  1.19094-0.91904

1.1892—1.17155 0.3273+2.0161;
—0.0376—1.2130j 0.1746+2.70425 |
(5.44)

Hwell =

e Monochannel:

Hpono = | 0.3899-0.9499; 0.08804-0.78125 —0.635540.5690;

—0.559640.8217; 0.4437—0.2656]'}
(5.45)

e Reducible Channel:

—0.8051+40.59135  0.2193+0.38035
0.5287-0.64365 —0.9219-1.00915

—0.1461-0.37455 —0.0766-+1.75135 |’
0.2481-0.47095  1.738240.75325

Hr= H.=1]1 —-0.1567+1.05655 | .

(5.46)

e Nearly reducible channel:

H;;(z) =

1.190927(0.3 — 2)(—0.8 — 2)(0.21 — z) ] (5.47)

1.1892273(0.32 — 2)(—0.53 — 2)(1.02 — 2)
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E Numerical Evaluations of the CRBs

__Known Symbols
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Constant Length
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Unknown Symbols
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Figure 5.1: Input burst for the semi-blind mode.
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Figure 5.2: CRBs for deterministic semi—blind channel estimation w.r.t. the number of known
symbols for H ,,.;; and H .
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Figure 5.3: CRBs for Gaussian semi-blind channel estimation w.r.t. the number of known
symbols for H ,,.;; and H .
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___SameKnown Symbols ___
of Variable Length

Constant Length
=M+N-1
<— Unknown Symbols
of Variable Length
Semi-Blind Training Sequence

Figure 5.4: Input burst for the comparison between semi-blind and TS mode.
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Figure 5.5: Comparison between deterministic semi-blind and TS channel estimation for
H e and Hyy.

Gaussian CRBs for BPSK and H .y Gaussian CRBs for BPSK and H j

10 T T T T T T T T T 10 T T T T T T T T T

Training Sequence

10

10 q

Semi-Blind

al symbols known

107 i i i i i i i i i i 107 i i i i i i i i i i
Number of known symbols Number of known symbols

Figure 5.6: Comparison between Gaussian semi-blind and TS channel estimation for H ..y

and H .
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Figure 5.7: Input burst for the comparison between semi-blind and blind model.
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Figure 5.8: Comparison between deterministic blind and semi-blind channel estimation for
H i and H .
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Figure 5.9: Comparison between Gaussian blind and semi-blind channel estimation for H .y
and H ;.



94 Performance Comparison between Semi—Blind, Blind and TS Channel Estimation Chapter 5

__Known Symbols
of Constant Length

Variable Length

_ Unknown Symbols
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Figure 5.10: Input burst for the semi-blind mode.
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Figure 5.11: CRBs for deterministic and Gaussian semi-blind monochannel estimation (left)
and deterministic CRBs for a reducible channel w.r.t. the number of unknown symbols. 10

symbols are known.
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Figure 5.12: CRBs for Gaussian semi-blind channel estimation for a reducible channel w.r.t.

the number of unknown symbols. 10 symbols are known.
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Chapter 6

ASY

MPTOTIC PERFORMANCE OF
DETERMINISTIC ML AND
GAUSSIAN ML

Blind and semi-blind Deterministic ML (DML) and Gaussian ML (GML) are
formulated. Their performance are derived for an asymptotic number of un-
known symbols for blind estimation as well as an asymptotic number of known
symbols for semi-blind estimation. The case of high SNR is also mentioned.
The known symbols are considered as grouped. We express the performance
w.r.t. the CRB: we prove that DML performance is above the deterministic
CRB whereas GML performance is below the Gaussian CRB (computed based
on the Gaussian distribution for the input symbols); both DML and GML at-
tain the CRB at high SNR. We analyze how the information brought by the
training sequence combines with the blind information and how both informa-
tion are partioned between the different parameters to estimate: in particular,
we study the role of blind and training sequence information in the estima-
tion of the zeros of a reducible channel. Furthermore, the superiority of the
Gaussian model is demonstrated.
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6.1 ML Methods

6.1.1 Deterministic ML (DML)

In the deterministic model, Y ~ N (T (h)A, ¢2I), then the DML criterion for § = [Af, AT]T
is:

. _ 2
max f(Y[) < min||Y = T(0)A|*. (6.1)

f(Y'|h) is the complex probability density function when A is complex and the real one when
Ais real. T(h)A = Tk (h)Ax + To(h) Ay, and optimizing w.r.t. the unknown symbols, we

get:
Ay = (TH ()T ()™ TH (B (Y = Tie(h)A) (6.2)

which is the output of the non-causal MMSE zero-forcing decision feedback equalizer with
feedback of the known symbols. Substituting (6.2) in (6.1) we get the following minimization
criterion for h:

min (Y - Tic (W) Ar)™ P ) (Y = Tie(h) Ag) (6.3)

where P%U(h) =1—-"Tu(h) (T[f[(h)TU(h))_l TH (h). We denote F(6) the cost function, with

1
¢ = h. For commodity reasons, when A is complex, it is taken equal to — times the
o

v

2
expression in (6.1), when A is real it is — times this expression.
v

6.1.2 Gaussian ML (GML)
In the Gaussian model, Y ~ N (T (h)Ax,Cyy), Cyy = U%’TU(h)TJI(h) + 02l and the GML

criterion is max f(Y]|h), or:
h

Yo

min {In det Cyy+ (Y =Tic () Ax) " Cf (Y =Tie () Ax) } - (6.4)

2
h,o2

We denote F(6) the cost function, with § = [hT 0'2]T. When A is complex, it is taken equal

v
to the expression in (6.4), when A is real, it is 2 times this expression.

6.2 Asymptotic Performance
The asymptotic semi—blind conditions will be:

(i) Mg — oo and My — oo

vVMy

ii — 0.
() 37
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In the blind case, the condition is only M = My — oo. The second condition indicates that
the training sequence part of the semi-blind criterion is not negligible w.r.t. the blind part
as will be seen later.

The fact of considering a large number of known symbols may appear artificial as this
number will be in general small. In chapters 8 and 9, we compare the simulated performance
of ML semi-blind criteria to the theoretical performance we obtain by considering a large
number of known symbols: the theoretical performance are found to make sense.

We will assume that the known symbols are located at the beginning of the burst.

6.2.1 Regular Estimation Case

We assume that the parameters are identifiable. Let 8 be the complex parameter vector,
Or = [Re(6T) Im(67)]7, the real associated parameter vector (HR = 0 for real parameters)
#° and 6% the true values, 6 and HR the ML estimates and Af = § — 0°, Abr = HR 0%, the

errors. We denote:

T
F'(0) = 8;:05:) and F'(0) = % (8;:0(:)) . (6.5)

We assume that the parameter estimation is consistent and that the first and second
derivative of F(#) exist and are continuous. We can then proceed to the following Taylor
development of F'(#) around 6°.

F'(8) = 0= F'(6°) + F"(6°) Abr + o(AR) . (6.6)

We call FZ (6°) the limit value of F"(6°):

FrLe) = lim T, (6.7)
MU — 00
MI\" — 00

Asymptotically F"(6°) = FZ (8°) +o(F"(6°)), then, neglecting the first order terms, equation

(6.6) becomes:

_ lipo 1 (po Afbg = - [fég(eo)]_lf/(eo)
=7 FF=T)A0R = {GMRMR = L@ R F )] FLeT

(6.8)

Let us define the matrices:

H
W) _ p(9FO) (9£0) 4 g0 __p 0 (97 N
oror ( o0 ) \ 08 - Jowon = Lo opn ) - (09
These two matrices are Fisher-like information matrices. Indeed, if F(8) = In f(Y,6), the
distribution of the observations, ‘76’(;)6’3 = ‘76’(;)6’3 and is equal to the Fisher Information Matrix.
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In our specific cases, asymptotically, by the law of large numbers, the different quantities
involved will be asymptotically equivalent to their expected value, and particularly:

FULO°) = T2 e (6.10)

(To simplify, we give up the subscript # = 6° in the following). Furthermore, F'(6°) will be

a centered Gaussian random variable, so:

Abr ~ N (0,Caspa6y) (6.11)
—1 ~1 )
Cabraog = (je(;)eR) (je(;)eR) (je(;)eR) :
When 6 is complex, Jg,4, can be expressed w.r.t. the complex IMs:
H H
(1) _ o (OF(0)\( 9F(6) @ _ . 0 (0F()
Sy = E( 9o g0 and  J = E&P* g0 . (6.12)

‘76’(;)6’3 and ‘76’(;)6’3 can be expressed in terms of Jgg and Jgg=:

Re(J) —Im ()

1y _
Ty =2
(1)) Re(Jy)

and the same for ‘76’(;)6’3'

In the DML case, we will have Jé(,;l = Je(jl = 0, so when the input symbols are complex,
we can work directly with complex quantities, and (6.13) can be compactly written as:

Caoas = (JQ(Z))_1 i (Je(j))_1 . (6.14)

It is also possible to compute the performance at high SNR conditions. In this case,
equation (6.14) is still valid, but the random part of the received signal coming from the

noise only, no expectation is necessary in the expression of the IMs.

6.2.2 ML Performance under Constraints

The expression of the performance is well defined if the IM Je(vz)

Je(vz) is equal to the FIM so in the blind DML or GML cases, equation (6.14) cannot be applied

because the IM is singular.

is regular; we will see that

We determine here performance under constraints, with results very similar to those
seen for CRBs under constraints. Again, we assume that 6 is real and consider the general

constraint:

Ke=0 (6.15)
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where Ky : R® — R” is continuously differentiable. As for the constrained CRBs, the con-
strained performance only depends on the local properties of the constraint set. Let us recall
the definition of My, the tangent to the constraint set at point 8:

oKT\"
Mgz{ZeR”; (—9) Z:O}. (6.16)
00
Theorem 23 The performance of ML methods under constraint (6.15) is:
~1 ~1
Caoao =V (VITSVe) VETS Ve (VETS V) VE (6.17)
where Vg is an n X r matriz (where r = rank(Myg)) whose columns form a basis of M.
A necessary and sufficient condition for the constrained performance to be defined is that

VeTje(ez)Vé’ be regular. Furthermore, A8 ~ N (0,Cagag).

Proof: The main idea, as explained in Chapter 3, is that locally a point 8 verifying the
constraint (6.15) in the neighborhood of §° can be approximated as belonging to Mgo.

6 =6°4 V€. (6.18)

By the chain rule, keeping only the first order terms in Ah:
gD = VLT Py (6.19)

The estimation of £ is regular and consistent and by (6.14):
Cae = (VETEVe) " VETSVe (VETP Vi) (6.20)

Now Al = Vyo AE = Cagag = V@oCAgAng; and we get (6.25).
O

As for the constrained CRB, the general constrained problem (6.15) is equivalent to the
linearly constrained problem:

aKkT\" o _ (K1 g
20 ~ o0

If '-76(6}) = '-76(02) = FIM, Capng is the constrained CRB (3.25):

6. (6.21)
=00

g=6°

Caons = CRBc = Vs (VEFIMVy) ™ V. (6.22)



102 Asymptotic Performance of Deterministic ML and Gaussian ML Chapter 6

Theorem 24 Assume that '-76(6}) and '-76(02) have the same null space (which will be the case
TN 1
for blind DML and GML) and assume that the constraint is such that Vg = (88%) spans

this null space, then the corresponding performance are:

Chagag = (jg(j)f je(gl) (j;;))+ : (6.23)

This gives, for a minimal number of independent constraints, the minimal value for
tr{Cagap}: a proof is given in appendix A.

The rest of this study consists mainly of applying the results of this section to DML and
GML.

6.3 Deterministic ML (DML)

6.3.1 Blind DML

We assume that the channel is irreducible: 8 = h. The two information matrices are:
1 2
Jf(Lh) = Jf(Lh) + Jhn
1
2
i = AN Py A = FIM (6.24)

sy = {7 (O g (20 oy

(1)

J;;) and J}(Li) have the same singularity spanned by h corresponding to the deterministic scale

factor ambiguity. The associated real IMs jh(;)hR and jffi)hR have the two same singularities
as the FIM:

Re(h)
Im(h)

_ —Im(h)
hs = Re(h)

and hg, =

2

(6.25)

Blind performance are computed under the following constraints already used for the
regularized blind CRBs that we recall here:

(1) The quadratic norm constraint:

hh = hefpe (6.26)
(2) In the complex case, the linear phase constraint:

heTh = hgIhe = 0. (6.27)
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As for the FIM, the ambiguous sign factor left by the constraints, is adjusted using the
constraint h°Hh > 0 (this sign factor does not influence performance computation).

We prove consistency of the channel estimate under these constraints in appendix B.
Following the notations of section 3.5, the constraint is:

hThR _ hOThO
Kep=1|"1 FOR | =0. 6.28
Or [ hOS2ThR ( )
At the true parameter value:
81(:5—‘}_\’, o o]
g=6°
which spans the noise subspace of J}(LQ}{S). So, according to theorem 24:

_ 7@+ (1) L2+
CAhRAhR - thhthRhthRhR . (630)
The compact complex error correlation matrix is then:

Canan = I H IR (6.31)

As seen in Chapter 4, the asymptotic CRB associated to the estimation of & with A as

_l_
nuisance parameter with constraints (6.26), (6.27) is Jf(i) :

CRByy, = 97 (6.32)

Asymptotically, Ak ~ N (0,Capap) with:

+ +

Canan = CRBu + I 1, 007 (6.33)
The second term in (6.32) is positive: DML for h does not reach the CRB. The estimation of
the channel is indeed coupled with the estimation of the unknown symbols which cannot be
estimated consistently at low SNR. The coupling prevents the channel estimate from being
efficient. At high SNR however, the CRB is attained (as mentioned in [19] also).

6.3.2 Semi-Blind DML

Under condition (i), the N—1 observations containing both known and unknown symbols
can be neglected and the training sequence and blind contributions can be separated in the
criterion (6.3) as:

1Y 7s = Trs(h) A |* + YE Pr ) Y5 (6.34)

with Trg(h) = Tve—n+1(h) and Tg(h) = Ta—m.(h), Yrs and Y g designate resp. the
observations with known and unknown symbols only (see figure 6.1). Condition (ii) allows
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Unknown +

Known Symbols Known Unknown Symbols
Only Symbols Only
Yrs Yp
NEGLECTED

Figure 6.1: Output burst: overlap zone containing known and unknown symbols is neglected

the training sequence part to be non negligible w.r.t. the blind part. Indeed by the law of
large number (that we can apply here because the known symbols are assumed grouped), the
DML cost function (6.3) is equivalent to:

My (EHYTS — Trs(B)Ak|? + 0 (\/;TB)) + My (E (YEPL () YB)+0 (\/L_U)) .
- (6.35)

— 0. Consistency

The training sequence term is not negligible w.r.t. the blind part if

K
of the estimation of / is proved in appendix B, and result (6.11) can be applied to DML. The

information matrices decompose as a training sequence and a blind part:

1 1 1
{ = e o (630
2 2 2 .
Jor = Jekrs T Junn

1 _ H
th,TS - th,TS - ;ATS-ATS

1 2 v
Jf(Lh),B = Jf(Lh),B + Jhn B

1 6.37
Ting = _QAgP%B(h)'A (6:37)
5 oh
Tpliod) = {78 (i) Ph o (5 ) (T8 T}
The CRB for h is: .
CRBy = (J5})) (6.38)
Using equation (6.14), Ah ~ N(0,Cap) with:
-1 -1
Canan = CRBpp + (J}(Li)) T (J}(Li)) . (6.39)

The second term in (6.39) is positive: semi-blind DML for h does not reach the CRB.
At high SNR however, we can prove that the CRB is attained and:

-1
Canan = oy, {-ATSATS + AR PT (h )AB} . (6.40)
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Monochannel

0 0
0 IMK_N+1

Assume that H(z) is a monochannel, P%U(h) = [ The DML criterion is

reduced to the training sequence criterion:
mhin Y75 — Trs(h)Ax|*. (6.41)

The monochannel gets then estimated by training and the blind part of the criterion brings

no information.

Reducible Channel

We study the general case of a reducible channel. We assume that we have detected the
structure of the channel (the number of zeros): H(z) = H;(2)H.(z) and study the role of the
blind and training sequence parts in the estimation of Hy(z) and of the zeros. The estimation
parameter is here: 8 = [h? RIT | where h. is deduced from h, by eliminating its first element
equal to 1.

It can be verified that P%U(h) = P%U,(hj) where Trr(hy) is T (hy) with the last Mg —N.+1
columns removed. The semi—blind cost function becomes then:

HYTS_,TTS(h)AI(Hz‘l‘YgP%B(hI)YB- (6.42)

The information matrices are:

1 1 1
Iighe = Tigtors i
J;LC;L - Jh ;L = JhchmTS

1

Jf(L])hI,TS = Jf(L])h],TS AITS .ATSAITS
1

Jf(q)hI,B = Jf(L])h] BT JhIhI,B

(2)
JyhB = «413 Pz )AL (6.44)

, . i oh oh B
Fonslisd) = { T8 (G ) Pl T (s ) (74 ) Tt}
J

—1
Jhehe,Ts = ACTST%( 1) [I A (AIBPTB(;LI)AIB) AIT5‘:| Trs(hi)Acrs

with notations defined by:

(6.45)

Ars = Trs(h1)Acpe  and  Trs(ho)Ax = Aoy he
Trs(hr)Trs(he)Ax = Ar.chr and  Tp(hr)Te(he)Av = Arzhr.
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The CRB for hr and h. are asymptotically:

-1 -1
CRBy, = (J2,) and CRBy 5 = (41 ). (6.46)
Using equation (6.14), Ah; ~ N (0,Cap,ap,;) and:
-1 N
Cansans = CRBy + (J0) I, (I50,) (6.47)

h T 1
Ahe ~ N(0,Ca5 A7), hence Ah, = O, (— and

Cpr - - 5 \—1 9 -
Caroar, =CRBy 5+ (AfsArs) ™ Al AL (J f(q)hf) Thih (Jf(u)m) AITSATS (A7sATs)
(6.48)
Again, the CRB for both Aj and h, is not attained. The training part and the blind part of

semi-blind DML brings information to the estimation hy, and Ahj evolves asymptotically in
1

-1

as My grows to infinity, and in as My grows to infinity.

Bliind information asymptotically plays n[{) role in the estimation of the zeros of the chan-
nel. When My — oo, Cxjp_ap, tends to a constant: asymptotically the zeros of the channel
are only estimated by training. At high SNR again, the different CRBs are attained.

A thiner analysis could have been done in considering separately the estimation of the
scale factor that cannot be blindly identified and a “normalized” version of the irreducible
part of the channel: h; = ash: The general results described below for the estimation of
the coefficients of h. are also valid for the estimation of the scale factor.

6.4 Gaussian ML (GML)

We will treat directly the case of a reducible channel. § = [h? hl 03] . The GML cost func-
tion is the probability density function of Y with the input symbols considered as Gaussian
random variables, but not with the right distribution, so ‘76’(;)6’3 #* ‘76’(;)6’3 # FIM.

In appendix B, we prove the consistency of the parameter estimate by blind or semi—blind
GML. As Jé(’el/ 2) # 0, the complex CRB cannot be used here and we will distinguish between
complex and real parameters, i.e. complex and real input constellations.

6.4.1 Blind GML

When the input symbols are complex, let hg = [Re(hT) Im(h¥) Re(hl) Im(RI)]T and
0r = [hT ]T the estimation parameter. ‘_75(1)5 and j—(

RrROR rOR

2
iy = (6.49)
Je(ve) = Je(ve) - Jée = Jog — Jée .

can be computed thanks to
the quantities:
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H
. _ ICyy _ ICyy
T, ) =t Oyt (W) Cyy (W)
i J

H
Tioli: ) = [(Ba})? ~Eaf] tx {TH(h)GY; (@g%) Cry T T ()Cy (Gg’}i’”) T(h)}

H
it ding” {THCY (2 ) O T g { T )Y (agoiy)cny<>
J
(6.50)
Cyy 4 H w0y
T =TT T | G
oC oh’
where: YY _ ;2 H H 6.51
g =TT (% )T (hy) (6.51)
ICYy _ 1,
902 2

diag(.) designate here the vector of the diagonal elements of its argument. The same kind of
relations as (6.49) and (6.50) hold also for Jé(,;l/(z):
.

Due to the continuous phase factor ambiguity, j_ is singular with one singularity
R

spanned by g = [hT2 0l

(No—1)x1 0]”. Blind estimation performance are computed under the

linear constraint:
0570r =0 & hgPhr=0 (6.52)
which allows to determine the phase factor up to a sign factor.
This constraint gives the minimal value for the performance of the estimation on @g.

CAhIRAhIR and CAECRAECR are the appropriate submatrix of:

) 1) (2 \*F
Cé’Ré’R = (jERE) “75353 (jERER) (6.53)
= B+ (22 ) T (72 )
hh 0.0 OrROR \~Gr0p
1
Ahpy ~ N(0,Canan,) and evolves in W My = 005 Ahe, ~ N(0, Cajoap,) and
vV My

as My — oo which is due to the fact that blind GML can estimate the zeros

evolves in

of the channel.

At high SNR, the influence of the estimation of o2 on the estimation of the channel be-
comes negligible, and performance for the estimation of iy is the same as in the deterministic
case.

We will not detail the computations for the case of real input symbols. The same kind

of results holds also. As we have local identifiability, '-76’(;2’3 is regular and the error correlation
_ -1 -1
matrices of iy and h. are the appropriate submatrices of Jg,¢, = (‘76’(;)6’3) '-76’(;2’3 ('-76’(;2’3)
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6.4.2 Semi-Blind GML

As DML, under conditions (i) and (ii) and neglecting the observations containing known and
unknown symbols at the same time, the GML criterion can be decomposed into a training
sequence and blind contribution as:

1
o) HYTS — 'TTs(h)AKHQ + Mg In U?} + In det CYBYB + YEIC;;YBYB . (6.54)

The IMs are: , ,
{ Je(ve) = JogTs + Jé(,e?B = Joors + Joo.B (6.55)

1 2
Je(ve) = Je(ve) - Jé’é’,B .
(2) (1)

with same kind of relations for J@Z* and Jé,;*; the blind IMs can be written as as in (6.50)
and the TS based IMs are:

1 - ]
o2 [AITS Acrs]™ [Arpg ACTS] 0 0 0
J@@,TS = v MI( a,nd J@@*J“S = 0 % (656)
0 40_4 40’3 '

We have: )
2 -1 1
50 = CRB+ (A2 )7 L)

0, () o7

Orbr

- 1 1
Both Ahj and Ah, evolves in —— and
My K

as My — oo and Mg — oo respectively.

6.5 Numerical Evaluations

We tested three different kinds of channels (the notations are independent of the ones in
Chapter 5):

e an irreducible channel H .,
e a channel with a nearly common zero H
e a reducible channel H(z) = H;(z)H.(z).

The channel coeflicients were chosen randomly and can be found in appendix D. The SNR
is at 10dB, the input symbols belong to a QPSK constellation and are i.i.d.. We plot the
quantity: /Tr(Canmary)/ ]

In figure 6.2, the blind performance are plotted for H,.; and H;; for a burst length
of 150 (blind performance corresponds to 0 known symbols in the curves). Performance of
blind GML are computed under constraint (6.52) but also under the same constraints as
blind DML to allow significant comparison between DML and GML. We see that blind GML
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outperforms blind DML and especially for H;;. We can also note that DML does not reach
the CRB.

On the same plot, the semi-blind GML and DML performance computed under constraint
(6.26) and (6.27) are also plotted w.r.t. the number of known symbols, starting from 30 known
symbols in the burst: we can see the gain brought by the known symbols compared to the
blind mode.

The semi-blind DML and GML curves are shown in figure 6.3 and compared to the
training sequence based estimation performance. The performance when all the input symbols
are known is also shown as a reference. We see a certain gain of semi-blind techniques w.r.t.
the training sequence technique, which cannot be significant as the number of known symbols
is large. Here again GML appears better than DML. The same comments as those already
done in the CRB study are basically also valid here.

In figure 6.4, the reducible case is shown. For a fixed number of 30 known symbols, we
plot the performance w.r.t. the number of unknown symbols in the burst. The performance
for the estimation of H. by DML will tend to be constant as the number of unknown symbols
grows. GML profits from the blind information, and the slope of the curve will eventually

evolve in —.

As already stated, our performance expressions, valid for an asymptotic number of known
symbols, make also sense for this number is small. It is also possible to give expressions taking
into account dispersed known symbols or the overlap zone (figure 6.1), as CRBs do (using
Ti (h) and Tr(h)): these expressions were also found to have sense.

6.6 Conclusions

We have derived the asymptotic performance of the blind and semi-blind deterministic ML
and Gaussian ML for an asymptotic amount of known and unknown symbols but also for a
high SNR. The performance have been compared to the CRBs: both DML and GML attain
the CRB at high SNR only. This performance study is of particular importance as DML and
GML offer lower performance bound on resp. all the deterministic and Gaussian methods.
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A Minimal Performance

@\ 70 (7@\F - ;
We prove that (‘_76,6, ) Tgg (‘_76,6, ) corresponds to the constrained performance which

gives, for a minimal number of independent constraints, the lowest value for tr {Cagag}.

IKF\\ "
Let K¢ = 0 be a set of constraints on 6; range{Vs} = (range {8—00}) . We assume

that ng%vvb) is invertible. The corresponding constrained performance is:
-1 -1
Casas = Vo (V] ToeVs) VgTj@(;)Ve (Vi Tee Vo)~ Vi (6.58)

T T
Let the eigendecomposition of '-76(02) = SiQ)A(lQ)S{Q) = S1A15;7 and '-76(6}) = Sil)A(ll)S{I) .
Vg has components on S and S; (the columns of S; form a basis of the null space of '-76(6})

and ‘76’(6’2)) V@ = SIQI + SQQQ.
Vo (VESiAS TVe) T VT = vy (57Ve) T AT (VESY) T VT = v AT QYT (6.59)

Caong = (S14 92Q:2Q7") AT (S1+ SzQle_l)T

(1)) T 1) A-1 T (6.60)
STYATST (14 S2Q2Q7 ) AT (51 + 52Q:Q7 )
T
Casno = (S1+ $2Q207") AT STSWAW ST 5 AT (S + 90,07 (6.61)
+ +

tr{Cagas} = tr { (7)) 7 (7)) } +tr{ Q@7 AT ST I SiAT QT TQT} (6.62)
The second term is positive, so tr{Cagas} > tr { ('-79(92))—'— je(;) (‘579(92))"'}7 with equality if

Q2 =0, i.e. range {%} = null (je(;)) = null (jg(;)).

B Consistency of Blind and Semi—Blind DML and GML

B.1 Blind DML

As M — oo, the DML cost function tends uniformly to its expected value:
H H
YR, Y =t { PF,E (YY) | (6.63)
with E (YY) = T(h)A° AHTH(ho) + 021
oH 0 0\ A0
VP, Y = tr {A TH (1®) Py T (h) A } + ot {P%(h)} I (6.64)
The term o2tr {P%(h)} 1 is constant, so the DML criterion is equivalent to:

min {AOHTH(hO)P%(h)T(hO)AO} (6.65)

constrained h
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which is the noiseless DML criterion. h° nulls the criterion and is the unique solution of
the minimization problem under the blind identifiability conditions. h° verifies also both

constraints (6.26) and (6.27) which give then consistent estimate.

B.2 Semi-blind DML

Asymptotically, the semi-blind DML criterion (6.34) is equivalent to:

min { A4 [T7(0) = T(0)]" [T () = T] A2+ AT () PR T () A° )

(6.66)
which is nulled by A°.
B.3 GML
As M — oo, the GML cost function tends to its expected value:
Fenr(0) — Indet{Cyy ) +tr {C;},E (Y — Agh) (Y — AKh)H} (6.67)

The gradient of E (F(8)) w.r.t. 67 is:

aC aC ontt
7 7 80 7
= {o 0 (1 () |

(6.68)
with Cyy (h,02) = E(Y — Agxh) (Y — Ah)?. The gradient is nulled by (h°,0%2), and as
the Hessian of EF(6), i.e. the FIM is positive semi-definite, this is the unique minimum of

the cost function.

C Equivalence between DML and GML

The semi—blind GML criterion is:

. H
g}clr%l {Indet Cyy + YY"y Y} (6.69)
_ 1 2\t
qﬁ=@%wmﬁw+ﬁnlzﬁk—%w%mWMwm+%Q ﬁﬂﬂ

(6.70)

2

by the matrix inversion lemma and as U—g — 0:
Ua
R S

Cyy = 3 Prm) (6.71)

v
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1
So the second term in (6.69) is equivalent to —QYHP%U(}L)Y7 which is the DML cost function.
O-’U
Cyy has Mm — M — N 4 1 eigenvalues equal to 03 and M + N — 1 eigenvalues equal
to o2X;(h) where \;(h) is an eigenvalue of T (k)T (h) depending an h only. The only con-
tribution of & in Indet Cyy comes from the A;(h)’s and can be proved to be negligible w.r.t.

YHC;)I/Y. The estimation of 4 is decoupled from that of ¢ and the GML cost function is
equivalent to the DML one.

D Channels used in the Simulations

e Irreducible Channel H ,,.;:

The complex channel is randomly chosen and is irreducible:

—0.4326—0.02805 0.1253—0.1584j —1.1465+0.3366
—1.6656—1.54205 0.2877+0.09115  1.190940.9190;
1.1892—1.17155 0.3273+2.0161;
—0.0376—1.21305  0.174642.7042;
(6.72)

Hwell = [

e Nearly reducible channel H ;:

272 (0.6900 + 0.81565) (0.45 + 0.325 — 2) (—0.8 = 0.2 — 2) (=1.2 — 2)
(6.73)

H [ 273 (0.5711 — 0.39995) (0.5 + 0.35 — 2) (0.6 — 1.2 — 2) (0.2 — 2) ]
il =

e Reducible Channel:

—0.8051+0.59135  0.2193+40.38035
0.5287-0.64365 —0.9219-1.0091;

—0.1461-0.37455 —0.0766+1.75135 |’
0.2481-0.47095  1.738240.7532;

H;= H.=|1 —0.1567+1.0565; | .
(6.74)

E Numerical Evaluations of the Performance
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Performance for H . Performance for H
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10° £ : : E
Gaussian blind CRB : :
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Figure 6.2: Blind (and Semi-blind) DML and GML: irreducible and nearly reducible case.
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Figure 6.3: Semi-blind DML and GML: irreducible and nearly reducible case.
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Reducible Channel: performance for H y Reducible Channel: performance for H,
10° \ \ \ \ \ \ 10 \ \ \ \ \ \
Semi-blind DML v
Semi-blind DML
Semi-blind GML LT T

\
]

Semi-blind GML
10’3 L L L L L L 10'3 L L L L L L
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Number of unknown symbols Number of unknown symbols

Figure 6.4: Semi-blind DML and GML: reducible case.



Chapter 7

BLIND DETERMINISTIC
MAXIMUM-LIKELIHOOD
METHODS

As we will develop semi—blind DML criterion that contain a blind part and
a training sequence part, it is important that the blind part be solved by a
powerful method, this is why we concentrate on finding low—computational,
quasi-optimal solutions to solve DML. As stated in Chapter 1, deterministic
methods have the property of giving the exact channel for a finite amount of
data in the absence of noise. This is the property that is exploited in this chap-
ter. Two DML-based algorithms are presented. The first one is a modification
of the Iterative Quadratic ML (IQML) algorithm which gives biased estimates
of the channel and performs poorly at low SNR due to the presence of noise.
We “denoise” the IQML cost function by eliminating the noise contribution:
the resulting algorithm Denoised IQML (DIQML) gives consistent estimates
and outperforms IQML. Furthermore DIQML is asymptotically globally con-
vergent and insensitive to the initialization. Its asymptotic performance does
not match the ML performance, though. The second strategy, called Pseudo-
Quadratic ML (PQML), is naturally denoised. The denoising is however more
efficient than in DIQML: PQML gives the same asymptotic performance as
DML, not DIQML though, but requires a consistent initialization which can be
given by SRM or DIQML. We will furthermore compare DIQML and PQML
to the alternating minimization technique w.r.t. the symbols and the channel
used to solve DML. A performance study and simulations are presented.
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7.1 Blind Deterministic ML

Let us recall the blind DML criterion for joint estimation of A and h:

max f(Y[h) & min|[Y =T (h)A|. (7.1)

)

We assume here that the blind deterministic conditions [DetB] are verified. The channel is
then identifiable up to a scale factor. We impose the non-triviality constraint ||| = 1. This
constraint is not sufficient to completely identify the channel as it leaves a phase ambiguity:
the phase constraint (6.27) will be imposed later, in the performance study of the proposed
algorithms.

We solve here the DML criterion in h (with A as nuisance parameter):

: Hpl
III;Lrllllill YU Pr,Y . (7.2)

Py =1 =T(h) (TH ()T (R) ™ TH(h).

7.2 Linear Parameterization of the Noise Subspace

The DML criterion is highly non linear and its optimization would require costly solutions
in the form (7.2). The key to a computationally attractive solution of the DML problem is a
linear parameterization of the noise subspace. We consider here a linear parameterization in
terms of channel coefficients (a parameterization in terms of prediction quantities was also
presented in [13]). Let HY(2) be such a parameterization: it verifies H* (2)H(z) = 0 and
T(hY)T(h) = 0; T (ht) is the convolution matrix of H(z) and the columns of 75 (A1) span
the entire noise subspace. In the case m = 2 in which the multichannel has 2 subchannels,

the obvious choice for Ht (2) is:
H*(2) = [-Ha(2) Hi(2)] . (7-3)

For a larger number of subchannels, different choices are available [19], [20]. An example is

[20]:

—H2 (Z) Hl(Z) 0 te 0
(‘) _H3(Z) HQ(Z) ‘ (74)

Hm(z) 0 .- 0 —Hi(2)



7.3. Subchannel Response Matching (SRM) 117

7.3 Subchannel Response Matching (SRM)

The Subchannel Response Matching (SRM) algorithm is based on this linear parameterization
of the noise subspace. Using the commutativity of convolution and the linearity of 7 (A1) in
h, we can write 7 (h1)Y as:

T(hH)Y = Yh (7.5)

where ) is a matrix filled with the elements of the observation vector Y. In the noiseless
case, Y = T(h)A and we have 7(h1)Y = Yh = 0: from this relation, the channel can be
uniquely determined up to a scale factor. SRM requires the channel to be irreducible; the
burst length requirements are higher than in [DetB] [19].

When there is noise, Yh # 0 and the SRM criterion is solved in the least-squares sense
under the constraint ||| = 1:

min R YHY b (7.6)
[IRl=1

The resulting h is the minimal eigenvector of Y#Y. Different choices for the linear param-
eterization of the noise subspace give different channel estimates: certain parameterizations
give indeed biased estimates [20]. The parameterization described in (7.4) gives consistent
estimates.

SRM appears as a non-weighted version of the Iterative Quadratic ML (IQML) algorithm,
and is used in [19] to initialize IQML. We will use it to initialize our algorithms also.

7.4 lterative Quadratic ML (IQML)

Since P%(h) = Pru(uy, (7.2) can be written as:

_I_
min YT (1) (TH T 1Y) Ty (7.7)
T (hY)TH(R1) is singular for m > 2, which is why the Moore-Penrose pseudo-inverse needs
to be introduced.

The Iterative Quadratic ML (IQML) algorithm solves (7.7) iteratively in such a way that

at each step a quadratic problem appears. Let R(h) = T(hH)TH(hY), then (7.7) becomes:

Hr}ﬂliill YHTH(LYYRY (W) T ()Y . (7.8)

At iteration (i) of IQML, the denominator R (k) is computed based on the estimate from the
previous iteration A1) and is considered as constant for the current iteration. Hence, as

T (k1) is linear in h, the criterion (7.7) becomes quadratic. Denoting the constant denomi-
nator R(h) = R, the IQML criterion can be rewritten as:

”rﬁlin RIYERYY b (7.9)
=1
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Under the constraint ||| = 1, h is estimated as the minimal eigenvector of the matrix
VHERTY.
In the noise—free case, the IQML algorithm behaves very well; it the criterion becomes

indeed equivalent to:

Hr}ﬂliill XTTHLYRYT (R X (7.10)
where X = T(h°)A is the noise-free received signal. As T (h°1)X = XRh° = 0, h° nulls
exactly the criterion regardless of the initialization. At high SNR, a first iteration of IQML
gives a consistent estimate of the channel whatever the initialization of R(h) (provided that
Null(R*) N Range(X’) = 0, which is guaranteed in general). And it can be proven [19] that
a second iteration gives the exact ML estimate.

At low SNR however, this method is biased. Indeed, consider the asymptotic situation
in which the number of data M grows to infinity. By the law of large numbers, the IQML

criterion becomes equivalent to its expected value which is:

||rﬁ|i£1tr{TH(hL)WT(hL)E(YYH)} -
min {77 RIT () XX 4 ol T yRAT ()

(7.11)

since B(YY ) = X XH 4621, h° nulls exactly the first term, but is not in general a minimal
eigenvector of the second term and hence of the sum. Then, due to the presence of noise, h°
is not asymptotically a stationary point of the algorithm and IQML performs poorly even if
initialized by a consistent channel estimate.

We propose here a method to “denoise” the IQML criterion: this denoised criterion
minimized in the IQML way will compensate the IQML bias and gives a consistent channel

estimate.

7.5 Denoised lterative Quadratic ML (DIQML)

7.5.1 Asymptotic Amount of Data

The asymptotic noise contribution to the DML criterion is o2 tr {PTH(hJ_)}. The denoising
strategy consists simply in removing this asymptotic noise term, or more exactly an estimate
of it ggtI’PfTH(hJ_) (where ;2 will be a consistent estimate of the noise variance), from the
DML criterion which becomes:

min tr{ Pragey (VYT -2} o
=1

min {HIYIRE (YR~ oHe TR ()T (1)) }

(7.12)
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Note that this operation does not change the solution of the DML criterion as ;2 tr{PTH(hJ_)} =
%(M(m—l)—N—l—l)] is constant w.r.t. h.
(7.12) is solved in the IQML way: considering R(h) = R as constant, the optimization

problem is quadratic:
min 17 {YIRYY 52D}k (7.13)
[IAll=1
where hTDh = tr{TH (hL)R*T (h1)}.
Asymptotically in the number of data, DIQML is globally convergent. Indeed, asymptot-
ically it is equivalent to the denoised criterion:

H%ifl XHTHRORTT (R X . (7.14)

We find again the main features of the high SNR IQML algorithm:
e The first iteration gives a consistent estimate of the channel.

e The second iteration gives asymptotically the global minimizer of DIQML. Unlike in
the high SNR case, this global minimizer is not the ML minimizer though, as will be
seen in appendix A.

e This behavior holds whatever the initialization

At high SNR global convergence is also guaranteed as it is for the original IQML algorithm
but this time DIQML gives the ML solution.

7.5.2 Finite Amount of Data

The choice of ;2 turns out to be crucial. In practice, with large but finite amount of data
M, and the true noise variance value, the central matrix in (7.13) is indefinite, and the mini-
mization problem is no longer well posed. The solution in this case would be the eigenvector
corresponding to the smallest eigenvalue, which is negative. Simulations have shown that per-
formance does not improve upon IQML in this case. The central matrix @ = YHRTY — AD
should be constrained to be positive semi-definite.

As a consistent estimate of 03, we choose here a certain A that renders @ = YA RTY —\D
exactly positive semi-definite with one singularity. The DIQML criterion becomes:

min AT {YHRTY - AD}h (7.15)
lIRll=1,A

with constraint that Q@ be positive semi-definite. A the generalized minimal eigenvalue of
YHRTY and D and h is the associated generalized eigenvector. Asymptotically, A — o2, and
the criterion becomes equivalent to (7.14), and asymptotic global convergence applies for h
and for o2, with the same properties as mentioned earlier.
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Other attempts have been undertaken to denoise the IQML strategy. Kristensson [68]
applies the same strategy in the DOA (Direction Of Arrival) context: as estimate of the
noise variance, he chooses the one which in the context of blind channel estimation would
correspond to the minimum value of the SRM criterion. It can indeed be verified that
asymptotically:

ﬁglRM(yHy)l}SRM = oX(M-N+1) form=2

A 7.16
hglRM (yHy) hspyy = 20%(M — N 4+1)  for m > 2 ( )

with ||sra||> = 1. For a finite amount of data, the noise variance estimate given by SRM

underestimates the true 03 on the average: indeed, as hgpps minimizes the SRM criterion,

iLgRM (yHy) hspar < hoH (yHy) h°/||k°|)?, taking the expected value on both sides, we get
BoZspy < 02,

So for the realizations in which ;2 is smaller than o2, Q can be positive (but not al-
ways) and in that case, the DIQML principle works. However, there will be realizations in
which EESRM overestimates ¢2: in that case Q is not positive and DIQML does not improve
upon IQML. After the submission of our generalized eigenvalue approach in [69], we came
accross [70] in which IQML is presented with different constraints, one of which corresponds
to our generalized eigenvalue strategy.

7.6 Pseudo-Quadratic ML (PQML)

The principle of PQML introduced in the context of sinusoids in noise estimation [71] and
then applied to DML in [72]. The gradient of the DML cost function may be arranged as
P(h)h, where P(h) is ideally a positive semi-definite matrix. The ML solution satisfies

P(h)h =0, (7.17)

which is solved under the constraint ||h|| = 1 by the PQML strategy as follows. At itera-
tion (i), P(h) is considered constant, computed thanks to the result of the previous itera-
tion /initialization RU=1): as P(h) is positive semi-definite, the problem becomes quadratic
and A is the minimal eigenvector of P(h). This solution is used to reevaluate P(h) and further
iterations may be performed.

The difficulty consists in defining the right P(h), and especially with the positive semi-
L

oh;

definiteness constraint. Denoting T ( ) = AT, the gradient of the DML cost function

consists of two terms:
(P(h)h) (i) =

YAATLHRY (W) T(RY)Y — YHTH(RLYR*(R) [T(@L)AﬁL HI R (R)T(hH)Y .
(7.18)
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Here, we consider that h is complex and complex derivation w.r.t. h* is applied; for a real
h, the results are similar. We assume that the pseudo-inverse is computed by regularization,
as recommended in [73]. In that case, for the purpose of taking derivations, we just need to
consider the derivative of a regular inverse.

In each iteration, P(h) will be considered as constant: h designates the instances of h that
we consider as variable (on which minimization will be done) and h designates the instances of
h that are considered as part of the constant P(h). The first term of P(h)h is Y R*(h)Vh,
and the second term is BY (h)B(h)h, with YHTH (hLYR*(h)T (k) = KT BT (k). Then, P(h)
has the following form:

P(h) = VIR (L)Y — B (h)B(h) . (7.19)

As M — oo, the second term of P(h) tends to its expected value by the law of large
numbers. In appendix A, we prove that E (BH(h)B(h)) has a noise component equal to
02D, the asymptotic noise component of the IQML Hessian, but it also has a non—zero signal
component for h # h°. This prevents PQML from being asymptotically insensitive to the
initialization, unlike DIQML. However, when P(h) is evaluated at a consistent estimate of h,
the previously mentioned signal component becomes negligible and the global convergence
applies here also. PQML gives furthermore better performance than DIQML, and in fact,
offers asymptotically the same performance as ML.

The matrix P(h) is indefinite for a finite data length M, and applying the PQML strategy
directly will not work. In [72], & is chosen as the eigenvector corresponding to the smallest
absolute eigenvalue of P(h); it gives poor performance except at very high SNR.

PQML is closely related to DIQML as the first term of (7.13) and (7.19) are the same and
E(BT(h°)B(h°)) = o2D(h°). By analogy with DIQML for which Q(h) was also indefinite
for finite M, we introduce an arbitrary A such that YPRTY — ABHB is exactly positive
semi-definite. PQML then becomes the following minimization problem:

||hrﬁ1i1117AhH {VERTY - ABHB} I (7.20)
with a semi-definite positivity constraint on the central matrix. The minimizing h is the min-
imal generalized eigenvector of Y R*Y and BB, and X the minimal generalized eigenvalue.
Asymptotically for a consistent initialization, there is global convergence for h, as described

previously, and as well as A (— 1).
The identifiability conditions for both DIQML and PQML are the same as for SRM.

7.7 Asymptotic Performance

In appendix A, we compute the performance of DIQML and PQML under our usual deter-
ministic constraints for h: RTh = h" h? and hggh = 0. We prove the following results:

e PQML has better performance than DIQML.
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e PQML has the same asymptotic performance as ML. The PQML global minimizer is
different however from the ML global minimizer.

At high SNR, DIQML, PQML and DIQML exhibit the same performance.

7.8 Alternating Quadratic ML (AQML)

In addition to comparing the performance of DIQML and PQML to the optimal ML perfor-
mance, we will compare them to an algorithm we call Alternating Quadratic ML (AQML).
7.8.1 Alternating Minimization

AQML proceeds by alternating minimizations w.r.t. A and w.r.t h of the DML criterion:

. 2
min | Y = T (1)4] (7.21)

(1) Initialization: A(®).
(2) Iteration (¢4 1):
e Minimization w.r.t. A, h = h(): mjn 1Y — 7(R) A

-1

A6+ _ (TH(;L(i))T(;L(i))) TH(ROYY (7.22)
e Minimization w.r.t. h, A = X(H'l)i mgn HY - T(h)g(i—l_l)uz = m}}n HY - A(H_l)h”z
7 1) — (A(z’+1)HA(i+1))_1 AU+ Hy (7.23)

(3) Repeat (2) until (2(2’4—1)7%(2'4-1)) ~ (g(i%ﬂ(i))‘

At any iteration (i + 1), we assume that the algorithm gives a unique solution: 7 (h()) has
full-column rank (i.e. H(2) is irreducible), as well as A1) otherwise as suggested in [74], we
take the minimum-norm solution (i.e. the regular inverse is replaced by the pseudo-inverse).
That case is unlikely though if h° and A° are well-conditioned.

7.8.2 Convergence Study

In appendix B, a convergence study of AQML is proposed. Any AQML iteration is shown to
strictly decrease the cost function until a fixed point is attained. And the global minimizer
of DML (not necessarily its local minimizers though) is a fixed point of AQML. Convergence
is reached after an infinite number of iterations.



7.9. Simulation Results 123

An interesting consequence of this algorithm is that even with a short data burst and
appropriate initialization, the algorithm will converge to the global ML minimizer, which is
not the case for PQML. However the great disadvantage of AQML is its slow convergence
which prohibits its use.

7.8.3 Asymptotic Behavior of AQML

The ML criterion for (A, h) is asymptotically (in the number of data) equivalent to :
min {1 — T(H)AI? + [V} & min | X — (1) 4] (7.21)

So the asymptotic behavior of AQML is equivalent to its behavior in the noise—free case.
In [29], it has been shown that in the noise—free case, the true quantities are the only fixed
point of AQML for which h is irreducible and A is sufficiently exciting. Hence asymptotically,
AQML is essentially globally convergent.

7.9 Simulation Results

We consider an irreducible channel H of length N = 4 with m = 2 subchannels, complex
and randomly generated. The input symbols are drawn from an i.i.d. QPSK constellation.
The initialization of the DIQML/PQML algorithms is done by SRM.

In figure 7.1, we plot the Normalized MSE (NMSE): NMSE= || — £||?/||A||?, the DML
cost function, the generalized eigenvalue for PQML and the ratio between the generalized
eigenvalue and o2 for DIQML, averaged over 500 Monte-Carlo runs of the noise. The burst
length is M = 100 and SNR=10dB. We notice that the averaged minimal generalized eigen-
value of DIQML tends to the noise variance o2 and that of PQML to 1, while remaining
smaller than these values in both cases. After 1 or 2 iterations, DIQML and PQML reach
their steady state.

In Figure 7.1 and 7.2, the NMSEs are shown for burst length 100 and 200 and SNR values
of 10dB and 20 dB. They are compared to the theoretical performance of DIQML and PQML,
the last one being also the DML performance. The CRB is also shown. An improvement
w.r.t. the SRM initialization can be observed for both algorithms, especially for PQML which
outperforms DIQML. Performance can be seen to be closed to the theoretical performance.
We do not plot IQML results which are much worse than SRM, DIQML and PQML.

At last, in figure 7.3, we compare PQML and DIQML to AQML, where the slow conver-
gence of AQML can be noticed.
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7.10 Conclusion

We have presented two methods, DIQML and PQML, to solve the DML problem. DIQML is
asymptotically globally convergent but does not reach the ML performance. PQML reaches
asymptotically the ML performance with a consistent initialization, which can be given by
SRM or DIQML. Semi-blind extensions of PQML is presented in the next chapter and will be
shown to give better performance than their blind counterparts. Furthermore, a (blind and

semi-blind) extension of PQML has been proposed in a multiuser context (Spatial Division

Multiple Access (SDMA)) [23].



A. Performance Study of DIQML and PQML 125

A Performance Study of DIQML and PQML

A.1 Asymptotic behavior of PQML

For an Inconsistent Initialization

The element (¢, j) of the Hessian P(h) of the PQML cost function can be written as:

P(h)i,j) = YPATHIRY(WATHY —YHTH (W) RTY(WATAT IR (W T (WH)Y
Pr(h)(7,7) Pa(h)(7,7)

(7.25)
EYYH = ggT(ho)TH(ho) + 021 implies:

EPy(h)(i,5) = o*tr {m} HRAW)ATAT (h)TH (1) } +otr {m} HR+(h)A7;L} (7.26)

BPy(h)(i,j) = o2te {TH (R )R () [ATEATHH| RE ()T ()T () TH (%) |

7.27
+oltr {m} H7z+(h)m;¢} (7.27)

Then for h # k%, EP(h)(i, ) # oitr {A’Y;J‘ HR"’(h)A'Y;J‘T(hO)TH(hO)} (i.e. the noise—free
IQML central matrix) because of the signal contribution in EPz(h)(4, 7).
For a Consistent Initialization

Assume £ is a consistent estimate of h°, i.e. h = h° + Ah. We denote by Pa1(h) the first
term of Py(h):
EPyu(h+Ah) = o2t {TH(h)TH (AR R () ATFATHHRT (h) T (AR T (1)}
= O(llanl?)
(7.28)
which is of order 2 in Ah and the other terms in EP(h) can be verified to be of order 1. So

P21(h) is negligible and, asymptotically, the role of P; is to remove the noise contribution in

Pr.

A.2 Generalized Eigenvector Problem: Av = A\Bv

Let A and B be n-by-n matrices. Here are some useful properties of the generalized eigen-
vectors and eigenvalues of A and B.

e There are n eigenvalues if and only if rank(B)=n.

e If A and B are symmetric:

— The A;’s are real.
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— Let Av; = A\;Bv; and Avg, = ApBug, A 75 AL
vl Av, = vH Bup, = 0 (7.29)

— If rank(B)=n, {v;};=1,...,, form a basis.

— If A and B are symmetric and positive semi—definite: A; > 0.

A.3 Performance of DIQML and PQML

We consider the following general blind channel estimation problem:

. H N oy D C
min {A(Y,h) /\B(Y,h)}h (7.30)

where h® is a consistent estimate of h, and compute its asymptotic performance under our
usual constraints: A h = hoHho and hOSZ)ThR = hosgh% =0

As the data length tends to oo, A(Y,hc) Mg A°(h®) and E(Y,hc) Mg B?(h?).
A(Y, %) = ZYIRT(h)Y for DIQML and PQML, and B(Y,h%) = LD(h°) for DIQML
and B(Y,h) = 2B (h9)B(h°) for DIQML.

It can be shown that the channel estimation performance given by (7.30) is the same
when one uses A(Y,h°) = A(Y) and B(Y,h°) = B(Y) instead of A(Y,h¢) and B(Y, h°).
Asymptotically, we have:

A° 4+ A(Y)

B 1 B(Y) (7.31)

—_——
E>E>
<=

|

Asymptotic Expressions of A\

The solution of (7.30) for A and A is the minimal generalized eigenvalue and corresponding
eigenvector of A(Y) and B(Y).

A A(Y) I

AY)h=AB(Y)h=0 = A= —no——.
hH B(Y)h

(7.32)

We denote = h® + Ah and A = A° + AX. Then keeping only the first order terms, we get:

_ MA(Y) = MB(Y)]k°

AN o o e (7.33)
Asymptotic Expressions of Ah and Capap
After substitution of the solution for A, the estimation problem for & becomes:
min {rT{AY) = AY)BY) | h=F(h) (7.34)
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Let V° be a matrix the columns of which form a basis of the orthogonal complement of A°.
Proceeding as in [75] for the asymptotic analysis of the DML performance, keeping only the
first order terms in Ah, we get the following asymptotic expressions for Ah and Capap with

constraints:
-1
A= e (vIEe) Y Hagh* (7.35)
-1 -1 :
Cap = (VOHJ o) VOHJ VO (VOHJ( )V ) VOH
where: o
JO g (3f(h ) ( F(h ))
hh dh* h*
(7.36)
g a (0F(h)
hh ah* oh*
and F(h) is the cost function in (7.34).
S =B (AY) - A¥)B(Y)) = 4° - x°B° (7.37)
As A% — A°B° admits h° has (unique) singular eigenvector,
-1
Vo (VoHJ}(Li)Vo) yoH _ (A° — /\OBO)+ ) (7.38)
Hence:
A= (4% = XB)* (A(Y) = AB(Y)) h°. (7.39)

Application to DIQML and PQML
Specializing (7.39) to DIQML and PQML, we get asymptotically:

Ah o= (XHRYX)T(A(Y) - AB(Y)) b
A A

~ 7.40
= (VIR )T (A(Y) - WB(Y) - AABY(Y) ) ° (740)

For ML, the same kind of analysis gives [75]:
Ahpry, = (YHER+ )T (A(Y) - AOE(Y)) he (7.41)

where A(Y) and B(Y) are the same as in the PQML case. And so the estimate given by
DIQML and PQML is different from the ML estimate.
We introduce:

Wi = E{(A(Y)—/\OB(Y)) pene (A(Y) = 2B(Y) }

W, = E { (Aw) = AB(Y)) hone” (A(Y) - ;\B(Y))H}
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We get:
he HW/\ohO . . B°hoh° HWAO W/\ohoho HBOH
(= o+ ———=B%h°h°" B°H — - A
W/\ W/\ + (hoHBoho)? hoH Bopo hoH Bopo (7 3)
e Performance of DIQML
For DIQML, we have:
Whe(i, j) = o2 (YERTX) (i, j) + ottr {m} HR+A7;L} (7.44)
(B° =D in equation (7.13)), and:
BOhOhOHBO
CziQML = Uz (XHR+X)+ + 03 (XHR+X)+ (BO - hotl Bopo ) <XHR+X)+
(7.45)
e Performance of PQML
For PQML, we get:
W/\o(i7j) = 0'3 (XHR+X) (l,]) + O'gtl’ {A,Y;J'HR-FAIELPT(;L)} (746)

Wie has one singular vector: h°. Hence, Wyoh® = 0, so the last three terms in (7.43),
due to A, disappear and W5 = Wys. Wyo is the same as the one for DML [75]. In

fact, for PQML, A\ is of order %, whereas Z(Y)ho and E(Y)ho are of order \/%7 S0
that in (7.30) A(Y) can be replaced by A°.
CRP = o (IR T4 ol (VIR (1 {ATHIRF AT Proy })) (WTREY)
(7.47)
CRM = QM — ot (VTR ) (6 {ATH TR AT Prauny ) (VIR )T (7.48)

where ((A; ;)) is another notation for matrix A. PQML has better performance than DIQML
PQML _ ~DML
and C' 7 =Cx0.

B Convergence Study of AQML

The study proposed here uses results pointed out in [74] for the convergence study of ILSE
(Iterative Least-Squares with Enumeration).

Definition 1 Let F : U — U a mapping from a point of U to a point inU. A fized point
ul €V of F verifies F(ulH)) = ul/).

Definition 2 A function f is a descent function for the mapping F if:
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1. f:V — R is non-negative and continuous.
2. f(u) < f(u) for u=F(u) and u is not a fized point of F.

3. f(u) < f(u) for u=F(u) and u is a fized point of F.

Let u, = (A(”),h(”)). AQML can be seen as an iterative process that generates the
sequence {u,}, defined as w,41 = F(u,). Let f be the DML cost function; we prove that f
is a descent function: AQML decreases the DML cost function at each iteration.

1Y = TR A = min ¥ = T(R) AT < ||y = T(h) A (7.49)

There is strict inequality if A+ £ A0, and equality if R0TD = A,
[V — T (h) A = min |[Y" — TR A <Y = T(hD) A0 (7.50)

There is strict inequality if A0+ #* AW and equality if AGHD = A0 AQML decreases
strictly the cost function until a fixed point is attained: the points of convergence of AQML
are fixed points. Convergence is reached after an infinite number of steps, unlike ILSE which
needs only a finite number of steps.

We prove that the global minimizer of DML is a fixed point of AQML. The DML global
minimizer iLML verifies:

harg = arg min [Y7 = T(h) (TH () T(0) ™" T ()Y | (7.51)
The minimal value of the ML cost function is:

1Y = T(hare) (T (harn) T ) H ()Y |2 (7.52)

= A
If we now initialize AQML by A to compute an estimate h of the channel, then:
1Y = T(WA? < Y = T (k) (TH W) T(h) ™ TH (R)Y | (7.53)

which contradicts the fact that iLML is the global minimizer.
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C Simulations
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Chapter 8

SEMI-BLIND METHODS BASED ON

DETERMINISTIC
MAXIMUM-LIKELIHOOD

In this chapter, we propose semi-blind methods based on DML. Optimal semi—
blind methods are first presented that can take into account the information
coming from known symbols arbitrarily dispersed over the burst: these methods
use the AQML principle. In a second step, the known symbols are assumed
grouped: this allows to build suboptimal semi—blind criteria that are formed of
a linear combination of a training sequence based criterion and a blind cri-
terion: the weights of this combination are optimal in the ML sense. Three
criteria including three different training sequence based estimation methods
are optimized using the semi-blind PQML as well as the AQML strategy. We
also construct a semi-blind criterion based on SRM which is used as initial-
1zation of the DML based semi—blind algorithms. Simulations are presented to
illustrate the performance of these algorithms, and comparisons between them
are discussed. At last, we suggest a way to build semi—blind criteria combin-
ing some blind criterion and a training sequence based criterion. The subspace
fitting based semi—blind criterion is given as an example.



134 Semi-Blind Methods based on Deterministic Maximum-—Likelihood Chapter 8

8.1 Semi-Blind Methods

8.1.1 Optimal Semi-Blind Approaches

In a first step, we consider optimal solutions to the semi-blind estimation problem. Optimal

semi-blind algorithms should fulfill a certain number of conditions:

e They should exploit all the information coming from the known and the unknown
symbols in the burst, and especially the observations containing known and unknown
symbols at the same time. This could be a difficult task, as the classical training se-
quence based estimation cannot do it and blind estimation does not do it (and considers

the known symbols as unknown).
e They should work when the known symbols are arbitrarily dispersed.

e Semi-blind identifiability conditions should also be respected: for example, the methods
should work for only one known symbol for irreducible channels, which is not system-

atically verified by the suboptimal methods.

e With a sufficient number of known symbols, the optimal semi—blind methods should be

able to identify any channel, and especially monochannels.

Optimal semi-blind methods are methods that naturally incorporate the knowledge of
symbols. Maximum-Likelihood methods fulfill this condition: DML, GML, FA-ML, SML
criteria incorporate the known symbols (and for some of them also the unknown symbols).
Methods estimating directly the input symbols like [76] are also good semi—blind candidates.

8.1.2 Suboptimal Semi-Blind Approaches

When the choice is possible, it is better to have grouped known symbols in general. Indeed,
in the contrary case, one looses the blind problem structure on which low computational
algorithms can be built. Also, as already seen in chapter 4, it is preferable for performance
reasons.

So, in a second step, we considered suboptimal semi-blind approaches which exist when
the known symbols are grouped. The proposed semi-blind methods are again based on ML.

In that case, a ML based semi-blind criterion can be written as:
Semi-blind criterion = «; Training sequence criterion + a9 Blind criterion.

The weights oy and «g are the optimal weights in the ML sense: they are not arbitrary and
are deduced from the semi-blind ML problem. Such methods were initiated in [77] and [69].
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8.1.3 Linear Combination of a Blind and a TS criterion

We will see that it is possible to build semi-blind algorithms by simply linearly combining a
training sequence based criterion and a blind criterion (which does not allow to incorporate
the knowledge of symbols as ML criteria do). All the difficulty consists then in finding the
right weights oy and 3. One solution would be to determine the weights that optimize the
semi—blind performance: an analytical solution is difficult to find and could necessitate a
computationally demanding search method. In some of the proposed semi-blind algorithms,
the weights take into account the number of data on which the training sequence based
criterion and the blind criterion are based. Other possibilities are user-defined weights based
on SNR conditions for example. These kinds of choices may appear however arbitrary and not
always appropriate. And, in fact, we may even wonder why the linear combination semi—blind
solution would be legitimate.

We propose to combine a blind and a training sequence based criterion by optimally
weighting the 2 criteria (when the blind criterion is based on least—squares). We treat exam-
ples where the optimal weighting matrix is approximated by a diagonal matrix. The resulting
criterion becomes then indeed a linear combination of the two criteria. Semi-blind SRM and
subspace fitting based criteria built that way will be proposed.

8.2 Semi-Blind AQML: a Semi-Blind Optimal Algorithm

Our purpose is to solve the semi—blind DML criterion:
min ||[Y — 7 (h)A||? = min ||Y — T (h)Ax — Tu(R)Aul)*. (8.1)
h,Ay h,Ay

The alternating minimization strategy already used to solve blind DML can be adapted to

semi-blind estimation:
(1) Initialization A(®):
(2) Iteration (i+ 1):
e Minimization w.r.t. A, h = ()

min [[¥ — TNAP? min |Y - Tic (BN A — Tor (W) Ay |2 (8.2)
U U
o~ ~ye ~ye -1 ~ye ~ye
= A = (T RO T )T T GO) (Y - Tk AR)  (83)
e Minimization w.r.t.h, A = Al mhin HY—'T(h)ﬁ(i-l_l)H2 < m}}n HY—T(h)g(H_I)HZ
6D (A(i—l—l)HA(i-I—l))_l Qi+ Hy (8.4)

A6+ ig constructed from Agﬂ) and from Ap.
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(3) Repeat 1 until (ﬁ(“'l), AUy ~ (ﬁ(i)7 h)y.

Semi-blind AQMTL inherits the advantages and disadvantages of its blind counterpart. We
can prove as in the blind case that at each iteration of semi—blind AQML, the cost function
decreases until a fixed point is reached; and again with good initialization, AQML converges
to the global minimum. In the case where the known symbols are dispersed, we can see how
the blind problem part looses its structure as 7i7(h) has no particular structure properties.

The AQML strategy can also be used to solve semi—blind DML with the Finite Alphabet
(FA) constraint in the input symbols: (8.3) is just followed by a decision step.
Semi-blind AQML and the FA-AQML are semi-blind optimal as described previously.

8.3 Three Suboptimal Algorithms based on PQML

In this section, we assume that the known symbols are grouped and for simplicity reasons that
they are located at the beginning of the burst. We present here three semi-blind algorithms
based on the PQML: similar algorithms could have been constructed based on DIQML also,
which we will not consider here as it does not perform as well as PQML.

8.3.1 PQML Principle for Semi—-Blind Estimation

The general semi-blind PQML strategy applies as follows: the gradient of the cost function
may be written as P(h)h+ S(h) where P(h) is ideally positive definite. At each iteration, we
consider P(h) and S(h) as constant, and h is the solution of a linear system, which is used

to reevaluate P(h) and S(h) to perform other iterations.

8.3.2 Splitting the Data

The output burst can be decomposed into 3 parts, see figure 8.1 (top):
1. The observations containing only known symbols.
2. The N — 1 overlap observations containing known and unknown symbols.
3. The observations containing only unknown symbols.
The proposed semi—blind criteria will consider a decomposition of the data into 2 parts, with

the overlap zone assimilated to the training part or the to the blind part of the semi-blind

criteria.
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Figure 8.1: Output Burst: split of the data for LS-PQML.

8.3.3 Least Squares-PQML (LS-PQML)
Split of the Data

In the first semi-blind approach, the overlap zone is assimilated to the blind part of the

semi-blind criterion. The data is split as ¥ = [Y%S Y%]T, see figure 8.1:

e Yrs="Trs(h)Ars+ Vs groups all the observations containing only known symbols:
the input symbols Arg are naturally modeled as known deterministic quantities.

e Yp = Tp(h)Ap + VB groups all the observations containing unknown symbols and
especially the overlap observations, where we do not exploit the knowledge of the sym-
bols, which will be treated as unknown. Some information is then lost. This loss of
information can be critical especially when the training sequence is very short, of less
than N symbols (see the identifiability section).

We apply the DML principle to:

. YTS ,TTS(h)ATS
e [ Y ] ”N([ Ta(l) Az

As Y7s and Y are decoupled in term of noise, the DML criterion for Y is the sum of the
DML criterion for Yrg and Y g:

min {[[Yrs = Trs(h) Ars||* + [|Y 5 = To(h) As|"} - (8.6)

, 031) (8.5)

This criterion can be optimized by alternating minimizations between h or Ag. We can also
solve w.r.t. Ag and substitute the solution to get the semi-blind DML criterion for h:

m}}n{HYTS—TTS(h)ATSH?-|-YgPTé{(hL)YB} . (8.7)
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In the following section, we minimize this criterion by semi-blind PQML and prove that it
is simply equivalent to optimizing the blind part of the criterion by PQML and the training
sequence part by Least-Squares.

Semi-blind PQML
The gradient of the cost function is:

Pr(h)h — Afg (Y15 — Arsh) =0

8.8
o [Pa(h) + Al Ars] h = A Y7 (8.8)

where: Trs(h)Ars = Arsh. Pg(h)h corresponds to the blind decomposition of equation
(7.19). Our quantities of interest are:

(8.9)

P(h) = Pe(h) + AllsArs = VEREYE — BEBg + Al Ars
S(h) = —AlYrs.

For finite M, ng;;yB — BEIBB is indefinite: in general, the presence of the training se-
quence term A?SATS allows P (h) to be positive definite. The generalized eigenvalue strategy
could then be avoided; we observed however a better behavior of the algorithm when using
it, the convergence speed particularly is higher. Our semi-blind criterion then becomes:

min {[|Y'rs — Trs(h) Azs||* + b {VEREYE — A BgBs} h} (8.10)

with the semi-definite positivity constraint of Pg(h). When introducing this generalized
eigenvalue, the first blind term of Pg(h) becomes positive semi-definite and the presence of
the second training sequence term allows P(h) to be positive. At a given iteration, h has for
expression:

h = (AllgArs + VEREYE — ABEBg) ™ AllsYrs (8.11)

where the different quantities are computed thanks to the previous iteration.

Identifiability

LS-PQML is a suboptimal way of solving the semi-blind problem and the semi-blind iden-
tifiability conditions about the number of known symbols necessary no longer hold exactly.
For irreducible channels, the previous criterion (8.10) needs at least N known symbols to
be well-defined: Pg(h) is indeed positive semi-definite with 1 singularity, with N known
symbols A Arg has rank 1, which is sufficient to allow P(h) to be positive definite. For a
reducible channel with N, — 1 zeros, asymptotically Pg(h) — X]]B;IREXB has N, singularities,
and N + N. known symbols are necessary to have a well-conditioned problem. Furthermore,
monochannels cannot be identified, because the blind criterion is not defined for monochan-
nels.
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8.3.4 Alternating Quadratic PQML (AQ-PQML)

Here, the overlap zone will be assimilated to the training part of the criterion. The data is
split as Y = [YEQ YEIT, see figure 8.2:

o Y g = Tag(h)Aug + Vag = T (h)Ars + T/, (h) Al + Vg groups all the observa-
tions containing the known symbols Arg and especially the overlap observations. The

unknown symbols in Y 4¢, Aj;, are considered as deterministic.

e Y = Tg(h)Auy + Vg groups all the observations containing only unknown symbols:
all the input symbols are considered as deterministic unknown quantities

DML is applied to [YEQ YIT.

Lmin, {1Y7s = TagAagl + ¥ 5 = T (h) As]"} (8.12)
BAY

Semi—blind AQML proceeds as:
1. Initialization A(®)
2. lteration (i41):

o AQML on Y 4¢, initialized by R,
Criterion min ||Y ag—Tag(h)Aagl)* = min Y a0 —Tic (h) Aps—T{ (k) Ay||? solved
h, At h,A
by alternating minimization on Aj; and h We keep only the estimate of Aj;, to

~ ~ T
form the new estimate of A4q: A(fgl) = [A’g-l_l) A%] .

e Solve the semi-blind criterion to get plt1);

We can minimize alternatively between Ap and h starting from h() based on the

criterion :

min (1Y ag=Tao (MASEIP+HIY 5 - T(h) Al (5.13)

We can also solve the PQML based criterion:

min (Y aq-Tag(h)AGS P07 (VERE (D) Vs -ABE () B (h)) 1}
(8.14)



140 Semi-Blind Methods based on Deterministic Maximum-—Likelihood Chapter 8
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Figure 8.2: Output Burst: split of the data for AQ-PQML and PQML-LS.

8.3.5 Weighted—Least-Squares—=PQML (WLS-PQML)
Split of the Data

WLS-PQML is based on the same decomposition as AQ-PQML. It mixes a deterministic and
a Gaussian point of view: the unknown symbols Ay, in the overlap zone are modeled as i.i.d.

Gaussian random variables of mean 0 and variance o2. We denote Yy s = Twrs(h)Awrs+
Vwrs = ,T]i(h)ATS + T[}(h)A/U 4+ Vwrs. GML is applied to Ywrs and DML to Y g:

yvo | Ywes | (| TeWArs | | Cripsvirs O
Yp Te(h)Ap 0 ol | )" (8.15)

CYWLSYWLS = UZT[}(h)T[/J(h) + 03]

The mixed ML criterion is:

min {ln det Cyyy ) oy s + (YWLS - TIQ’(h)ATS)H Cy

Y] Y]
h,o2 wLstwrLs

(Ywrs — Ti-(h)Ars)

1 2
indet ol + 4 |[YE - To(h) g } .
v
(8.16)
Again, we optimize this criterion by semi-blind PQML, considering o2 as known: in
practice, it will be estimated apart. We prove that it is simply equivalent to solving the
blind part of the criterion in the PQML way and the training sequence part by weighted

least-squares, i.e. we neglect the term in det and in the second term, consider Cy,,, .vyy, s a8
constant (computed from the previous iteration).



8.3. Three Suboptimal Algorithms based on PQML 141

Semi-Blind PQML

If we apply the PQML strategy to the training part of the cost function:

Indet Cyyy; oy, s + (YWLS - T[i’(h)ATS)H Cy,y

YwrsYwers

(Ywrs — Ti (h)Ars) (8.17)

we can prove that it can be approximated by the optimally WLS criterion. The mixed
criterion becomes:

. 1
mhm {HYWLS — TWLS(h)AWLSHZ«;1 + _QngTé{(hJ—)YB} . (8.18)

WLsYwLs gy

The PQML quantities are:

1 -
S(h) = _AI;IVLSC};V%/LSYWLSYWLS

with T/ (h)Ars = Awrsh. At each iteration, the solution for h is:

1 ) -1 i
h = (; (ngEyB - /\BEIBB) + A{/;IVLSCYV%/LSYWLSAWLS) A{/JVLSCYV%/LSYWLSYWLS .
(8.20)

where A is the minimal generalized eigenvalue of ng;;yB and BgBB.
Now, alternating minimizations between h and Ap can be done on the criterion:

min {HYWLS — TWLS(h)AWLSHZ’—l
Ap YwrsYwrs

1
—|-;HYB—TB(h)ABH?} . (8.21)

AQ-PQML and WLS-PQML outperforms LS-PQML because the information coming
from the known symbols in the overlap zone is used.

Identifiability

For an irreducible channel, AQ-PQML and WLS-PQML are defined with only 1 known
symbol. For a reducible channel with N, — 1 zeros, N. known symbols are sufficient to have

a well-conditioned problem.

8.3.6 Performance
The semi-blind performance can be seen from 2 points of view.

e Asymptotic number of unknown and known symbols.

In this case, the overlap received data containing known and unknown symbols at

the same time can be neglected: LS-PQML, WLS-PQML and AQ-PQML becomes



142 Semi-Blind Methods based on Deterministic Maximum-—Likelihood Chapter 8

equivalent and reach the semi—blind DML performance. Assume we have a consistent
estimate of the channel, an iteration gives the global minimizer (results that can be
obtained by the same asymptotic reasonings as for the blind PQML in Chapter 7).

e Asymptotic number of unknown symbols, finite number of known symbols.

We prove in [78] that the performance expressions we have in the previous asymptotic
conditions are also valid when the number of known symbols is small. This fact is
verified by simulations.

8.4 Initialization of the Semi-Blind ML Algorithms

The PQML based semi-blind algorithms needs an initialization. A natural initialization is
by a semi-blind algorithm based on SRM, which will not need any initialization (we will see

that we will need in fact only an estimate of the norm of the channel).

8.4.1 Semi-Blind SRM as a Linear Combination of Blind SRM and TS Criterion

Semi-Blind SRM illustrates the fact that it may be difficult to build a semi-blind criterion
as a linear combination of a blind and a TS criterion. Indeed, consider the following cost

function:

HYTS_,TTS(h)ATSHQ‘FOéthgth- (8.22)

(used the decomposition of figure 8.1). The blind SRM criterion min,h? YT Yh gives unbi-
ased estimates only under the constant norm constraint for the channel. As the semi—blind
criterion is optimized without constraints, the blind SRM part gives biased estimates which
renders the performance of the semi-blind algorithm poor.

For the criterion to be unbiased, the term ygyB needs to be denoised. We remove
Amm(ygyB) (the minimum eigenvalue of y};fyB), the resulting matrix ygyB —Min (ygyB)I
has exactly one singularity.

Once the criterion is denoised, the choice for the constant « remains unsolved. A way
to determine this factor would be to minimize the asymptotic performance of the semi—blind
SRM channel estimate (computed with My and My considered as infinite). In our case, it
is impossible analytically, and search techniques would represent an increase in complexity.

In the next section, we construct semi-blind SRM as an approximation of DIQML: the
blind SRM part will be automatically denoised.
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8.4.2 Semi-Blind SRM as an Approximation of DIQML

We know that the semi—blind ML criterion gives the optimal weights between the blind and
training sequence part:

|Yrs — Trs(h) Ars||* + B YERT (h) Vsh . (8.23)

We neglect the off-diagonal terms of R(h): R(h) = D(h). For m = 2, the diagonal is
constant with elements equal to ||A[|?. For m > 2, the diagonal contains the squared norm
of each set of 2 subchannels. For example, for m = 3, the first three diagonal elements are:
IH1]|% + (|H2]|l%, [|H2]|% + [|Hs]|%, |[H1]l% + ||Hs||3 and are repeated along the diagonal M
times.

With this approximation, (8.23) becomes:

Y 1s — Trs(h)Ars||* + REYHDY (h)Ysh (8.24)

and we optimize it in the DIQML way in order to denoise it; D(h) = D is considered as
constant. The semi—blind criterion becomes:

min {HYTS — Trs(h)Ars||® + bt (ygp—lyB - B\gpu) h} (8.25)

where W'D, h = tr {TH (h+)D~1T (ht)}, and ;2 will be the generalized eigenvalue of YED~1Yp
and D,.

The norm of the different subchannels, used to compute D, can be recovered by an
estimate of the denoised second-order moment of a data sample r,, (0) = e2H H™: #,,(0) —
52] = Zf\ial y(k)y" (k) — ;2]. As will be seen in the simulations, at low SNR, the weight on
the blind part should be in fact lower than the true value of D, D°. So instead of estimating
the energy of each channel by the denoised ryy (0), we determine it by the noisy one: the
resulting D will be lower than D°.

In general, the different channels will }g\gthe same energy, so that D can be considered as
a constant diagonal matrix with element ||2(|2%. When m = 2, this is not an approximation.
With D as constant diagonal, ;2 is the minimal eigenvalue of y};fyB, and the semi-blind
criterion becomes:

2 1
mhin {HYTS — Trs(h) Ars|* + EW M (VE VB = Mnin (VB YB)) h} : (8.26)

An alternative to this semi-blind SRM criterion, is to use the decomposition of figure 8.6 and
use WLS or AQML to solve its training sequence part as for PQML. We will call criterion
(8.26) LS-SRM and the alternatives WLS-SRM and AQ-SRM.

To make a link with section 8.6, we can note that (8.23) can be seen as an optimally
weighted combination of blind SRM and TS based criterion. The semi—blind SRM is deduced
by treating correctly the IQML strategy (the denoising) and approximating the weighting.
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8.5 Simulations

We illustrate here by simulations the behavior of the different semi-blind algorithms. Most
of the simulations are based on 1000 Monte—Carlo runs of noise and the input symbols, as
well as of the channels. We tested channels with randomly chosen coeflicients, and GSM
channels according to two typical GSM propagation environments: Typical Urban (TU) and
Hilly Terrain (HI) as specified in the ETSI standard [79].

8.5.1 Simulations for semi-blind SRM

Non Weighted, Non Denoised Semi-Blind SRM In figure 8.5, we see the effect of not
denoising the semi-blind SRM criterion: the NMSE is plotted w.r.t. o in equation (8.22).
For a = 1 (which corresponds to a simple concatenation of the blind and the TS criterion
equations), performance is worse than with TS channel estimation. We furthermore notice
that this incorrectly built semi—blind criterion is very sensitive to the value of «.

Weighted and Denoised Semi—Blind SRM In figure 8.6, we plot the NMSE w.r.t. «||H||*.
At relatively high SNRs, we can see that the optimal « is closed to 1/||H||?. At lower SNRs,
however, the optimal « is lower than 1/||H||?. We call o, the « in (8.26) obtained from the
noisy received signal covariance matrix and a4, the one obtained from the denoised covariance
matrix. We show the case of 7 known symbols for which TS estimation is not defined. From
this simulations, we can conclude that the approximation of the weighting matrix is valid;

furthermore, we see that the criterion is relatively insensitive to the value of a.

Underestimation of the Channel Order In figure 8.7, we see the effect of underestimating
the channel order and how semi-blind estimation allows to overcome this problem which
blind deterministic methods cannot do.

Channel with a Common Zero In figure 8.8, a channel with a common zero is tested.

Channel with more than 2 Subchannels In Figure 8.9, the case of a channel with 6 sub-
channels is shown. Semi-blind SRM as in (8.25) and as in (8.26) is tested. For subchannels
with different energies, (8.25) gives slightly better results than (8.26), but the gain is not
significant. So, approximation (8.26), for m > 2, is valid.

Semi-Blind SRM vs SNR At last, in figure 8.11 and 8.12, we plot LS-SRM, WLS-SRM and
AQ-SRM and compare it to TS estimation as well as blind estimation (with the scale factor
adjusted using the training sequence). Two kinds of channels are tested: random channels
and GSM channels (model TU). Ten Monte-Carlo realizations of the channels are done and

for each realization, 100 realizations of the noise and the input symbols. We see the gain
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brought by semi-blind techniques w.r.t. to blind and TS methods. Blind SRM performs
particularly poorly: this is due to the fact that among all the realizations of the channel
several ones completely failed (we did not reject the worst realizations), but this did not
happen for semi-blind SRM. WLS-SRM appears as the best method (especially for the GSM
channels). Semi-blind performance is very closed to the optimal theoretical performance of
semi-blind ML, except for difficult experimental conditions: GSM channels and 6 known
symbols (for which TS estimation is not defined).

8.5.2 Simulations for Semi-Blind PQML

Simulations for the PQML based semi-blind algorithms are presented in figures 8.13-8.18 for
severe experimental conditions. The semi-blind algorithms are compared to the semi-blind
FA method (see section 8.2).

We show the NMSE given by all the semi-blind algorithms in (8.13) for a randomly
chosen channel (N =4, m = 2) and 1000 Monte-Carlo runs of the noise and input symbols;
7 symbols are known (which is the limit for TS identifiability). The PQML based semi-blind
criterion and AQML are initialized either by TS or LS-SRM. The semi-blind algorithms
improve dramatically TS performance and give better results that blind PQML. LS-SRM
gives performance very closed to the optimal ML performance so that semi-blind PQML
cannot really bring a significant improvement. The FA algorithm outperforms the semi-
blind criteria, but we notice a certain sensitivity to the initialization at 5dB.

To illustrate the lack of robustness of blind methods, we show in figure 8.14 simulations
with Monte-Carlo runs on random channels also: the particularly poor performance of blind
estimation can be noticed.

GSM channels are also tested. For TU channels (N = 4, m = 2), 7 known symbols
and M = 100 (figure 8.15), semi-blind PQML becomes more sensitive to bad experimental
conditions, especially at 5dB. For a very short burst of M = 50, the semi-blind algorithms
performs as well as the FA method at 5dB and 10dB. This remark is also valid for the
experiments at 5 known symbols (figure 8.17) for which TS estimation does not work. HI
channels (N =7, m = 2) are at last tested (figure 8.18) for which again, except at 20dB, FA
methods do not improve significantly semi-blind methods.

8.5.3 Conclusions Drawn from the Simulations

From the simulations, we can draw the following important conclusions:

e The proposed semi-blind methods outperforms the TS based methods but also blind
methods which lack robustness to poor experimental conditions.

e Semi-blind methods are very good candidates to initialize the FA algorithm, especially
when the training sequence is too short to estimate the channel. For severe experimental
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conditions, it is even more prudent to use semi—blind criteria because FA methods tend
to converge to local minima.

e Among all the criteria proposed, the best one appears to be WLS-PQML.

e Semi-Blind SRM, a particularly simple semi-blind algorithm, appears also as very
attractive as its performance is closed to WLS-PQML.

8.6 Semi-Blind Criteria as a Combination of a Blind and a TS
Based Criteria

8.6.1 Linear Combination

Some algorithms have been proposed that linearly combine a TS and a blind criteria: in [80] a
semi-blind criterion is proposed based on the (non—weighted) Subspace Fitting (SF) criterion;
in [81, 82], another one is based on the blind CMA criterion.

Finding the right weights is not an easy task. Take the example of SF based semi-blind
cost function:

o [Pty o TE P 4 1Y 75 = Trs (W) Arsl o h7S7S bt | Vs = Trs(h) Ars|”.
’ (8.27)
We adopt here the decomposition of figure 8.1; L is the size of the convolution matrix con-
sidered. In [80], o was chosen equal to the number of data on which the blind criterion is
based, i.e. M.

In figures 8.3, we plot the NMSE of channel estimation w.r.t. a for different size L, for
20dB, 20 known symbols and 10dB, 10 known symbols. For I = N, the semi-blind criterion
is relatively insensitive to the value of a. For L larger than N, however, it is visibly very
sensitive to its value, especially for a small SNR and small number of known symbols. The
choice o« = My can give performance worse than that for training sequence based estimation.
These simulations suggest that the linearly combined semi-blind algorithm is sensitive to the
dimension of the noise subspace which varies when L varies.

As explained for the semi-blind SRM example, trying to determine the value of a that
minimizes the (theoretical) semi-blind performance expression is not a viable solution, espe-
cially for computational reasons.

8.6.2 Weighted Combination

One solution to build a criteria combining a blind and a TS criteria is to optimally weight the
2 criteria. The semi-blind SRM criterion is built this way, and the proposed simplification,
which appears in a linear combination form, is based on the weighting matrix of the blind
criterion.
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Figure 8.3: Semi-blind subspace fitting built as a linear combination of blind SF and training
sequence based criteria.

Although we did not test it yet (for lack of time), the proper semi-blind SF cost function
would be :

1
min {hHsHW+Sh + 1 Yrs - TTS(h)ATSH?} (8.28)

where W = E (S hhHSH) is the optimal weighting matrix, whose expression can be found
1
n [83]. W is of the form W = U (03W<°> + UﬁW(l)) and is computed thanks to a con-

sistent channel estimate, as for the blind WSF criterion. W gives naturally the term My as
component of the weighting of blind SF part.

Considering that the weighting matrix contains the information about the dimension A
. . o 1 C
of the noise subspace in the criterion, we propose to replace W by M—ngNL the semi-blind

SF criterion is then

N
Let us specify that this is just a first try, and that we will be looking for a better justification

) M,
min {—U WSHSh +||Y s — TTS(h)ATSH?} : (8.29)

(and maybe improvement) for this semi-blind criterion. In fact, this weighting turns out to
give satisfactory results, as illustrated in figure 8.4 (Semi-blind SF (1) is the criterion (8.27)
and Semi-blind SF (2) is the criterion (8.29)), with « as coefficient of the blind part.

8.7 Conclusion

In this chapter we have derived semi-blind algorithms all based on DML. We have seen
through simulations that semi-blind algorithms perform better than their blind counterpart,
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Semi-Blind Subspace Fitting w.r.t.a = M=200 - 20 known symbols - 20 dB Semi-Blind Subspace Fitting w.r.t.a = M=200 - 10 known symbols - 10 dB
T T

10°

10

o o (l:MU
--- Semi-blind SF (1) - --- Semi-blind SF (1)
——  Semi-blind SF (2) ——  Semi-blind SF (2)

GZMU

Figure 8.4: Semi-blind subspace fitting built as a linear combination of blind SF and training
sequence based criteria.

especially for ill-conditioned channels like GSM channels. We have seen that semi-blind
algorithms perform well when TS methods cannot work because the training sequence is too
short. In this case they appear as particularly appropriate to initialize methods that exploit
the finite alphabet of the input symbols. The best method appears to be WLS-PQML, based
on optimally weighted least squares for the TS part of the criterion. Being able to take this
overlap observations was one the challenges of semi-blind for it to work very well with few
known symbols, i.e. fewer symbols that what is required to estimate the channel by training
sequence, and also bad experimental conditions. The example of semi-blind SRM and SF
have shown us that semi—blind criteria combining a certain blind criterion and a TS criterion
are not trivial to construct and we have proposed a way to manage to proceed to a successful
combination.
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A Simulations for the Semi-Blind Algorithms
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Figure 8.5: Performance of the non—weighted, non—denoised Semi-Blind SRM (SB-SRM)
w.r.t the scalar a for a random channel (left) and a GSM channel (right). For aw = 1, semi-
blind SRM performs worse than TS estimation (o = 0).
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Figure 8.6: Performance of the weighted and denoised SRM with right channel order: semi-
blind SRM is quite insensitive to the value of a (around 1) especially at high SNR.
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Figure 8.7: Channel Order Overestimation: performance of semi-blind SRM w.r.t. the

scalar a; over= N’ — N, where N’ is the overestimated channel length.
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Figure 8.9: Six Subchannels with same energy: performance of semi-blind SRM w.r.t
the scalar «.

o Semi-Blind SRM at 5dB - 6 subchannels with different energy » Semi-Blind SRM at 10dB - 6 subchannels with different energy
10 T T T T T 10 T T T T T
SB-SRM with a SB-SRM with a,
_ SB-SRM with Dn __ SB-SRM with Dn
* Training sequence * Training sequence
E
W
210
z
S
X 10 known symbols
I N e 10 known symbols
20 known symbols
20 known symbols
107 I I I I I 10° I I I I I
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Value of a [H]? Value of a [H]?

Figure 8.10: Six Subchannels with different energy: performance of w.r.t the scalar «
w.r.t the scalar «.
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Figure 8.11: Performance of semi—blind SRM w.r.t the SNR.
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Figure 8.14: Semi-Blind Algorithms for Random Channels of length 5 and a Burst Length of
100: 1000 Monte—Carlo Runs of the channels, the input symbols and noise; 9 known symbols.
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Figure 8.15: Semi-Blind Algorithms for GSM Channel (“Typically Urban”) of length 4 and
a Burst Length of 100: 1000 Monte—Carlo Runs of the channels, the input symbols and noise;
7 known symbols.



A. Simulations for the Semi—Blind Algorithms

159

10 T T T T
—&—  WLS-PQML
—e— FA
Ts
%0
210°
z
SB-5RM
R S——
WLSEPQML
10 I I I I
0 1 2 3 4
Number of iterations
o Semi-Blind Algorithms — TU Channels - 10dB - M=50 - 7 known symbols
10

NMSE

Semi-Blind Algorithms — TU Channels - 5dB — M=50 - 7 known symbols

s

—&—  WLS-PQML
—e— FA

2
Number of iterations

Semi-Blind Algorithms - TU Channels - 20dB - M=50 - 7 known symbols
T T T T

—&—  WLS-PQML
—e— FA

1 2 3 4
Number of iterations

Figure 8.16: Semi-Blind Algorithms for GSM Channel (“Typically Urban”) of length 4 and
a Burst Length of 50: 1000 Monte—Carlo Runs of the channels, the input symbols and noise;

7 known symbols.
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Figure 8.17: Semi-Blind Algorithms for GSM Channels (“Typically Urban”) of length 4 and
a Burst Length of 100 and 50: 1000 Monte—Carlo Runs of the channels, the input symbols
and noise; 5 known symbols.
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Figure 8.18: Semi-Blind Algorithms for GSM Channels (“Hilly Terrain” (HI)) of length 7 and
a Burst Length of 100 and 50: 1000 Monte—Carlo Runs of the channels, the input symbols

and noise; 10 known symbols.
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Chapter 9

BLIND AND SEMI-BLIND
GAUSSIAN
MAXIMUM-LIKELIHOOD

In this chapter, we show that Gaussian ML (GML) can be seen as a form
of covariance matching method and compare its performance to the classical
covariance matching method based on weighted least-squares: both methods are
equivalent for an asymptotic number of data and asymptotic size of covariance
matriz. We use the scoring algorithm to solve GML and compare it to the blind
and semi—blind deterministic methods of the previous chapter. Furthermore,
we derive two fast algorithms which are approximations of the scoring method
and the steepest descent algorithm, based on frequency domain approximation
of the gradient of GML and the FIM. As for semi-blind deterministic methods,
we give an example, based on covariance matching, to suggest how Gaussian
semi-blind criteria could be built.
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9.1 Comparison of GML with the Covariance Matching Method

We compare GML to the Optimally weighted Covariance Matching (OCM) method [37]
which is commonly said to be the most powerful method based on the second—order moments
of the data. In DOA estimation, it is well-known that the equivalent of OCM and GML
have asymptotically the same performance. Here, we are in a temporal context which differ
from the DOA spatial context, and the performance equivalence problem is somewhat more
difficult to handle. A noticeable difference between the DOA problem and our problem is
that the optimal performance of OCM is attained when the length of the correlation sequence

considered is infinite. Only the case of a complex channel will be treated in this section.

9.1.1 GML as a Covariance Matching Method

By the law of large numbers, the GML criterion:

. r&u; {In(det Cyy (8)) +tr {Cy1(O)YYH 1) (9.1)
is equivalent to:
. r&u; {In(det Cyy (8)) + tr {Cy3 (O)E (YYH)} } . (9.2)

Then, asymptotically, Y Y can be considered in the criterion as an estimate of Cyy: CA'YY =
YY*H. The GML criterion can then also be written as:

min, {Incet Cry (6)) + 15 {C7L (0)Cvy } . 03)

Equation (9.3) looks then like a criterion matching Cyy () to its estimate Cyy = YYH,

and then can be seen as a form of covariance matching.

9.1.2 Covariance Matching Method

The covariance matching method proceeds to a weighted least-squares fit between:

e the model of the second order statistics of the received signal:

R(8) = [ryy(0), ryy(1), -y ryy(L —1)]

Ty (2 Z olh(k)YRT (k + @) + 1021 (9.4)
where
L is the length of the correlation sequence considered
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e their sample estimate built from the data:

7%: [f‘yy(o)v f‘yy(l)v T ﬁyy(L— 1)]

Fyy (i) = Ml_ i zk:y(k)yH(k +1) (9.5)

y(k) is the output of the multichannel at time k&

where

M is the number of multichannel outputs available

As for all Gaussian methods, the parameter estimate is § = [hT O'E]T. Let rr(6) and 7p
be two vectors containing the real and imaginary parts of the elements of R(6) and R resp.
(they contain only the real part of r,,(0) which is real and of r,,(0)). The covariance matrix
criterion may be written as:

min (7 — ra(0))" Wh (7r = rr(6)) (9.6)

where Wr is a weighting matrix. The optimal weighting matrix is:

-1

Wi = (Blir = rr(6°)])[Pn - ra(6°)]7) . (9.7)

f° is the true parameter value: in practice, #° is replaced by a consistent estimate, which
does not change the asymptotic performance of the criterion.

Which elements should be considered in 7r(f) = fr — rr(#)? The authors of [37, 38]
consider only the (non-redundant) non zero coefficients and claim that they are sufficient to
get the optimal performance. This is not true however as stated in [39]. The optimal perfor-
mance is obtained when the number of covariance lags involved tends to co. Asymptotically,
OCM corresponds then to the best method exploiting the second order moments of the data
and is equivalent, from a performance point of view, to GML.

0.1.3 Alternative Formulation

In order to give a closed form and simple expression for W as well as for the performance
of the OCM, it is convenient to express the covariance matching method as a fit between the
model of the covariance matrix of the received signal:

Rr(8) = o T (W) TL! (h) + o1 (9-8)
and its sample estimate:
M
~ 1
Rr= S Vi Y (k) (9.9



166 Blind and Semi-blind Gaussian Maximum-Likelihood Chapter 9

Let the vectors r(#) and 7 be defined as:

r(0) = vec{Rz(8)} and 7= vec{R}. (9.10)
OCM may be written as:
min (7 — r(@)T Wt (¢ — r(8)) . (9.11)

This criterion can be proved to be equivalent to the matching criterion on the real and
imaginary parts of r(#), basically because r(#) contains one element and its conjugate. The
optimal weighting matrix is singular because r(6) contains redundant elements: the choice of
the pseudo—inverse of the weighting matrix leads to the best performance.

Formulation (9.11) is also equivalent to matching only the non redundant elements of (),
i.e. the elements of the first block column and block line of the matrices Ry (#): vec{r,},
vec{R:}, vec{R1} as shown in figure 9.1. Note that this is true because we weight the
criterion optimally: for a non—-weighted formulation, this is not valid.

To

Ry

Rr(0) =

Figure 9.1: Elements selected in the covariance matrix to build the CM criterion.

The performance of the optimally weighted covariance matching method are:

Csi. = [(ag;(j)) Wwo+ (%}@)T] ' (9.12)

where the performance is computed under our usual phase constraint (4.7). In appendix A, we

study in more detail the performance of OCM, and especially the expression for the optimal
weighting matrix which is:

L+N-1
We — % > RI(u) @ Rp(—u) — vec {aZT (h)TH (h)} vec™ {a2T ()T (h)}
u=—(L+N-1)

(9.13)
where Rp(u) = E(Y(k)YY (k+u)).
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9.1.4 Simplified Covariance Matching Criterion

Consider the following simplification of the weighting matrix:

1
M

where we keep only the central term of the sum in (9.13). This weighting matrix corresponds

4% (R © Ryp] (9.14)

to the expression of the optimal weighting matrix in DOA. The weighted CM criterion be-

comes:

7 (9) {R;T ® R;l} HO) o to {1%2(0)3;11’%2(0)3;1} (9.15)

which is a well-known form of OCM in DOA. We will see in simulations that this weighted
CM criterion has performance very close to the optimal performance; its performance is:

o[ () | (oo (52

(9.16)
(e ()]

This form of covariance matching offers interesting perspectives as it can be solved by the

scoring method in a less complex way than GML (see section 9.3).

9.1.5 Numerical Evaluations

A proof that GML and OCM have the same asymptotic performance (using frequency domain
expressions for the error covariance matrices) is for the moment still under investigation. And
we will just illustrate the equivalence in performance by numerical evaluations.

In figure 9.2 (left), we show the performance of GML and OCM for channel estimation
only (o2 is assumed known), i.e. ||h% — hg||?/||h%]||%, when the sample matrix is based on M
and M — L data samples (the true performance of OCM is in fact between the two curves);
as the burst length is of 100, we have not reach completely asymptotic conditions, which
explains why the curves are distinct. The multichannel has 2 subchannels of length 4: when
the noise is known, CM (and the Gaussian methods in general) is defined for a burst length of
at least M for a multichannel and N for a monochannel. Here M = N —1 = 3. In this figure,
it can be noticed that the performance of OCM gets better as more and more correlation
coeflicients are included. A quasi steady—state is rapidly attained, but considering only the
N first moments is not optimal.

In figure 9.2 (right), we make a comparison between CM with the optimal weighting, the
approximated weighting in (9.14), and the non—weighted CM (the form (1) is based on the
non-redundant elements of Ry (#) and the form (2) on all the elements). It can be noticed
that the approximated weighting gives performance very closed to OCM. There is however a

certain gap between non—weighted CM and OCM.
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Comparison GML / Optimally Weighted Covariance Matching (OCM) - Errors on Channel Covariance Matching (OCM) with different weighting Matrices — Errors on Channel
0.035 T T T T T

—+—  OCM based on M-L data —#—  CM with optimal weighting
--- OCM based on M data 0.05 —e—  CM with approximated weighting | -|
—  GML 1 —=—  Non-weighted CM (1)

0.03F Non-weighted CM (2)

0.025 -

NMSE

0.015F

7 s ; 7 s s W 0% 7 s ; 7 s s 0
Number of Moments Considered in OCM (=L) Number of Moments Considered in OCM (=L)

Figure 9.2: Comparison between GML and the optimally weighted covariance matching

method w.r.t. the number of correlation coefficients considered in the OCM method (left)

and comparison between CM methods differently weighted (right).

9.2 Method of Scoring

The purpose of this section is to compare by simulations the performance of blind, semi—blind
DML and GML methods, and see the benefit of GML methods.

We propose to solve the GML criterion by the method of scoring. This method consists in
an approximation of the Newton-Raphson algorithm which finds an estimate 01 at iteration
i from 801 the estimate at iteration i—1, as:

o) — gli-1) _ [ J (W@)H

96~ \ 09~ 99~ (9.17)

-1
dF(0)
ali—1) gi—1)

where F(0) is the cost function and @ contains the parameters to estimate. The method of
scoring approximates the Hessian by its expected value, which is here the Gaussian Fisher
Information Matrix (FIM). This approximation is justified by the law of large numbers as the
number of data is generally large. In the semi-blind case, the number of known symbols being
finite, this approximation is not valid anymore but it will turn out to work very well in our
simulations. We did not choose to apply directly the Newton method: indeed, the Hessian
contains four terms one of which is the opposite of the FIM, so it would have represented an
increase in complexity.

We detail only the case of a complex channel. In the blind case, the FIM is singular,
so formula (9.17) cannot be applied directly: we take the Moore-Penrose pseudo-inverse of
the FIM. At iteration (i), it corresponds to the constraint ﬂg_l)Tﬁg) = 0, where ﬁg) is the
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Method of Scoring for a GSM channel at 7dB
T T

T
—e—  Blind GML by Scoring
——  GML Performance

Number of Iterations

Figure 9.3: Blind GML optimized by the method of Scoring initialized by Blind PQML.

channel estimate at iteration ¢. When the algorithm converges correctly, asymptotically, this
constraint is equivalent to our usual constraint hqs; hr =0 (see 4.29).

The scoring algorithm is applied to the channel only, the noise variance is estimated apart:
in the simulations, we estimate it by the SRM method (see Chapter 7, section 7.5.2). As
pointed out in Chapter 5, at high SNR, the noise variance estimation is asymptotically de-
coupled from the channel estimation: at 10dB, this property is still verified, so the estimation
quality of o2 is not really of importance.

In figure 9.3, we show the NMSE of the blind scoring algorithm initiated by blind PQML
for a randomly chosen channel of length 4 and with 3 subchannels. The NMSE is averaged
over 50 noise and input symbol realizations. Blind PQML gives an estimate of the channel
up to a scale factor: in our simulations, we adjust the norm of the channel based on the
covariance of a received signal sample and the phase factor by constraint (4.7). We notice
the improvement brought by GML and performance closed to the theoretical blind GML
performance.

In the course of this work, we became aware of [64],[84] in which a semi-blind Gaussian
ML method and corresponding CRBs have been studied. The modeling of the training
sequence information in [64] is inappropriate though: instead of the training sequence, the
information considered is the training sequence times an unknown zero-mean unit-variance
normal variable.
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9.3 Method of Scoring for Covariance Matching

Element (¢, j) of the expected value of the Hessian of the cost function in (9.15) is:

IRL(0) ,_, (ORL(ONT _,
2tr{ on, R; 0, R; (9.18)
which can also be expressed thanks to the quantities:
ORL(0) orL(0)\ "
N L 1 L -1
P@@(l,])—tr 80;‘ RL ( 80}‘ ) RL (9.19)
o JORL(O) i [ORL() | ,_y
7799*(27])—‘51’{ o0 Ry 06 R 6. (9.20)

The expected value of the Hessian is then 2 times the FIM. In the scoring algorithm, the
difference with GML is that the FIM is of reduced size I and that iterations are not done on
each quantity (the matrix Ry, is the sample covariance matrix).

Furthermore, the gradient w.r.t. 6* is:

—2tr { 0RL(6) R;%}(@)R;l} = —2tr {R;laRLw) } + 2tr {R;laRLw) Rle(O)} :

087 087 087
(9.21)
The gradient of the GML cost function w.r.t. §* is:
o {R]—Wl(e) aRafg*(e)} —tr {R;j(&)%R;j(@)YYH} . (9.22)

So we see that the gradient of CM is also related to the gradient of GML in which YY#
plays the role of R(#). We have not tested yet the scoring method on this form of CM.

9.4 Semi-Blind GML: Suboptimal Approaches

We consider here the case of grouped known symbols and as for DML, we determine subop-
timal semi-blind GML criteria that keep the blind problem structure. Again, we consider
2 ways of splitting the data. The splitting is however not the same as for DML, where 2
observation vectors are uncorrelated if the corresponding noise vectors are uncorrelated. For
GML, 2 observation vectors are uncorrelated if the corresponding noise and input symbol
vectors are uncorrelated.
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9.4.1 Least-Squared GML (LS-GML)

For Least-Squared GML (LS-GML), a proper way of splitting the data would be the follow-

ing, as indicated in figure 9.4:
e Yrs="Trs(h)Ars+ Vs groups all the observations containing only known symbols.

e Yp="7p(h)Ap + Vi groups all the observations containing only unknown symbols.

) (9.23)

: 1 =
min { U_3HYTS = Trs(h)Ars||* + Indet Cy,y, + YBCy )y, Y5 } ‘ (9.24)

2
h,o2

Semi-blind GML is applied to the vector:

Y Trs(h)A
[YTBS]NN([ TSO TS

ol 0
10 Te(W)TE(h) + okl

2

- 1s assumed known):

to give the semi-blind criterion (o

The overlap zone (figure 9.4) containing at the same time known and unknown symbols is
ignored in this first decomposition. We also tested criterion (9.24) when Y p is replaced by
Y'; which contains Y g and the overlap zone, and although the correlations between Y rg
and Y g are neglected, this extended LS-GML criterion gives better performance than the

LS-GML criterion based on the 2 uncorrelated observation vectors.

Unknown
Known +
Symbols Known Unknown Symbols
Only Symbols Only
overl
Zone”
Known Symbols Unknown Symbols
Yrs Yp
e e >

Figure 9.4: Output Burst: split of the data for LS—-GML.



172 Blind and Semi-blind Gaussian Maximum-Likelihood Chapter 9

9.4.2 WLS-GML

An alternative splitting is as follows (figure 9.5):

e Ywrs =Twrs(h)Awrs + Vwers contains Y g and the overlap zone.

e Y = Tp(h)Ap + Vi groups all the observations containing only unknown symbols
except the unknown symbols of the overlap zone

Unknown
Known +
Symbols Known Unknown Symbols
Only Symbols Only

overl
verlap U

Known and Unknown
Symbols Unknown Symbols

Ywrs Y

Figure 9.5: Output Burst: split of the data for WLS-GML.

Semi-blind GML is applied to the vector:

Ywrs Ti-(h)Ars TH(R)T'H(R) + 021 0
[ v, NN([ K X 7[ U U0 T T () 1 021 ) . (9.25)

As for LS-PQML, the GML part applied to Yy s is solved by weighted Least—Squares:

min (¥ v = Tie (1) A% T Indet Cyyy, + YHCTY, Vi (9.26)

e YwrsYwrs

Again, observations samples are ignored in this formulation. When Y'p is extended to Y5
(see figure 9.5) and correlations between input symbols are ignored, the resulting WLS-GML
gives better performance. An AQ-GML could also be built here.

9.5 Simulations for Semi—-Blind GML

In figure 9.6, performance of optimal and suboptimal semi-blind GML initialized by WLS-
PQML are presented for an SNR of 10dB. We show the NMSE for the channel averaged over
50 Monte-Carlo runs of the noise and the input symbols. We tested:
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1. the optimal scoring (called semi-blind scoring in the figures),

2. the extended WLS-GML based on Y5 (figure 9.4).

3. the extended LS-GML based on Y5 (figure 9.5).

4. LS-GML based on uncorrelated vectors (ULS-GML in the curves).

For a randomly chosen channel (m = 3, N = 4), we see that GML does not offer much
improvement. For a GSM channel (TU model), however, an improvement is more visible.
We also tested a channel with a common zero: we also have an improvement with a slight
anomaly at the first iteration. Furthermore, WLS-GML appears to be the best suboptimal
semi-blind GML method and the extended versions appear better.

9.6 Two fast Solutions to Solve Blind GML

In this section, we shall focus on fast solutions to solve GML also presented in [85]. We
remain here in a single-user context, however one of the reasons for examining, in a closer
way, GML is its extension to the multiuser case where GML is of particular interest. Apart,
from performance advantages, one of the great properties of GML, like all methods based on
the second—order statistics of the data, is their robustness to channel length overestimation.
Blind deterministic methods, like subspace fitting or DML, fail when the channel length has
been overestimated: each channel length for each users has to be tested. On the contrary,
the Gaussian approach can be shown not to suffer from this problem (as has been shown
for linear prediction methods [33]). In multiuser communications, GML has also another
advantage: deterministic methods can only identify the channel apart from a triangular
dynamical multiplicative factor, whereas Gaussian methods can identify the channel up to a
unitary static factor.

Asg initialization we use the Schur method briefly described in Chapter 1 and detailed
in [35, 36] which is a low computational multi-user method.

9.6.1 Approximated Scoring Method

The problem parametrized in hp = [Re(hT) Im(hT)]T can be equivalently parametrized in
he = [T h*T]". The FIM for he is:
(9.27)

J _ Jnn Jhpr
T T T
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Method of Scoring for channel with a common zero at 7dB Method of Scoring for a random channel at 7dB
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Figure 9.6: Semi-Blind GML by the method of Scoring initialized by WLS-PQML.
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and the gradient is:

dF(0)
8h* Dh
D, = = . 9.28
e T aF(0) [ D: ] (9-28)
oh
Let us recall the expressions of Jy, and Jpp«:
aC aCyy \"
Junli, ) = tr { Oy =2 Cy, ( if) (9.29)
oh? ahj
.. _, 0Cyy -1 dCyy
Jppe(i,7) = tr {CY; —Cyy—F ¢ - (9.30)
oh} ahj

Our fast implementation of the method of scoring is based on a frequency—domain asymp-
totic (in the number of data) approximation of the FIM and of the gradient of the cost
function.

Approximation for J,; Let us consider first the term Jyp: it can be asymptotically approx-
imated as [86]:

H
Jn(iyj) = %ftr Sy (2) 05y, (2) Sy (2) (M) & (9.31)

ok} ah; z

where Sy, (2) = h(2)h'(2) + 021 is the spectral density of the received signal. From this
expression, we see that Jp (¢, j) can be approximated as a block Toeplitz matrix (which is
also symmetric). The block (1, 73) of its first line is the coefficient of order 1 — j; of the filter:
MR (W hE) + o) T- b)) |, d:

— 5 27— (9.32)
2m) o2 (h'(2)h(2) + o2) :

Jun(1, 5p) =

Using the Gohberg-Semencul formula: (h(2)h(z) + 03)_2 = p(2)p'(2)/52, where p(z) is the

linear prediction filter associated to (h'(z)h(z) + 03)2, and &2, the prediction error.

Jmﬂdw=§% —p(p' (b h() [(W(2)h() +02) 1 - b ()] 240
! (9.33)
Tnn (L, ) = % pept bl b (WM e h+o?) 71— b hTHp (9.34)

Jun(1, 5p) is computed by truncating p(z) (a truncation aN, where a is 3 or 4 is in general
sufficient), and involves then only FIR filtering operations. So computing the elements of Jy,
is of order N.
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Approximation for Jy;+ The same kind of treatment holds for Jyp« which can be approxi-
mated as a block Hankel matrix. The block (1, j;) of its first line is the coefficient of order
7p — 1 of the filter:

. N h(Z)hT(Z) _ i whsh? «of
Tune (1, 3p) = [(hT(Z)h(Z)+03)2]]b 1_ [ng hxh' xp jb_l. (9.35)

The block (¢, 1) of the last column is its coefficient of order N — 2 + 4.

Approximation of the gradient Using the band property of Cyy, a fast computation of the

h
output of Cyy Y is of order NM. 80;::/ = T(h)TH(%) and both terms being banded, the

computation of the second term is of order M N.

Using a frequency domain approximation, the block ¢, of the first term of Dj can be

approximated as the element 2, — 1 of the filter:

Di(iy) = [%] o Ui% pepteh) . (9.36)

Dp» can be computed using Dp= = (Dp)*.

At each step of the algorithm, equation (9.17) is solved using the Toeplitz and Hankel
property of Jy;, and Jy,«, which gives a complexity of order N2.

9.6.2 Regularization of the FIM

The approximated FIM is nonsingular: it has an eigenvalue (negative or positive) closed
to 0. The inverse of the approximated FIM could then be directly taken in the scoring
algorithm: this solution makes the algorithm diverge however, as the step in the direction of
the associated eigenvector is too large.

We use the Levenberg Marquardt method by regularizing the FIM by a factor AI. Unfor-
tunately, as seen in the simulations, the regularized approximated scoring algorithm looses
the high convergence speed of the true scoring method, and in fact a simple steepest—descent
algorithm:
dF(0)

) — pli-1) _
0= |-y

(9.37)

gives similar performance.

0.6.3 Simulations

We plot the averaged the NMSE over 50 noise and input symbol realizations for a randomly
chosen channel (N =4, m = 3): see figure 9.7. For the approximated scoring algorithm, the
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Figure 9.7: Approximated scoring algorithm for 10dB and 20dB.

best regularization factor is A = 0.5, (FIM), (Apaz(.) designate the larger eigenvalue) for
the steepest descent, it is A = 1.5/ A0, (FIM). We notice that at 10dB, the approximation
in the gradient makes the algorithms loose in performance.

9.7 Semi-Blind Criteria as a Combination of a Blind and a TS

Based Criteria

As for the semi-blind deterministic model, we can build Gaussian semi-blind criteria by doing
a weighted combination of a blind and a training sequence based algorithm (again, when it is
possible). Let us take the example of CM (9.15). We consider the decomposition of figure 9.5
and choose the approximated weighted in (9.15). The semi-blind criterion is:

. ~ s—1~ 1
min {rHW 4+ ;HYTS - TTS(h)ATSHQ} <

(9.38)

: L g7 o pe1lx, L 2
glclr%l {M—Ur {RL @ Ry }T‘-l-g—gHYTS—TTS(h)ATSH .

9.8 Conclusion

GML was compared to the optimally weighted covariance matching method, which was
shown, through simulations, to have the same performance asymptotically (in the number of
data but also in the number of moments considered). A covariance matching criterion built

from an approximation of the weighting matrix was also proposed: this CM criterion offers
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some computationally low solutions that are still under investigation. The method of scoring
was used to solve GML and performs very well: we are now examining the computational
load required to apply this method. We have also developed a fast implementation of the
scoring algorithm and the steepest descent algorithm to solve GML. The fast GML should

be next generalized to the multi—user case.
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A Asymptotic Performance Analysis of GML

The main purpose of this appendix is to compute the optimal weighting matrix W?. OCM
gives consistent estimate, which we do not prove here and its performance can be expressed

w.r.t. 0o = [T o*T]T:
IO Lo (OO
— ¢ — 9.39
( dc ) W ( /e ) (8:39)
The error covariance matrix for [Re(k?) Im(hT)]T is recovered from (9.39) using equation

(3.7).
We is computed in [39] but when the input symbols are really random variables. Here we
compute W? for the real distribution of the input symbols: discrete i.i.d. complex circular

random variables.

Result 11 The complex optimal weighting matriz W° is:

1 L+N-1
WO — o |: Z RE(w) @ R (—u) — vee {2 T (R)TH (h)} vee {a2T (R)TH (h)}

u=—(L+N-1)
(9.40)
The first term in the sum would be the term obtained if the input symbols were really
Gaussian.
1 E 1 &
-~ . H A = _ H
Ry = M;YL(IC)YL (k) = 7=vec{Ry}= M;vec{YL(k)YL ()} (9.41)
1 M M
ErpH = WZZE {vec {Y ()Y (i)} vec” {Y (7)Y (5)}} (9.42)
=1 j=1

Using the following property:

vec{ABC} = (CT @ A) vec{B} (9.43)
vee{ Y ()Y ()} = (1@ Y (i) YL(i) = (YL() @ 1) YL(i) (9.44)
Then:
1 e T 1.0 !
W;;E (YL(IZ) ©1) Y];B(k) YLC(k) (I® 1;L(/’C ) (9.45)

In a first step, we consider the symbols as Gaussian random variables. Then the following

formula can be applied:

E{ABCD} = E{AB} E{CD} + E{C @ A} E{D ® B} + E{A E{BC}D} (9.46)
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E{AB} = (E{CD})H =" (9.47)

{E{C@A} = B{Y koY (k) oI} = RIG-K)al

E{D@B} = E{IoY (K)oYrk)} = I@RL(K —Fk) (9.48)

E{C@AYE{D@B}= (RL(k— K)o 1) (1® Rp(K —k)) = RL(k—K)QRL(K —k) (9.49)

E{r) = E{rrH}—l— ZRL (k— kY@ Rk — k) (9.50)
kK
E {7 = % SO RI(k - ) @ Ri(K — k) (9.51)
k. k'
1 L+N-1
E {7} = i > Ri(w)®@Ri(u) (9.52)
u=—(L+N-1)

Now we consider the input symbols with their true distribution. The only term differing
from the Gaussian case is the term where fourth order moments of the input symbols appear,
with general term:

vee {To ()AL (R)AF (K)TE ()} vee { T () A () AR (€ T (1)}
= (TE(h) © Tu(h) BT © Ap() AL (WAL (T0 AL () (TE(R) @ TH () (953)
F

In the Gaussian case, the matrix F' would be:

FGaus—ra —I_RALAL@RALAL (954)

where R4, 4, = E (AL(k)Af(k)) =02[ and r, = vec{C4, 4, }.
For the true distribution, block (i, j;) of matrix I is:

Fiyjy = A7, (k) A(R) AT (K) Aj, (k) (9.55)

It can be verified that Fj, ;, differs from Fi,s

(iv,jo) ONIt when & = &

F = Faaus — roril. (9.56)

From that, we deduce expression (9.40).



Chapter 10

SOFT DECISIONS APPLIED TO
SEMI-BLIND CHANNEL
ESTIMATION

This chapter examines the difficulty of applying soft decision strategies to chan-
nel estimation. Starting from a semi-blind channel estimate, an equalizer is
built that gives estimates of the unknown symbols. The most reliable sym-
bols are selected and hard decisions on them are considered as known symbols:
semi—blind channel estimation is reprocessed with the augmented number of

known symbols. This idea seemed promising but contains some surprising dif-

ficulties.
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10.1 Principle of the Soft Decision Strategy

The soft decision strategy which is particularly well connected to the general semi-blind
context, is as follows (see figure 10.1):

1. From an estimate of the channel, an equalizer is built that gives estimates of the un-
known symbols. The most reliable estimates are selected and hard decisions on them
are considered as known symbols. The non reliable symbols are still considered as
unknown.

2. Semi-blind estimation is again applied with this augmented number of known symbols.
Steps 1 and 2 can be reiterated.

This soft decision strategy is opposed to a hard decision strategy where all the equalizer
outputs would be considered as error-free and then as known. Some algorithms exploiting
the finite alphabet nature of the input symbols [45] follow that scheme: step 2 is replaced
by a training sequence based channel estimation step where the training symbols are the
hard decisions. This kind of algorithm requires a good channel initialization and because the
decision step may not be error-free, fall easily in local minima. This could be avoided by the
soft decision process.

Initial Input burst

I
3 d(i—l)(k)
v
Semi-Blind | hsp, A\ Equalizer AV
Algorithm q
-1 1
reliable  nonreiable reliable
symbols symbols  symbols
Input burst A\([i) EE”

Hard decisions = known symbols

Figure 10.1: Soft Decisions for Semi-Blind Channel Estimation for a BPSK.
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10.2 Reliable Symbols

Consider a MMSE-ZF equalizer based on the true channel. It gives as estimates for the

unknown symbols:

Ay = (TH®)To) ™ T (h) (Y = T (h) Ak)

— Au 4 (T ) To )" T ()Y (101

Then for each unknown symbol:
a(k) = a(k) + v'(k) (10.2)

where v/(k) is a centered Gaussian random variable, a linear combination of elements of V.
We will consider here only the case of a BPSK; the principle of soft decisions could be
extended to other constellations. Figure 10.2 shows the distribution of a(k).

Reliable Symbols
H\ a=1
\\ BN
/A ‘ ™
1 0 ak)

Figure 10.2: Distribution of the symbol estimates at the output of the MMSE ZF equalizer:

reliable decisions are such that |a(k)| > «a.

The reliable symbol estimates will verify |a(k)| > a; they will be all the more reliable as
« is large: see figure 10.2 with & = 1, in which case, as v'(k) is centered, approximately half
the symbol estimates would be considered as reliable.

10.3 The Difficulty of Applying Soft Decisions

This soft decision strategy introduces correlations between a(k) (= dec(a(k))) and o'(k) and
then between the noise V' and the symbols A originally independent. Figure 10.3 shows the
joint distribution of a(k) and v'(k) for the reliable and non-reliable a(k): in both cases, a(k)
and v'(k) are correlated (for a = 1, the marginal distribution of v’(k) remains approximately

unchanged).
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(k) ()

half a Gaussian half a Gaussian
— J—
-1 a(k) 1
\ 0 1 -1 0 / a(k)
Reliable symbols Non-reliable symbols

Figure 10.3: Joint distribution of v’(k) and a(k) for the reliable (left) and non reliable symbols
(right) for the asymmetric reliability intervals.

Simulations proved GML and DML to be very sensitive to these modifications in the
correlations: we get better performance by not adding the hard decisions to the list of the
known symbols. The repercussions of these correlations in the formulations of DML and
GML are as follows:

e For DML, in fy4 (Y — T (h)A), correlations between A and V' are to be taken into
account: v'(k)|a(k) does not have a Gaussian distribution anymore, but half a Gaussian.

e For GML, in a Gaussian approximation for fy|,(Y'|k), the correlations between A and
V have to be taken into account.

Incorporation of these modifications have to be done in order to build properly the ML crite-
rion. As an alternative approach, we tried another type of interval of reliability: symmetric
intervals around the decision points.

With the choice of the symmetric intervals, where the symbols are considered as reliable
if

(as long as the interval is sufficiently small): see figure 10.5. The marginal distribution of

a(k) — dec(a(k))| < B (figure 10.4), the correlation between symbols and noise disappears
(k) g 7 y pp

the noise has changed though, and namely the variance of v'(k) associated to the reliable or
non-reliable symbols is different.

Note that the MMSE-ZF equalizer could be replaced by an MMSE equalizer which gives
a higher output SNR. At the output of the equalizer, the ISI terms should now be taken into
account, as well as its bias (see Chapter 11).

We illustrate the effect of the two types of intervals by an example. In the example, we
plot the semi-blind cost function of DML and GML for a real multichannel with 2 coefficients:
[1 —1.5]7, a burst of length M = 100, a BPSK and an SNR equal to 5dB. The threshold «
is chosen equal to 0.3. We consider furthermore the ideal case where the hard decisions are
considered as error—free.
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Reliable Symbals

‘ -1 ° 1
Figure 10.4: Distribution of the symbol estimates at the output of the MMSE ZF equalizer:
(k) — dec(a(k))| 2 A.

reliable decisions such that

(k) ' (k)

Reliable symbols Non reliable symbols

Figure 10.5: Joint distribution of v'(k) and a(k) for the reliable (left) and non reliable
decisions (right) for the symmetric reliability intervals.

(a) Figures 10.6(a)-10.7(a) shows the pure semi-blind cost function, with 10 known symbols
in the burst.

(b) Figures 10.6(b)-10.7(b) shows the cost function after considering the hard decisions given
by the asymmetric reliability intervals as known. Only 17 symbols remain unknown after

the soft decision step.

(¢) Figures 10.6(c)-10.7(c) shows the cost function after considering the hard decisions given
by the symmetric reliability intervals as known: 40 symbols remain unknown after the
soft decision step.

(d) At last, in figures 10.6(d)-10.7(d), the soft decision have the same number as the previous
ones (symmetric reliability interval), but this time the position of the known symbols is
chosen arbitrarily in the burst.

In this example, we see that chosing non symmetric reliability intervals results in worse perfor-
mance than the pure semi—blind case; the symmetric reliability intervals improve performance
w.r.t. the pure semi—blind case.
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Figure 10.6: DML cost functions: (a) pure semi-blind DML cost function; (b) semi-blind
DML based on hard decisions (asymmetric interval); (¢) semi-blind DML based on hard deci-
sions (symmetric interval); (d) semi-blind DML based on hard decisions (randomly chosen).
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Figure 10.7: GML cost functions: (a) pure semi-blind GML cost function; (b) semi-blind
GML based on hard decisions (asymmetric interval); (c¢) semi-blind GML based on hard deci-

sions (symmetric interval); (d) semi-blind GML based on hard decisions (randomly chosen).



188 Soft Decisions applied to Semi-blind Channel Estimation Chapter 10

AQML based on Soft Decisions = Random Channel AQML based on Soft Decisions = GSM Channel
T T T T

--—--  Semi——Blind AQML N --—--  Semi——Blind AQML
——  Soft AQML o045k S~ Soft AQML i
004 - ——  Soft AQML with arbitrary known symbols | | S - --  Soft AQML with arbitrary known symbols
N N

Number of Iterations Number of Iterations

Figure 10.8: Soft AQML based on hard decisions compared soft AQML with the same number
of hard decisions but arbitrarily dispersed.

10.4 Soft Decisions Applied to the Semi-Blind AQML

In practice, for more general channels, the symmetric reliability interval gives disappointing
results. It improves performance w.r.t. purely semi-blind estimation but not significantly.
As an example, we applied the soft strategy to semi-blind AQML. Results are shown in
figure 10.4 for a randomly chosen channel (N = 5, m = 2) and a GSM channel (N = 4,
m = 2), for a burst length of 100, and an SNR of 10dB. The soft AQML is compared to
another soft AQML based on the same number of known symbols (including also the hard
decisions) but with position randomly chosen in the burst.

10.5 Conclusion

In this chapter, we have seen that the channel estimation is sensitive to the soft decision
strategy; we have proposed a symmetric reliability interval that decreases this sensitivity. As
we will see in Chapter 12, soft decisions can also be used for the input symbol estimation
and detection: in this case, correlations between the symbols and the noise are also present,
and the structure of the equalizers should be modified accordingly. However, it appears that
symbol detection is not sensitive at all to these changes in the correlations, and soft decisions
can be very profitable in that case.
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Chapter 11

BURST MODE EQUALIZATION

We consider a transmission by burst where the data is organized and sent by
bursts. At each end of the burst of data, a sequence of symbols is assumed
known, and the channel considered as constant over the burst duration. The
optimal structure of the burst mode equalizers is derived. The class of lin-
ear and decision feedback equalizers is considered, as well the class of IST
cancelers that use past but also future decisions: for each class of equalizers
the MMSE, the Unbiased MMSFE and the MMSFE Zero Forcing versions are
derived. Unlike in the continuous processing mode, the optimal burst mode
filters are time-varying. The performance of the different equalizers are eval-
uated and compared to each other in terms of SNR and probability of error:
these measures depend on the position of the estimated symbol and on the
presence of known symbols. Finally, we show that, by choosing correctly the
number and position of the known symbols, (time-invariant) continuous pro-
cessing filters applied to burst mode can be organized to give sufficiently good
performance, so that optimal (time-varying) burst processing implementation
can be avoided. This chapter extends the work of [87] and corresponds to the
submitted paper [88].



192 Burst Mode Equalization Chapter 11

11.1 Introduction

In most of the present mobile communication systems, the data is divided and transmitted
in bursts. In general, the bursts are separated by guard intervals, which avoid interburst
interference, and contain known symbols, like synchronization bits or a training sequence
to estimate the channel. This is typically the case of GSM, where the channel is assumed
constant over the duration of a burst and is estimated by a middamble training sequence and
the Viterbi algorithm is applied to estimate the transmitted data symbols.

We propose a scenario where a sequence of known symbols is attached to each end of
the burst of information symbols. This scheme is proved to include the GSM case. The
channel is assumed constant during the transmission of a burst. As we are operating with
a finite amount of data, the usual time-invariant continuous processing equalizers are not
optimal anymore. We propose a derivation of optimal burst mode equalizers, which are time-
varying. Three classes of equalizers are considered: the usual linear and decision feedback
equalizers, as well as the ISI canceler. This last equalizer uses past but also future decisions
and was proposed in its continuous processing version in [89, 90], and in its burst mode
version in [91, 92] where it is called Non Causal Decision Feedback Equalizer (NCDFE). The
NCDFE is detailed in Chapter 12.

These three classes of equalizers are derived according to three different criteria: MMSE,
Unbiased MMSE and MMSE Zero Forcing (MMSE-ZF) corresponding to increasingly strong
constraints; the first criterion is unconstrained, the second one is the element—wise Best
Linear Unbiased Estimate (BLUE), and the third one is the block-wise BLUE. These three
criteria will then give increasing MSEs. The MMSE equalizer gives biased estimates of the
symbols: the Unbiased MMSE equalizer is the best equalizer in the MMSE sense, giving
unbiased estimates. Although possessing a higher SNR than its MMSE counterpart, the
Unbiased MMSE equalizer gives a better error probability because the decision device is
built for unbiased symbols estimates. The Unbiased MMSE DFE equalizer was introduced
in [93]; we propose here a generalization to the other classes of equalizers.

All the equalizers are derived in the multichannel framework. We prove that the optimal
processing consists in first removing the contribution of the known symbols, then applying the
burst mode multichannel matched filter; the following filters depend on the specific equalizer
considered. The performance of the different equalizers is evaluated in terms of SNR, studied
according to the position of the unknown symbols in the burst and the presence of the known
symbols.

In [94], burst mode MMSE and ZF equalizers are derived but for single channels: the
ZF equalizer exists then only if there are at least a number of known symbols equal to the
channel memory. In the multichannel context considered here, even with no known symbols,
ZF equalizers exist and in fact a whole class of ZF equalizers: we will present the special
clags of MMSE-ZF versions of the equalizers. Furthermore, in [94], continuous—time matched
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filtering is done, matched to the overall channel, which is unrealizable, followed by the symbol
rate burst mode processing. We follow the more realistic fractionnally—spaced approach in
which simple continuous—time lowpass filtering is followed by oversampling. Another interest
of the multichannel model, which we will not detail here, is that it allows better performance
as the number of subchannels increases.

[94] presents complexity computations of the burst mode filters, which appear more com-
plex than the time—invariant filter continuous processing mode. We propose to compare the
performance obtained by applying the optimal time—varying burst mode filters with the per-
formance obtained by applying the time—invariant continuous processing filters to burst mode,
which is not done in [94]. [95, 96] proposed to enable time-invariant processing (with cyclic
convolution though) by introducing cyclic prefixes. We propose to minimize the suboptimal-
ity of continuous processing by considering the influence of the pre— and postamble lengths on
the degradation between time—invariant filters and the optimal processing: the best situation
happens when the lengths of these pre— and postambles equal the channel memory. In [97],
N. Al-Dhahir presents such a comparison, but considering the single channel MMSE DFE
only. His treatment of the known symbol is not correct however. He estimates the unknown
symbols in terms of the received data only, whereas the correct treatment consists in esti-
mating the unknown symbols in terms of the received data and also of the known symbols
present in the burst. In his attempt to compare time—invariant and optimal processing fairly,
he averages SNR in both cases over different amounts of symbols, estimating the known sym-
bols also in the time-invariant processing, whereas the number of unknown symbols (to be
equalized) is the same in both cases. So the comparison appears unfair. Furthermore, he
summarizes the performance into one SNR average number over the burst: as will be seen in
the paper, it appears important to consider on the contrary the performance as a function of
symbol position.

11.2 Burst Transmission

We consider a transmission by burst in which detection is done burst by burst. We assume
that the channel is time-invariant during the transmission of a burst. In the input burst
A, a pre— and post—amble sequence of known symbols of variable length is attached to the
burst of data symbols: n; known symbols at the beginning, grouped in the vector Ag,, and
ny at the end, grouped in the vector Ag,: see figure 11.1. The total length of the burst is
L4ny4ny; we want to detect the L central unknown symbols, grouped in the vector Ag.
For that purpose, we consider as observation data Y, the channel outputs that contain only
symbols of burst A (the symbols to be detected or the known symbols of the burst), and not
outputs containing symbols of neighboring bursts: see figure 11.1.
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Figure 11.1: Burst Transmission.
In the following, we consider the decomposition:
Y = TA+V = T, Ax, + TvAv + Tk, Ak, +V = T Ax + TuAv, (11.1)

In this chapter, we will denote T the convolution matrix. 7;A; represents the contribution
of the symbols in 4;. A = [A£'1 AL

Ky
the optimal process consists first in removing the contribution of the known symbols, all the

17 groups all the known symbols. As will be seen,

filters will then be applied to the processing data Y-
Yy = TvAu+V =Y - T Ak, (11.2)

It should be noted that the derivations of the paper are valid for any position for the known

symbols.

11.3 Burst-Mode Equalizers

In this section, we derive the expressions for the different equalizers in burst mode. Linear
Equalizers (LE), classical Decision Feedback Equalizers (DFE) and the Non Causal DFE
(NCDFE) are considered for the Minimum Mean Squared Error (MMSE), the Unbiased

MMSE (UMMSE) and the MMSE Zero-Forcing (MMSE ZF) criteria. The different equalizers
are linear estimators of the input symbols:

e linear equalizers give linear estimates based on the received data Y and the known

symbols Ag,



11.3. Burst-Mode Equalizers 195

o DFEs give linear estimates based on Y, Ag, as well as the decisions on the past input

symbols,

e the NCDFE gives linear estimates given the Y, Ax and the decisions on the past and

future input symbols.

We shall assume those past (and future) decisions to be error-free.

The different equalizers are solutions of the MSE criterion
mFinHAU—FY’H? (11.3)

where F is a matrix filled out with filter coefficients and Y’ groups the whole observation set
(e.g. Y and A for the LE), under different constraints:

e MMSE: no constraints.
o UMMSE: element—wise Best Linear Unbiased Estimate (BLUE).
e MMSE Zero-Forcing: burst-wise BLUE.

In burst mode, the equalizer filters are time-varying. We define the MSE of the ith symbol
as:

MSE; = (E(flU — Ap)(Ay - AU)H) ) (11.4)

k23

where EU is the vector estimate of the unknown input symbols and the Signal to Noise Ratio

(SNR) of the ith symbol:

0.2

SNRi = 3785 (11.5)

11.3.1 Linear Equalizers
The MMSE Linear Equalizer

The MMSE LE gives the unconstrained MMSE estimate of the unknown symbols Ay based
on the observations:

T
Y = [ yT AL ] . (11.6)
The linear MMSE estimate of Ay is:
n -1 -1
Av,mvse e = Ry yi By Y =Ry oy Ry 3 Yu. (11.7)

The last equality, proved in Appendix A, shows that linear estimation in terms of Y’ is
the same as in terms of Y: the optimal processing can be seen as eliminating first the
contributions of known symbols from the observation data Y to get Yy and then applying
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the MMSE equalizer determined on the basis of Y. For the other equalizers, the previous
result is also true but will not be restated.

When a sequence of known symbols of length larger than the channel memory is present
in the middle of the burst, like in GSM, the processing data Yy can then be decomposed
into two independent parts, and all the equalization process can be done on the two parts
independently. For each part, the situation becomes equivalent to our proposed scenario of
known symbols at each end of the burst.

From equation (11.7):

AU7 MMSE LE = UZTJI(UZTU(h)TJI(h) + 031)_1YU = (TJITU + %I) TJIYU . (11.8)

a

The last equality is obtained via the matrix inversion lemma. We will denote:

2
R:TJITU—I-%I. (11.9)

a

2
Due to the presence of the regularizing term U—g[, the matrix R is invertible and the MMSE
Ua
LE is always defined.

In the continuous processing case, the MMSE equalizer gives the output:

ammse LE (k) = (HT(Q)H(Q) + U—zf)_ H'(q)y(k) (11.10)

04

where HY(2) = H¥(1/2*) and ¢~ 'y (k) = y(k—1). By analogy with the continuous processing
case, we can find interpretations for the expression (11.8) in filtering terms:

° ’TJI represents the multichannel matched filter, matched to the filter 7;;7. When the
length of the two sequences of known symbols equals or is larger than the memory of
the channel N—1, TJI is Toeplitz, banded and upper triangular, which implies that the
filtering is time-invariant, FIR and anticausal. When the length of the sequences are
shorter however, the filter is time-varying at the edges.

e R is the FIR denominator of an IIR filter, R~' is non-causal.

Figure 11.2 shows the MMSE LE structure.

The LDU decomposition of R = LDLY can be used to do a fast implementation of the
MMSE LE as mentioned in [94]. The Schur algorithm can indeed be used to compute these
factors. R=' = L= D=1L=1: the output of L=, Z' = L='Z = LZ' = Z, can be solved by
backsubstitution. The same kind of remark is valid for the output of L=, So inverting R
becomes superfluous and the complexity is of order M N.
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For the burst mode MMSE LE:

0.2

SNR;(MMSE LE) = ——%——. 11.11
( )= (11.11)
The SNR depends on the position of the symbol in the burst and we will see the influence
of the known symbols on the SNR according to the position of the symbols to be estimated.

This remark will also be valid for the other equalizers.

The General Unbiased MMSE Problem

A MMSE equalizer produces a biased estimate of the symbol a(¢): the MMSE equalizer output
can indeed be written as a(¢)a(¢) + n(¢), where n(:¢) and a(¢) are uncorrelated (n(¢) contains
symbols different from a(7) and noise terms). This bias increases the probability of error [93],
as the decision devices are made for unbiased data. The purpose of the unbiased MMSE
equalizer is to correct this bias. We then derive the best equalizer, in the MMSE sense, that
gives unbiased symbol estimates: we will see that its SNR gets reduced w.r.t. the MMSE,
but that the error probability increases. Note that ZF equalizers are unbiased equalizers:
they minimize the MSE under the unbiasness constraint but also the zero ISI constraint; the
UMMSE are derived under the unbiasness constraint only. So ZF and UMMSE equalizers
are different except when there is no ISI at the output of the UMMSE, which will be the case
for the NCDFE.

In terms of estimation theory, the Unbiased MMSE equalizer is the element—wise BLUE.
We give and prove here results that will be valid for all the Unbiased MMSE equalizers (LE,
DFE, NCDFE).

Consider the estimation of symbol a(7). Y’ contains all the information available for
estimation, Yy and A: A denotes here the past decisions w.r.t. a(i) for the DFE, the past
and future decisions for the NCDFE, and is zero for the LE. Let us decompose the processing
data Yr into the contribution of a(7) and of the other symbols ZUJ'.

Yu=ToAv+V =Tuia(i) + TviAvi + V (11.12)
Y'= [ 7;0] ] a(i) + [ TU’iA%i TV Tiai) + V. (11.13)

The BLUE theory for this linear model gives us as estimate for a(¢):

. : H Ry

aprLug (i) = (T’UJRYI,Y,T'U,Z') T’UJRYI,Y,Y’ (11.14)
which can also be written as:

-1
A N o2 -1 -1
anLun(i) = o2 (B, y By Booy') Ruoy B3y Y (11.15)

anvise (2)
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The Unbiased estimate for the whole burst is then:

R —1
_ 2 -1 -1 /
AU, UMMSE = 0, (dlag (RAUY/RY/Y/RY/AU)) RAUY/RY/Y/Y (1116)
D A\U, MMSE
A\U, uMMsE = D fAlU, MMSE - (11.17)

The Unbiased MMSE equalizer is simply a scaled version of the MMSE equalizer.
The SNR of the UMMSE is related to the SNR, of the MMSE:

SN R(UMMSE) = SNR;(MMSE) — 1. (11.18)

The proof can be found in Appendix B.

The Unbiased MMSE Linear Equalizer
For the specific case of the MMSE LE:

2 -1
-1 _ H Oy H
Ryoy Byry By s, = (TU o U_EI) To T

L 1 1 (11.19)
: H Ty H
= D= (dlag ((TU T+ ;I) T TU))
D can be further rearranged, and we get:
2 2 17\ !
T T H Oy n
Ay, UMMSE LE = ( - ;dlag [(TU To + ;I) ]) Ay, MMSE LE - (11.20)

As D is invertible, AU, uMMSE LE is always defined. Figure 11.3 shows the U MMSE structure.
In the continuous processing case, the output of the UMMSE LE has for expression:

s () = (1- % § (W HE) + j—)) issis(k). (1121)

z v

The MMSE-ZF Linear Equalizer

A 7ZF equalizer has for property to leave the signal part of the received data undistorted: a
block ZF equalizer I verifies:
Flo=1. (11.22)

In the monochannel case, the existence of the ZF equalizer is conditioned to the presence of
known symbols. When there are no known symbols, 77 = 7 admits no left inverse. For a
number of known symbols of exactly N—1, the channel memory, 77 is square and there is a
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unique ZF equalizer which is also the MMSE ZF equalizer. For a number of known symbols
of more than N—1, Ty7 is strictly tall and full-column rank and ZF equalizers exist.

For a multichannel and also for a single channel, 77 has full column rank if M > N and
if there are as many known symbols as the number of zeros. These will be the conditions for
a ZF equalizer to exist.

When 77 is strictly tall and has full column rank, it admits several left inverses. Indeed,
let T[f‘ be a matrix which columns are orthogonal to those of 77, then TJ‘HTU =0. =
(TJITU)_l TH, the Moore-Penrose pseudo-inverse of T verifies Ty = I, but also F' =
(TJITU)_l TH + OTFH, where C is any M x M matrix.

We shall here concentrate on the MMSE-ZF LE, which give the lowest MSE among all
the ZF LE equalizers. The MMSE-ZF LE corresponds to the block—wise BLUE based on
Y r. Given the linear model: Y = Ty Ay + V', the BLUE is given by:

A\U7 BLUE = (TJIRS}UYUTU)_ITJIRS}UYUY

= (TH Ry To) ' TH Ry y Yo (11.23)
So the MMSE-ZF LE is:
Av wmsezr Le = (THT) T Y b (11.24)
Consider now the LDU decomposition of TJITU = LDLH:
(THT0) " =L D't (11.25)

After the matched filter, the optimal process consists in whitening the noise by the filter L=1.
We will find these two optimal steps (matched filtering and noise whitening) for all the ZF
equalizers. If we denote now R = T T;;, the process is the same as for the MMSE LE (see
figure 11.2). The remarks on the fast implementation are also valid here.

The output burst mode SNR is:

0.2

SNR;(MMSE-ZF LE) = i . (11.26)
o3 (T Tor) )i
In the continuous processing case, the MMSE-ZF LE output is:
~1
anvse-zr Le (k) = (HT(q)H(Q)) H (q)y(k) . (11.27)

11.3.2 Decision Feedback Equalizers
The MMSE Decision Feedback Equalizer

The decision feedback equalizers consider the linear estimation of symbol a(¢) based on the
processing data Y7 and the past decisions w.r.t. a(7) assumed known that we denote A?:

avvise pre (i) = Y — BiAY (11.28)
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T
where F; is the forward filter and B; the feedback filter. Let Y’ = {Y% AfT} , and let us

decompose Y7 onto the contribution of A” the past symbols and Azf grouping (i) and the
future symbols.
Yu=TEA  +TiAl + V. (11.29)
H -1 " -1
[F: =B=R, yrRhy = [ggflg. (o277 4021)  —a2 Tl (2T TS 402 Tg] .

(11.30)

a (i)

2
Consider the LDU factorization of R = TJITU + U—g[ = LDLY. After some manipulations,
o

a
it can be proved that F; is the i row of D™'L=!TH and that B; the i row of L7 — 1. A
proof for this result is provided in Appendix C.
The symbol estimate is then:

Av, mvist pre = DLV Y g — (L7 — T)dec(Au, muisk prE) - (11.31)

The MMSE DFE is always defined like the MMSE LE. The forward filter consists in the
cascade of the multichannel matched filter and an anticausal filter D™'L~'. LH — I is a
strictly causal filter, so that the feedback operation involves only past decisions. Figure 11.4
shows the structure of the MMSE DFE. As for the LEs, a fast implementation of the DFE
using the LDU decomposition is also possible here [94]: the resulting complexity in of order

MN.

The SNR is: )
Ua
In the continuous processing case:
ammse prE(k) = Myk — (G(q) — 1)dec(anmvse prE (k) (11.33)
G (q)
where H(¢)H(q) + % = G1(q)dG(q), G(q) is causal and G(o0) = 1.

Ta

The Unbiased MMSE Decision Feedback Equalizer

Using the results of section 11.3.1, we can prove that the output of the Unbiased MMSE DFE
is:

2
~ ol .y~
Ay, unvimvst prE = (I — ;D Y Ay, MMsE DFE - (11.34)

a

Figure 11.5 shows this structure. The burst output SNR is decreased by 1 with respect to
the MMSE DFE.

The continuous processing equalizer output is:

. o? dz t o2 -t
aymmse pre (k) = 1—;696]) — f 7ln(H (Z)H(Z)—I—;) avmse pre (k) . (11.35)
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The MMSE-ZF Decision Feedback Equalizer

As for the ZF LE, there is a whole class of ZF equalizers, and we derive here the ZFF MMSE
DFE equalizer. Consider the LDU factorization of ’TJI’TU = LDLY. Then the forward and
feedback filters are proven in Appendix D to be:

{ F= LD 17l (11.36)

B=IL" 7

we have the same structure as the MMSE DFE. The same equalizability conditions as for
MMSE-ZF LE hold here also.

We conclude this section by noting that the expression of the MMSE and MMSE-ZF
DFEs can be recovered from the LEs: for the MMSE LE, we consider the LDU factorization
of R = LDL! and for the MMSE ZF LE, the UDL factorization of 727, = LDLH. The

ouput of these two equalizers can then be written as:
Ap = LMD L Ty = DLV TR Y — (LF - DAy (11.37)

The DFE operation consists in taking (L¥ — I'dec(Ay) instead of (L7 — I) Ay, where dec(.)

is the decision operation.

11.3.3 Non Causal Decision Feedback Equalizers
The MMSE NCDFE

The NCDFE considers the linear estimation of symbol a(?) based on the processing data Y
and the past and future decisions w.r.t. a(i) assumed known that we denote Ar;. The burst
mode equalizer is implemented in an iterative way. At the first iteration, the past and future
decisions come from another classical LE or DFE. The output the NCDFE can then be used
to reinitialized the NCDFE, and other iterations can be done. As for the DFE, we consider

the past and future decisions as correct.
anvse NeprE (1) = FiYy — BiAy, (11.38)
where F; is the forward filter and B; the feedback filter. Let Y’/ = {Y% ZEJ}T;
Y =Toa(i) + TuoiAv, (11.39)

[F; —B]=R (11.40)

-1
Y yry

and we get:

[F; Bi]= {UzT[fZ» (UzTU,iTlfi + 031)_1 UZT[%’ (UZTU,Z'T[% + 031)_1 7[]72} (11.41)
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2\ 1 9 N\ —1
(T£7U7i+%1) i (TlfiTU,i+%]) T[fiTU,Z']. (11.42)

a a

[F; Bi]=

Then,
o? !
F= (diag (TJITU + ;I)) TH

: -1
B= (diag (TJITU + %])) (T T — diag (T Tr7))

a

(11.43)

The MMSE NCDFE has a very simple structure: the forward filter is proportional to the
matched filter and the feedback filter to the cascade of the channel and the forward filter
without the central coefficient. Figure 11.6 shows the structure of the NCDFE.

All the ISI is removed if there are no errors in the non causal feedback: the NCDFE
attains then the matched filter bound. But, like the decision feedback equalizer, the NCDFE
suffers from the error propagation phenomenon.

The burst mode SNR, is:

2
SN R;(MMSE NCDFE) = ~ (TUH T + %1) . (11.44)

g

ew|@w

@ ’

In the continuous processing case:

anvMSE NCDFE (k) =

)_1 (H'(q)y(k) - (H'(9)H(q) - |H|*)dec(arms neore (k) ) -
(11.45)

2
il

(H'(q)H(q) + 2

¥

The Unbiased/ZF-MMSE NCDFE

As seen in section 11.3.1, the Unbiased MMSE estimate A\L{MMSE NCDFE I8 a scale version of
AnmmMsE NeprE. We find:

{ F = (diag (THT0)) "' T4 (11.46)

G = (diag (THT0)) " (TH T — diag (T2 To))

As all the ISI is removed by the NCDFE, the ZF NDFE and the U MMSE NCDFE are the
same. If ny = ny = N — 1, the burst mode filters of the NCDFE are time—invariant. When
ny < N—1and ny < N—1, the filters vary only at the edges and are otherwise time—invariant.
It appears that another interest of the burst mode NCDFE is that it is as easy to implement

than its continuous processing version.
The burst mode SNR is:

2
SN R;(U/ZF-MMSE NCDFE) = % (77T0) (11.47)

0,0 "
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No special conditions are required for the ZF and MMSE NCDFEs to be defined as
2
diag (7 7r) and diag (TJITU + U—ZI) are invertible.
Ua

11.4 Performance Comparisons

In this section, we discuss the performance of the equalizers in terms of SNR and probability
of error. In figure 11.7, the SNR curves are drawn for a channel H; of length 7 with 3
subchannels which coefficients were randomly chosen (H} is given in Appendix E). The SNR
per channel is 10dB. The input symbols are drawn from a BPSK (¢ = 1) and the number
of unknown input symbols in the burst is L = 30.

11.4.1 Case of no Known Symbols

In figure 11.7 (left), the case of no known symbols is shown. We notice that degradations
appear at the ends of the burst. The middle symbols appear in N outputs. When no symbols
are known, the first and last unknown symbols of the burst appear in strictly less than N
outputs, so that there is less information about those symbols in the observations.

The SNR in the middle of the burst converges to the continuous processing level as the
burst length increases.

11.4.2 Case of N — 1 Known Symbols at Each End of the Burst

We assume now that n; = ng = N —1. The SNR curves are drawn in figure 11.7 (right). This
time, burst processing performs better than continuous processing. The middle observations
contain N symbols. After eliminating the contributions of the known symbols the outputs at
the edges contain strictly less than N symbols, so that there is more information on those
symbols. This explains why the symbols are better estimated at both ends for the LEs.

For the DFEs, things are slightly different at the beginning of the burst: the situation is as
if the feedback filter had been correctly initialized and the contribution of the past decisions
removed, and as the forward filter is anticausal we tend to the continuous processing case as

|4 TrAx
A Vy v, A
I D [N H 1 J |
T ™ % T R JT
'he Matched
Channel ﬁl(t:fc

Figure 11.2: Structure of the MMSE and the MMSE-ZF LE.
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- 1
|4 Tk Ak (] — Z—%(hag(R_l))

A \l/ Y + \l/_ Y, Q/ A\U
o A e I/ = i

Channel Ml*fltl(tlclfd

Figure 11.3: Structure of the UMMSE LE.
|4 ﬂs’AIx
A \l/ Y i_ YU AU
— 7 o TH Lt Dt = f
U T+
0 Matched Nois Scal
Channel I;lltliell( \Vhiotles,lcler Faf(?i(ft‘
for MMSE-ZF DFE LH -7

Figure 11.4: Structure of the MMSE DFE and MMSE-ZF DFE.

Vo Tk (1= %D
A_ f\l/ Y +£_ YU I 1 1 ~ \l/ AU
T U To L D T &— J'-
Channel I\IF%ltl%lclsd Fsacr(}loi
LT — T
Figure 11.5: Structure of the UMMSE DFE.
Scale
\ %4 TAr Factor
A \l/ Y +i_ YU \l/ A\U
JE— D H a
T ® T D=0 |
Channel Matched

Filter

THT: — diag (7ZH7E)

Figure 11.6: Structure of the NCDFE.
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Figure 11.7: SNRs at the output of the different equalizers when no symbols are known (left)
and when N-1 symbols at each end of the burst are known (right).

the number of data tends to infinity. For the last symbol of the burst, the estimation process
is the same as that of the NCDFE. We notice that the NCDFE has a constant SNR over the
burst equal to the one of continuous processing.

11.4.3 Equalizers Comparisons

In terms of SNR

The following comparisons are deduced from the amount of a priori information used for
estimating the unknown symbols.

e Within each class of equalizers, LE, DFE, NCDFE:

SNR{(MMSE) > SNR;(UMMSE) > SN R;(ZF-MMSE) (11.48)

e For each criterion, MMSE, UMMSE and ZF-MMSE:

SNR{(NCDFE) > SN R;(DFE) > SNR;(LE) (11.49)

In terms of Probabilities of Error

For unbiased equalizers, a higher SNR implies a lower probability of error: MMSE ZF equal-
izers will then have a higher probability of error than the corresponding Unbiased MMSE
equalizers. However, it is not obvious to rank the MMSE equalizers w.r.t. the ZF equaliz-
ers because they are biased. In fact people would tend to believe that a MMSE equalizer
performs better than the corresponding MMSE-ZFE equalizer.
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Figure 11.8: Probability of Error for the ZF-DFE, the MMSE-DFE and the Unbiased MMSE-
DFE.

In the case of constant modulus modulations, MMSE equalizers have the same perfor-
mance as the corresponding unbiased MMSE equalizers and so a higher performance than
MMSE ZF equalizers. For non constant-modulus constellations, the bias in MMSE equalizers
may have a stronger effect than its higher SNR compared to MMSE-ZF equalizers. This is
all the more true as the difference in SNRs between the different equalizers tends to be lower
as subchannels are added.

Figure 11.8 treats of the DFE case. We plot the probabilities of error for the channel
H, (see Appendix E) for the different DFEs. In the error probability computations of the
MMSE and UMMSE, the symbols other than the current symbol of interest are approximated
as (GGaussian random variables. The input symbols belong to a 4-PAM constellation. No
symbols are assumed known; the number of known symbols is equal to L = 3N. In order to
see better the difference between the different curves, we only plot the probability of error
for the central coeflicients. We notice here that the MMSE equalizer has poorer performance
than the MMSE-ZF equalizer, and that the /MMSE performs the best.

11.5 Applying Continuous Processing Equalizers to the Burst Case

As already mentioned, burst processing involves time-varying filters. We may wonder if it is
worth implementing these time-varying filters, because of complexity reasons, and if simply
applying the time-invariant filters corresponding to continuous processing in burst mode could
give acceptable performance.

For that purpose we will consider the case of N-1 known symbols at each end of the input
burst. We will show that the continuous processing filters also give better SNR at the ends
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of the burst than in the middle and always give strictly better SNR than in the continuous
processing case.

For the LEs, the contribution of the known symbols is removed at the end of the observa-
tion data. For the DFEs, the initialization is done by putting the N-1 leading known symbols
in the memory of the feedback filter. Only the trailing known symbols are removed from the
processing data.

In both cases, we put the channel outputs before and after the data to be processed equal
to zero. The only difference with the continuous processing case is that we have a finite input
symbol sequence, but also a finite noise sequence. As will be seen in the simulations of the
next section, for the DFE, the way we proceed is equivalent to the continuous processing case
at the beginning of the burst.

For the LEs, the different reasonings will be held for zero delay non-causal continuous
processing filters. For the DFEs, the forward filter is assumed to be anticausal (zero delay)
the feedback filter is causal and FIR (of the same length as the channel). As the channel
output is zero outside the time interval of the processing data, these filters will involve only
a finite number of data.

In the MMSE ZF case, the MSE contains only the noise contributions. Since the noise is
only finite length, the MSE is smaller at the edges. The MSE of MMSE (unbiased or not)
equalizers outputs contains residual ISI also. This variance gets also reduced as the input
sequence becomes finite length.

For the NCDFE, the leading and trailing symbols are both put in the memory of the
feedback filter. In this case, the optimal burst mode feedforward and feedback filters are
time-invariant and are the same as the continuous mode filters. This fact reinforces the
interest of the NCDFE.

11.5.1 MSE Calculations

The outputs of the different linear equalizers based on the continuous processing filters may
be written as:

Ay =FYy (11.50)

where F is a structured matrix containing the coefficients of the continuous processing filter.

In general:

MSE; = (62(FTy — I)(FTor — D + o2F M), (11.51)

where F'Ty = I in the ZT case.
The outputs of the different DFEs be may written as:

Ay =FYy — (B-INA (11.52)



208 Burst Mode Equalization Chapter 11

MMSE LE MMSE DFE
T T

w
feed

23 30

! Burst Processing I

N
©
T

Burst Processing

L

Continuous Processing Applied to Burst Mode

)
@
T

N
)
T

SNR at the output of the equalizers
S
SNR at the output of the equalizers
N
N

N
a
T

N
b
T

& N &

=
o
o
N
a
)
S
N
W
o
a¢
<]

0 15 2 1 15 2
Symbol position in the burst Symbol position in the burst

Figure 11.9: SNR Curves: optimal burst processing compared to continuous processing ap-

plied to burst mode for the MMSE LE (left) and MMSE DFE (right).

A" contains Ay and the leading symbols, I’ = [I 0], F contains the coefficients of the
continuous processing forward filter. B the coeflicients of the continuous processing feedback

filter.
In general:

MSE; = (62(FTy — B)(FTr — B)Y 4+ o2FFH),; (11.53)

where F'Tiy = B in the ZF case.
In figure 11.9, we present the case of the MMSE LE and MMSE DFE: we compare

performances for channel H. The input symbols are drawn from a BPSK. The length of the
filters for the LEs and for the feedforward filter for the DFE is equal to 3/N. The number of

unknown input symbols is I = 30.

11.6 Conclusion

We have derived the optimal structure of the burst mode equalizers for three classes of
equalizers: linear, decision feedback and non causal decision feedback equalizers. Three
different criteria have been considered: the MMSE, the unbiased MMSE, and Zero Forcing.
The problem of finding the equalizer filters have been formulated in terms of linear estimation
based on the data and certain a priori information, which allows a simple classification of the
equalizers in terms of performance. The SNR degradations have been studied as a function
of the position of the unknown symbols in the bursts and as a function of the presence of
known symbols. The more favorable situation for burst mode is when pre— and postamble
sequence of known symbols are attached at each end of the burst: in this case burst mode

equalization performs better than continuous processing. At last we have shown how time—
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varying burst mode filters can be approximated by time—invariant filters in the situation where
the pre and postamble sequences have the same length as the channel memory: time—invariant
filters still have better performance than the continuous processing level and allows a lower
complexity for implementation than the time—varying optimal burst mode filters. The case of
the NCDFE appears also of particular interest: it is potentially the most powerful equalizer
as it can eliminate all the ISI, and has a particularly simple structure. In particular, when
the pre and postamble sequences have the same length as the channel memory, the NCDFE
filters are time—invariant.
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A Linear MMSE Estimation in terms of Y,

B B Y Tic A
1 1 _ 1 u 54 54
RAuY/RY/Y/Y = RAuY/RY/Y/ ( 0 ] + AK ) (1154)
H
R, yr= 02T 0] = R, y, 0| (11.55)
2TTH 4+ 621 o275
Ry = @ v ¢ 11.56
vy [ ATH ol (11:56)
-1 .
The element (1,1) of RY'Y' is:
-1 2 H 2 H 2 2 1 -1
Ry (1,1 = (0 TuTy + o T TR + o0l = 0Tk Ty ) =Ry y (11.57)
-1 .
The element (1,2) of Ry is:
Ryy(1,2) = =Ry (1L, )T = —R;}UYUTK (11.58)
Then:
R, R Yul_g Ry (L)Y =R Ry Y (11.59)
AY' Yy | o | T Yo lyy W U T RanY e Tty Yy T Y -
and
_ 7},714],7 _ 7‘],714],
1 AK . 1 i AK .
RAuY/ Y/Y/ AB — RAuY/RYUYU [I - 7~Bj| AI( — 0 (1160)
Then, the have the result:
-1 r_ —1
R, ylighy Y =R,y Ry 4 Yu (11.61)
B SNR of the Unbiased MMSE
We prove that:
SN R, (UMMSE) = SN R;(MMSE) — 1. (11.62)
From expression (11.16), we deduce:
— 427, N _ 2
( Av, ummseAy, L{MMSE)M = 0D and (RAU, uMMsEAU)m' =% (11'63)

= E (AU — fAlU, L{MMSE) (AU — A\U, uMMSE)H
= Rayay, — R

Ay, uMMSEAU, UMMSE

Ay, ummMmseAu Ay, uMMSEAU, UMMSE

(11.64)

AvAy, umMsE
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and we find:
MSE;(UMMSE) = o2 (D;; — 1) (11.65)

Noting that:
o.D; ! = 07 — MSE;(MMSE) (11.66)

M S E;(MMSE)
. — 42 ¢
MS E;(UMMSE) = o2 7 — M5, (MMSE)

(11.67)

from which we get (11.62).

C Filters of the MMSE DFE

We derive the expressions of the feedforward filter F’ and feedback filter B of the MMSE-DFE.
We do not use directly expression (11.30), but rather a slightly more elegant way.
The expression of the estimate of the unknown symbols by the MMSE-DFE is:

fAlU, MMSE DFE = 'Yy — BAy (11.68)
with B strictly triangular inferior. The MMSE criterion writes as:

min | A — (FY — BAp) | (11.69)

and
Ap — Ay mmse pre = (I 4+ B)Ap — FY (11.70)

Using the orthogonality principle, which states that the error on Ay should be orthogonal to
Y, we find:

(I+B)o; TS = FRy y, =0 (11.71)
from which we get:
2
_ 2 Hp—1 _ H Oy p\—14H
F=o0;(I14+B)T; RYUYU = F={U+B)(T7Tv+ 031) T (11.72)
and
Ay — Ay, mmsk pre = (I + B)(Au — Ay, MMSE LE) (11.73)
Then:
EHAU — AU7 MMSE DFEH2 = U?]tl’ {(I + B)R_l(f + B)H} (11.74)

2
(we recall that R = ’TJI’TU + U—g[). Consider the LDU decomposition of R:
o

a

R=1ILDL"Y, (11.75)
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EHAU — AU7 MMSE DFEH2 = U?]tl’ {(I + B)L_HD_lL_l(I + B)H} (11.76)

The minimization problem:

min  tr{CD7!C} (11.77)
{¢: diag(0)=1}

as for solution C' = 1.
Then (11.76) is minimized when I + B = LH. Then:

(11.78)

F=D'L='TH
B=I7 -7

D Filters of the MMSE-ZF DFE

We derive the expressions of the feedforward filter F' and feedback filter B of the MMSE-ZF
DFE. We want to solve:

min E||Ay — (FYy — BAp)|)? (11.79)
F,B
Fip-B=1

and with constraint that B be strictly triangular inferior. Let the following decomposition
of I onto the rows of ’TJI and its orthogonal complement TJIJ‘ (the rows of TJIJ‘ span the
orthogonal complement of the rows of T;H):

F=RT+ BT BT YT = 0= RTETo =1+ B = F = (I+ B) (T710) ™"

(11.80)
& min E|FV|? < min ol||FFT||? (11.81)
. B F,
Fig—-B=1 Fip-B=1
|FFH ) =t (B THTUFE ) 4t {FQTJMTJMHFQH} (11.82)
(11.82) gives F, = 0:
(11.79) & min(f + B) (THT) 1+ B)Y (11.83)
Considering now the LDU factorization of TJI’TU, we obtain as in appendix 3:
F=D'L='TH
11.84
{ B=1L"H -] ( )
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E Channels used in the Simulations

The channels used in the simulations are the following:

[ —0.7989 —0.0562  0.7562 0.3750 —2.3775  0.3180 1.6065
H,=| —07652 0.5135 04005 1.1252 —0.2738 —0.5112 0.8476
| 08617 0.3967 —1.3414 0.7286 —0.3229 —0.0020 0.2681
(11.85)
[ —0.6776 —0.4710  0.4992  0.1558 —0.7209
Hy=| 04617 —0.5649 03827 —0.5692  0.3998
| —1.1939 —0.4239 —0.0136 —0.7488 —1.3747
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Chapter 12

BURST MODE NON-CAUSAL DFE
BASED ON SOFT DECISIONS

The Non-Causal Decision-Feedback Equalizer (NCDFL) is a decision-aided
equalizer that uses not only past decisions, like DFFEs, but also future deci-
stons, which usually come from another, classical equalizer. When there are
no errors on the decisions, the NCDF'F output contains no IST and the Matched
Filter bound (MFB) is attained. In practice, it suffers from the propagation
of errors. We propose a multiple stage implementation of the NCDFFE based
on soft decisions. At each stage, reliability intervals are defined based on the
SNR, the position of the symbol in the burst and the presence of known symbols
in the burst: only the reliable decisions are fed back. The other, non-reliable
symbols are classified as unknown and again estimated in the next iteration.
The augmented presence of known symbols coming from the previous decision
stage results in a better estimation quality of the unknown symbols. This soft

strateqy scheme is compared to other schemes.
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12.1 Introduction

The principle of the Non-Causal Decision-Feedback Equalizer (NCDFE) was first proposed
by Proakis [89]: this equalizer uses past and future decisions in order to cancel all the ISI
present in the signal. Gersho and Lim [90] introduced its MMSE design: the forward filter
is proportional to the matched filter and the feedback filter applied to the past and future
symbol decisions w.r.t. the symbol to be detected, is the cascade of the channel and the
forward filter, without the central coefficient. These past and future symbol decisions come
from another classical equalizer, linear or DFE (note that the past decisions may come from
the NCDFE itself). A burst mode unbiased MMSE version based on MLSE was also proposed
in [91].

When no errors on the past and future decisions are made, we reach the ideal zero ISI sit-
uation and the equalizer attain the Matched Filter Bound (MFB): it is then potentially more
powerful than the other equalizers, linear or DFEs. It possesses furthermore a particularly
simple structure with only FIR feedforward and feedback filters. As highlighted in the previ-
ous chapter, in its burst mode implementation, the optimal filters are almost time-invariant
(they are only time-varying at the edges of the burst) when no known symbols are present
in the burst and are time—invariant when known symbols of a number of at least the channel
memory are present at each end of the burst. The error propagation phenomenon can cause
some degradations, however, like for the classical DFE, and the NCDFE may offer only a
marginal improvement or even degradations.

Our purpose is to build a non-causal decision-feedback equalizer by replacing the hard
decision scheme by a soft decision one, allowing one then to reduce the feedback errors.
Our soft decision scheme consists in taking a decision on the most reliable symbols and
leaving the other non reliable symbols undecided. We will see that this scheme is equivalent
to feeding back only the most reliable symbols. The NCDFE is implemented in multiple
stages. Each iteration finds a linear estimate of the unknown symbols based on the received
signal, the known symbols (i.e. , the hard decisions) computed in the previous iterations,
and the past hard decisions of the current iteration. Due to the augmented presence of hard
decisions/known symbols at each iteration, the reliability of the unknown estimate increases.
The first stage corresponds then to a (classical) decision feedback equalizer in which only
the most reliable past decisions are fed back. The following stages mix a decision and non-
causal decision feedback strategy. We will consider here only a BPSK; the principle of soft
decisions as explained in this chapter can be extended to other constellations though. We
will furthermore consider only Unbiased linear symbols estimation, i.e. Unbiased MMSE and
ZF-MMSE.

We proposed this soft decision scheme in [92]; it is similar to the “clipped” soft deci-
sions [98, 99] applied to multi—user detection but was independently developed. In multi—user
detection, soft decision schemes are becoming very popular and the benefit of soft decisions
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can be quite visible. In the single—user context considered here its effects are probably less

dramatic but remain of interest.

12.2 Burst Mode NCDFE

Let us recall the structure of the burst mode NCDFE given in figure 12.1. The forward filter
is the multichannel matched filter 7H (k) followed by a scaling operation. D is a diagonal
matrix which differs according to the nature of the equalizer, MMSE or /MMSE: for the
UMMSE NCDFE [91], D = (diag(TH(h)T(h)))_l. The non-causal feedback filter consists of
the forward filter without the central coefficient. A may be the output of another equalizer
or the output of the burst mode NCDFE at a previous iteration. If A contains no errors, the
performance of the NCDFE attains the MFB.

o)

|4
|
AlT i Fo—

TH(h) ——€ D T

S>
Channel e ﬂ Tactor
TH(R)T (h)—diag(TH(h)T (h))

Figure 12.1: Burst Mode Non Causal DFE.

12.3 Non Causal Soft Feedback

12.3.1 Linear Equalizers seen as Non—-Causal DFEs

Consider the class of Linear Equalizers. The output symbol estimates can be written in the
general form:
A =R ()Y . (12.1)
2
For a ZF-MMSE, R = TH(h)T (h), for a MMSE, R = TH(h)T (k) + U—g[ and for a YMMSE,
o

a

R = ( - Z—zdiag (TH(h)T(h) + Z—zl)_l) R (TH(h)T(h) + Z—j])

(12.1) & R Apg=THMH)Y. (12.2)

Assume we want to estimate the symbol a(k) and assume the hypothetic situation where the
linear estimates of the past and future symbols w.r.t. a(k) are known. Denoting RArp =
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Rra(k) — ﬁkjk:
a(k) = (RER,) T RETH(h)Y — (RER,) ™ RER, A, . (12.3)

A linear equalizer can then be seen as a NCDFE where the past and future linear estimates are
fed back. The structure of a DFE can be deduced from (12.2) by considering, for each symbol
to estimate, the past symbol decisions as known (as well as the future symbol estimates, i.e.
the estimates given by the DFE before decision, but we will see that these estimates do not
intervene in the estimation of the symbol). In the NCDFE, the past and future decisions are
assumed known. .

Our soft strategy consists in replacing the linear estimates Ek by soft decisions that will
be a mixture of linear and hard decisions.

12.3.2 Soft Decision Scheme

We propose an iterative scheme with each iteration composed of two steps.

1. In the first step, we perform linear estimation of the symbols based on the received data
and the symbol estimates from the previous iteration. This first step would correspond
to the NCDFE if the symbol estimates were perfect.

2. Thesecond step performs element-wise nonlinear estimation, and iteration 1 is repeated.

The linear estimation step will be given by an unbiased equalizer, i.e. , a ZF or UMMSE
equalizer: each output can be put in the form a(k) = a(k) + a(k): for a ZF equalizer,
a(k) contains only noise terms and for a YMMSE noise and interference terms that we will
approximate as a zero-mean Gaussian variable.

The optimal nonlinearity to be used in the second step is the hyperbolic tangent function
tanh(.). Indeed, the MMSE estimate of @ = a + a, with « taking with equal probability the
values +1 and —1 and @ a zero-mean Gaussian random variable independent of a, hypotheses
verified (with the Gaussian approximation) in our problem, is:

a

a = tanh (?) : (12.4)

However, with such nonlinear symbol estimates, the design of the linear estimator for step
1 in the next iteration becomes nontrivial. Therefore, we propose the following simplified

:foz(d):{ ‘

sign(a)

The question is to know where the linearity should be (i.e. what should the value of « be)

nonlinearity:

D>
N

o
> o,

Q>>

(12.5)

a

in order to get an improvement w.r.t. the linear estimates of step 1 and a hard decision step
2. We do not answer this question here. Our guess would be that the linearity should be in
between the linear and the hard decision curve, as indicated in figure 12.2.
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tanh(.)
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Figure 12.2: Soft Decision Curves.

12.4 Soft Scheme as an Approximation of the Optimal Scheme
tanh(.)

The variable a gives the reliability of the symbol estimate and depends on o2, which depends
itself on the SNR conditions and other characteristics detailed later. Usually the soft decision
schemes that are based on the reliability principle (see section 12.7) use a constant threshold
that does not depend on the experimental conditions; for example, in [98, 99], & = 1. Here,
the threshold will be adapted to the experimental conditions: this will allow us to incorporate
more hard decisions in the feedback, with high confidence, resulting in better performance.

We determine o by seeking the best MMSE estimate of @ of the form f,(a) shown in
figure 12.3 (left):

mc;lnE (a — fu(a)* . (12.6)

A closed form expression for a could not be found. However a linear approximation w.r.t.
2

a

02 seemed to match well, especially for low o2: o = 1.3302 (see figure 12.3 (right)).
The complete iterative scheme is depicted in figure 12./4\1. A\soft,i denotes the @ for which
|a| < o, whereas Ap,,q; denotes the a for which |a| = 1. Ap,rq(¢) denotes the accumulation
of ghwdm .. .,ﬁhwd’i. A\lin,i is a linear combination of A\Z = gsofm, ghwd(i)} and Y, i.e.
ﬁh’m is a linear estimate of the remaining undecided symbols in terms of the received data and
soft decisions for all symbols. One can observe that A\lin,i is in fact also a linear combination
of only ghwd(i) and Y and since the ghwd(i) are assumed to be error-free, the MMSE design
of Ay, becomes tractable.

This explanation means also that when you feed back the linear symbol estimates of step

1, it does change the linear estimates in the following step.
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Linear approximation of a

Figure 12.3: Soft Decision Curves (left) and Linear approximation of a (right).

A\ f () ASOft,Z ----------------- \\\\\A
ling—1 a\- A\ ;{\ (Z) A\
hard.i hard lini

Figure 12.4: Iterative Soft Decision Scheme.
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12.5 NCDFE Based on Soft Decisions

The soft implementation of the NCDFE will mix a causal and a non—causal soft decision—
feedback strategy. The initialization is provided by a decision—feedback equalizer with feed-
back of the reliable decisions only.

For each symbol a(k), the implementation of the NCDFE based on the soft decisions is

as follows:
1. Linear estimation of the unknown symbols a(k) based on:

- the observations Y

- the “known” symbols made of the true known symbols, the hard decisions of the

previous iteration, the past hard decisions of the actual iteration.

2. The reliability measure (k) is computed and the soft decision strategy (12.5) is applied
to a(k). The hard decisions are treated as known symbols.

The initial DFE step is the same except that the linear estimate of step 1 is computed from
Y and the past decisions of the actual iteration. Steps 1-2 are reiterated until ﬁhwd’i is
empty. At the end of this process, the symbols that remain non reliable even when using
the feedback from known symbols are decided upon. Few iterations of the algorithm are
necessary in general as will be seen in the simulations.

The performance of this soft scheme relies on 2 ideas:

e Feeding back only the most reliable symbols helps to avoid the phenomenon of error

propagation.
e The presence of known symbols allows to increase the estimation quality of the unknown
symbols.

12.5.1 Computation of «o(k)

Recalling results from the previous chapter, the error variance for each symbols is computed

as, for the UMMSE:

= ~1 (12.7)

and for the ZF-MMSE:
o2k = o2 (7 (W Tu() ™) (12.8)
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For simplicity reasons, we do not take into account the past hard decisions of the current
iterations and used in the causal feedback; we only take into account the hard decisions of
the previous iteration.

When no known symbols are present in the burst, fast algorithms allow us to compute the
vectors of the o2(k)’s linearly in M. A simplification consists in computing the continuous—
processing error variance, neglecting then edge phenomena. After a first soft decision step, in
general, few symbols remain unknown: 7; has a small column dimension and o2(k) can be
computed using the previous expressions without requiring an intensive computational effort.

12.5.2 Influence of the Known Symbols

In the previous chapter, the influence of the known symbols in a burst on the estimation
of the unknown symbols was already studied. As an example, in figure 12.5, we show the
SNR at the output of the MMSE Linear Equalizer (LE). Our soft design uses 2 important

properties of the burst mode equalization:
e The SNR depends on the position of the symbol on the burst.

e For a given symbol, the SNR is higher when there are known symbols in the burst and

especially when the symbol is surrounded by known symbols.

SNR at the output of the MM SE linear equalizer

25

5r + no known symbols

0 N-1 known symbols at each end
x 10 dispersed known symbols

* 50 dispersed known symbols

L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Unknown symbols

Figure 12.5: SNR, at the output of a MMSE LE as a function of unknown symbol position
in the burst: influence of the presence of known symbols on the estimation of the unknown

symbols.

In figure 12.5, we show the case of no known symbols, grouped known symbols and arbitrarily
dispersed known symbols for a number of unknown symbols of 50: we can see the advantage
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a(k) at iteration 1

a(k) at iteration 2
0 ‘

0 ; 1‘0 1‘5 20 2‘5 I;O 3‘5 4‘0 45
Position of the unknown symbols

Figure 12.6: Evolution of the reliability intervals.

of taking into account the presence of known symbols in the burst to estimate the unknown

symbols.

12.5.3 Adaptation of the Reliability Intervals

This strategy allows one to automatically adapt the reliability intervals to the experimental

conditions:
e The noise level: a(k) is all the larger as the noise level is large.

e The presence of known symbols will be reflected in the value of a(k). Figure 12.6 shows
the evolution of the reliability intervals from one iteration to the next (for a randomly
chosen channel at 5 dB): most of the symbols that remain unknown at the second
iteration are located at the edges where indeed performance is lower. At the second
iteration, the reliability of those symbols increases due to the feedback of the known

symbols.

12.6 Fast Implementation of the Soft DFE and NCDFE

12.6.1 Soft DFE

We start from the equation:

RA=TH(h)Y (12.9)

and consider the LDU decomposition of R = LDLY, then:

(12.9) = LPA=D 'L 'TH ()Y =Y. (12.10)
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Causal
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Figure 12.7: Computation of the soft DFE outputs.

This system is solved recursively by back substitution as illustrated in figure 12.7: a(k) =

Y’ — ZLk-H,kd(i)- Unlike in the classical implementation, the unreliable symbols are not
1>k

decided upon and their soft value is fed back.

Anti-causal
Feedback

computed at
previous 1teration

(k) - O

Causal
Feedback
computed at
current iteration ..
Il hard decision
[] soft decision
[] symbol to estimate
R. banded A Y’

Figure 12.8: Computation of the soft NCDFE outputs.

12.6.2 Soft NCDFE

For the computation of the soft NCDFE output, we consider the equation:

RA=TH(R)Y (12.11)
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Figure 12.9: Different Soft Decisions Scheme.

where A is initiated by the soft DFE. Each a(k) is solved as: a(k) =Y’ — ZRk—i,k&(i) —
i<k

ZRk+i,kd(i)7 as in figure 12.8.

>k

12.7 Different Soft Strategies

In figure 12.9 are depicted the different soft decision schemes found in the literature. Most

of the schemes are also based on the idea of reliable and unreliable symbols.
a) Hard Decision: hard decisions are taken on all the symbol estimates.
b) tanh soft decisions.

¢) Erasure soft decisions: in this scheme, hard decisions are taken on the reliable symbol
estimates and the non-reliable symbols are put to 0.

d) Clipped soft decisions: this scheme corresponds to the one we propose.
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The Erasure technique is used to reduce the error propagation in a decision-feedback equal-
izers in [100] for a BPSK and proposed for a general 1-D constellation in [101]. [102, 103]
presents a dual feedback equalizer where two DFEs run independently. When a symbol esti-
mate is judged non reliable, one DFE chooses +1 and the other —1, so that both alternative
decisions +1 and —1 are tested. The output error energy over the feedback memory is then
compared for both DFEs; the DFE with the lowest error energy is selected and its settings
(previous decisions) are transferred to the other equalizer.

Non linear multi-user detection techniques, like Parallel Interference Cancellation (P1C)
and Successive Interference Cancellation (SIC) use also soft decisions [104, 105]. PIC is
based in fact on the same idea as the NCDFE: the past and the future decisions of the user
of interest and the decisions of the other users are fed back. In [98, 99, 106, 107], some of
the soft techniques of figure 12.9 are tested. In [108], we can also find a variable threshold of
reliability based on the symbols already detected.

12.8 Simulations

For a well-conditioned channel, the effect of the soft decisions will not be very visible and,
often, hard decisions will give better results, even if some decision errors are fed back. To
illustrate the benefits of the proposed soft scheme (that we call, as in [98], clipped soft
decision scheme), we test here a particular channel: the DFE built from this channel gives
poor performance w.r.t. the MFB, which is the performance bound of the NCDFE. A channel
with a zero closed to the unit circle verifies this property. We chose the channel:

11
H = [ L Lol ] : (12.12)

For this channel, the mean burst SNR value is 1.87 for the MMSE DFE, and the MFB is
0.026.

Below, we show the averaged error probability over 5000 Monte—Carlo runs of the input
symbols and of the noise. We also test different reliability thresholds: the threshold 1'3U§(k)
is based on mean quantities and for ill-conditioned channels, there are some advantages in
choosing a larger value. We test the value 1.7U§(k) and QUg(k . We only show the results for
the MMSE equalizers: the ZF equalizers perform poorly as the subchannels of (12.12) possess
a nearly common zero.

12.8.1 Soft DFEs

In figure 12.10, we show the performance of the soft DFEs based on the clipped, the erasure
and the tanh soft decisions, for 10dB and 15dB and with different threshold levels. The
clipped scheme appears to give the best performance. We also plot the performance of the
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clipped soft scheme with a constant threshold of 1: the advantage of adapting the reliability
intervals to the experimental conditions can be noticed.

o Probability of Error for the DFEs = SNR=10dB L Probability of Error for the DFEs = SNR=15dB
10 T 10 T

clipped, constant threshold=1

tanh

erasure
erasure

777777777777777777777777777777777777

clipped, constant threshold=1

clipped

clipped

172 172
a, threshold = a o, a, threshold = a o,

Figure 12.10: Probability of Error of the Soft DFEs.

12.8.2 Soft NCDFEs

Figure 12.11 shows the error probabilities of the different soft NCDFEs initialized by the soft
DFEs. As the DFE based on the tanh curve gives good performance, we also test a NCDFE
mixing the clipped and the tanh scheme: at a certain iteration, symbol estimation is based
on the hard decisions of the previous iteration and the tanh scheme for the unknown symbols
of the current iteration; the reliability intervals are computed based on the clipped scheme.
This NCDFE is initialized by the tanh based DFE. Again, we see that the clipped scheme
performs the best, with an improvement w.r.t. to the soft DFE that can reach a factor 10.
Choosing a threshold larger than 1'3U§(k) can be seen to be advantageous also.

In figure 12.12, the clipped soft NCDFE is compared to the hard NCDFE initialized
by the MMSE Linear Equalizer (LE) and the MMSE DFE. The benefit of the clipped soft
decisions can also be noticed.

We do not plot the simulated MFBs which are here much lower than the practical perfor-
mance of the proposed equalizers: in the example treated here, the purpose was to improve
the performance of the equalizers by using soft decisions; it turns out that the problem is
ill-conditioned and that the MFB cannot be easily attained.
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Probability of Error for the Soft NCDFEs - SNR=10dB ~ Probability of Error for the Soft NCDFEs - SNR=15dB
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Figure 12.11: Probability of Error of the Soft NCDFEs.
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Figure 12.12: Probability of Error of the Hard and Soft NCDFEs.



12.9. Conclusion 229

12.9 Conclusion

We have described an implementation of the NCDFE using soft decisions instead of hard
decisions, which cause error propagation. In this soft implementation, only the most reliable
symbols are fed back and the unreliable ones are left undecided. A reliability interval has been
defined which is adapted at each iteration of the NCDFE according to the SNR, the position
of the symbol to be estimated in the burst, the known symbols and the reliable symbols on
which a decision was taken at the previous iteration. Simulations have shown that the soft
implementation can improve dramatically performance w.r.t. a hard implementation. The
proposed soft decision scheme has been compared to other soft schemes and has given the

best simulation results.
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Chapter 13

MATCHED FILTER BOUNDS FOR
REDUCED-ORDER
MULTICHANNEL MODELS

We propose two Matched Filter Bounds (MFBs) to characterize the perfor-
mance of receivers using reduced-order channel models. The first one (WMFB)
uses the channel model to perform the spatio-temporal matched filtering that
yields data reduction from multichannel to single-channel form. The rest of
the processing remains optimal. The second one (ICMFB) on the other hand
bounds the performance of the Viterbi algorithm with the reduced channel
model. Two methods for obtaining reduced-order channel models are discussed
to illustrate these measures: blind channel estimation by Deterministic Maxi-
mum Likelihood (which mazimizes WMFB) and channel estimation by training
sequence. This work was presented in [109]
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13.1 Different Matched Filter Bound Definitions

13.1.1 Continuous Processing MFB

We present here four different ways of computing the MFB in the case of continuous transmis-
sion, for the multichannel H(z), shown in figure 13.1, where the input symbols a(k) are white
and the additive noise v(k) is temporally and spatially white. We introduce the following
notation for the matched filter: HT(2) = HH(1/2%).

(k

v(k)
@G L™ S svm - mrs
v(k)

i=1

, i k=0
() L H(z) %& Hi(z) -— >~ SNR=MFB

v(k)
k J—
(C)ﬂ H(z) %& H(2) (HT(Z)H(z)yl? ﬂ%—MFB
vy)
alk k _
(d (k) H(z2) %@ﬂ H(2) RN SNR=MFB

— H'(z)H(z) — |H|] —T

Figure 13.1: Four Interpretations for the Continuous Processing MFB from SNRs.

The MFB can alternatively be calculated as the sum of the SNRs in the individual chan-
nels in (a), as the SNR of the appropriate output sample of the matched filter (MF) when
transmitting only one symbol in (b), as the SNR of the output of the whitened MF (WMF')
in (c) or finally as the SNR at the output of the MF from which past and future symbol
contributions (ISI) are eliminated. The MFB, calculated from (a), (b), (c) or (d), is equal to
[H |02 /07

13.1.2 Burst Processing MFB

The MFB becomes symbol-dependent in the case of burst (packet) transmission. In the
different structures presented in figure 13.1, the multichannel H(z) is replaced by the filtering
matrix 7 (h) in the time-domain, and the burst multichannel matched filter becomes 7 (h).
Since the MFB is symbol-dependent, we shall in fact consider the average MFB over the
symbols in the burst. In a burst context, figure 13.2(b) is no longer of interest, which is why

we will not consider this configuration anymore.
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Figure 13.2: Four ways to get the Burst MFB from SNRs.

In figure 13.2(a), the burst signal covariance matrix at the channel output is: 027 (k)T (h).
The noise variance is 021. The SNR for the i'* element of the output is then:

0'2 H .
HTmT 0], o

2
Oy

SNR" =
We find for (b):

o2 [ (TH )T ()" (77 ()T (1))

— o (13.2)

SNRY =

The signal component is diag(7 (h)7 (h))A in (c) (where diag(.) denotes a diagonal matrix
containing of the main diagonal of its argument), hence its variance, o2 (’TH(h)’T(h))?i, for
the i*" element, for which the noise variance is o7 [T (k)T (h)], .. Thus we find:

oi [T T ()],

SNR' = = i (13.3)
Hence, we find the following equivalent expressions:
Mm M+N-1 M+N-1
Y sNrRMW = 3" sNrP = Y SNR. (13.4)
=1 =1 =1

The structure in figure 13.2(a) represents in fact a different point of view from (b) or (c).
Indeed, the M + N — 1 outputs of (b) and (c) are directly related to the the M + N — 1 input
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samples; in (a) we get Mm output samples. The measure in equation (13.4) can then be
taken as a measure of the burst MFB. This leads to the following average MFB per symbol:

1 Mm (@ M+N-1 M+N-1
MFB=——— NR" = N N
M+N_1;S R} ZS R Z SNR

(13.5)
Note that, as the length of the burst grows to infinity, the average MFB over the burst
converges to the continuous processing MFB. For structures (b) and (c) this follows from the
fact that the MFB in the middle of the burst converges to the continuous processing MFB.

13.2 Matched Filter Bounds for Reduced-Order Models

The MEFB computation considered in the previous section requires knowledge of the channel.
However, in channel estimation, a channel order misestimation may happen. Since physical
channel impulse responses tend to be of infinite length, this misestimation will often mean
an underestimation. Furthermore, the channel length assumed in the channel estimation is
often limited due to complexity considerations for the estimation procedure and/or the symbol
detection procedure. We now discuss appropriate MFBs when a reduced-order channel model
is used. Two levels of suboptimality ensue in that case. These correspond to the two ways
of implementing ML sequence estimation (MLSE) in the multichannel case: either use a
vectorial matched filter and work with a scalar signal, or work with the vector received signal
directly. These two strategies are only equivalent if the further processing of the scalar signal
obtained in the first case is done in a specific way. Two measures corresponding to these two

strategies are proposed.

13.2.1 Whitened Matched Filter Bound (WMFB)

We denote by Hy(z) the full-order multichannel. Assume we have a reduced-order model
2" Hyi(2) of Hy(2) (d € {0,1,...,N=N'}, 1 < N’ < N). In a first step of suboptimality,
we can consider that in the data reduction step from multichannel to single channel, we use
the MF matched to the reduced model z~?Hy:(z). However, after this suboptimal data
reduction, we shall allow optimal processing of the resulting single channel (this requires
knowledge of H}V,(Z)HN(Z) which represents less information than Hpy(z) itself). In order
to find the conventional MFB for the processing of the resulting scalar channel, it suffices to
whiten the noise after the vector MF. The resulting scalar channel then indeed becomes one
of additive white noise n(k) as indicated in figure 13.3 and becomes similar to figure 13.1(a)
so that the MIF'B can be calculated as in figure 13.1(a). We get for the continuous processing

MFB: )
o; 1 dz
WMFB = —szH}V(Z)PHN/(Z)HN(z) — (13.6)
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Figure 13.3: WMFB: reduced-order multichannel MF followed by a noise whitener.

where Py, = H(z)(HT(2)H(z))"'Hf(2). Note that it is insensitive to the delay in the
reduced order channel model.

It is interesting to analyze the variation of WMFB(N’) as a function of the reduced order
2
N'. For N = N’ we get WMFB(N)= U—; |Hx||®. It is not difficult to show that, in the
O-'U
2
limiting case N’ = 1 (purely spatial channel model), we get WMFB(1)= U—; Amax (HEH ).

=2
We then can derive the following bounds

H

| < WMEB(N) _ tr(HyHy) min (m, N) . (13.7)
WMFB(1) Aoy (HRH )
We see that a reduced-order model does not degrade WMFEB a lot: in the case of 2 subchannels
the maximal degradation will be a factor of 2, which could seem surprising when considering
a purely spatial model only. The lower bound is attained when h(i) ~ h(0), ¢ =1,..., N—1.
In that case, Hy(z) = h(0)H;(2)/h1(0). The spatio-temporal channel factors into a spatial
filter and a temporal one, and the optimal processing factors correspondingly: the full spatio-
temporal treatment gets replaced by the cascade of a purely spatial combiner followed by
a purely temporal treatment. The upper bound is attained when either HNH% ~ I,
or H%HN ~ Iy, whichever is of full rank. In that case, the individual channel impulse
responses are orthonormal. In a statistical set-up, if the m channel impulse responses are
i.i.d., then the upper bound is approached as the delay spread grows.

Consider now the case of burst processing. Let Tn and Tx+ denote Tar(hn) and Tar(hn)
respectively and consider the Cholesky factorization T Ty = LLH. Then the M+N'—1
reduced-order WME outputs are

L' TEY = L' TR INA+ L7 T8V . (13.8)

The covariance matrix of the noise component is 02Ip; 4 n/_1 while the covariance matrix of
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the signal part is UZL‘IT]\];I,TNT]\];ITN/L_H. The sum of the SNRs of all WMF outputs is then

MAN'=1 2
> SN Tl ™) = 5t (Pry, TV TN - (13.9)
=1 v v
This point of view corresponds to (a) in figure 13.2. To find the equivalent of (¢) in figure 13.2,
consider passing the previous WMF output L='7.2Y through the scalar MF T Ta L=,
This gives the M4+ N —1 outputs

TPy, Y = THPr,, InA+ TR P,V . (13.10)

As seen in section 13.1.2, the sum of the output SNRs in figure 13.2(c) is equal to the
expression in equation (13.9). It is also possible to find the equivalent of (b) in figure 13.2,
the sum of output SNRs giving again (13.9). What we call burst WMFB is again the average
WMEFB over the burst:

1
MFB= ———tr (P AN 13.11
W M+N_1r( To INTN ) (13.11)

13.2.2 ISl Canceler Matched Filter Bound (ICMFB)

We now go all the way in suboptimality. We will not only assume that the multichannel MF
is based on the reduced channel model but in fact that the whole receiver is. To find the
optimal performance in this case, consider MLSE. The received burst through the channel
Hy(z)is Y (k) = T(hn)Am+n—1(k) + V (k). The channel estimation procedure has given a
reduced-order model 2~*H y(z) in which Hp(2) is known but the delay d may be unknown.
Based on the reduced-order model z~#Hy:(z), the MLSE problem is

min Y (k) = T (hno) Aprgpno—1 (k—d)||? (13.12)
a(i) € Ap
de{0,1,...,N-N'}

where A, is the symbol alphabet. We obtain the ISI Canceler Matched Filter Bound (ICMFB)
by considering the detection of a single symbol a(¢) assuming that the other symbols are
known. It is easy to see that the continuous processing version of this leads to the struc-
ture in figure 13.4(a) (except for a scale factor). As the true channel is not known, the
terms containing coefficients of the channel estimation error contribute to noise in the SNR

computation. Hence, the equivalent structures in (b) and (c).
The output SNR in figure 13.4(c) is:

ICMFB =
e [Hy/[|?03 (13.13)
1€{0,.N=N"} 0240 2| HY, (2) (=7Hy () —Hy(2)) |2/ Hv||2
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Figure 13.4: ICMFB: MFB for MLSE with the reduced-order channel model.
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In contrast to WMFEB, the delay d in the reduced-order channel model plays a role in ICMFB.
Note that the presence of an adjustable delay creates local minima for MLSE. Remark also

that for N’ = N, ICMFB=WMFB=MFB.

13.3 Two Applications

13.3.1 Deterministic Maximum Likelihood Channel Estimation

As a first example, we shall investigate the effect of model reduction in blind DML channel
estimation. In [30], it is proved that, asymptotically in the number of data, the DML criterion
approximates the channel with a lower order model such that the output SNR of the Whitened
Matched Filter corresponding to this lower order model gets maximized. Asymptotically, the
reduced-order channel estimate obtained with the DML is the one that maximizes WMFB.

Some simulations were performed for m = 2 channels and average SNR per subchannel
of 10dB. In order to concentrate on the model reduction effects and not on the estimation
errors, the averaged likelihood function was maximized, solved by IQML. DML only allow
the estimation of the channel up to a multiplicative constant. WMFB on the other hand is
quite sensitive to the choice of this scale factor: we have determined the magnitude of this
scale factor using the norm constraint |Hpy|| = [|[Hy||.

We considered continuous processing WMEB and ICMFEFB measures, but since the IQML
method will normally be applied to a burst of data Y s(k), we also considered the burst
processing WMFB measure.

WMPFB for orthonormal subchannels-Estimation by DML WMPFB for quasi-colinear subchannels-Estimation by DML
. . . 20 .

19.8F \

19.6

19.4F
16r 1
19.21

20 !
Continuous WMFB

Continuous WMFB

18-

Burst WMFB

14+ = 191
18.81

12+ =
186 Burst WMFB
18.41

10
18.21

. ‘ ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6
MODEL ORDER MODEL ORDER

Figure 13.5: WMFB as a function of N/ = 1,...,N for m = 2, M = 50, N = 6 for
orthonormal (left) and almost colinear (right) impulse responses.
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First, we illustrate equation (13.7), where the minimal and maximal degradations when
a model of reduced order 1 is considered, are shown. Figure 13.5 shows the evolution of
the continuous and burst processing WMFEB as a function of N’ for a case in which the two
impulse responses are orthonormal and a case in which they are almost colinear. In the first
case, we see a degradation of approximatively 1/2 from N’ = N to N’ = 1 as predicted in
(13.7). In the second case, quasi no degradations are visible. We note here that the burst
WMFB is lower than its continuous processing version. This is due to the degradations
occurring at the edges of the burst w.r.t. continuous mode performances.

Some other simulations were done for less particular channels. The evolution of WMFB
and ICMFB as a function of N’ is shown in figure 13.6 for the following two decaying channels:

0. — 1.0000 0.8000  0.5000 0.6000  0.1000 0.0050
"7 | —1.5000 1.4000 —0.9000 1.1000 —0.0300 0.0050

(13.14)
| 10000 0.5000 —0.1500 0.0550 0.0145 —0.0014
27| 1.5000 —0.9500  0.3050 0.0695 0.0431 —0.0043

Both continuous and burst mode WMEB are ploted, as well as ICMFB.

WMFB and ICMFB for H-Estimation by DML WMFB and ICMFB for Hs-Estimation by DML

25 22

Continuous WMFB
20+

Continuous WMFB
201

18

\\ 16F
15 B

Burst WMFB \ | BurstICMFB

12
ol ICMFB |

10r

| | ~

ICMFB
6
o i i i i 2 i i i i
1 2 3 4 5 6 1 2 3 4 5 6
MODEL ORDER MODEL ORDER

Figure 13.6: Comparison of WMFB and ICMFB as a function of N’ for channels H; and H,,
m =2, N =6, M =50 in the case of DML estimation.

We notice that WMFEB is greater than ICMFEB for all reduced orders N'. The degradations
due to reduced-order modeling are less severe for WMFB than for ICMEB, especially for low
orders. This verifies equation (13.7), where we saw that maximal degradation for WMFB
due to a model of reduced-order 1 is limited. Furthermore, degradations for WMFB occur
mostly for N’ = 1. As DML reduced-order models maximizes WMFEFB, WMFB is decreasing
as N’ decreases.
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For channel Hy, ICMFB decreases considerably when the reduced model is of order 3.
This is probably due to the fact that the channel contains most of its energy in its first 4
coeflicients, which shows that ICMFB is sensitive to the energy contained in the reduced-order
channel.

13.3.2 Training Sequence based Channel Estimation

In this second example, the channel is estimated by a white training sequence. The channel
estimate of reduced-order N’ becomes the part of N’ consecutive coefficients of H n which
contains the most energy. This estimation procedure produces a value for the delay d. How-
ever, this value for d may not be the best one for MLSE. Hence the problem formulation
in (13.12) and the ensuing bound in (13.13) with optimization over d are still meaningful.
Nevertheless, the optimal d thus obtained will usually equal the d obtained with channel
estimation by training sequence.

We see in figure 13.7 that WMFB is not decreasing anymore, but remains high and
always greater than ICMFB. Although training sequence based channel estimation does not
maximize ICMFB, it tends to. Indeed, in equation (13.13), the numerator |Hp/|* gets
maximized, and the coefficient in z° of H;r\,,(z)(deN(z) — Hn/(2)) becomes equal to 0. In
particular, we see how ICMFB improves, for channel H, when the reduced-order channel is
estimated by training sequence compared to DML estimation.

WMFB and ICMFB for H -Estimation by training sequence WMFB and ICMFB for H»-Estimation by training sequence

25

22

| Continuous WMFB

Continuous WMFB 20
201

18- : 1

| 16p 1

. E ,

ol ICMFB
12+ B
10 \ ICMFB i
sk
ol il
0 ‘ ‘ ‘ ‘ . ‘ ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6
MODEL ORDER MODEL ORDER

Figure 13.7: Comparison of WMFB and ICMFB as a function of N’ for channels H; and H,,
m =2, N =6, M = 50 in the case of training sequence based channel estimation.
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13.4 Conclusion

In this chapter, we have proposed two performance bounds for MLSE when the channel
order is underestimated. These measures are interesting when complexity reduction, through
channel order reduction, have to be done, for the implemention of the Viterbi equalizer for
example. In simulations, we use these bounds to see the effect of the channel order reduction
for certain channel estimation methods. In [110], MFBs were developed in the case of colored
noise (representing interferers) for an erroneous noise covariance model. MFBs taking into

account channel errors are also under study.
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GENERAL CONCLUSION

In this thesis, we have presented an extensive study on semi-blind channel estimation.
The first theoretical part has concentrated on performance bounds for semi—blind, blind, and
training sequence based channel estimation: the superiority of semi-blind techniques over
blind and training sequence based techniques have been shown. The comparison between
semi—blind and blind methods have motivated an analysis of performance under constraints.
FIM regularity and local identifiability are equivalent, and the number of independent con-
straints needed to regularize the estimation problem is equal to the number of singularities of
the FIM. We have proposed a bound for blind estimation, which is the pseudo-inverse of the
FIM, giving, for a minimal number of independent constraints, the minimal CRB and that
we have interpreted as a CRB with some specific constraints. We think that this study is
important because it gives a way to systematically characterize most constrained estimation
problems, and furthermore, it provides a clear characterization of blind channel performance,

which is sometimes done in a non satisfactory way.

Different ways of building semi-blind criteria have been presented. The optimal semi—
blind criteria should be based on methods that naturally incorporate the knowledge of sym-
bols: this is the case of ML methods, that we studied in this thesis, and also of methods
that estimate directly the symbols like [76]. These optimal methods provide semi—blind so-
lutions when the symbols are arbitrarily dispersed in the burst. This symbol configuration
is undesirable in general as the associated semi-blind criteria will require computationally

demanding algorithms.

For grouped known symbol, i.e. a training sequence, low complex solutions can be built
because the structure of the blind problem is kept. By neglecting some information about the
known or unknown symbols, ML easily allows one to construct semi-blind criteria that are
a linear combination of a blind and a training sequence based criteria. Especially when the
training sequence is short, it appears important to be able to take into account the overlap
zone where known and unknown symbols appear at the same time. One of the solutions
we have proposed for that is to combine blind DML to the optimally weighted least squares
criterion; this combination corresponds to a mixed deterministic and Gaussian point of view
and was shown to give the best results in our simulations. A semi—blind SRM solution was also
proposed that proved to perform very well with performance closed to the ML performance.

The last step of this study was to find how to construct a semi—blind criterion based on a
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given blind criterion. We propose a weighted combination of the blind and training sequence
criteria which is typically possible when the blind criteria are based on least—squares. The
semi-blind SRM example is built that way and by approximating the weighting matrix of
blind SRM by a diagonal matrix, the criterion becomes a linear combination of blind SRM
and a training sequence based criterion. Some words are said about the subspace fitting and
covariance matching based semi-blind methods.

Constructing a semi-blind criterion as a linear combination of a blind and a training
sequence based criterion may be a difficult task. Through the different examples studied, we
could see that the resulting semi-blind criteria are very sensitive to the value of the coeflicients
of the linear weighting, and, for certain values of the weighting, the semi-blind criterion may
give worse performance than the pure training sequence criteria. We could notice that when
the linearly combined semi—blind criterion is correctly constructed, as with our semi—blind
SRM for example, the performance is quite stable around the value of the chosen weight.

Blind algorithms have also been studied. We have provided new solutions to solve DML
that are not complex, and need few iterations to converge. PQML is particularly powerful as it
attains asymptotically the ML performance. Gaussian ML, well-known in the DOA context, is
often misunderstood in the channel identification context. We brought more understanding to
it by interpreting it as a form of covariance matching criterion and comparing it to the classical
optimally weighted least squares covariance matching criterion. Through simulations, GML
appears as the most powerful method among all the methods exploiting the second—order
moments of the data; covariance matching attains GML performance for an infinite size of
covariance matrix. Fast implementations of GML have been proposed and some others are
still under investigation; fast implementations for covariance matching are also the subject
of ongoing studies.

At last, we would like to insist on the interest of the non—causal DFE which is not
extensively used whereas it possesses the potential of providing lower probability errors than
the classical DFE. The piece—wise linear soft decision scheme we proposed offers interesting
perspectives especially in a multi—user context applied to techniques like parallel interference
cancellation.
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1 Introduction

La plupart des standards de communications mobiles actuels incluent une séquence de sym-
boles connus, la séquence d’apprentissage, pour estimer le canal. Les méthodes d’apprentissage
utilisent les échantillons du signal re¢u contenant des symboles connus uniquement et tous
les autres échantillons, contenant des symboles inconnus sont ignorés. Les méthodes aveu-
gles sont basées sur tous les échantillons, mais la connaissance de symboles a I'entrée n’est
pas mise a profit. Le but de I'estimation de canal semi-aveugle est d’exploiter a la fois
Iinformation aveugle et 'information provenant des symboles connus et ainsi de combiner les
aspects positifs des deux techniques.

Les techniques semi-aveugles permettent d’estimer les réponses impulsionnelles de canaux
plus longues que possible avec une certaine longueur de séquence d’apprentissage; pour
une longueur de canal et une qualité d’estimation données, elles permettent ’utilisation de
séquences d’apprentissage plus courtes comparées a une technique d’apprentissage; les méth-
odes semi—aveugles sont également plus robustes que les méthodes aveugles qui requierent
des conditions de régularité sur le canal. Enfin, elles offrent de meilleures performances
d’estimation que les méthodes aveugles et les méthodes d’apprentissage.

Le principal objet de cette these est ’étude de l'identification semi-aveugle de canaux
FIR multiples, avec une transmission des données d’entrée par paquet. Nous présentons
tout d’abord les conditions d’identifiabilité et des bornes de performance pour 'estimation
semi—aveugle. On montre que les méthodes semi-aveugles peuvent identifier n’importe quel
canal, avec peu de symboles connus et méme lorsque ceux-ci sont dispersés arbitrairement
dans le paquet. Des bornes de performance, les bornes de Cramér—Rao, permettent une
comparaison des techniques semi-aveugles avec les techniques d’apprentissage et les techniques
aveugles. De plus, une étude de performance sous contraintes est donnée pour caractériser
les performances de ’estimation aveugle.

Les méthodes semi—aveugles proposées sont basées sur le principe de Maximum de Vraisem-
blance (MV) qui offre la possibilité d’incorporer la connaissance de symboles d’entrée. Lorsque
les symboles connus sont groupés dans une séquence d’apprentissage, des méthodes sous—
optimales sont proposées: les criteres correspondant sont sous la forme d’une combinaison
linéaire d’un critere basé sur la séquence d’apprentissage et du critere MV aveugle. Afin
de construire des criteres semi-aveugles performants, nous nous concentrons également sur
I’étude des méthodes MV aveugles. Enfin, nous proposons des solutions pour construire des
critéres semi—aveugles combinant un certain critere aveugle (qui n’est pas un critere MV) et
un critere d’apprentissage.

Dans cette these, des structures d’égaliseurs sont également proposés. La structure des
égaliseurs en mode paquet et en particulier la structure d’un annulateur d’interférences entre
symboles que nous appelons Non-Causal Decision-Feedback Equalizer (NCDFE) et qui utilise
les décisions passées mais également futures. Une implémentation du NCDFE basée sur des
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Figure 1: Modele multicanal; exemple de 2 sous—canaux.

décisions douces est présentée. Enfin, des bornes de performance sur “Maximum Likelihood

Sequence Estimation” (MLSE) pour des modeles de canaux d’ordre réduit sont données.

2 Formulation du Probléme

Nous considérons un modele multicanal FIR ou une séquence de symboles a(k) est envoyée
a travers m canaux linéaires de longueur N et de coefficients h(7) (voir la figure 1):

y(k) = p_ h(ia(k=1) +v(k), (1)

v(k) est un bruit additive Gaussien blanc, ryy(k—i) = Ev(k)v(i) = 021, d;. Supposons
que nous recevons M échantillons, concaténés dans le vecteur Y ps(k):

Yr(k) = Ta(h) Anpyn-1(k) + Vi (k) . (2)

Y (k) = [y (k—M41) ---yH (k)]H, et similairement pour V (k) et Aps(k). La fonction
de transfert du canal est H(z) = S No k()27 = [Hy(2)- - -H, (2)]7. Tar(h) est une ma-
trice bloc Toeplitz avec M ligne bloc et [H OmX(M—l)] comme premiere ligne bloc (H =
[R(0)---h(N—=1)]). On notera de plus: h = [T (0) --- RT(N-1)]". La longueur du canal
est N ce qui implique que h(0) # 0 et h(N—1) # 0; la réponse impulsionnelle est nulle en
dehors de 'intervalle indiqué. On simplifiera la notation (2) pour k = M —1 en:

Y =T(hA+V. (3)

Commutativité de la Convolution Nous aurons besoin de la propriété de commutativité de
la convolution:

T(h)A = Anh (4)
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ow: A, = A1 ® 1,

a(M-1) a(M-=2) --- a(M-N)
A= | A o)
a(‘O) a(—N+1)

Pour simplifier, on notera A la matrice A.

Ak
Ay

ol le vecteur Ag regroupe les My symboles connus et le vecteur Ay regroupe les My =

Modele Semi—Aveugle Le vecteur des symboles d’entrée s’écrit comme A = P

M+N—1-Mpg symboles inconnus. Les symboles connus peuvent étre arbitrairement dis-
persés dans le paquet et P désigne la matrice de permutation appropriée. Dans le cas de
Iestimation aveugle, A = Ay, alors que A = Ax = Arg dans le cas de 'estimation par ap-
prentissage. La sortie du canal peut étre décomposée en la contribution des symboles connus

et la contribution des symboles inconnus: 7 (h)A = Tx (h)Ax + To (k) Av.

Canaux irréductibles, réductibles et a minimum de phase Un canal est dit irréductible
si tous ces sous—canaux H;(z) n’ont pas de zéros en commun, et réductible sinon. Un canal
réductible peut étre décomposé comme:

H(z) = Hi(2)H.(2), (6)

ou H;(z), de longueur Ny, est irréductible et H.(z) de longueur N. = N — Ny + 1 est un
monocanal pour lequel nous supposons H.(co) = h.(0) = 1 (monique). Un canal est dit
a minimum de phase si tous ces zéros sont & l'intérieur du cercle unité. Ainsi H(z) est a
minimum de phase si et seulement si H.(z) est & minimum de phase.

Modeles pour les symboles d’entrée Les méthodes aveugles peuvent étre classifiées (ap-
proximativement) selon le niveau d’information exploité sur les symboles d’entrée: voir fig-

ure 2.

1. Pas d’information exploitée: les méthodes déterministes.

Ces méthodes sont basées directement sur la structure du signal recu, et plus partic-
ulierement sur la structure de la matrice de convolution 7 (h). Parmi les techniques
déterministes, on trouve la méthode de "subspace fitting” [56], la méthode “Subchan-
nel Response Matching” (SRM) [17, 18], la méthode de maximum de vraisemblance
déterministe (DML) [9] ou encore les techniques de “least-squares smoothing” [25, 26].
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Figure 2: Classification des méthodes d’identification de canal selon la connaissance a priori
exploitée sur les symboles d’entrée.

2. Statistiques du second ordre: les méthodes Gaussiennes.

Ce sont des méthodes qui utilisent les moments du second—ordre des données, comme
la méthode de prédiction [9] ou de covariance matching [37]. On trouve également la
méthode de maximum de vraisemblance Gaussienne (GML) [40].

3. Statistiques d’ordre supérieur.

4. Alphabet fini des symboles d’entrée.

Ces méthodes sont basées sur le signal recu et exploitent en plus "alphabet fini des sym-
boles d’entrée. Parmi ces méthodes, on trouve les méthodes de maximum de vraisem-
blance telles que [45].

5. La distribution complete des symboles d’entrée.

Dans ces méthodes, la vraie distribution des symboles d’entrée est exploitée; par exem-
ple pour une BPSK on exploite le fait que les symboles prennent la valeur +1 ou —1
avec probabilité 1. La méthode de maximum de vraisemblance stochastique (SML) [49]
appartient a cette catégorie.

Cette classification peut étre adaptée au cas semi—aveugle: les différentes catégories cor-
respondent aux différentes modélisations des symboles inconnus.

Plus on exploite d’information sur les symboles d’entrée, meilleures vont étre les perfor-
mances d’estimation, mais, en méme temps, plus colteuses vont étre les méthodes associées
avec des fonctions de cout présentant des minima locaux. Dans cette these, nous nous sommes
surtout concentrés sur les méthodes déterministes et Gaussiennes: on verra que certaines de
ces méthodes peuvent étre résolues de facon simple avec des fonctions de colt quadratiques,
sans minima locaux donc.
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3 Conditions d’ldentifiabilité Semi—Aveugle

Un parametre 6 sera dit identifiable s’il peut étre déterminé de facon unique a partir de sa
fonction de densité de probabilité:

VY, f(Y|0) = f(Y|0) =0 =10 (7)

Dans le cas de I'estimation aveugle déterministe et Gaussienne, l'identification du canal se
fait au mieux a un facteur d’échelle ou de phase pres; 'identifiabilité sera I'identifiabilité a
I’ambiguité aveugle pres.

Nous résumons ici les conditions d’identifiabilité pour I'estimation de canal par appren-
tissage et pour I'estimation aveugle et semi-aveugle. On ne précise que les conditions sur le
canal et le nombre de symboles connus; dans la these, des conditions sur la longueur du pa-
quet du signal de réception, sur les modes d’excitation des symboles d’entrée sont également
fournies.

3.1 Modeéle Déterministe

e Estimation par apprentissage: n’importe quel canal peut étre estimé pourvu qu’on ait
2N — 1 symboles connus.

e Estimation aveugle: un canal irréductible sera identifiable & un facteur d’échelle pres.

e Estimation semi—aveugle: n’importe quel canal peut étre estimé pourvu qu’on ait 2NV.—1
symboles connus (non tous nuls). Ainsi:

— pour un canal irréductible, il faut 1 symbole connu.

— pour un monocanal, il faut 2V — 1 symboles connus.

Un résultat important démontré dans cette these est que ces dernieres conditions sont
valables pour des positions arbitraires des symboles connus dans le paquet. Le cas de
symboles connus tous égaux & 0 est également traité: dans ce cas-la, la canal sera
identifiable & un facteur d’échelle pres avec 2N. — 2 symboles connus suffisamment
dispersés dans le paquet, c’est—a—dire qu’on doit avoir au moins N.— 1 symboles connus
qui n’appartiennent pas & un groupe de N, symboles connus ou plus.

3.2 Modele Gaussien

e Estimation aveugle: un canal irréductible sera identifiable a un facteur de phase pres.
Les zéros d’un canal sont identifiables mais on ne peut déterminer s’ils sont & minimum
ou maximum de phase; ainsi, si on sait que le canal est a minimum de phase, il sera

identifiable.
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e Estimation semi-aveugle: n’importe quel canal sera identifiable pourvu qu’on ait un
seul symbole connu (non nul) dans le paquet (qui n’est pas situé pres des bords du
paquet, i.e. dans les N — 1 premiers ou derniers symboles).

Au point de vue identifiabilité, on voit donc que le modele Gaussien est plus robuste que
le modele déterministe. De plus, 'estimation semi—aveugle a besoin de moins de symboles
connus pour permettre ’identifiabilité que I’estimation par apprentissage.

4 Bornes de Performance

Pour caractériser les performances de 'estimation semi—aveugle, nous utilisons les bornes de
Cramér-Rao (CRB). La plupart des définitions seront données pour le cas de parameétres
réels; dans la these, nous traitons également le cas complexe.

La CRB donne une borne inférieure sur la matrice de corrélation Cj; des erreurs d’un
estimateur non biaisé:

Cyz5 > CRB = Jg' (8)
T
= (VD) (5010 o

ol Jgpg est la matrice d’information de Fisher (FIM).

4.1 CRB pour I’Estimation sous Contraintes

Pour les modeles déterministe et Gaussien, on démontre le théoréeme suivant:

Theorem 25 La FIM est non singuliere en 0 si et seulement si 0 est identifiable localement
(i.e. il existe un voisinage ouvert de 8 sur lequel on a identifiabilité).

L’estimation aveugle ne peut estimer la totalité des parametres et il s’ensuit qu’on n’aura pas
identifiabilité locale. La FIM aveugle est donc singuliere et le résultat classique de la CRB
(8) ne peut étre directement appliqué.

L’estimation aveugle est en général faite sous contraintes: nous proposons donc des CRBs
pour 'estimation sous contraintes. On considérera les contraintes sous la forme de la fonction
implicite suivante:

Kog=0 (10)

ol Ky : R™ = R* est continiiment différentiable. On note n le nombre d’éléments de . On
supposera que ces contraintes résultent en une estimation non biaisée de #. On définit la

e 3) = (e {21 1) an

matrice Vg telle que:
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ol espace {.} désigne l'espace engendré par les colonnes de son argument et (.)- désigne
I’espace orthogonal a son argument; on suppose que les colonnes de Vy sont indépendantes.

Theorem 26 La CRB sous les contraintes Ky = 0 est
CRBe = Vs (VETssVe) " VI (12)

Cette CRB est définie si et seulement si VeTjggvév est réguliere, ce qui équivaut a dire que 0
est localement identifiable sous les contraintes K.

4.2 Contraintes Particulieres

Dans la these, nous avons mis en évidence des contraintes particulieres importantes. Quand
T

oK
espace {8—06} = null(Jye),

CRBe = J5f . (13)

Ces contraintes donnent, pour un nombre minimal de contraintes indépendantes, la plus
petite valeur de tr {CRB¢}.

Ce résultat peut également étre appliqué au cas de 'estimation conjointe des vecteurs de
parametres 6 et 0, ou les contraintes K, ne sont appliquées que sur 6;; On suppose que Jpg
est singuliere tandis que [Jg,4, est réguliere. La CRB sous la contrainte Kg, est:

CRB = Vg, (VI Jo,0,(0)Vs,) ™ VI (14)
ol
To, 6, (0) = TJo,0, — '-79192'-76’;;2'-79291 : (15)
‘76’:51 (0) serait la CRB pour 6 si Jy,¢,(0) était inversible. Veleé’lé’l (0)Vg, est supposé in-
KT
versible. Maintenant, si espace { 821 } = null(Jy,6,(0)), la CRB contrainte est:
CRBc = (Ja,0,(0))" (16)

4.3 Application a I’Estimation Aveugle

On suppose ici que les conditions d’identifiabilité aveugle sont vérifiées.

Modéle Déterministe

Dans le cas d’un canal complexe, la FIM déterministe a 2 singularités; son espace nul est

—Im(h) ] | a7

engendré par:
Re(h)

he =
57 Im(h)

et h52 = Re(h)
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Le premier vecteur peut étre interprété comme correspondant a I’ambiguité sur la norme et
le second vecteur comme correspondant a I’ambiguité de phase.

Pour lestimation aveugle déterministe, on considere les contraintes suivantes:

e Une contrainte quadratique:

T h = hoHp (18)
qui permet d’ajuster la norme du canal.

e Dans le cas d’un canal complexe, une contrainte supplémentaire pour ajuster le facteur
de phase:
heThp = h3Thy = 0. (19)

On dénote (.)° la vraie valeur de son argument et hp = [Re(hT) Im(hT)]T. Ces contraintes
laissent une ambiguité de signe mais qui ne conduit pas a une FIM singuliere. Pour évaluer
le MSE, cette ambiguité peut étre résolue en imposant h°Th > 0.

Modeéle Gaussien

La FIM Gaussienne pour un canal complexe a une seule singularité; ’espace nul est engendré
par le vecteur hg,. Une seule contrainte est donc nécessaire pour régulariser le probleme

d’estimation; cette contrainte est la contrainte de phase utilisée dans le cas déterministe:

heThp = heThy = 0. (20)

Pour les deux modeles, la CRB sous contraintes est:
CRBc = (Tun(0))T . (21)

Dans le cas déterministe, la contrainte de norme est usuellement utilisée, mais sans autre
justification que celle de donner des solutions simples pour les méthodes associées. Ici, nous
choisissons également cette contrainte parce que, adjointe de la contrainte de phase (19), elle
donne comme CRB la pseudo inverse de Jp,;(#). C’est ainsi que 'on justifie également la
contrainte de phase choisie dans le cas Gaussien.

4.4 Evaluations Numériques des CRBs

Dans la figure 3, nous montrons la mesure tr(C'RB), pour un paquet de longueur fixe M =

100, le canal H ey (voir Chapitre 5, appendice D). Les symboles d’entrée appartiennent a

une BPSK et sont choisis aléatoirement. Nous ne présentons ici que le cas déterministe.
Dans la figure 3 & gauche, les performances sont montrées en fonction du nombre de

symboles connus dans le paquet. On voit une amélioration spectaculaire des performances
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CRBs déterminites pour une BPSK et H . CRBs déterministe pour une BPSK et H

10 T T T T T T T T T 10 T T T T T T T T T

Semi-Aveugle

10’ |

Semi-Aveugle

tous les symboles connus

10° I I I I I I I I I I 107 I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 o5 30 40 50 60 70 80 90 100

Nombre de symboles connus Nombre de symboles connus

Figure 3: CRBs pour 'estimation semi-aveugle (gauche) et comparaison des modes semi-
aveugle et d’apprentissage (droite).

semi-aveugles avec trés peu de symboles connus (10 symboles connus); passé ce stade, il faut
un nombre plus important de symboles connus pour avoir une amélioration significative.

Dans la figure 3 & droite, on compare les performances de 'estimation semi-aveugle avec
Iestimation par apprentissage. Pour 10 symboles connus, on a un gain de performance de
20 apporté par 'estimation semi-aveugle. Pour un niveau de qualité d’estimation désiré, il
faudrait 10 symboles connus pour I’estimation semi-aveugle alors qu’il en faudrait 50 pour
I’estimation par apprentissage. Pour 25 symboles connus, on a un gain de performance de 3;
il faudrait 70 symboles connus en apprentissage pour obtenir les performances de 'estimation
semi—aveugle.

4.5 Optimisation des Symboles Connus
Valeur des Symboles Connus

Pour 'estimation par apprentissage, la séquence optimale est une séquence blanche (au sens
déterministe), c’est-a—dire telle que AH A est une diagonale constante. Pour l’estimation
semi—aveugle, 'optimisation de la séquence va dépendre du canal: une séquence blanche ne
va pas optimiser les performances mais reste sans doute parmi les meilleurs choix.

Symboles Groupés ou Dispersés

Lorsque les symboles connus sont groupés, on aura de meilleures performances lorsque ces
symboles sont choisis aléatoirement. Par contre, lorsqu’ils sont tous identiques, les perfor-
mances seront meilleures lorsque les symboles connus sont dispersés dans le paquet.
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5 Meéthodes Semi—Aveugles Optimales

Dans une premiere approche, nous nous sommes intéressés a des méthodes semi-aveugles
optimales: ce sont des méthodes qui permettent d’exploiter toute l'information venant des
symboles connus et des symboles inconnus, et notamment des zones de transitions qui conti-
ennent a la fois des symboles connus et des symboles inconnus. De telles méthodes sont des
méthodes qui incorporent naturellement la connaissance de symboles a 'entrée. Ainsi, nous
avons opté pour les méthodes de maximum de vraisemblance semi—aveugles.

DML Semi-Aveugle
Y = T(hWA+ V: comme V ~ N(0,021), Y ~ N(T(h)A,c2I). Le critere DML s’écrit

comme:
max f(Y]h) < min||Y = T(RA|? < min|Y - Tx(h)Ax — To(h) Apl? (22)
Ay ,h Ay,h Ay,h

ou f(Y|h) est la densité de probabilité de Y. Quand on minimise ce critére en fonction de
Ay et on remplace 'expression obtenue dans le critere, on obtient un critere DML pour A
uniquement:

min (¥~ Tic (W) AR PE ) (Y = Tie () AK) - (23)

Le premier critére (22) peut étre optimisé par des minimisations alternées entre h et Ag.
Cette méthode simple présente un certain nombre de propriétés avantageuses: la fonction
de cotit DML décroit a chaque itération et avec une bonne initialisation, on converge vers
le minimum global. Cette méthode a pour désavantage de présenter une convergence lente
qui rend son utilisation quelque peu prohibitive. Le critere (23) en h peut étre résolu par la
méthode de scoring [40].

GML Semi-Aveugle

Y = Tx(h)Ax + To(h) Ay + V: comme Ay ~ N(0,02]) et V. ~ N(0,02]), alors Y ~
N(Tk(h) Ak, Cyy) avec Cyy = O'gTU(h)TJ{(h) + 02]. Le critere GML s’écrit comme:

min {m det Cyy + (Y — Tic(h)Ag)" CL (v - TK(h)AK)} . (24)
Ce critere peut étre optimisé par la méthode de scoring. Il est a noter que I'hypothese
Gaussienne sur les symboles inconnus, qui est une hypotheése non valide, n’est utilisée que
pour construire le critere. Dans la these, une forte connexion entre GML aveugle et la méthode
de covariance matching basée sur un critere aux moindres carrés optimalement pondéré. On
montre que GML peut étre vu comme une certaine forme de covariance matching et a des
performances équivalentes a la méthode de covariance matching quand le nombre de données
et la taille de la matrice de covariance tendent vers l'infini.
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Une étude de performance des méthodes MV déterministes et Gaussiennes est présentée
dans le chapitre 6.

Dans une seconde approche qui est sous—optimale, on considere que les symboles connus
sont groupés sous forme d’une séquence d’apprentissage. Dans ce cas—la, on verra, qu’avec peu
d’approximations, le critere MV semi-aveugle s’écrira sous la forme de la somme du critere
MYV et du critere d’apprentissage. Comme le probleme semi-aveugle garde la structure du
probleme aveugle, il va étre possible de construire des algorithmes rapides semi-aveugles.
Ainsi, pour des raisons de complexité algorithmique, mais également pour des raisons de
performance, il est préférable d’avoir des symboles connus groupés.

Pour avoir des critéres semi—aveugles performants, il apparait important de trouver des
méthodes performantes pour résoudre le probleme MV aveugle.

6 DML Aveugle

Une solution peu coiliteuse pour optimiser le critere DML aveugle est basée sur une paramétri-
sation de l’espace bruit (i.e. complément orthogonal & I’espace colonne de 7 (h)). Une telle
paramétrisation H* (2) vérifie HY(2)H(z) = 0 et TH(h+)T (h) = 0 ott T(h*) est la matrice
de convolution construite & partir de H* (2). Par exemple, dans le cas m = 2 (2 sous—canaux),
H*(2) = [-Hy(2) Hy(2)]. Le critere DML pour h s’écrit alors comme:

min YT () [T 0T (1) by . (25)

R(h)

On ne précise que la contrainte de norme sur le canal: une contrainte de phase est également
nécessaire dans le cas d’un canal complexe.

Iterative Quadratic ML (IQML) est un algorithme itératif qui permet de résoudre (25): a
chaque itération, IQML considére le dénominateur R(h) = R comme constant, calculé & partir
de I'itération précédente. Le critere devient alors quadratique. Utilisant la commutativité de
la convolution, on peut écrire 7 (h1)Y = Yh; le critére IQML s’écrit:

min KX YIRT YA . (26)
[IAll=1
Dans le cas sans bruit, Yh° = 0: le vrai canal annule le critére (quadratique) et donc la
solution est A°. A haut SNR, une premiere itération donnera une estimée consistente de h
et une seconde itération donnera la solution DML. A bas SNR cependant, IQML donne une
estimation biaisée du canal et ses performances sont mauvaises. En effet, asymptotiquement
dans le nombre des donne’es, la fonction de coit IQML est équivalente a son espérance par
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la loi des grands nombres:

TR T EYYH = 6 { TH A RAT () X X} + o2 { TH R RFT (1)}
(27)
h? annule le premier terme mais n’est pas en général un vecteur propre du second terme et

donc de la somme.

6.1 Denoised IQML (DIQML)

La premiere méthode que nous proposons va débruiter le critere IQML. Nous soustrayons au
critere IQML une approximation de la contribution du bruit (¢2 est une estimée consistente

de la variance du bruit):
min tr{PTH(hL) (YYH - 551)} &
hl||=1

min {WIVIRE () = Gl TR ()T ()}

(28)

(28) est résolu de la méme maniere que IQML: on considere R(h) = R comme constant a
chaque itération et le probleme devient quadratique:

min, W {YIRYY — 52D}k (29)
ott hEDh = tr{TH(RLYRTT (h1)}.

Le choix de ;2 s’avere crucial. Pour un nombre fini de données, la matrice centrale
Q=YIRtYy - (;27) sera indéfinie si ;2 n’est pas choisi proprement: dans ce cas la, DIQML
n’aura pas de bonnes performances. Pour avoir un probleme de minimisation bien défini a
chaque itération, on va choisir le ;2 qui rend Q(h) positive avec 1 singularité. Le probleme
devient alors:

||hﬂ?i?,A M {VERTY —AD} h. (30)

A est la valeur propre généralisée minimale de Q et & le vecteur propre généralisé associé.

6.2 Pseudo Quadratic ML (PQML)

PQML est un algorithme itératif qui & chaque itération va tenter d’annuler le vrai gradient
de DML. Ce gradient peut étre décomposé sous la forme P(h)h ot P(h) est une matrice
idéalement positive. A chaque itération P(h) = P est considéré comme constant (évalué
grace a 'itération précédente). Le probleme devient quadratique:

min 7P h. (31)
[[1]=1
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Symboles
Symboles connus
Connus + Symboles Inconnus
Uniquement Inconnus Uniquement
Zone de
transition
Symboles
Connus Symboles Inconnus
Yrs Yp

Figure 4: Paquet de sortie: décomposition des données pour LS-PQML

Pour le probleme DML, la matrice P(h) peut étre mise sous la forme P(h) = YIRtY —
B(h). Quand M — oo, B(h) — 02D + terme signal. Evalué en un h consistent, le terme
signal devient négligeable, et I’effet de B(h) est de débruiter le critere IQML mais d’une facon
plus efficace que DIQML.

Les performances de PQML et DIQML sont étudiées: PQML a de meilleures performances
que DIQML. De plus PQML a les mémes performances asymptotiques que DML.

7 Méthodes Semi—Aveugles Sous—Optimales

On suppose que les symboles connus sont groupés et pour simplifier, sont situés au début du
paquet. Le paquet de sortie (figure 4) peut étre décomposé en 3 zones: une zone ne contenant
que des symboles connus, une zone contenant a la fois des symboles connus et inconnus et
une zone ne contenant que des symboles inconnus.

Les criteres semi—aveugles que nous proposons vont étre basés sur une décomposition en
2 zones, le zone de transition étant assimilée a la partie aveugle ou a la partie apprentissage
du critere.

7.1 Least Squares—-PQML (LS-PQML)

La premiere méthode assimile la zone de transition a la partie aveugle et les symboles connus
dans cette zone sont considérés comme inconnus, ce qui entraine une perte d’information. On
applique DML & [Y%S Yg]T avec Yrg = Trs(h)Ars+Vrset Yp=Tp(h)Ap+Vi. Le
critere semi—aveugle s’écrit:

min {[[Y'rs = Trs(h) Azs||* + [ 5 = To () As|*} (32)
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Symboles
Symboles connus
Connus + Symboles Inconnus
Uniquement inconnus Uniquement
Symboles
Connus et inconnus Symboles inconus
Y 10/Y wis Y

Figure 5: Paquet de sortie: décomposition des données pour AQ/WLS-PQML

c’est—a—dire la somme du critere aux moindres carrés pour Y rg et du critere DML pour Y 5.
Ce critere semi—aveugle peut étre résolu en utilisant des minimisations alternées entre h et
Ap. On peut également utiliser le critere DML en A pour la partie aveugle en la résolvant
par PQML:

min {[|Y'rs = Trs(h) Ars||* + " {VER* Y5 — AB}h} . (33)

7.2 Alternating Quadratic-PQML (AQ-PQML)

Dans la deuxieme méthode, la zone de transition est assimilée a la partie apprentissage, les
symboles inconnus dans cette zone sont considérés comme déterministes. On applique DML

a [YEQ Yg]T avec Y g = Ti(h)Ars + T (h) Al + V ag. Le critere semi-aveugle s’écrit:
iy (¥ ag — Th(h)Ars — T () A1+ ¥ 5~ Ti(h) Ap ) (34)
By,

Ce critere peut étre optimisé en utilisant des minimisations alternées. Si on résoud la partie
aveugle par PQML:

min {IIY aq = Tie (W) Ars — T () Apl1> + b {VER* i — AB} b} (35)

et on résoud par minimisations alternées entre h et Ay;.

7.3 Weighted Least Squares—PQML (WLS-PQML)

Dans la troisieme méthode, la zone de transition est de nouveau assimilée a la partie appren-
tissage, mais les symboles inconnus dans cette zone sont cette fois—ci considérés comme des
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variables aléatoires Gaussiennes. On applique GML a Yyyrg = T (h)Ars+ T (R)Ap+Vwrs
et DML a Y g, and apres quelques approximations, on obtient:

in {1V wss = T ArslRy .+ 1V5 = Tol) A5l )

th

avec Cyy, Viprs = UZTWLS(h)TVf,ILS(h)—I—UEI. On peut de nouveau utiliser des minimisations
alternées. WLS-PQML s’écrit:

min {[Vws = (0 Arsley,, .+ 0T {VERY Y~ A8 R (3D

Dans la figure 6, on montre les performances simulées des différents algorithmes basés sur
PQML pour un paquet de longueur M = 100, un SNR de 10dB, une longueur de canal de
4 (les coefficients du canal sont choisis aléatoirement). 1000 réalisations de Monte—Carlo sur
les symboles d’entrée inconnus et sur le bruit sont effectuées. On a 7 symboles connus, ¢’est—
a—dire le nombre minimal pour que ’estimation par apprentissage soit définie. On remarque
que la méthode la plus performante est WLS-PQML avec des performances simulées proches
des performances optimales de ML, et la moins performante est LS-PQML. On montre de
plus les performances de 'algorithme de minimisations alternées basées sur le critere optimal
(22). On remarque la convergence lente de cet algorithme.

Dans la figure 7, on effectue 5000 réalisations de Monte—Carlo sur le canal (aléatoire), le
bruit et les symboles d’entrée. On y montre les performances du PQML aveugle (le facteur
d’échelle du canal est estimé grace a la séquence d’apprentissage). On remarque que le PQML
aveugle a de mauvaises performances: ceci n’est pas di au fait que PQML est un mauvais
algorithme, mais au fait que le probleme aveugle est tres sensible au conditionnement du
canal: sur les 5000 réalisations, des canaux mal conditionnés ont été tirés qui ont rendu les
performances aveugles moyennes mauvaises. [’estimation semi-aveugle permet par contre de
robustifier le probleme.

8 Combinaison Critere Aveugle et Critere Apprentissage

8.1 Exemple de SRM

Certains critéres semi—aveugles se présentent sous la forme d’une combinaison linéaire d’un
critére aveugle (critére qui ne permet pas d’incorporer la connaissance de symboles connus)
et d’un critere d’apprentissage.

Nous traitons ici 'exemple de SRM semi-aveugle. SRM aveugle peut étre vu comme une
version non pondérée de IQML: miny,) = REYHY h. Le critere SRM semi-aveugle s’écrit

comme:

min {ah" YEYph + || Y15 — Trs(h)Ars|®} - (38)
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M=100 - 10dB - 7 symboles connus - longueur du canal=4
10 T T T T

—v—  LS-PQML
—a—  AQ-PQML
—6e—  WLS-PQML
—<—  min. alternees
--- perf ML

Iteration

Figure 6: Algorithmes semi—aveugles.

M=100 - 20dB - 9 symboles connus - longueur du canal=5
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—e—  AQ-PQML
- = PQML aveugle
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Figure 7: Comparaison entre un algorithme semi-aveugle et un algorithme aveugle.
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Ce critere est basée sur la décomposition des données de la figure 4. Une facon intuitive de
pondérer les deux parties aveugle et apprentissage est de leur associer le nombre de données
sur lesquelles elles sont basées. Ainsi, dans notre cas, le o optimal serait égal a 1. Dans la
figure 8, nous montrons le NMSE moyenné sur 100 réalisations du canal (dont les coefficients
sont choisis aléatoirement), du bruit et des symboles d’entrée. On considére les cas de 10 et
20 symboles connus pour un burst de longueur 100. Pour o = 1, on trouve des performances
pires que celles données par apprentissage pur (a = 0).

Cet exemple nous montre qu’un critere semi-aveugle bien construit ne consiste pas en une
simple combinaison linéaire du critere aveugle et du critere d’apprentissage. Le critere SRM
aveugle ne donne une estimée du canal non biaisé que sous la contrainte de norme constante.
L’estimation semi—aveugle se faisant sans contraintes, les mauvaises performances de la partie
aveugle rendent le critére semi—aveugle mauvais.

Il apparait donc nécessaire de débruiter la partie SRM du critere semi-aveugle, il reste
cependant a trouver le bon facteur «. Pour cela, nous faisons un parallele avec DIQML, et
nous approximons la matrice R (30) par sa diagonale. Ainsi dans le cas m = 2, le critere
SRM semi-aveugle est:

1
min { mzhﬂ (VEYB = Anin(VEYB)) A+ |V 15 — TTs<h>ATs\P} (39)
h

ot Apin (VH YB) est la valeur propre minimale de YH Vg, et ||k est une estimée de la norme
de h. Dans la figure 8, on montre les performances du SRM semi-aveugle corrigé. On voit
que la valeur & = 1 donne approximativement les performances optimales. On remarque en

fait que les performances dépendent assez peu du facteur a.

8.2 Autre Exemple

Considérons maintenant un critére semi—aveugle formé d’un critere aveugle quadratique de la
My—oo
forme hHUgUBh, avec Ugh® =S

de symboles connus et inconnus tendent vers I'infini, on connait la matrice de pondération

0. Considérant la situation asymptotique ot le nombre

optimale W du critére aux moindres carrés pondérés:

min Uph
Yrs—Trs(h)Ars

i (40)

W+

(ce critere est basé sur la décomposition de la figure 4). En effet:

H
_[WB

Uh 0
41
0 o?] ] ( )

W =K
Yrs—Trs(h)Ars

Uh
Yrs—Trs(h)Ars
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Figure 8: SRM semi-aveugle.

avec Wp = E (UthHUg). Le critere semi—aveugle pondéré optimalement devient alors:

. 1
min {hHUEWEUBh-I-;HYTs—TTs(h)ATSHZ} (42)

9 Gaussian ML

Des algorithmes aveugles et semi-aveugles pour optimiser GML basés sur la méthode de
scoring sont également proposés. Dans des simulations, on met en évidence les performances
supérieures de GML par rapport & DML. La méthode de scoring est cependant plus algorith-
miquement complexe que ’algorithme DIQML ou PQML. Nous proposons une approximation
de la méthode de scoring basée sur des expressions fréquentielles de la FIM gaussienne et du

gradient de GML.

Dans le cas Gaussien, on peut également construire des criteres semi-aveugles sous la
forme de la somme d’un critere aveugle et d’un critére d’apprentissage comme cela a été fait
dans le cas déterministe. Le découpage des données en deux parties devrait étre différent
cependant: en effet, non seulement le bruit au niveau de ces deux parties doit étre découplé,
mais la partie signal également. Cependant, nous avons vérifié par des simulations qu’on peut
ignorer les corrélations au niveau signal et donc adopter les mémes décompositions (figure 4
et 5) que dans le cas déterministe.
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10 Décisions Douces Appliquées a I'Estimation Semi—Aveugle

Dans une derniere étape, nous appliquons une stratégie de décisions douces a l'estimation
de canal semi-aveugle. On part d’une estimée du canal obtenue par une méthode semi-
aveugle, a partir de laquelle un égaliseur est construit qui nous donne des estimés des symboles
d’entrée inconnus. Des décisions sur les symboles les plus fiables sont prises et sont considérées
comme des symboles connus; les autres estimés des symboles, non fiables, sont considérés
comme inconnus. Un nouveau critére semi—aveugle est alors construit basé sur un nombre de
symboles connus plus important. Cette idée prometteuse est appliquée a DML et & GML: il
apparait en fait difficile d’appliquer cette stratégie car elle change les statistiques conjointes

de symboles et du bruit.

11 Structures de Récepteurs

11.1 Egaliseur en Mode Paquet

On étudie la structure des égaliseurs en mode paquet: on donne la structure des égaliseurs
classiques linéaires et a retour de décision, ainsi que celle de 'annulateur d’interférences entre
symboles, que 1’on appellera NCDFE (Non Causal Decision Feedback Equalizer), qui utilise
les décisions passées et futures: les décisions futures sont données par une autre égaliseur
(linéaire ou DFE), les décisions passées sont données par cet autre égaliseur ou le NCDFE
lui-méme. Les différents égaliseurs sont donnés selon les criteres zéro—forcing, MMSE et
MMSE non biaisé. Contrairement au mode continu, les filtres optimaux sont variants dans le
temps. Les performances des ces égaliseurs sont données en terme de SNR. Le SNR, dépend
de la position du symbole dans le paquet, ainsi que de la présence de symboles connus
dans le paquet. Nous montrons qu’en choisissant correctement le nombre et la position des
symboles connus, les filtres du traitement continu (qui sont invariants dans le temps) peuvent
étre organisés pour donner des performances satisfaisantes, de telle facon que le traitement
optimal en mode paquet impliquant des filtres variants dans le temps peut étre évité.

11.2 Egaliseur 3 Retour de Décision Non Causal

Quand il n’y a pas d’erreurs dans le retour de décision non causal du NCDFE, celui—ci donne
en sortie un signal sans interférences entre symboles, et le “matched filter bound” est atteint.
En pratique, il souffre de la propagation d’erreurs. Nous proposons une implémentation du
NCDFE basée sur des décisions douces. A chaque étape, pour chaque symbole inconnu,
des intervalles de fiabilité sont calculés sur la base du SNR du symbole, de la position du
symbole dans le paquet et de la présence de symboles connus dans le paquet. Uniquement les
symboles les plus fiables sont mis dans le retour de décisions du NCDFE. Les autres symboles

sont classifiés comme inconnus et seront de nouveau estimés dans la prochaine itération du
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NCDFE. Le nombre croissant de symboles assimilés comme connus, venant des itérations
précédentes du NCDFE, améliore la qualité d’estimation des autres symboles inconnus. Ce
schéma de décisions douces est comparé a d’autres schémas, et en particulier celui basé sur
la tangente hyperbolique.

11.3 Matched Filter Bounds pour des Modéles de Canaux d’Ordre Réduit

Le Matched Filter Bound (MFB) correspond a une borne de performance pour les récepteurs
quand le canal est connu. Nous proposons ici deux Matched Filter Bounds (MFB) destinés a
caractériser les performances de récepteurs qui utilisent des modeles de canaux d’ordre réduit.
La premiere borne utilise le modele du canal pour effectuer un filtrage adapté spatio-temporel
qui conduit a une réduction des données de multicanal & monocanal. Le reste du traitement
reste optimal. La seconde mesure (ICMEB) borne les performances de 1’algorithme de Viterbi
basé sur le modele de canal d’ordre réduit. Nous présentons deux méthodes fournissant des
modeles d’ordre réduit pour illustrer ces deux mesures: 'estimation de canal aveugle par
DML (qui maximise WMFEB) et I'estimation de canal par apprentissage.

12 Conclusion

Dans cette these, nous avons présenté une étude approfondie sur ’estimation de canal semi—
aveugle. Nous avons montré la supériorité des techniques semi-aveugles par rapport aux
techniques aveugles et aux techniques d’apprentissage. Les méthodes semi-aveugles sont
capables d’identifier n’importe quel canal avec tres peu de symboles connus; ces derniers
peuvent de plus étre arbitrairement dispersés dans le paquet d’entrée. Les performances
de ’estimation semi—aveugle sont également meilleures que celles de 'estimation aveugle et
de l'estimation par apprentissage. Nous avons de plus fourni une étude sur les CRBs sous
contraintes afin de caractériser les performances de I’estimation aveugle. 1l existe différentes
fagons de construire des criteres semi—aveugles. On a vu des critéres optimaux qui sont
basés sur des méthodes incorporant naturellement la connaissance de symboles d’entrée. Des
criteres sous—optimaux basés sur MV qui considerent des symboles groupés et s’écrivent sous
forme d’une combinaison linéaire du critere aveugle et du critere d’apprentissage: les poids de
la combinaison linéaire sont donnés par MV. Enfin, nous avons examiné des criteres combinant
certains criteres aveugles, comme subspace fitting, et un critere d’apprentissage. Dans une
derniere partie, nous nous sommes concentrés sur des structures de récepteurs avec un intérét
particulier pour le NCDFE.
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