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Abstract w.r.t. purely blind estimation but also w.r.t. to training se-
guence based estimation, possibly allowing good estima-
Two channel estimation methods are often opposed:tion even when the training sequence is short. All those
training sequence methods which use the information com-aspects were already mentioned in [1] and [2]. We propose
ing from known symbols and blind methods which use two approaches to semi-blind channel estimation based on
the information coming from the receivedgsal with- ML, which we believe are among the less complex and more
out integrating the possible knowledge of symbols. Semi-powerful methods. We study their performance asymptot-
blind methods combine both informations and appear more ically in the number of known and unknown symbols and
powerful than both methods separately. Two Maximum- compare it to the Cramer-Rao Bounds (CRB).
Likelihood approaches to semi-blind SIMO channel esti- We consider a single-user multichannel model: this
mation are presented, one based on a deterministic modelmodel results from the oversampling of the received sig-
and another on a Gaussian model. Their asymptotic per- hal and/or from reception by nitiple antennas. Consider a
formance are studied and compared to the Cramer-Raosequence of symbolg k) received thoughm channels of
Bounds. The superiority of semi-blind over blind and train- length N and coefficients (z):

ing sequence methods, and of the Gaussian approach is N—1
demonstrated. y(k) = Y h(i)a(ksi) +v(k), 1)
=0
1. Introduction v(k) is an additive independent white Gaussian noise with

) L . rpv(ksi) = Ev(k)o ()" = 021, dki.
GSI\IC/IOS"[ ofltk(;e actltjal. mobile communication standagds,rl:ke We consider the symbol constellation as known. When
» Include a training sequence to estimate the chan-w,q in 1 symbols are real, it will be advantageous to con-

qel, or simply Some known sy'm'bols used for synchroniza- sider separately the real and imaginary parts of the channel
tion or as guard intervals. Training sequence methods bas%nd received signal as:

the parameter estimation on the received signal containing
known symbols only and all the other observations, contain- [ Re(y (k) N-1 Re(h (i) ] Re(v(k))
a(ksi)+ [ ]

ing (some) unknown symbols, are ignored. Blind methods ] = Z [ .

are based on the whole received signal, containing known M(y(k) = Im(R(i)) Im(o(k))
and unknown symbols, but no use is made of the knowl- o H I . (2)
edge of some input symbols. The purpose of semi-blind Let'S renamey (k) = [Re” (y(k)) Im* (y(k))]”, and idem

methods is to combine both training sequence and blind in-for h(l) andwv(k), we get again (1), but this time, all the
formations. guantities are real. The number of channels gets doubled,

Semi-blind techniques can then avoid the possible ill- which has for advantage to increase diversity. Note that the

conditioning of blind techniques, like the case of channel monochannel case .does not exist in the real case.

with closely-spaced zeros. With few known symbols, any Assumg we receiva/ samples, concatenated in the vec-
channel becomes semi-blindly identifiable. Coupling blind tor¥ a (k):

and training sequence informations improves performance Y (k) = Tar(h) Apryn—1 (k) + Var (k) 3)

t The work of Elisabeth de Carvalho was supported by Laboratoires Yu(k) = [yH(k’@M—I—l) .. yH(k)]H, similarly for
d’Electronique PHILIPS under contract Cifre 297/95. The work of Dirk H H i
Slock was supported by Laboratoires d’Electronique PHILIPS under con- V a (k), and Apr (k) = [a (k&M EN+2) - -a (k)] '
tract LEP 95FAR008 and by the EURECOM Institute where (.)# denotes Hermitian transpose7(h) is a



block Toeplitz matrix filled out with the channel coefficients the channel can be done without the estimation of the un-
grouped in the vectok. We shall simplify the notation in  known input symbols: GML considers the joint estimation
(2) withk = M <1 to: of h and the coefficients af'vv. Y ~ N (T (h)A?, Cyy),
Cyy =T (h)CaaT*(h)+ Cyvy and the GML criterion is
Y =Th)A+V =Tu(h)Ax + Tu(h)Au + V' (4) max f (Y |h), or:

We assume that the known symbols are grouped and for

. oNH ~— 0
notational simplicity at the beginning of the burst = ?;Q{lﬂdet Cyy+ (YT (h)A%)" Cyy (Y ST (h)A )}
[AF AHVH A, contains thelf,, known symbols andi,,, o ®)
the M,, unknown symbols. We will specialize this general model to the semi-blind case
Ak el 0
as follows: A° = and C = ,
2. ML Methods 0 4 0 o3l

wheree is arbitrarily small. Furthermore, as already men-
tioned, we take’yy = o21. We will denoteC(h) the cost
function. WhenA is compley, it is taken equal to the ex-
pression in (7), whent is real, it is 2 times this expression.

2.1. Deterministic ML (DML)

In the deterministic model both input symbols and chan-
nel coefficients are considered as deterministic. We are in-2 3. |dentifiability Conditions
terested in the joint estimation éfand the unknown sym-

bols, which is decoupled from the estimationegf. This Let @ be the parameter vector to be estimatéds said
estimation is based on the following DML criterion: to be identifiable iVY, f(Y |6) = f(Y|¢') = 6 = 6. For
) N Gaussian distributions, which is our case, identifiability is
I}xluaz(f(YM) & min |Y T (h)A () based on the first and second-order moments.

We give here identifiability conditions on the channel
F(Y'|h) is the complex probability density function when characteristics only. We assume that the burst length is suf-
A is complex (which exists a¥ is circular) and the real ficiently long and, for DML, that the entry contains at least
one whend isreal. Y = Ty (h)Ax + Tu(h)A, + V', and 2N <1 modes, which is a sufficient identifiabiblity condi-
optimizing w.r.t. the unknown symbols, we get: tion for DML. For GML, the uncorrelated symbols are max-
. . imally excited.

A= (TIWTW) T T (¥ STeWA) 6) o0 g
which is the output of the non-causal minimum mean Blind DML cannot estimate monochannels as well as the
squared error zero-forcing decision feedback equalizer withzeros and a scale factor of a multichannel. A multichannel
feedback of the known symbols. Substituting (6) in (5) we can be estimated up to a complex scale factor if and only if
get the following minimization criterion fok: itis irreducible [3], [4].

. oo Blind GML requires less demanding conditions.
min (Y <75 (h)Ax)” Pr ) (Y <Tk(h)Ax) (7). Monochannels can be identified up to a phase factor if and
only if they are minimum-phase. Multichannels can be es-
Wherepﬁ(ﬁ) = I =T, (h) (Tfl(h)%(h))_l TH(h). We timatejdz up to a phase factor, if and only if the zeros, if any,
will denoteC (k) the cost function. For commodity reasons, '€ minimum-phase.
whenA is complex, it is taken equal t§5 times the expres- 232 Semi-Blind

sionin (7), when is real '“503 times this expression. Semi-blind allows the estimation of any channel.

Monochannels as well as the zeros or the ambiguous
2.2. Gaussian ML (GML) blind scale factor are estimated thanks to the training
sequence. One need®',<3 known symbols containing
In the Gaussian Model [1],[2], the channel coefficients at leastV,<1 modes, wheréV, is the number of zeros. 1
are still considered as deterministic but the input symbols known symbol is sufficient when the channel is irreducible,
as Gaussian random variables. This hypothesis, althougland2 N <1 are required for a monochannel.
false, allows to robustify the estimation problem and im-  For GML, identificationis possible from the mean alone:
proves performance w.r.t. DML, as will be seen. 1 known symbol (not located at the edges of the burst) is
In the Gaussian model for (4y] ~ AN(0,Cyv ) is in- sufficient to allow the identification of any channel. Note
dependent ofA ~ AN(A4°,C44). A° is the prior mean then that the blind part of the GML brings information on
for the symbols. In the Gaussian case, the estimation ofmonochannels and zeros of multichannels.



Continuous ambiguities for identifiability corresponds to We will treat the general case of a reducible channel:
singularities in the (Fisher-like) information matrices (IM) H(z) = Hy(z)H.(z), Hr(#) of length N; is irreducible,
J andJ below, as will be seen. Binary ambiguities, like a H.(z) is a monochannel of lengtN, and admits as zeros
sign for example, will not lead to singularity for the IM. the N.<1 zeros ofH(z). We assume that the first coeffi-
. cient of 1.(z) is equal to 1. For an irreducible channel,
3. Asymptotic Performance H.(z) = 1 and is known. For a monochann®(z) =
We explain here the general procedure to compute the (z). Ty (h) = Tar(h1)Taren,—1(he) = T(hr)T (he).

asymptotic ML performanced is the complex parameter Furthermore, the asymptotic conditions will be:
vector,0r = [Re” (0) Im* (0)]7, the real associated pa- (i) My — oo andM, — oo
rameter vectord, andd,,, the true values] andfr the ML (i) x/Jéwu 0.

k

estimates andd = 0<8,, A0 = O b, the errors. As- e will not treat the case wherd,, is finite and/,, infi-
suming consistency, we can proceed to the following Taylor njte: the performance in that case is that of the blind method
development of (), the cost function, aroun} . up to some ambiguities, that get estimated by the known

H symbols part.
oc(o) :86(9) + i (86(9) ) Abp+o(AfR) One of the main challenges (for algorithm development)
g lg=5 O0R ly=p, 99r \ OO 9=0, and interests of semi-blind methods is to give good perfor-
) mance when both blind and training sequence methods fail,
with %}?‘ _ = 0, then asymptotically: and especially when the training sequence is too short to al-
b=6 low good channel estimation. Our asymptotic study does
o [ac(o) m\ ! ac() not allow tq elgcidate this phenomenon which happlens pe-
Abgr = 0n ( 20n ) 0n (10) cause semi-blind methods also takes the observations into

account that contain both known and unknown symbols.
Let’s denote:

1) ac(0) \/ 9c(0) 9 (oc(e) 3.1. Semi-Blind DML
Jor =8\ 59 a6 ‘79R =50 o0 i i i
R R R R As already mentioned the blind part does not contain
(11 any information onH.(z), and Py, = Py, |, where

In our specific cases, asymptotically, by the law of large Tur(hr) is T(hy) with the first My<N.+1 columns re-

numbers: 8 [ac() H moved. Under condition (i), the observations containing
0 <8T) ~ «79(? (12) both known and unknown symbols can be neglected and the
R R training sequence and blind contributions can be separated
Then,Afg ~ N (0, Cag,), with error covariance matrix: in the criterion as:
2\ L 2\ 71
Cavn = (72) 7 (337) (13) IYrs ©Trs (WA +YEPE . Y5 (17)

As we are working with complex quantities, we found

. . . o with h) = _ h) and h) = _an (h),
it easier to manipulate derivation w.r.t. complex vectors, Trs(h) Tt 1(h) 75(h) T ()

Y rs andY g designate resp. the observations with known

defined as:; = $ (% Qj%) ,with = o + jj3. Let: and unknown symbols only.

= " The estimation of = [h¥ KT H (whereh. is deduced

B (36( ))<3C( )) J(Z) @Eﬂ (36(9)) from k. by eliminating its first element equal to 1) can be
oy )’ *\ Oy proven to be consistent under conditions (i) and (ii). Condi-

1) 2) _ (14 tion (ii) allows the training sequence part not to be neglected

Jy,, andJ,.’ can be expressed in terms.bf and Jyg-, in (17) and in (12). The different quantities of interest are:

in particular,7,”’ equals:

(1) _
wa -

J(l) :J(Z) +J!
(2) (2) (2) (2) hrhr hrhr hrhr

9 Re(t]‘g(ez)) @Im(t]‘g(g)) +2 Re(t]‘g(ez’;) |m(J9(g;) ] J/g)hj :U%Agﬂqul: AITq _|_ AH P7J:B h) -AIB

Im(Jgy')  RelJgy') Im(Jgg.) <Re(Jgyt) Jhon (i,ﬁ:

(15) i T »

In the DML case,Jsg- = 0, so when the input symbols tg{TB (535 P To(5a,5) (T (hi)Ts (hr)) }
are complex, we can work directly with complex quantities, J/SCLC:%ACTQT (hr)
and (13) can be compactly written as: 1

( ) p y [I Q'AITQ (./4 TB hr -AIB) AITS:| /TTS(hI)-AcTS

cao= (1) I () a9 (18)



with the notations defined by Ars = Trs(hr)Aess, CRB with constraint (22) is the pseudo-inverse of the Fisher

Trs(he)Aw = Acpohe, Trs(hr)Trs(he)Ar = Archr, information matrix [1], which equals the IM{>:
To(hr)Te(he)Aw = Arghr.
Let C' R B, be the CRB for.; andC' R B, the CRB for CRB), = Jﬁbﬁ (24)

h., then asymptotically:
. . Asymptotically,Ah ~ N (0, Cap) with:
CRBy, = (17),)  andCRBi. = (Ji.) . (19) N N
Can=CRB+J" g}, T (25)
Ahr ~ N(0,Cap;). Using equation (16):
_1 X '[r)rll/?l_sdecond tterrtr: Qf t(hZS)Ci;E[;:)ositivetsc};:"mi]ldej:;ijrnitt()a:t .t:Iind
_ (2) / )\~ oes not attain the asymptotica , buti
Can; = CRBy, + (Jh,h,) Jhrhy (JhIhI) - (20) does at high SNR (as mentioned ?/n [2] also).y

Ah, ~ N(0,Can.), henceAh. = Op(—+=) and

VM 3.3. Semi-Blind GML

Crnr —CRB “H 7 \—1 1H 2 \~ In the unssign, the estimation @f is not decoupled

Ahe e +_$ATSATS) ArsArrs (J’”’”) from the estimation oh. We haved = [ A o2]H. As

T ns (]152”) AL Aps (AHgAps)™! DML, the GML criterion can be decomposed into training
i (21) sequence and blind contributions as:

The DML ambiguous scale factor, not identifiable by blind L Yrs ©Trs(h)A ||2 4 Mo In o2
o TS TS k k v

estimation, is estimated thanks to the training sequence and JR (26)
its error evolves aswlw=k. Note then that one component in +Indet Cypy, + Y50y, y,YB

1 -
Ahjy does not evolve asq— whereas the remaining com- \yhen the input symbols are complex, létz =
ponents evolve asA—. R (hr) ImP (k) RET(he) Im7(h))H and ¢, =

The second terms in (20) and (21) are positive: DML for i o2 gl = 7% = g, , which we get by (15)
hr andh,. does not reach theRB. Their estimation is in-  thanks to the quantities: "
deed coupled with the estimation of the unknown symbols

which cannot be estimated consistently. The coupling pre-  Jy, (i, j) = & ([A, AJ7[A, Al]), 6,2 < Ma6,.
vents the channel estimates from being efficient. At high L 9Cyy _1"7 90y \H
SNR however, these second terms being of orgfeand +r {CYBYB ( RTE B) Cypvs ( 59° B) }
the CRBs of order? become negligible and the CRB is (27)
attained. - - acC _ aC
Joo+ (1, 7) = tr{cyBlyB ( ge’éfyB) CYleB ( z:%YB )}
. My 5 .
3.2. Blind DML 455052, Where: s
Here M, = M+N&l — oo. H.(z) cannot be esti- 9Cyy o (28)
mated by blind DML: we assum# (z) = H(z), which o = ol T(h)TH (he) TH (ah{ )
is blindly identifiable up to a complex scale factof;fj) 80y Y u ( on - l
will have one singularity spanned hy, corresponding to aﬁB;lB =0 T(NT (W) T (hr)
this ambiguity. For regularization purpose, blind estima- 0Cvpyp _ 1
tion performance will be computed under the constraint [ g0y 0 fozr Cori— N N and 1 elsewhere
hf'h, = hfh, whereh, is the true channel value, or: <Ea POrg = Nom A [Ve
do2 =1 fori=j= N,m+ N.and O elsewhere

h= Vog + ho (22) . . . (29)
When comparing asymptotically with the CRBs:

where the columns df, form an orthonormal basis of the
orthogonal complement of,. It can be shown that the CRBp, = (je‘,l) andCRBy,, = (je‘,l) . (30)

estimation of¢ is consistent and (16) can be applied¢to hir fre
— H ; i
Can = VoCagV,” implies: Ahpy ~ N(0,CRBy,) and evolves as—; Ahe, ~
+ + 1
Cap = Jﬁ) J/S}z)Jﬁ) 23) N(0,CRBy,) and evolves asy—. However, the phase

1
component ofAk;,, evolves as

where* denotes the Moore-Penrose pseudo-inveréé? When the input symbols are real, agaiﬁl) — j€(2)
and.J? are given by (18) with4,, = 0. The asymptotic ~ Jys of (27). CRB,, = (J;! and CRBy,
hh ¢ hoho e



(T5 ) yp, Aho ~ N(0,CRBy,) and evolves as—;
Ah. ~ N(0,CRBy,) and evolves asw{4=u.

The CRB is asymptotically attained. Note that the CRB
when the number of known symbols is finite (derived in [1])
is not attained. At high SNR, the influence of the estimation
of o2 on the estimation of the channel becomes negligible,
and performance for the estimation/of is the same as in
the deterministic case.

3.4. Blind GML

Blind GML cannot estimate the channel phase factor.
When the input symbols are real, this ambiguity is only
about a sign and does not lead to singularitygf Alsothe
ambiguities of the common zeros being minimum or maxi-
mum phase are binary. Discrete ambiguities do not lead to
singularity of the FIM unlike continuous ambiguities. The
error covariance matrices far ands,. are the appropriate
submatrices of ;.

When the input symbols are compleyj,, has one
singularity spanned by, (R0 0], where
hs = [@mf (h;) R (h)]* corresponding to the con-
tinuous ambiguity in the phase; again the non-minimum-
phase channel zeros ambiguity does not appeag:in In
this case, blind GML performance will be computed under
the regularization constraint’ h, = 0, or:

h or€ + ho, (31)

OR
where the columns df,,, form an orthonormal basis of the
orthogonal complement @f,.. Then:

+
CAhIR = (thRhIR c>JhIRth (thRth)_l‘]thth)
(32)
)—1
(33)
hr,, = [hE 021" andhe,, = [hf o2]". These quantities

correspond to the CRBs under constraint (31): GML#pr
andh. attains asymptotically the blind CRB.

he )T Tn

¢rR"CR h

¢rR"CR

Can,,, = (jthth S dhep oy (I

4. Numerical Evaluations

For the simulations, we use an irreducible channek
5, m = 2) and a reducible channeN, = 2, N, = 2
m = 4), both randomly chosen, under SNR=10dB. The
input symbols belong to a QPSK constellation and are i.i.d..
We plot the quantitys /tr(Can)/|| Al

In fig.1 (left), the irreducible semi-blind curves for DML
and GML and the deterministic CRB is plotted w.r.t. the
number of known symbols for a burst of length 150. The

Irreducible Channel Irreducible Channel

ot~ Blind DML

Training sequence 16
—— Deterministic blind CRB
Semi-blind DML

1

Deterministic CRB 012
= | Blind GML with constraint (23)
o

Semi-blind GML.
semi-blind DML with constraint (22)

semi-blind GML with

int (22)

Nu%be' of k:;:wn wmzlols Nuzli\bev of kr?own s/mgols
Figure 1. Semi-blind DML and GML: irre-
ducible case

Reducible Channel: performance for Reducible Channel: performance for

Semi-blind DML

]
Semi-blind GML

Semi-blind DML

Semi-blind GML

10 =
w w0 s s w0

3 @ 3 E) 3
Number of unknown symbols

Figure 2. Semi-blind DML and GML: reducible
case

W 3 E) B
Number of unknown symbols

w.r.t. the training sequence technique. In fig.1 (right), the
blind and semi-blind performance with constraint (22) are
shown: semi-blind appears better than blind. In both fig-
ures, GML appears better than DML. Other comments on
such curves can be found in [1].

In fig.2, the reducible case is shown. For a fixed num-
ber of known symbols we plot the error variance w.r.t. the
number of unknown symbols. The performance for the es-
timation of H.(z) by DML will tend to be constant as the
number of unknown symbols grows. GML profits from the
blind information, and the slope of the curve will eventually
evolve in 5.
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