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ABSTRACT in Fig. 1. The incoming stream of bits gets transformed tesym-

bol streams through a combination of channelcoding, interleaving,
symbol mapping and demultiplexing. The result is a vector stream
of symbolsb, containing/N. symbols per symbol period. The

The use of multiple transmitter andaeiver antennas allows to
transmit multiple signal streams in parallel and hence to increase

communication capacity. To distribute the multiple signal streams MIMO channel
over the MIMO channel, linear space-time codes have beenshown [ |
to be a convenient way to reach high capacity gains with a reason- chamel

able complexity. The space-time codes that have been introduced —.| coding

so far are block codes, leading to the manipulation of possibly * | &M

large matrices. To reduce complexity, we propose a flexible spa-
tial spreading and scrambling framework which allows to transmit iy RX
an ar_lbtrary nqmber of streams. The number of streams would in Fig. 1. General ST coding setup.
practice be adjusted to fit the channel rank. Special cases of partial
scrambling, in the case in whidK., is an integer fraction oiV;,
or no scrambling, wheW., > N;,, are also considered.

« Streams then get mapped linearly to fkig, transmit antennas
and this part of the transmission is called linear ST precoding. The
output is a vector stream of symbails containingN;, symbols

1. INTRODUCTION per symbol period. The linear precoding is spatiotemporal since

Spatial multiplexing has been iptluced independently in a 1994 & élement ob, may appear in multiple coponents (space) and
Stanford University patent by A. Paulraj and by Foschini [1] at Multiple time instances (time) af;.. The vector sequenee: gets

Bell Labs. Spatial multiplexing can be viewed as a limiting case transmitted over a MIMO channél with V... receive antennas,

of Spatial Division Multiple Access (SDMA) in which the various ~ !€2ding to the symbol rate vector received siggalafter sam-
mobile users are colocated in one single user multi antenna mobileP!iNg. The linear precoding can be considered to be an inner code,
terminal. In that case, the various users are no longer distinguish-While the nonlinear channel coding etc. can be considered to be
able on the basis of their (main) direction (DOA) since all antennas 1 Outer code. As the number of streams is a factor in the overall
are essentially colocated. Nevertheless, if the scattering environ-ditrate, we shall call the casg. = N the full rate case, while
mentis sufficiently rich, the antenna arrays at TX and RX can see!Vs = 1 corresponds to the single rate case. Instead dfipfe

the different DOASs of the multiple paths. One can then imagine @nténnas, more general multiple channels can be considered by
transmitting multiple data streams, one stream per path. For this,0Versampling, by using polarization diversity or other EM com-
the set of paths to be used should be resolvable in angle at botf?enent variations, by working in beamspace, or by considering
TX and RX. Without channel knowledge at the TX, the tiple In phase and in quadrature (or equivalently complex and complex

streams to be transmitted just get mixed over the multiple paths in €ONjugate) components. In the case of oversampling, some excess
the matrix channel. They can generally be linearly recovered at Pandwidth should be introduced at the traitten possibly involv-

the RX if the channel matrix rank equals or exceeds the number of N Spreading which would then be part of the linear precoding. As
streams. This rank equals the number of paths that are simultane¥€ Shall see below, channel capacity can be attained by a full rate
ously resolvable at TX and RX. The assumptions we shall adopt SyStem without precodingr(=) = 7). In that case, the channel

for the proposed approach are no channel knowledge at TX, per_codlng hasto be fairly intense since it has to spread the information

fect channel knowledge at RX, frequency-flat channels for most of contained in each transtied bit over space (across TX antennas)
and time, seethe left partin Fig. 2 and [2]. The goal of introducing

the paper. ; Jeh] ' lg. - § .
the linear precoding is to simplify (possibly going as far as elim-
_2' LINEAR PREFILTERING APPROACH inating) the channel coding part [3]. In the case of linear disper-
We consider here the case of full rate transmissivn & Ne.), sion codes [4],[5], transmission is not continuous but packet-wise

whenN,, > N, such that the rank of the channel possibly equals (plock-wise). In that case, a packetBivector symbolst;, (hence

the number of streamy... A general ST coding setup is sketched 3 N, x 7" matrix) gets constructed as a linear combination of
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ported by the French RNRT project ERMITAGES. ous transmission in which linear precoding corresponds to MIMO




prefiltering. This linear convolutive precoding can be considered where( is a (constant) unitary matrix with equal magnitude ele-
as a special case of linear dispersion codes (making abstractiorments. Note that for a channel with delay spread, the prefilter can
of the packet boundaries) in which the fixed matrices are time- be immediately adapted by replacing the elementary detayby

shifted versions of the impulse responses of the columig of, z~L for channel of length (delay spreadl) For the flat propa-
see Fig. 1. Whereas in the absence of linear precoding, the lasgation channeH combined with the prefiltef (z) in (3), symbol
codng& | b streamn (br,x) passesthrough the equivalent SIMO channel
Hbl.k Hm@pmg - Nig
symbol gtream 1 —(i=1)y .y
coding & P o sP ' Z z H: i Qin )
—_— . — ' ' =1
T mapping DEMUX , L) DEMUX
coding & | by which now has memory due to the delay diversity introduced by
by | mapping Tyr;bolsneam\v D(z). Itis important that the different columiht ; of the channel

matrix get spread out in time to get full diversity (otherwise the
Fig. 2. Two channel coding, interleaving, symbol mapping and streams just pass through a linear combination of the columns, as
demultiplexing choices. in VBLAST, which offers limited diversity). The delay diversity
operation of the encoding part is spatial demultiplexing (serial-to- only becomes effective by the introduction of the mixing/rotation
parallel (S/P) conversion) (see left part of Fig. 2), this S/P conver- matrix @, which has equal magnitude elements for uniform diver-
sion is the first operation in the case of linear precoding, see thesity spreading.

right part of Fig. 2. After the S/P conversion, we have a mixture 2 2 Matched Filter Bound and Diversity

of channel coding, _in_terleaving and symbol mappi_ng, se|O‘"‘""t9|_yThe Matched Filter Bund (MFB) is the maximum attainable SNR
per stream. The existing BLAST systems are special cases of thisfor symiol-wise detection, when the interference from all other
approach. VBLAST is a full rate system wilf{(z) = | v, which symbols has been removed. Hence the multistream MFB equals
leads to quite limited diversity. DBLAST is a single rate system he MFB for a given stream. For VBLAST(%) = I), the MFB

with T(z) = [1 27", ..., 2= M==D]" which leads to full di- {0 streamn is ’
versity (delay diversity). We would like to introduce a prefiltering

matrix T(z) without taking a hit in capacity, while achieving full

(spatial) diversity. The MIMO prefiltering will allow us to cap- hence, diversity is limited toV,,. For the proposed(z) =
ture all diversity (spatial, and frequential for channels with delay D(z) Q on the other hand. streamhas MFB

spread) and will provide some coding gain. The optional channel '
coding per stream then serves to provide additional coding gain
and possibly (with interleaving) to capture the temporal diversity
(Doppler spread) if there is any. Finally, though time-invariant
filtering may evoke continuous transmission, the prefiltering ap- hence thisT (=) provides the same full diversity:. N for all
proach is also immediately applicable to block transmission by re- streams. Larger diversity order leads to larger outage capacity.

MFB,, = pl|H. 1|1 ®)

1
MFB., = p— [IHIIF ©®

placing convolution by circular convolution. 2.3. Pairwise Probability of Error P..
2.1. Capacity The received signal is:
Consider the MIMO AWGN channel ¥y, =HT(q) bx + v =HD(q) Q by +vi, = HD(q) cx + v
yk:Hak—l—vk:HT(q)bk + vi (1) (7)
Whlere the noise power spectral density matrigig (=) = oo 1, whereck = Q by = [e1(k)ea(k) ... cx,, (k)]7. We consider
g~ bx = br—1. Theergodic capacitywhen channel knowledge o the transmission of the coded symbols over a duratidh of
is absentat the TX and perfect at the RX is given by: symbol periods. The accumulated received signal is then:
C(Saa)=Eusy § ZIndet(l + 25 HSaa(z)HY) Y—HC 4V ®)
=Eny § Clndet(I + 5 HT(2) Spp(2) T'(2) ) _
= EH% $LIndet(I+ pHT(2) TH(z)H) whereY andV areN,, x T'andC is Ny, x T'. The structure o€

@) will become clear below. Over a Rayleigh flat fading i.i.d. MIMO
channel, the probability of deciding erroneouSlyfor transmitted
where we assume that the channel coding and interleaving perC is upper bounded by (see [3]):

stream leads to spatially and temporally white symb8jsg;(z) = —Npgr

- o . P N< (TTr)Nr=(2 9
o7 I, andp = U—lz The expectatio s is here w.r.t. the distribu- (C=>0C)=< (E ) (4) ©)

tion of the channel. As in [6], we assume the entkks of the

channel to be mutually independent zero mean complex Gaussiawherer and); are rank and eigenvalues(@ — C')”(C — C').
variables with unit variance (Rayleigh flat fading MIMO channel Introducee, = -—(cx — c}), then:

model). As stated in [7], to avoid capacity loss the prefiltér) i

requires to be paraunitary [(z)T!(z) = I). Motivated by the e1(0) ex(1)

consideration of diversity also (see below), we propose to use the , 0

following paraunitary prefilter C-C=

T(2)=D(z) Q : . . .
D(z)=diag{1, z7*,... 72_(Nt”_1)},QHQ=],|Qi]| = \/% 0 0 en,.(0) en (1)

7 .. .(10)



Let i be the time index of the first error:
0 N 0 61(i)

cC-C= -

eny, (1)
(11)

(12)

the upper bound on the pairwise error proltibbecomes (maxi-

mized for a single error everit
Niz

H len (1)

Hence, full diversityN,, Ny, is guaranteed, and the coding gain
Niz

H len(2)

—Nrz Nig

P(C - C) e (8 (13)

is: min 2. The condition (12) is well known in the

€70 -

design of Iattlce constellations (see [8], [9]), a field based on the

theory of numbers. A solution that satisfies our criteria of unitary
matrix and equal magnitude component§ofs the Vandermonde
matrix:

1 (2] (2] Niw—1
. 1 1 G- G- Niw—1
Q= 14)
tx . . .
1 eNta: eNta: Niw =t

where thed; are the roots of V= — j =0, j = /—1.

2.4. Optimality for QAM constellations in the caseN;, = 2™
For N, = 2"t (n: € Z), Q° also leads to satisfaction of (12) [8],
and guarantees for any constellation such that) — b,,(:) =
a+ b € Z[5) (Z[5] = {a + jbla,b € Z), with b; — b €
(Z[5])Vt=/0), that( N, M= /2 T[Nt e,,(i)) € Z[5]/0, and hence:

n=1
>Nta:

T kot > (5

Nt.r

For finite QAM constellations witfi2 A7 )? points, any symbol can
be written asb,, (1) = d{(20 — 1) + j(2p — 1)} whered € R**,

Lp€{—M+1,-M+2,...,M}. ThenL(b,(i) = b},(4)) =

%(1' +9p), Up € {(—2M 4+ 1,—2M 4+ 2,...,2M — 1} and

= w. The lower bound of (15), which is valid in
fact for any Vandermonde matri@ of the form in (14) built with
roots of a polynomial of ordeN;, with coefficients inZ[;] and
satisfying a certain number of conditions [8] (hedZ&is a special

case of this family), becomes
Niz Ad? Niz 1 Ntz B Ad? Niz
- O'b Nt.r o Nt.ra'g ’
(16)

[ o9
In what follows, we consider an upper bound for the coding gain
for any matrix @ with normalized columns. The minimal prod-
uct of errors[],, |en(3)|* is upper bounded by a particular error
instance corresponding to a single error in &lse WhenL(bi —

bi) wherew, is the vector with one in theth
ficient and zeros elsewhere, hence

min
€.#0 -

(15)

min
€;#0 -

2d
= _wn01

coef-

Niz

4d> Nig Niz
[l < (%) THiennr
b n=1

Now, given thatZN” |@Qn.no|®> = 1, then by applying Jensen’s
inequality, we get

min

o | 17)

Nig Niz
H Qunal® < < > . (18)
Hence,
Nig 2\ Ntz Niz 2 Niz
. 4d 1 4d
e 1 H len (" < <Z> <N_m> B <Nma§>
(19)

is an upper bound for the coding gain for any matgxvith nor-
malized columns. Now, the intersection of the sets of matrices that
lead to the lower bound (16) and the upper bound (19) includes the
unitary matrix@* given in (14), which hence achieves the upper

Nie 4d> Nig
2 p—
bound on the coding gammm 1_[1 len(?)]> = <Nma§> .

Remarkl: The Jensen’s inequality (18) becomes an equality if
and only if all the coefficient§} », , n = 1,... , N¢z have the
same moduld /+/N;;. This holds for anyng = 1,..., Nis.
Hence we conclude that a necessay condition on any unitary ma-
trix @ to maximize the coding gain is to have all equal magnitude
coefficients. This is equivalentto our condition to achieve the same
maximum MFB for all streams (full diversity).
Remark?2: In the case wheV,, # 2"¢ (and using@?), the
coding gain is closely related to the size of the used QAM constel-
lation, and is in general lower then the upper bound given above.
In principle it is possible to maintaiv. = Ny, under all
circumstances of channel rank: the capacity decomposition shows
an additive decomposition int®y;, streams with varying SINRs
in any case. However, whel, exceeds the channel rank, some
of these SINRs may be much lower than some of the others, which
leads to big discrepancies in terms of channel coding and bit rate
management for the streams at the transmitter.

3. SPATIALLY SCRAMBLED STC
The columns of the matri¥) above can be considered as spatial
spreading codes. When we want to lower the number of trans-
mitted streamsV. < N:., we propose to furthermore introduce
spatial scrambling. The received signal becomes:

yk:Hak—l—vk:HD(q)Skak—l—vk (20)
whereD(q) introduces the same temporal diversity as before and
Q is Nz x N matrix with constant magnitude entries and nor-
malized rows. The columns 6} perform again spatial spreading.
Sk = diag(s1(k),..., s~ (k)) contains the (constant unit am-
plitude) scrambling sequencg,(k) can be fixed to 1. The scram-
bling is introduced to allow uniform distribution of the transmitted
signal over the TX antenna space such that

Saa(z) = Fs(0aD(2)SQ Q" S D (2)) =0 T

whereE s stands for expectation over the scrambling. Two flavors
of scrambling can be introduced.

(1)

3.1. Full spreading
In this case alk,(k),n =1,... , N, are iid and zero mean. The
necessary and sufficient condition @hto satisfy (21) is to have
all equal row norms.



The upper bound on the pairwise error proligbgiven in (13),
remains the same wity, = ULbSk Q (bx — b},). The coding gain

is then
Niz Niz Niz 2
'
g TLlen 5 min (TLlo-@P)IT 1@ 0 = 8001
Nta:
= Nta: mm H| Q(b; — b)) | )
(22)

Again, and for the same reasons cited in the cdse= Ny, any
matrix @ composed ofV, columns of@® (given in(14)) satisfies
the criterion of diversity, MFB and optimize the coding gain for
Nt.r = 2nt.

Suppose thalV;, = p N: (p € N), The family of matricesp =
5= PlQT P1,..., Qi Pn]", whereP (resp.P:) is aNew X Nex
(resp.N. x N.) permutation matrix(}; is a(p; N<) x N. matrix
(>, pm = p), whose columns aré/. columns of the Vander-
monde matnxVDM(Hl, ..., 0y, ), whered;, are the roots of
griNs _ 5 = 0, j = 4/—1, are general solutions for the prob-
lem. These solutlons optimize the coding gain if fheN,)i =
1,..., m are powers of 2.

by = - L(g) bi+ Fla) x (24)
e A Ved
feedback feedforward

where feedback (z) is strictly “causal”. Two design criteria for
feedforward and feedbackfilters are possible: MMSE ZF and MMSE,
see [7], where we introduced triangular MIMO feedback struc-
tures, allowing to incorporate channel decoding in the feedback,
and leading to the stripping approach of Verdu &IMi or Varanasi

& Guess..

6. POLYNOMIAL EXPANSION DETECTOR
We consider here the case with spatial scrambling (section3).
Gk(z) = HD(z) S Q is the cascade of the precoder and the chan-
nel. The matched filter RX is now

(k) = Gl(a) y), = Ri(q) bx + Gl(q) v (25)

Ri(2) = T, Ru(i) =, 1et M. (2) = (diag( R (0))) ™" Ri(2)
anda, (=) = (diag( Ry(0))) " 2(k) then
b = Mi(z)"'2'(k)

26
= (- M) ) 2
The correlation matriXM . (=) has a coefficiendZ [0] with a dom-
inant unit diagonal in the sense that all other elements o€

are much smaller than one in magnitude. Hence, the polynomial
1

The full scrambling framework appears to suggest straightfor- expansion approach suggests to devébp- Mi(2)"! =
ward extensions to the multiuser case, by providing different usersy_ o<, (M(z))* up to some finite order, which leads to the itera-

with different scrambling sequences.

3.2. Partial spreading

As an example, consider the caSe, = p N. (p € N), andS; =
diag(s1(k)In,,... sp(k)In,), with sp(k),n = 1,..., Ny, iid
and zero mean. The necessary and sufficient conditio ca
[@QF ..., QF 17 tosatisfy (21) is that all the square matriegsbe
unitary. The upper bound on the pairwise error prolgigiven in

(13), leads to the same condition as in the previous section. A so-
lution that satisfies the diversity criterion, the MFB and optimizes

the coding gain forV, = 2™ isQ, = JLN_QS Pii=1,...,p,
whereP; is a N, x N, permutation matrix, an@)® is the Van-
dermonde matrix” DM (61, ... , 8y, ), whered;, are the roots of

N —j=0,5=—1.
4. ML RECEPTION

In principle, we can perform Maximum Likelihood reception since
the delay diversity transforms the flat channel into a channel with
finite memory. However, the number of states would be the prod-

uct of the constellation sizes of thé, streams to the powe¥,, —
1. Hence, if all the streams have the same constellation|size
the number of states would hd|"s(¥t==1) 'which will be much

too large in typical applications. Suboptlmal ML reception can be

tive PE solution: (1)
b =0
1] = (k) + k(=) B
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