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ABSTRACT

The use of multiple transmitter and receiver antennas allows to
transmit multiple signal streams in parallel and hence to increase
communication capacity. To distribute the multiple signal streams
over the MIMO channel, linear space-time codes have been shown
to be a convenient way to reach high capacity gains with a reason-
able complexity. The space-time codes that have been introduced
so far are block codes, leading to the manipulation of possibly
large matrices. To reduce complexity, we propose a flexible spa-
tial spreading and scrambling framework which allows to transmit
an aribtrary number of streams. The number of streams would in
practice be adjusted to fit the channel rank. Special cases of partial
scrambling, in the case in whichNrx is an integer fraction ofNtx,
or no scrambling, whenNrx � Ntx, are also considered.

1. INTRODUCTION
Spatial multiplexing has been introduced independently in a 1994
Stanford University patent by A. Paulraj and by Foschini [1] at
Bell Labs. Spatial multiplexing can be viewed as a limiting case
of Spatial Division Multiple Access (SDMA) in which the various
mobile users are colocated in one single user multi antenna mobile
terminal. In that case, the various users are no longer distinguish-
able on the basis of their (main) direction (DOA) since all antennas
are essentially colocated. Nevertheless, if the scattering environ-
ment is sufficiently rich, the antenna arrays at TX and RX can see
the different DOAs of the multiple paths. One can then imagine
transmitting multiple data streams, one stream per path. For this,
the set of paths to be used should be resolvable in angle at both
TX and RX. Without channel knowledge at the TX, the multiple
streams to be transmitted just get mixed over the multiple paths in
the matrix channel. They can generally be linearly recovered at
the RX if the channel matrix rank equals or exceeds the number of
streams. This rank equals the number of paths that are simultane-
ously resolvable at TX and RX. The assumptions we shall adopt
for the proposed approach are no channel knowledge at TX, per-
fect channel knowledge at RX, frequency-flat channels for most of
the paper.

2. LINEAR PREFILTERING APPROACH
We consider here the case of full rate transmission (Ns = Ntx),
whenNrx � Ntx such that the rank of the channelpossibly equals
the number of streamsNs. A general ST coding setup is sketched
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in Fig. 1. The incoming stream of bits gets transformed toNs sym-
bol streams through a combination of channelcoding, interleaving,
symbol mapping and demultiplexing. The result is a vector stream
of symbolsbk containingNs symbols per symbol period. The
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Fig. 1. General ST coding setup.
Ns streams then get mapped linearly to theNtx transmit antennas
and this part of the transmission is called linear ST precoding. The
output is a vector stream of symbolsak containingNtx symbols
per symbol period. The linear precoding is spatiotemporal since
an element ofbk may appear in multiple components (space) and
multiple time instances (time) ofak. The vector sequenceak gets
transmitted over a MIMO channelH with Nrx receive antennas,
leading to the symbol rate vector received signalyk after sam-
pling. The linear precoding can be considered to be an inner code,
while the nonlinear channel coding etc. can be considered to be
an outer code. As the number of streams is a factor in the overall
bitrate, we shall call the caseNs = Ntx the full rate case, while
Ns = 1 corresponds to the single rate case. Instead of multiple
antennas, more general multiple channels can be considered by
oversampling, by using polarization diversity or other EM com-
ponent variations, by working in beamspace, or by considering
in phase and in quadrature (or equivalently complex and complex
conjugate) components. In the case of oversampling, some excess
bandwidth should be introduced at the transmitter, possibly involv-
ing spreading which would then be part of the linear precoding. As
we shall see below, channel capacity can be attained by a full rate
system without precoding (T(z) = I). In that case, the channel
coding has to be fairly intense since it has to spread the information
contained in each transmitted bit over space (across TX antennas)
and time, see the left part in Fig. 2 and [2]. The goal of introducing
the linear precoding is to simplify (possibly going as far as elim-
inating) the channel coding part [3]. In the case of linear disper-
sion codes [4],[5], transmission is not continuous but packet-wise
(block-wise). In that case, a packet ofT vector symbolsak (hence
a Ntx � T matrix) gets constructed as a linear combination of
fixed matrices in which the combination coefficients are symbols
bk. A particular case is the Alamouti code which is a full diver-
sity single rate code corresponding to block lengthT = Ntx = 2,
Ns = 1. In the first part of this paper we shall focus on continu-
ous transmission in which linear precoding corresponds to MIMO



prefiltering. This linear convolutive precoding can be considered
as a special case of linear dispersion codes (making abstraction
of the packet boundaries) in which the fixed matrices are time-
shifted versions of the impulse responses of the columns ofT(z),
see Fig. 1. Whereas in the absence of linear precoding, the last
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Fig. 2. Two channel coding, interleaving, symbol mapping and
demultiplexing choices.

operation of the encoding part is spatial demultiplexing (serial-to-
parallel (S/P) conversion) (see left part of Fig. 2), this S/P conver-
sion is the first operation in the case of linear precoding, see the
right part of Fig. 2. After the S/P conversion, we have a mixture
of channel coding, interleaving and symbol mapping, separately
per stream. The existing BLAST systems are special cases of this
approach. VBLAST is a full rate system withT(z) = INtx

which
leads to quite limited diversity. DBLAST is a single rate system
with T(z) = [1 z�1; : : : ; z�(Ntx�1)]T which leads to full di-
versity (delay diversity). We would like to introduce a prefiltering
matrix T(z) without taking a hit in capacity, while achieving full
(spatial) diversity. The MIMO prefiltering will allow us to cap-
ture all diversity (spatial, and frequential for channels with delay
spread) and will provide some coding gain. The optional channel
coding per stream then serves to provide additional coding gain
and possibly (with interleaving) to capture the temporal diversity
(Doppler spread) if there is any. Finally, though time-invariant
filtering may evoke continuous transmission, the prefiltering ap-
proach is also immediately applicable to block transmission by re-
placing convolution by circular convolution.

2.1. Capacity
Consider the MIMO AWGN channel

yk = H ak + vk = H T(q)bk + vk (1)

where the noise power spectral density matrix isSvv(z) = �2v I,
q�1 bk = bk�1. Theergodic capacitywhen channel knowledge
is absent at the TX and perfect at the RX is given by:
C(Saa)= EH 1

2�j

H
dz
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(2)

where we assume that the channel coding and interleaving per
stream leads to spatially and temporally white symbols:Sbb(z) =

�2b I, and� =
�2
b

�2
v

. The expectationEH is here w.r.t. the distribu-
tion of the channel. As in [6], we assume the entriesHi;j of the
channel to be mutually independent zero mean complex Gaussian
variables with unit variance (Rayleigh flat fading MIMO channel
model). As stated in [7], to avoid capacity loss the prefilterT(z)
requires to be paraunitary (T(z)Ty(z) = I ). Motivated by the
consideration of diversity also (see below), we propose to use the
following paraunitary prefilter
T(z)=D(z) Q

D(z)=diagf1; z�1; : : : ; z�(Ntx�1)g ;QHQ = I ; jQij j = 1p
Ntx

(3)

whereQ is a (constant) unitary matrix with equal magnitude ele-
ments. Note that for a channel with delay spread, the prefilter can
be immediately adapted by replacing the elementary delayz�1 by
z�L for channel of length (delay spread)L. For the flat propa-
gation channelH combined with the prefilterT(z) in (3), symbol
streamn (bn;k ) passes through the equivalent SIMO channel

NtxX
i=1

z�(i�1)H:;iQi;n (4)

which now has memory due to the delay diversity introduced by
D(z). It is important that the different columnsH :;i of the channel
matrix get spread out in time to get full diversity (otherwise the
streams just pass through a linear combination of the columns, as
in VBLAST, which offers limited diversity). The delay diversity
only becomes effective by the introduction of the mixing/rotation
matrixQ, which has equal magnitude elements for uniform diver-
sity spreading.

2.2. Matched Filter Bound and Diversity
The Matched Filter Bound (MFB) is the maximum attainable SNR
for symbol-wise detection, when the interference from all other
symbols has been removed. Hence the multistream MFB equals
the MFB for a given stream. For VBLAST (T(z) = I), the MFB
for streamn is

MFBn = �jjH:;njj22 (5)

hence, diversity is limited toNrx. For the proposedT(z) =
D(z)Q on the other hand, streamn has MFB

MFBn = �
1

Ntx
jjHjj2F (6)

hence thisT(z) provides the same full diversityNtxNrx for all
streams. Larger diversity order leads to larger outage capacity.

2.3. Pairwise Probability of Error Pe

The received signal is:

yk = H T(q) bk + vk = H D(q) Q bk + vk = H D(q) ck + vk
(7)

whereck = Q bk = [c1(k) c2(k) : : : cNtx
(k)]T . We consider

now the transmission of the coded symbols over a duration ofT
symbol periods. The accumulated received signal is then:

Y = H C + V (8)

whereY andV areNrx�T andC isNtx�T . The structure ofC
will become clear below. Over a Rayleigh flat fading i.i.d. MIMO
channel, the probability of deciding erroneouslyC0 for transmitted
C is upper bounded by (see [3]):

P(C ! C0) � (
rY
i=1

�i)
�Nrx(

�

4
)
�Nrx r

(9)

wherer and�i are rank and eigenvalues of(C � C0)H(C � C0).
Introduceek = 1

�b
(ck � c0k); then:

C� C0 =

2
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Let i be the time index of the first error:

C � C0 =

2
64

0 : : : 0 e1(i) : : : : : : : : :
...

. ..
.. .

.. .
. .. : : : : : :

0 : : : : : : : : : 0 eNtx
(i) : : :

3
75 :

(11)
NtxY
n=1

en(i) 6= 0 (12)

the upper bound on the pairwise error probability becomes (maxi-
mized for a single error eventi):

P(C ! C0) � (

NtxY
n=1

jen(i)j2)�Nrx : (
�

4
)
�Nrx Ntx

: (13)

Hence, full diversityNrxNtx is guaranteed, and the coding gain

is: min
ei 6=0

NtxY
n=1

jen(i)j2. The condition (12) is well known in the

design of lattice constellations (see [8], [9]), a field based on the
theory of numbers. A solution that satisfies our criteria of unitary
matrix and equal magnitude components ofQ, is the Vandermonde
matrix:

Qs =
1p
Ntx

2
6664
1 �1 : : : �1

Ntx�1

1 �2 : : : �2
Ntx�1

...
...

...
1 �Ntx

: : : �Ntx

Ntx�1

3
7775 (14)

where the�i are the roots of�Ntx � j = 0 ; j =
p�1.

2.4. Optimality for QAM constellations in the caseNtx = 2nt

ForNtx = 2nt (nt 2Z),Qs also leads to satisfaction of (12) [8],
and guarantees for any constellation such thatbn(i) � b0n(i) =
a + jb 2 Z[j] (Z[j] = fa + jb j a; b 2 Z), with bi � b0i 2
(Z[j])Ntx=0), that(Ntx

Ntx=2
QNtx

n=1 en(i)) 2Z[j]=0, and hence:

min
ei 6=0

NtxY
n=1

jen(i)j2 �
�

1

Ntx

�Ntx

: (15)

For finite QAM constellations with(2M)2 points, any symbol can
be written as:bn(i) = df(2l � 1) + j(2p� 1)g whered 2 R+�,
l; p 2 f�M + 1;�M + 2; : : : ;Mg. Then 1

�b
(bn(i)� b0n(i)) =

2d
�b

(l0 + jp0), l0; p0 2 f�2M + 1;�2M + 2; : : : ; 2M � 1g and

�2b = 2(4M2�1)d2
3 . The lower bound of (15), which is valid in

fact for any Vandermonde matrixQ of the form in (14) built with
roots of a polynomial of orderNtx with coefficients inZ[j] and
satisfying a certain number of conditions [8] (henceQs is a special
case of this family), becomes

min
ei 6=0

NtxY
n=1

jen(i)j2 �
�
4d2

�2b

�Ntx
�

1

Ntx

�Ntx

=

�
4d2

Ntx�2b

�Ntx

:

(16)

In what follows, we consider an upper bound for the coding gain
for any matrixQ with normalized columns. The minimal prod-
uct of errors

Q
n jen(i)j2 is upper bounded by a particular error

instance corresponding to a single error in theb’s, when 1
�b

(bi �
b0i) =

2d
�b
wn0 , wherewn0 is the vector with one in thenth

0 coef-
ficient and zeros elsewhere, hence

min
ei 6=0

NtxY
n=1

jen(i)j2 �
�
4d2

�2b

�Ntx NtxY
n=1

jQn;n0 j2 : (17)

Now, given that
PNtx

n=1 jQn;n0 j2 = 1, then by applying Jensen’s
inequality, we get

NtxY
n=1

jQn;n0 j2 �
�

1

Ntx

�Ntx

: (18)

Hence,

min
ei 6=0

NtxY
n=1

jen(i)j2 �
�
4d2

�2b

�Ntx
�

1

Ntx

�Ntx

=

�
4d2

Ntx�2b

�Ntx

(19)

is an upper bound for the coding gain for any matrixQ with nor-
malized columns. Now, the intersection of the sets of matrices that
lead to the lower bound (16) and the upper bound (19) includes the
unitary matrixQs given in (14), which hence achieves the upper

bound on the coding gain:min
ei 6=0

NtxY
n=1

jen(i)j2 =

�
4d2

Ntx�2b

�Ntx

.

Remark1: The Jensen’s inequality (18) becomes an equality if
and only if all the coefficientsQn;n0 ; n = 1; : : : ;Ntx have the
same module1=

p
Ntx. This holds for anyn0 = 1; : : : ; Ntx.

Hence we conclude that a necessay condition on any unitary ma-
trix Q to maximize the coding gain is to have all equal magnitude
coefficients. This is equivalent to our condition to achieve the same
maximum MFB for all streams (full diversity).
Remark2: In the case whenNtx 6= 2nt (and usingQs), the
coding gain is closely related to the size of the used QAM constel-
lation, and is in general lower then the upper bound given above.

In principle it is possible to maintainNs = Ntx under all
circumstances of channel rank: the capacity decomposition shows
an additive decomposition intoNtx streams with varying SINRs
in any case. However, whenNs exceeds the channel rank, some
of these SINRs may be much lower than some of the others, which
leads to big discrepancies in terms of channel coding and bit rate
management for the streams at the transmitter.

3. SPATIALLY SCRAMBLED STC
The columns of the matrixQ above can be considered as spatial
spreading codes. When we want to lower the number of trans-
mitted streamsNs < Ntx, we propose to furthermore introduce
spatial scrambling. The received signal becomes:

yk = H ak + vk = H D(q)Sk Q bk + vk (20)

whereD(q) introduces the same temporal diversity as before and
Q is Ntx � Ns matrix with constant magnitude entries and nor-
malized rows. The columns ofQ perform again spatial spreading.
Sk = diag(s1(k); : : : ; sNtx

(k)) contains the (constant unit am-
plitude) scrambling sequence,s1(k) can be fixed to 1. The scram-
bling is introduced to allow uniform distribution of the transmitted
signal over the TX antenna space such that

Saa(z) = ES(�
2
b D(z)Sk QQH SHk Dy(z)) = �2b I (21)

whereES stands for expectation over the scrambling. Two flavors
of scrambling can be introduced.

3.1. Full spreading
In this case allsn(k); n = 1; : : : ;Ntx are iid and zero mean. The
necessary and sufficient condition onQ to satisfy (21) is to have
all equal row norms.



The upper bound on the pairwise error probability given in (13),
remains the same withek = 1

�b
SkQ (bk � b0k). The coding gain

is then

min
ei 6=0

NtxY
n=1

jen(i)j2= min
bi�b

0

i
6=0
(
NtxY
n=1

jsn(i)j2)(
NtxY
n=1

j 1
�b

[Q (bi � b
0
i)]nj

2

)

= 1

�
Ntx

b

min
bi�b

0

i
6=0

(
NtxY
n=1

j[Q (bi � b
0
i)]nj2)

(22)

Again, and for the same reasons cited in the caseNs = Ntx, any
matrixQ composed ofNs columns ofQs (given in(14)) satisfies
the criterion of diversity, MFB and optimize the coding gain for
Ntx = 2nt.
Suppose thatNtx = pNs (p 2 N), The family of matricesQ =
1p
Ns

P[QH
1 P1; : : : ; Q

H
mPm]H, whereP (resp.Pi) is aNtx�Ntx

(resp.Ns �Ns) permutation matrix.Qi is a(piNs)�Ns matrix
(
Pm

i=1 pm = p), whose columns areNs columns of the Vander-
monde matrixV DM(�1; : : : ; �piNs

), where�k are the roots of
�piNs � j = 0 ; j =

p�1, are general solutions for the prob-
lem. These solutions optimize the coding gain if the(piNs) i =
1; : : : ; m are powers of 2.

The full scrambling framework appears to suggest straightfor-
ward extensions to the multiuser case, by providing different users
with different scrambling sequences.

3.2. Partial spreading
As an example, consider the caseNtx = pNs (p 2 N), andSk =
diag(s1(k)INs

; : : : sp(k)INs
), with sn(k); n = 1; : : : ; Ntx iid

and zero mean. The necessary and sufficient condition onQ =
[QH

1 ;: : :;Q
H
p ]H to satisfy (21) is that all the square matricesQi be

unitary. The upper bound on the pairwise error probability given in
(13), leads to the same condition as in the previous section. A so-
lution that satisfies the diversity criterion, the MFB and optimizes
the coding gain forNs = 2ns isQi = 1p

Ns
Qs Pi ; i = 1; : : : ; p,

wherePi is aNs � Ns permutation matrix, andQs is the Van-
dermonde matrixV DM(�1; : : : ; �Ns

), where�k are the roots of
�Ns � j = 0 ; j =

p�1.

4. ML RECEPTION
In principle, we can perform Maximum Likelihood reception since
the delay diversity transforms the flat channel into a channel with
finite memory. However, the number of states would be the prod-
uct of the constellation sizes of theNs streams to the powerNtx�
1. Hence, if all the streams have the same constellation sizejAj,
the number of states would bejAjNs(Ntx�1), which will be much
too large in typical applications. Suboptimal ML reception can be
performed in the form of sphere decoding [10]. The complexity of
this can still be too large though and therefore suboptimal receiver
structures will be considered in the next section.

5. MIMO DFE RECEPTION
We consider here the case of the linear prefiltering approach (section2).
Let G(z) = H T(z) = H D(z)Q be the cascade transfer function
of channel and precoding. The matched filter RX is

xk = Gy(q) yk = Gy(q)G(q) bk + Gy(q) vk
= R(q)bk + Gy(q) vk

(23)

where R(z) = Gy(z)G(z), and the psdf ofGy(q) vk is �2v R(z).
The DFE RX is then:

bbk = � L(q)|{z}
feedback

bk + F(q)|{z}
feedforward

xk (24)

where feedbackL(z) is strictly “causal”. Two design criteria for
feedforward and feedback filters are possible: MMSE ZF and MMSE,
see [7], where we introduced triangular MIMO feedback struc-
tures, allowing to incorporate channel decoding in the feedback,
and leading to the stripping approach of Verdu & M¨uller or Varanasi
& Guess..

6. POLYNOMIAL EXPANSION DETECTOR
We consider here the case with spatial scrambling (section3).
Gk(z) = H D(z)Sk Q is the cascadeof the precoder and the chan-
nel. The matched filter RX is now

x(k) = Gy
k(q) yk = Rk(q) bk + Gy

k(q) vk: (25)

Rk(z) =
P

iRk(i) z
�i, letMk(z) = (diag(Rk(0)))

�1Rk(z)
andx0k(z) = (diag(Rk(0)))

�1x(k) thencbk = Mk(z)�1x0(k)
= (I �Mk(z))

�1x0(k)
(26)

The correlation matrixMk(z) has a coefficientM [0]with a dom-
inant unit diagonal in the sense that all other elements of theM[i]
are much smaller than one in magnitude. Hence, the polynomial
expansion approach suggests to develop(I �Mk(z))

�1 =P1
i=0(Mk(z))

i up to some finite order, which leads to the itera-
tive PE solution: cbk(�1) = 0

i � 0 cbk(i)[n] = x0(k) +Mk(z)cbk(i�1) :
(27)
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