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Abstract: The Non-Causal Decision-Feedback Equalizer
(NCDFE) is a decision-aided equalizer that uses not only past
decisions, like DFEs, but also future decisions, which usually
come from another, classical equalizer. When there are no er-
rors on the decisions, the NCDFE attains the Matched Filter
bound (MFB). In practice, it suffers from the propagation of er-
rors. We propose an implementation of the NCDFE based on
soft decisions where only the most reliable decisions are fed
back: this decreases error propagation and allows performance
closer to the matched filter bound.

I Introduction

The principle of the Non-Causal Decision-Feedback Equal-
izer (NCDFE) was first proposed by Proakis [1]: this equal-
izer uses past and future decisions in order to cancel all the ISI
present in the signal. Gersho and Lim [2] introduced its MMSE
design: the forward filter is proportional to the matched filter
and the feedback filter applied to the past and future symbol de-
cisions w.r.t. the symbol to be detected, is the cascade of the
channel and the forward filter, without the central coefficient.
These past and future symbol decisions come from another clas-
sical equalizer, linear or DFE (note that the past decisions may
come from the NCDFE itself). A burst mode unbiased MMSE
version based on MLSE was also proposed in [3].

When no errors on the decisions are made, this equalizer at-
tains the Matched Filter Bound (MFB) and is then potentially
more powerful than the other equalizers, linear or DFEs. How-
ever the error propagation phenomenon can cause some degra-
dations, like for the classical DFE, and the NCDFE may bring
only a marginal improvement. Our purpose is to build a non-
causal decision-feedback equalizer where only the most reliable
symbols are fed back. Symbols are estimated through several it-
erations: each iteration finds the linear MMSE estimate of the
unknown symbols and hard decisions are made only on the most
reliable symbols which are then considered as known. The es-
timation of the remaining unknown symbols is done taking into
account the new known symbols, which increase their estima-
tion performance. We define a measure of reliability related to
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the MMSE estimation error variance: it depends on the exper-
imental conditions, on the position of the symbol in the burst
and on the presence of known symbols.

II Problem Formulation

We consider a single-user multichannel model: this model re-
sults from the oversampling of the received signal and/or from
reception by multiple antennas. Consider a sequence of sym-
bolsa(k) received throughm channels of length N and coeffi-
cientsh(i):

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independent white Gaussian noise with
rvv(k�i) = Ev(k)v(i)H = �2vIm �ki.

The symbol constellation is assumed known. When the input
symbols are real, it will be advantageous to consider separately
the real and imaginary parts of the channel and received signal
as:�

Re(y(k))
Im(y(k))

�
=

N�1X
i=0

�
Re(h(i))
Im(h(i))

�
a(k�i)+

�
Re(v(k))
Im(v(k))

�
(2)

Let’s renamey(k) = [ReH (y(k)) ImH (y(k))]H , and idem for
h(i) andv(k), we get again (1), but this time, all the quantities
are real. The number of channels gets doubled, which has for
advantage to increase diversity. Note that the monochannel case
does not exist for real input constellations.

Assume we receiveM samples, concatenated in the vector
Y M(k):

Y M (k) = TM(h)AM+N�1(k) + V M (k) (3)

Y M(k) = [yH (k�M+1) � � �yH(k)]H , similarly for V M(k),

andAM (k) =
�
aH (k�M�N+2) � � �aH (k)

�H
, where(:)H

denotes Hermitian transpose.TM (h) is a block Toeplitz matrix
filled out with the channel coefficients grouped in the vectorh.
We assume that some symbols are known:Ak contains theMk

known symbols andAu, theMu unknown symbols. We shall
simplify the notation in (2) withk = M�1 to:

Y = T (h)A + V = Tk(h)Ak + Tu(h)Au + V (4)



A Influence of the known symbols

The structure of the burst-mode multichannel classical equal-
izers has been established in [4]. We derived the linear
and decision-feedback equalizers in their Minimum-Mean-
Squared-Error (MMSE) Zero-Forcing (ZF), MMSE and Unbi-
ased MMSE (UMMSE) versions when some symbols in the
burst are known, as well as expressions for the output SNRs.

As an example, in figure 1, we show the SNR at the output of
the MMSE Linear Equalizer (LE). In the following we will use
two important properties of the burst mode equalization:

� The SNR depends on the position of the symbol on the
burst.

� For a given symbol, the SNR is higher when there are
known symbols in the burst and especially when the sym-
bol is surrounded by known symbols.

As seen in figure 1, when no symbols are known, performance
at the edges degrades: the middle symbols appear inN outputs
whereas the symbols at the edges appear in strictly less thanN

outputs and thus there is less information about them. When
N�1 known symbols are present at each end of the burst, per-
formance is better for the symbols located at the edges: after
eliminating the contributions of the known symbols, the out-
puts at the edges contain strictly less thanN symbols, so there
is more information on those symbols, which are then better es-
timated. We also show the case of 10 and 50 known symbols
dispersed all over the burst: and can see the advantage of tak-
ing into account the presence of known symbols in the burst to
estimate the unknown symbols.
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Figure 1: SNR at the output of a MMSE LE as a function of
unknown symbol position in the burst: influence of the presence
of known symbols on the estimation of the unknown symbols

B Burst Mode NCDFE

The burst mode structure of the NCDFE was derived in [3]
based on MLSE. Its structure is given in figure 2. The forward
filter is the multichannel matched filterT H (h) followed by a

ing to the nature of the equalizer, MMSE or UMMSE: for the
UMMSE NCDFE [3],D =

�
diag(T H (h)T (h))

�
�1

(diag(:) is
a diagonal matrix containing the diagonal of its argument). The
non-causal feedback filter consists in the forward filter without
the central coefficient.̂A may be the output of another equalizer
or the output of the burst mode NCDFE at a previous iteration.
If Â contains no errors, the performance of the NCDFE attains
the MFB.
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Figure 2: Burst Mode Non Causal DFE

IV NCDFE based on Soft Decisions

A MMSE LE gives as estimates of the unknown symbolsAu

based on the observationsY and the known symbolsAk:

Âu = CAuYuC
�1

YuYu
(Y � Tk(h)Ak) (5)

=

�
T H
u (h)Tu(h) +

�2v
�2a

I

�
�1

T H
u (h) (Y � Tk(h)Ak) (6)

We recognize a non-causal decision-feedback structure where
only the known symbols are fed back. Assume you want to de-
tect one symbol in the burst and you know all the other symbols,
the solution in (6) would give the output of the MMSE NCDFE
corresponding to this symbol.

We will consider the UMMSE. The MMSE equalizer is in-
deed biased: at each outputâMMSE(k) of the MMSE equal-
izer, the term of interest is�(k)a(k), with �(k) < 1. For
convenience, we prefer to work with unscaled quantities. The
UMMSE equalizer is simply a rescaled version of the MMSE
equalizer giving for each output:(�(k))�1 âMMSE(k). It has
a lower output SNR than the MMSE but offers the advantage
to give a lower probability of error, except for constant modu-
lus constellations for which the probability of error remains the
same.
A Soft Decisions

We will consider here only a BPSK; the principle of soft deci-
sions could be extended to other constellations though. Foreach
output of the UMMSE,̂a(k) = a(k) + ~a(k) where~a(k) con-
tains intersymbol interference and noise, the sum of which can
be approximated by a centered Gaussian variable. The variance
of the error~a(k) is [4]:

1

�2~a(k)
=

1

�2v

��
T H
u (h)Tu(h) +

�2
v

�2
a

I
�
�1
�
k;k

� 1 (7)

We will not consider a hard decision scheme as shown in fig-
ure 3, but a soft decision scheme that will give hard decisions



ten based on thetanh curve (see figure 3). Indeed, the MMSE
estimate of̂a = a + ~a, with a taking with equal probability
the values+1 and�1 and~a a centered Gaussian random vari-
able independent ofa, hypotheses verified (with the Gaussian
approximation) in our problem, is:

^̂a = tanh

�
â

�2
~a

�
(8)

We envisage an iterative scheme with each iteration composed
of two steps. In the first step we perform linear estimation of the
symbols based on the received data and the symbol estimates
from the previous iteration. The first step would correspond to
the NCDFE if the symbol estimates were perfect. The second
step performs element-wise nonlinear estimation. The optimal
nonlinearity to be used in the second step is thetanh(:). How-
ever, with such nonlinear symbol estimates, the design of the
linear estimator for step one in the next iteration becomes non-
trivial. Therefore, we propose the following simplified nonlin-
earity:

^̂a = f�(â) =

�
â jâj < �

sign(â) jâj � �
(9)

�(k) gives the reliability of the symbol estimate and depends
on �2~a: it is determined by searching the best MMSE estimate
of â of the formf�(â) shown in figure 3:

min
�

E (a� f�(â))
2 (10)

A closed form expression for� could not be found. However a
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Figure 3: Soft Decision Curves

linear approximation w.r.t.�2~a seemed to match well, especially
for low �2~a: � = 1:33�2~a (see figure 4).

The complete iterative scheme is depicted in figure 5.Âsoft;i

denotes thê̂a for which j^̂aj < 1, whereasÂhard;i denotes
the ^̂a for which j^̂aj = 1. Âhard(i) denotes the accumula-
tion of Âhard;1; : : : ; Âhard;i. Âlin;i is a linear combination of

Âi =
n
Âsoft;i; Âhard(i)

o
andY , i.e., Âlin;i is a linear esti-

mate of the remaining undecided symbols in terms of the re-
ceived data and soft decisions for all symbols. One can observe
thatÂlin;i is in fact also a linear combination of onlŷAhard(i)

andY and since thêAhard(i) are assumed to be error-free, the
MMSE design ofÂlin;i becomes tractable.
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Figure 5: Iterative Soft Decision Scheme

B NCDFE based on soft decisions

The implementation of the NCDFE based on the soft decisions
is now as follows:

1. Linear MMSE estimates of the unknown symbols based on
Y andAk are computed by (6).

2. For each estimatêa(k), the reliability measure�(k) is
computed and the soft decision strategy (9) is applied. The
hard decisions are treated as known symbols.

Steps 1-2 are reiterated until̂Ahard;i is empty.
Feeding back only the most reliable symbols allows to avoid

the phenomenon of error propagation. Furthermore, as the pres-
ence of known symbols allows to increase the estimation quality
of the unknown symbols, the feedback will help the detection of
symbols on which errors could have been made by using a sim-
ple linear equalizer. At the end of this process, the symbols that
remain non reliable even when using the feedback from known
symbols are decided upon. Few iterations of the algorithm are
necessary in general as will be seen in the simulations.

This strategy allows to automatically adapt the reliability in-
tervals to the experimental conditions:

� The noise level:� is all the larger as the noise level is large.

� The presence of known symbols will be reflected in the
value of�(k). Figure 6 shows the evolution of the reliabil-
ity intervals from one iteration to another (for a randomly
chosen channel at 5 dB): most of the symbols that remain
unknown at the second iteration are located at the edges
where indeed performance is lower. At the second itera-
tion, the reliability on those symbols increases due to the
feedback of the known symbols.

The reliability intervals have however for disadvantage to be
based on mean quantities, and it may happen that hard deci-
sions on certain realizations ofâ(k) considered as reliable are in
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Figure 6: Evolution of the reliability intervals

fact false: this problem may arise especially at the first iteration
for bad experimental conditions like low SNR or ill-conditioned
channels. To alleviate this problem,� should be taken larger
than the previously given value that we will denote�o. In our
simulations, we took� = �1 = 2�2~a: this choice gave indeed
better results for bad experimental conditions.

In our simulations, we will compare the performance of this
NCDFE with the following more optimal but also more com-
plex scheme:

1. We compute the output of the NCDFE with feedbackAk

as in (6).

2. We choose the output with highest magnitude,i.e. the most
reliable symbol estimate, make a decision on it and add it
to the list of known symbols inAk. Reiterate 1-2 untilAu

is empty.

V Perspectives

A Changes in correlations

The incorporation of the soft decisions creates some problems.
Indeed, it introduces correlations betweena(k) and~a(k), and
then, as~a(k) combines noise and input burst components, be-
tween the noiseV and the symbolsA, originally independent,
as well as between the elements ofA. Figure 8 shows the joint
distribution ofa(k) and~a(k), for the reliable and non-reliable
â(k) for a case where�(k) = 1 (see figure 7).a(k) and~a(k)
are correlated in both cases, and~a(k)ja(k) is not Gaussian any-
more, only marginal distribution of~a(k) remains unchanged.

The formulation in (6), valid only when the noise and the
symbols , as well the different symbols between themselves are
independent, did not seem to be very sensitive to the correlation
changes. And we kept this expression in its original form when
using the soft decisions. The incorporation of these changes are
the subject of on-going research.

B Complexity

The matrix T H(h)T (h) + �2
v

�2
a

I being quasi-Toeplitz and
banded, fast algorithms (based on the Schur algorithm) allow

0-1 1
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Figure 7: Distribution of the symbol estimates at the output of
the UMMSE equalizer: reliable decisions such thatjâ(k)j � 1
(example for� = 1)
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Figure 8: Joint distribution of~a(k) and a(k) for the reliable
(left) and non reliable decisions (right)

the computation of the equalizer output with a complexity of

orderMN . HoweverT H
u (h)Tu(h) +

�2
v

�2
a

I looses the quasi-
Toeplitz property but is still banded: a complexity of order
MuN

2 can then be achieved. On-going studies are trying to
reduce this complexity to an order ofMuN . But it has to be
noted thatMu is in general small (see the simulation part) the
complexityMuN

2 should not be an obstacle.

C Use of a Decision-Feedback Equalizer

At each step of the algorithm, theunknown symbols are esti-
mated by a MMSE linear equalizer. This equalizer could be
replaced by a DFE which gives in general better results: this
DFE should however use among its past decisions only the most
reliable ones.

VI Simulations

We tested the NCDFE based on soft decisions on two chan-
nels with real coefficients. The first channelH1 (m = 2,
N = 5) was randomly chosen, the second channelH2 =�

1 1
1 1:01

�
has a nearly common zero. We plot the total

number of errors for a input burst of lengthM+N�1, with
M = 100 for a given input burst averaged over the burst length
and 1000 Monte-Carlo runs of the noise. The SNR is at 7 dB
and 10 dB. No known symbols are initially present in the burst.

We show the different measures in the following order (from
left to right):

1. The optimal scheme previously described where only the
most reliable decision is fed back at each iteration. The



hard decisions; two iterations of the hard NCDFE are done.

2. The proposed soft decision strategy with�o followed by 2
iterations of the hard decision NCDFE.

3. The proposed soft decision strategy with�1 followed by 2
iterations of the hard decision NCDFE.

4. The MMSE LE on which hard decisions are made followed
by 2 iterations of the hard decision NCDFE.

5. The MMSE DFE on which hard decisions are made fol-
lowed by 2 iterations of the hard decision NCDFE.

The MFB is also shown as reference: it is computed by av-
eraging the number of errors at the output of a NCDFE with
feedback of the exact symbols.

For both channels, it first has to be noticed that the hard
NCDFE improves performance significantly w.r.t. the MMSE
LE or DFE, but this is not always the case.

For channelH1 (figure 9), we see that our soft decision strat-
egy improves performance w.r.t. to the classical linear or DFE
equalizer and w.r.t. to these same equalizers followed by the
hard NCDFE. The soft decision strategy using�1 attains the
MFB at 10dB. The use of�o or�1 is approximately equivalent.
Few steps of the algorithm were required: 2.5 for�o and 2.9 for
�1 at 7 dB and 1.5 for�o and 1.8 for�1 at 10 dB. The experi-
mental conditions being good, most of the symbol estimates are
considered as reliable: only approximately 5% of the symbols
remains unknown after the first iteration at 7 dB, and only 2%
at 10dB. Our procedure remains however useful.
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Figure 9: Average number of errors for channelH1 at 7 dB and
10 dB.

mental conditions are less favorable and the probability of error
is higher. In this example, we see more significantly the advan-
tage of the soft decision strategy, and the necessity of choosing
an� higher than�o: indeed with�o, false decisions were taken
as reliable even at the first iteration. More iterations are done
than in the previous example: 3 for�o, 3.75 for�1 at 7 dB and
2.1 for�o, 2.2 for�1 at 10 dB. Furthermore, at 5 dB, 12% for
�o, 26% for�1 of the symbols remains unknown after the first
iteration, and 7% for�o, 12% for�1 at 10 dB. At 10 dB, we
also see that a classical DFE performs better than our soft deci-
sion procedure: this suggest the use of a DFE estimation of the
unknown symbols instead of a linear one as already mentioned
in previous section.
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