Dynamic Parallel-Access to Replicated
Content in the Internet

Pablo Rodriguez Ernst W. Biersack

Institut EURECOM
2229, route des @tés. BP 193
06904, Sophia Antipolis Cedex, FRANCE
{rodrigue, erbj@eurecom.fr
(Published in IEEE/ACM Transactions on Networking, August 2002)

Abstract—Popular content is frequently replicated in multiple the document: Instead of downloading the entire docu-

servers oorI cachesin the Inte|r_|net to ofﬂor?d on_'igir;hse[)verts and im- ment from one server, a user downloads different parts
prove end-user experience. However, choosing the best serveris a :)
non-trivial task and a bad choice may provide poor end user ex- of the same document from each of the servers in par

perience. In contrast to retrieving a file from a single server, we allel. Once all the parts of the document are received,

propose a parallel-access scheme where end users access multithe user reconstructs the original document by reassem-
ple servers at the same time, fetching different portions of that bling the different parts

file from different servers and reassembling them locally. The .)
amount of data retrieved from a particular server depends on the In this paper we propose a parallel-access scheme
resources available at that server or along the path from the user to download content from multiple servers at the

to the server. Faster servers will deliver bigger portions of a file same time. We consider two different parallel-access
while slower servers will deliver smaller portions. If the avail-

able resources at a server or along the path change during the Sf:hemes' .(m'Story'based TCP parallel-.access', and
download of a file, a dynamic parallel-access will automatically (i) dynamic TCP parallel-access . With a history-
shift the load from congested locations to less loaded parts (server hased parallel-access, clients spedfpriori which

and links) of the Internet. The end result is that users experience ; ;
significant speedups and very consistent response times. More-part of a document must be delivered from each mirror

over, there is no need for complicated server selection algorithms S€rver, e.g., server one sends the first half of the dO(_?U'
and load is dynamically shared among all servers. The dynamic ment, and server two sends the second half. The portion

paraliel-access scheme presented in this paper does not requirenf 5 document delivered by one server should be propor-
any modifications to servers or content and can be easily included

in browsers, peer-to-peer applications or content distribution net- tional to its service rate, thus, a slow server will deliver

works to speed up delivery of popular content. a small part of the document while a fast server will de-
liver a big part of the document. To calculate the portion
|. INTRODUCTION of a document assigned to each server, a history based

, parallel-access uses a database of previous server rates,
In order t'o offload pppular servers and improve er\ghich is refreshed periodically, e.g. every few minutes.
user experience, copies of popular content are oft@M,istory-hased parallel-access scheme can speedup the
stored in different locations. With network caching, 9€30ownload of a document when the network/server con-

ographically dispersed caches store copies of the dogiong are stable or easily predictable. However, when

ments required by their clients. With mirror site repliv ey ori/server conditions change rapidly, server rates

Cat'?”’ documents from a primary site are proactwe%e hard to predict and a history-based parallel-access
replicated at secondary sites. With peer-to-peer app[&'érforms poorly.
cations, users fetch and store content from other PEerith a dynamic parallel-access, on the other hand, a
users in a effort to share the load among nodes at ¢, hartitions a document into a large number of small
edge of the network and bring content closer to thg,cxs The client first requests a different block from
USers.) each server. Whenever a server finishes transmitting a
When a copy of the same document exists at mulij, . the client issues a new request for a block that
ple servers, choosing the server that provides the bask ot yet been requested from any other server. The
response time is not trivial and the resulting perfors, e process is repeated for each block until all blocks

mance can dramatically vary depending on the sergl, ¢y received. Note that at any given point in time

selected [15] 7] [30]. Even when the fastest server, soners are kept busy sending a block (except for the
has been selected, its performance can fluctuate du

i times between block requests). When the client re-

a download session, resulting sometimes in & poor f&siyes all blocks it reassembles to reconstruct the whole
sponse time at the end of the download. Rather thﬂBcument.

trying to choose the fastest available server, users Cafrhere are several advantages to using a dynamic

experience a better and more uniform performance By o je|.access. First, since the block size is small, a dy-
connecting to several servers that have an exact copy of

namic parallel-access can easily adapt to changing regetion VIII concludes the paper.

work/server conditions. The servers contacted share the

load in a way that is proportional to the available re- |l. HISTORY BASED PARALLEL -ACCESS

sources at the server or in the path from the user to thea history-based parallel-access uses information

server, therefore, performing automatic load balancingbout the previous transmission rates between the client
Fast servers will deliver bigger portions of a documenind every mirror server. It needs this information to de-
while slow servers will deliver smaller portions. Thiscide a-priori which part of a document should be deliv-
automatic load balancing is performed without any asred by each server. The client divides a document into
priori information about server rates. Second, since thg disjoint blocks, and requests one block from every
clientis using several connections to different servers ngirror server. Ley; be the transmission rate for server
parallel-access is more resilient to congestion and fajl-1 < ; < M and letS be the document size. &S is
ure in the network/servers than connecting to a singige size of the block delivered by senighen?} = 25
server. Load is automatically shifted from congestegenotes the download time of this block. To achieve
parts of the Internet to other parts with more abundagt maximum speedup, all servers must finish transmit-
resources. Third, the server selection process is elifjig their block at the same time, thug, = 75 for all
nated since clients connect to all available servers with; ¢ {1, ... M}. When all servers transmit their block
a document copy. Fourth, the throughput seen by the the same time, there are no servers that stop trans-
client increases. Ideally, the total throughput seen Biitting before the document is fully received. The rate
the client is equal to the sum of the bandwidths from), achieved with parallel-access when all servers keep
each individual server to the client. sending useful data until the document is fully received,
A parallel-access, however, has some additional ovesequal to the sum of the individual rates of all servers,
head compared a single access. There is an additiq_r@Iﬂp — 2%1 ui. Fast servers send a bigger portion
overhead incurred when opening multiple connections the document, while slow servers send smaller por-
and extra traffic generated to perform block requesigns. To achieve a maximum speedup, the sizé of
(for a complete discussion on the costs a parallel-accegg plock sent by server must be equal te,; S = £:.
see Section VI-A). To minimize the impact of these history-based parallel-access needs toupkeep a

EOStS’ a para;llel-acce'ss T"“St be emﬁloyeg onI;f/ Wﬁgtabase with information about the previous rates from
ocuments of a certain size, e.g. in the order of Sy gitfarent servers to the receiver in order to esti-

eral hundreds of Kbytes. In the Web the number of 0356 the rate,; to every server. Instead of having one

Ject§ of this size is relatively small, thus, instead of sUg,;-pase per-client, a single database could be shared by
gesting a parallel-access for general Web downloa

d) llel : h group of receivers connected through a proxy-cache.
o bobose ?] yrl\amlcdpara © -acceslltsw or gt erlcopﬁe database is actualized every time that a client con-
tenttypes such as large documents, software downloggiges 1 a server or can be updated periodically with an

music, video C|.IpS, orimages. automated probing from the proxy.
Using analytical and experimental results we evaluate

the performance of a parallel-access scheme. We studyExperimental Setup

the parallel-access behavior under different number of .
To evaluate history-based parallel-access we have

servers, document sizes and various network/ser\llr%r lemented this scheme as a JAVA client program
conditions including high-speed links as well as corl- P brog

gested slow links. In addition, we use parallel-acce aa;ézl;e;so?s rg\ﬁghg?ﬁgiﬁﬁ tek:/irUTnLirsro?nsderL\J/Zﬁoa
implementation to better understand its advantages %I client TFr)ne JAVA client erformsya history-based
limitations in a real deployment scenario and better de-) P y

fine the scenarios where a parallel-access is most ek rallel-access for the requested FJocgment, saves the
ficial. document locally, and records the time it took to down-

The rest of the paper is organized as follows. SeIé)_f':ld the document. To calculate the size of every block,

tion 1l presents and analyzes a history based parall ||_.ents need to know the total document sizeTo ob-

access. In Section Il we present the dynamic parall fn 5, the parallel-access JAVA client polls the servers

access and demonstrate that it offers dramatic speedH Iggc?;uﬁgglrsgegges:eﬁétgrﬁ%lni::";g. :’ohxe dczzcuhgeg;[
for different document sizes, number of servers, al o P proxy

network conditions. Section IV considers a dynamig'ven to .the client through a DNS server, thus, avoid-
Ing additional RTTs to poll the servers.

parallel-access where a client is connected through o analvze the performance of a historv-based
modem link. Section V compares a dynamic parallel- Y . y

. . “parallel- heme, w rform veral experi-
access with a scheme where the client opens multi gratiel-access scheme, we perio ed several expe

parallel connections to the same server, and also stma‘?nts using mirror servers in the Internet. In particu-
’ lIJar, we considered several mirror servers of the Squid

ies the impact of request pipelining. Section VI dis:) ; .
cusses several important issues for the deployment 0¥Vaeb Page (http://squid.nlanr.net/) [32]. Figure 1 shows

parallel-access. Section VII discusses related work a d etwork map with the MITTOT ServVers con5|dered. and
he bandwidth of the slowest link in every path as given

by pathchar [18]. The Java client is always located at
EURECOM, France. Since the servers are situated i

different countries and given that the connection from
our institution (EURECOM) into the Internet has a high
access rate, a parallel-access connection from a Elg5
RECOM client to the mirror servers is likely to be

bottleneck-disjoint.

Slovakia

Portugal

7.8 Mbps [] Austria

I Mirror Site
O client

Eurécom, France

Fig. 1. Mirror serversfor the Squid home page. Client is located at
EURECOM, France.

We evaluated a history-based parallel-access scheme
every 15 minutes, making sure that different experi-
ments do not overlap. We run the experiments 24 hours
aday during a 10-day period and averaged over the 10-
day period.

B. Analysis of the Results

Next, we present the performance results of a history-
based parallel-access where a client at EURECOM re-
quests a document of 763 KBytes from two servers
(Austria and UK), which have average transmission
rates between 80-100 Kbps. The document requested
is the gzipped beta version of the SQUID 1.2 soft-
ware[32]. The database withthe previousratesfrom the
client to every server is updated when the JAVA client
performs a request for the document, that is every 15
minutes. The client assumes that the average rate y; of-
fered by every server will be equal to the rate obtained
15 minutes before.

In Figure 2 we show the download time obtained us-
ing a history-based parallel-access, and the download
time obtained using an individual connection to every
server. We see that during the nights, when network
conditions do not vary much, a history-based parallel-
access can efficiently estimate the average rate offered
by every server and allows to significantly decrease
the download time compared to the situation where the
client accesses a single server. However, during day-
time, network conditionsrapidly change and estimating
therate to every server by using the previously achieved
rates, results in poor estimates. Thus, the download
times obtained with a history-based parallel-access can
be higher than the download times when clients access

—— UK
—e— Austria
—+— Parallel
—+— Optimum
(9]
K
xe]
I
o
S10f
<)
©
8
g St
F 5t
0
0O 2 4 6 8 10 12 14 16 18 20 22
time of day
(@ S=763KB, M = 2.
2501
—— Japan
—— Protugal
2001 | —=— Slovakia
8 —e— Australia
K — Pargllel
ElSO* —— Optimum
=
8
o 100} Lod T TR
; LWV A AAA AN .;A-«Lﬁiégt‘A N
£ NP/ NP ¥ BN
MWW%

10 12 14 16 18 20 22
time of day

0 2 4 6 8

(b) S = T63KB, M = 4.

Fig. 2. History-based parallel-access.

asingleserver. Similar performance for a history-based
parallel-access is also obtained for adifferent set of mir-
ror servers (Figure 2(b)). In figure 2 we also show the
optimum download time. The optimum download time
is defined as the download time achieved by a parallel-
access scheme where al servers send useful informa:
tion until the document is fully received. To calculate
(a-posteriori) the optimum download time, the average
rates obtained from every server after the reception of a
document are used.

To improve the performance history-based parallel-
access schemes, the database could be refreshed more
frequently during day-time and other more sophisti-
cated estimation algorithms could be used. However,
finding the right refresh period and a good algorithm to
estimate the ratesisnot an easy task. In next section, we
present another parallel-access scheme that does not re-
quire any past information and does not need to estimate
theratestothe servers. Instead, the scheme dynamically

adapts to the changing network conditionsin real-time.

I11. DYNAMIC PARALLEL-ACCESS

We consider now a parallel-access scheme that uses
dynamic requests between a client and the servers as
the download of the document progresses. With a dy-
namic parallel access, the document is divided by the
client into B blocks of equal size. In the case of Web
access, a block is specified as arange of bytesin a doc-
ument, eg. from byte 100 to byte 200. A block re-
guested can be specified using the HTTPL1.1 byte-range
header [16]. The dynamic parallel-access scheme pro-
ceeds as follows:

«+ A client first requests one block from every server.

+ Every timeaclient has completely received one block
from a server, the client requests from this server an-
other block that has not yet been requested from any
other server.

+ When the client has received all blocks, it reassem-
bles them to reconstruct the whole document.

Since a client typicaly issues several requests to the
same server during the download of a document, TCP-
persistent connections are used between the client and
every server to minimize the overhead of opening mul-
tiple TCP connections [27].

In order to best exploit the advantages of paralel-
access , one needs to keep all servers busy until all
blocks have been received. In the dynamic parallel-
access scheme outlined above thisis not the case.

+ Each server will be idle between two consecutive
block transfers (see Figure 3). Thisidletimeisreferred
toasinter-block idletime and correspondsto one round-
trip time RTT. One can entirely avoid the inter-block
idle times by pipelining requests for different blocksto
the same server: A request for a new block is made be-
fore the previous block is fully received, thus keeping
the server busy at al thetime whilethere are still blocks
to transmit. We will elaborate more on thispoint in Sec-
tionIV-A.

+ Not al servers terminate at the same time: If there
are fewer than M blocks left (where M is the number
of servers contacted) that have not been received, some
servers will no longer transmit a block. The period of
time since there are less than M servers transmitting
blocks until the instant the document is fully received
isreferred to as termination idle time. The termination
idletimeissmaller or equal than 2 /.., where £ isthe
block size and p; isthe rate to the slowest server.

The following points need to be considered when de-
termining the size of the blocks requested:

+ Thenumber B of blocks should be chosen to be much
larger than the number A4 of mirror servers that are ac-
cessed in parallel.

» Each block should be small enough to provide afine
granularity of striping and ensure that the transfer of
the last block requested from each server terminates
at about the same time, thus, fully utilizing the server

Client Mirror Site

\\7_;getBIock i

Block i

getBlock j oo

Transmission
Time of Blocki

Idle Time
(RTT)

Fig. 3. Dynamic parallel-access: Block request.

and network resources until compl ete termination of the
document transfer.
« Each block should also be sufficiently large asto keep
the inter-block idle time small compared to the down-
load time of a block.

To reconcile the last two points, the document re-
quested via parallel-access must be sufficiently large,
i.e. inthe order of several hundreds of KBytes.

A. Analysisof the results

To evaluate the performance of dynamic parallel-
access, we implemented the scheme as a JAVA client.
The JAVA client takes as input parameters the URL s of
the servers with replicated content, performs a dynamic
parallel-access, saves the document locally, and records
thetransmission rate obtained. We evaluate the dynamic
parallel-access scheme using the experimental setup de-
scribed in Section [1-A.

Our current implementation of dynamic parallel-
access does not consider pipelining to reduce the inter-
block idle times. However, the implementation reduces
the termination idle time as follows: When there are
fewer than M blocks missing, the client requests idle
servers to deliver ablock that is already requested from
another server but that has not yet been fully received.
With this approach, clients experience a transmission
rate that is at least equal to the transmission rate of the
fastest server at the expense of some bandwidth over-
head. The bandwidth wasted in the worst case, is equal
to 7" i2, where & is the block size. The band-
width wasted on average is much smaller than the worst
case scenario since slow servers that did not complete
the transmission of their last block are stopped after the
document isfully received.

There are some more ways to minimize the band-
width wasted*

+ One can decrease the block size % of the blocks re-
quested from slow servers. More general, by dynami-
cally adjusting the block size so that al servers finish

I These improvements have not be included in our implementation
of the parallel access scheme.

at the same time, the bandwidth wasted would be zero.
However, thisapproach requires accurate bandwidth es-
timationsfor each connection at runtime, which may be
difficult to obtain [13].

+ One can stop slow servers as soon as there are less
than M blocks missing and request the missing bytes
only of the last blocks from the fastest server.

We now compare the transfer time of dynamic
parallel-access with the transfer time of an individua
access to every server and the optimum transfer time
that would be achieved if there are neither intra-block
nor termination idle times. The optimum transfer time
provides a lower bound on the transfer time achievable
by any implementation of a parallel-access scheme.

We first consider a dynamic parallel-access to down-
load a 763 KByte document, which is replicated in
M = 4 mirror servers (Figure4). The actua serversare
located in Australia, Japan, Slovakia, and Portugal, to
ensure digoint paths. The average rate to these servers
ranges from 5 to 15 KBytes/sec, however, the instan-
taneous rates greatly fluctuate during the course of the
day. We have chosen B = 30 blocks.

2501

Japan
Portugal
Slovakia
Australia
Parallel
Optimum

200

=

a

o
T

Time to download (sec)

10 12 14 16 18 20 22
time of day

0 2 4 6 8

Fig. 4. Dynamic paralel-access. S = 763 Kbytes, B = 30, M =
4.

From Figure 4 we can see that dynamic parallel-
access offers significant speedups compared to an in-
dividual document transfer from any single server. The
transfer timeisreduced from 50-150 seconds to 20 sec-
onds during all the periods of the day. Even during
highly congested periods, where the network conditions
rapidly change, a dynamic parallel-access offers very
small transfer times. We also observe that the transfer
time of a dynamic parallel-access is very close to the
optimum transfer time. Moreover, a dynamic parallel-
access that would implement pipelining to avoid inter-
block idle times would have performance amost equal
to that of the optimum parallel scheme.

Next, we consider the situation with two fast servers
(70 KBytes/sec) and two slow ones (10 KBytes/sec).
The fast servers are located in Greece and Spain, and
the slow ones in Australia and Israel (Figure 5). The

document size is smaller than in the previous experi-
ment, S = 256 KBytes, and we have also reduced the
number of blocksto B = 20 to avoid that inter-block
idle times account for too high a percentage of the total
transfer time (the document requested is the FAQ from
SQUID in postscript format [32]).

501

—e— Australia
—— Israel
_A40r —o— Greece
9 —— Spain
0, —+— Parallel
-] —+— Optimum
8307
=
2
3.
920*
()
£
'— 4
10¢
0

10 12 14 16 18 20 22
time of day

Fig. 5. Dynamic parallel-access. S = 256 Kbytes, B = 20, M =
4.

We can see that a dynamic parallel-access scheme
achieves a transfer time that is almost half the trans-
fer time of the fast servers (dow servers only contribute
very few blocks and decrease the transfer time of the
document by little). The latency benefits may not seem
so important if they are compared to the case where a
client connects to a fast server (from 4-5 seconds to
2 seconds). However, if the client chooses the wrong
server and connects to a slow server, it will end up ex-
periencing transfer times up to 30 seconds.

In the next experiment we consider only two mir-
ror servers (Austria and UK) and perform a dynamic
parallel-access for a large document of 5 MBytes (Fig-
ure 6). Since both servers have asimilar rate, aparallel-
access will reduce the transfer time by half. The time
to download the document of 5 MBytes from a sin-
gle server can be up to 80 seconds. Using a dynamic
parallel-access, the transfer rate isless than 30 seconds.
The difference between the transfer time measured and
the one of the optimal parallel-access scheme is due to
theinter-block idle times.

B. Performance of Parallel Access to Small Documents

Even though a parallel-access scheme is not intended
to be used with small documents, we study the perfor-
mance of a dynamic parallel-access with small docu-
ments of several KBytesin size.

In Figure 7 we see the performance of a dynamic
parallel-access scheme for a 10 KByte document. We
consider two mirror servers (Spain and Greece) and
choose B = 4 blocks. We see that a dynamic parallel-
access has a download time that varies very little with
the time of the day and isin most cases lower than the

120¢

—— UK
Austria
Parallel
Optimum

100

o]
o
T

Time to download (sec)
I o
[=] o

N
(=)
7

10 12 14 16 18 20 22
time of day

0 2 4 6 8

Fig. 6. Dynamic parallel-access. S = 5 Mbytes, B = 40, M = 2.

download time of the fastest server. Compared to the
optimum download time, a dynamic parallel-access has
amuch higher download time since the inter-block idle
times account for a high percentage of the total down-
load time.

Greece
Spain
Parallel
Optimum

@
4]
:

w
T

N
3]
:

Time to download (sec)
I
[N

[any

0.5

10 12 14 16 18 20 22
time of day

0 2 4 6 8
Fig. 7. Dynamicparalel-access. S = 10K B,B =4, M = 2.

In addition, with small documents the connection
setup time may account for a non-negligible portion of
thetotal downloadtime. Whilea parallel-access scheme
speeds up the download time of the document it can not
do anything about the connection time. To obtain better
performances with a parallel-access, several small doc-
uments could be grouped together, i.e. all documentsin
a Web page, to perform one dynamic parallel-access to
the bigger document.

IV. DYNAMIC PARALLEL-ACCESS IN CASE OF A
SHARED BOTTLENECK LINK

Inthis section we study the performance of adynamic
parallel-access where a client is connected through a
modem link, i.e. alow speed accesslink. Inthiscase the
paths from the client to the servers are not bottleneck-
digoint. A single server may already consume al the

130
Japan 1
Australia
Japan 2
Parallel

®
o
T

701

Time to download (sec)
g §
\

60

501

e L L L . ‘
0 2 4 6 8 10 12 14 16 18 20 22
time of day

(8 S = 256 KBytes, B = 20, M = 3.

300
—e— Austria

280| —— Slovakia
—— Parallel

~~260+

sec

=240+

ad

2220t

own

8200t

to

© 180+

im

=160

1200
0 2 4 6 8 10 12 14 16 18 20 22
time of day

(b) S = 763 KBytes, B = 30, M = 2.

Fig. 8. Retrieval latency for a parallel-access scheme and for an
individual -accessschemeto every server over a shared bottleneck.

bandwidth of the modem link. Therefore, when aclient
uses another server in parallel there is no residual net-
work bandwidth and packets from different servers in-
terfere and compete for bandwidth.

In Figure 8 we consider dynamic parallel-access for a
client connected through a modem line at 56 Khbits/sec.
We show the download time achieved when connecting
to every server individually and when connecting in par-
alel to al servers using a dynamic parallel-access. In
Figure 8(a) we consider two slow servers (Japan 2 and
Australia) and afast server (Japan 1). In case of anindi-
vidual access to the fast server, the modem bandwidthis
fully utilized and the download time varies little during
all the periods of the day. For an individual access to
one of the slow servers, the rates obtained are about 24
Khbits/sec, which is much lower than the modem speed
of 56 Khitg/sec. In this situation, the modem link is
not fully utilized and the download time fluctuates de-

pending on the different levels of congestion in the net-
work/serversalong the day. A similar effect can be seen
in Figure 8(b), where there are two mirror-servers, afast
oneand aslow one.

For the dynamic parallel-access, we see that the
download time achieved is close to the one of the fastest
server, which is limited by the transmission rate of the
modem link. The fact that the download time obtained
with adynamic parallel-access is always dightly higher
than the download time obtained for the fastest server is
duetotheinter-block idletimes. Next, we study the per-
formance of adynamic parallel-access that uses pipelin-
ing to avoid idle these times.

A. Evaluation of Reguest Pipelining

In this section we repeat the previous experiments
(Figure 8(a) and 8(b)) and simulate a dynamic parallel-
access with block request pipelining. With request
pipelining, a new block is requested from a server be-
fore the previously requested block isfully received. To
fully avoid inter-block idle times, a new block should
be requested at least one RTT before the current block
is completely received (see Figure 3). Pipelining there-
fore requires a minimum block size. The block size
should such that & > RTT - u. For instance, if the
RTT between the client and most distant server is equal
to RTT=100 msec and the server has atransmission rate
1 = 10 KBytes/sec, the block size must be & > 1K B.

To estimate the improvement offered by request
pipelining, we first measure for each server ¢, i €
{1, ..., M} the download time ¢r; obtained by parallel-
access without pipelining and the average round-trip
time RT7;. Then, we assume the inter-block idle
time to be equa to R77;. If server ¢ has transmit-
ted nb; blocks, we estimate the download time ¢r
with request pipelining as trf = tr; — (nb; — 1) *
RTT;. The estimated time 7P to completely down-
load the document using pipelining is then given as
TP = maxjeqr, . My trs.

In Figure9 we show the estimated download time 77
achieved by a parallel-access with pipelining through a
modem link. We observe that the download time of a
parallel-access with pipelining is smaller (Figure 9(a))
or equal (Figure 9(b)) than the download time achieved
by a single connection to the fastest server. In Fig-
ure 9(a) the download time of each server is much
smaller than the maximum modem link rate, thus, asin-
gle server connection does not fully utilize the modem
link. In this case, a parallel-access with pipelining can
speedup the transfer of a document compared to a sin-
gle server connection, and achieve download times that
are even smaller than those offered by the fastest server.
From Figure 9(a) it is also important to notice, that the
transfer time achieved with a dynamic parallel-access
using pipelining is aimost equal to the optimum down-
load time. Thus, the additional delay that the JAVA im-
plementation of dynamic parallel-access introduces is

300
Japan 1
Australia
Japan 2
Paral+Pipe s
Optimum

250

N
o
o

Time to download (sec)

=
o
o

10 12 14 16 18 20 22
time of day

0 2 4 6 8

(8 S = 256 KBytes, B = 20, M = 3. Pipelining

-©-- Austria
- == Slovakia x

—+— Paral+Pipe !

Time to download (sec)
8
<)

8 10 12 14 16 18 20 22
time of day

0 2 4 6

(b) S = 763 KBytes, B = 30, M = 2. Pipelining

Fig. 9. Retrieval latency for a dynamic parallel-access scheme and
for anindividual -access scheme to every server through a modem
link.

very small.

We would like to note that it is easy to implement
pipelining. It does not require to calculate the exact
RTTs but one simply needs to estimate an upper bound
on the RTTs. Using an overestimated (too high &)
RTT, pipelining eliminates the idle times with no per-
formance degradation.

V. DYNAMIC PARALLEL-ACCESS VS. PARALLEL
ACCESS TO A SINGLE SERVER

In this section we compare a dynamic parallel-access
to multiplemirror-serverswith aparallel-access toasin-
gle server. For afair comparison, we consider the situ-
ation where a single client opens M TCP-parallel con-
nections to the same server and compare this case to a
dynamic parallel-accessto M servers. Let i, betherate
to the slowest server, and p; be the rate to the fastest
server. If the residual bandwidth of the path from the

client to the server is large enough, a M -parallel con-
nection to a single server with rate z; will have in the
best case a transmission rate equal to M - y;. A dy-
namic parallel-access to M servers has a transmission
rate i, = Y 1, 11, Which is higher than the transmis-
sion rate of a M -parallel-access to the slowest server,
but smaller than the transmission rate of a M -parallel-
access to the fastest server, M - p, < pp < M - piy.

Next, we consider the situation where there are two
mirror servers, a slow one in Greece and a fast one
in Spain, and perform the following experiments (i)
clients retrieve a document using a single connection
to each server, (ii) clients retrieve a document using a
dynamic parallel-access to both servers, (iii) clients re-
trieve a document using a dynamic parallel-access with
two connections to the same server.

Figure 10 shows the download time obtained for the
different schemes and for two different document sizes.
For thefast server in Spain, the availabl e resources from
the client to the server are abundant, and therefore atwo
parallel connections to this server result in a reduction
of the download time compared to a single connection
to the same server. However, when two connections are
simultaneously opened to the slow server in Greece, the
resulting download time is sometimes higher than the
download time obtained if the client would open only
one connection to this server. Thisisdue to the fact that
the server or network path to Greece is very instable
and variable. Thus, opening two TCP connections to
the same server does not ensure better response times
since the server or the networks may be experiencing
highload at that time. With adynamic parallel-accessto
both servers, on the other hand, load dynamically shifts
to use resources where they are available, thus keeping
the load on congested servers/network paths low. Asa
result, the download time for a dynamic parallel-access
to both servers is smaller than a parallel-access to the
dowest server and quite comparable to aparallel-access
to the fastest server only.

In Figure 11 we have considered the situation where
the client opens four parallel connections to a single
server and we compare the obtained speed-up with that
of adynamic parallel-access to both servers. We can see
that for both Greece and Spain, opening four connec-
tions to the same server gives better performance than
opening just one. While opening four connections to
the fast server in Spain offers smaller download times
than a dynamic parallel-access to both servers, in the
case of opening four connections to the slow server in
Greece, the download time is equal or even higher than
a dynamic parallel-access to both servers.

Therefore, while parallel connections to a single
server may result in high speedups if thefastest server is
selected, they will also result in little speedup if a slow
server is selected, even for a high number of concurrent
connections. On the other hand, a dynamic parallel-
access to both servers automatically achieves very good

Greece*2
Spain*2
Greece
Spain

25 Parallel

n
o
T

Time to download (sec)
=
wu

0 2 4 6 8 10 12 14 16 18 20 22
time of day

() S = 256 KBytes, B = 20.

IN
o

Austria*2
UK*2
Austria
UK
Parallel

w
1
|
%
|

w
o

N
ol
T

[
(43
T

Time to download (sec)
N
o

[N
o
&

(43
T

o

8 10 12 14 16 18 20 22
time of day

(b) S = 763 KBytes, B = 30.

Fig. 10. Retrieval latency for a dynamic parallel-access scheme to
M = 2 serverscompared to a double parallel connectionto the
same server.

speedups without any server selection. Moreover, when
using multiple connections to the same server the links
close to the server or the actual server may become
congested, and clients will not experience any speedup.
With a dynamic parallel-access to different servers, on
the other hand, the load is gracefully shared among the
servers and there is a higher number of receivers that
can experience significant speedups.

V1. DISCUSSION
A. Cost of Parallel-Access

A parallel-access improves the download perfor-
mance and provides several other performance advan-
tages compared to accessing a single server. However, a
parallel-access also has several costsinvolved that need
to be considered.

There isthe overhead of doing an extra server access

201

Greece*4
Spain*4
Greece
Spain
Parallel

[y
ol
T

4]
' [n]

Time to download (sec)
=
o

8 10 12 14 16 18 20 22
time of day

0 2 4 6

Fig. 11. Retrieval latency for a dynamic parallel-access scheme to
M = 2 servers compared to a four parallel connectionsto the
sameserver. S = 256 KBytes, B = 20.

to find out the document size (this could be done with
a HEAD request [16]). Note that for large documents
the overhead incurred in obtaining the document size is
negligible. Moreover, issuingafirst block request witha
predetermined fixed size, which would include the doc-
ument size plus some data, and then using a parallel-
access on further block requests, could eliminate this
overhead.

There is the overhead incurred by the block request
messages. To reduce this cost, an intelligent block as-
signment policy can be used to gradually increase the
size of those blocks assigned to fast servers.

There is an increase in the overall number of TCP
connections compared to a single server access. How-
ever, the duration of the TCP connections with a
parallel-accessissmaller since each server deliversonly
a portion of the whole document. Also, the connec-
tion setup isrelatively insignificant when big documents
are considered. Finally, using servers in different time-
zones (e.g. selecting servers from places in the world
where it is night time), reduces the impact of opening
multiple connections since idle servers can be sel ected.

B. When to use a Parallel-Access: Benefits and Limita-
tions

To outweigh the costs described in the previous sec-
tion, a parallel-access must be applied to large files in
the order of several hundreds of KBytes. Examples
of such files are large document downloads, software
packages, music, video, and large images. In the Web,
most of the files tend to be quite small, and only the
root file of a Web page is usually big enough to bene-
fit from a parallel-access. Nevertheless, parallel-access
can be used to downl oad Web content if several Web ob-
jects are bundled together into a big file. Thistechnique
allows, for instance, to rapidly prefetch al the compo-
nents of a Web page into a Web proxy cache.

When clients access the Internet through slow links,

e.g. modem link, the rate of each server may be higher
than the rate at the client’s access link. In this case
performing a parallel-access may result in no additional
speedup versus an individual access to one server. How-
ever, the servers rates are usually not known a-priori by
the client and servers or network conditions may fluc-
tuate during a download session. A parallel-access re-
duces the uncertainty of selecting a very slow or insta-
ble server and brings the client’s access link to its full
utilization, thus, providing a faster and more consistent
experience. One important point to note in this scenario
is that digoint paths are not a necessary condition for
speedup. Instead a necessary conditionis spare or abun-
dant resources (both at the server and along the path).

When clients access the Internet through fast links,
it is very likely that the bottleneck capacity is some-
where in the network or in the servers themselves. As
more and more users access the same popular content,
thelikelihood of sharing the same bottleneck rapidly in-
creases. When the bottleneck resources are fully uti-
lized, all users compete for the same resources and in-
creasing the number of parallel-access connections per
user does not result in additional speedups. Though the
benefits of a parallel-access in a shared bottleneck en-
vironment are limited, a parallel-access still provides
a much better experience than selecting a single server
since it avoids the risk of selecting a very slow server.
Moreover, a parallel-access provides the same average
performance to all users that share the same bottleneck
since it prevents that some users are assigned to fast
servers and experience low download times, while other
users are assigned to very slow servers and experience
high download times. Besides, a parallel-access hides
sudden changes in server/link performance by shifting
load from serverg/linksthat are overloaded to other parts
on the Internet where resources are spare.

One way to reduce the probability that all users share
the same bottleneck and thus improve the speedup of-
fered by a parallel-access is to use a dynamic parallel-
access inthe context of peer-to-peer applicationsor con-
tent distribution networks. In a peer-to-peer environ-
ment when a client downloads content from another
peer-client, the new client becomes itself a server for
future clients. As content becomes more and more pop-
ular, it gets replicated in new mirror sites throughout
the network. These new mirror sites can be used as new
sources to perform multiple parallel-accesses that avoid
to compete for the same resources.

Insummary, we see the greatest potential for dynamic
parallel-access in the area of peer-to-peer applications
such as Napster, where the size of content accessed is
typicaly large and the machines storing these copies
of the same content are distributed over a large geo-
graphical area, which helps improve path-digointness.
An application such as Napster also has the nice prop-
erty that the more popular a content, the more mirror
servers there are. This is due to the fact that as con-

tent becomes more and more popular, i.e. an increasing
number of clients have been downloading this content,
all these clients potentially become mirror servers.

C. Deployment I ssues

These are a number of possible issues that should be
considered when deploying a parallel-access system.

Concerning the discovery of mirror servers, the most
frequent approach is to publish a list of mirror servers
on the master Web server. Clients, manually select the
server that they believe will offer the lowest retrieval
time. Some search engines provide a full list of mirror
servers and rate them in terms of loss rate and round-
trip-time [4]. Several organizations who run mirror
servers have modified DNS servers or delegate the DNS
resolution to other modified DNS servers that return to
the client the IP addresses of the administratively clos-
est mirror servers/caches [10] [2]. Other recent studies
suggest to extend DNS servers [19] or a central direc-
tory [17] to return a full list of all servers containing a
copy of a certain document. Current cache-sharing pro-
tocols [29] [14] keep local information about the loca
tion of duplicated document copies in neighbor caches.
When a client requests a certain document and the docu-
ment is not found in the local cache, the local cache will
re-direct the request to the best neighbor cache with a
document copy.

To start a parallel-access, the client needs to know
the document size. The document size could be given
to the clients when they obtain the list of servers (from
a central repository, a modified DNS, the origin server,
etc). If thisis not the case, the client can obtain the
document sizewith afirstinitial request for afixed small
block.

The number of servers that a client connects to does
not necessarily need to comprise al mirror-servers.
In fact, most of the performance improvement of-
fered by a parallel-access can be achieved using a few
servers [25] [20]. Instead of using al mirror-servers,
clients can obtain a reduced subset of mirror servers
and perform a parallel-access in this subset. Obtaining
a subset of servers requires some server selection pro-
cess, however, this scoping process is still much easier
than selecting the fastest server.

In the case where there are several slow servers and
a few mirror-servers with relatively high transmissions
rates, ailmost all blockswill be requested from these fast
servers. Inthis case, a parallel-access may wish to drop
the connectionsfromthe slow serversto conserve server
resources without significantly affecting performance.
Moreover, if a server happens to be fast enough to use
all the bandwidth in the access link of the end user, a
parallel-access may decide to continue just with thisfast
server or continue using multiple servers for load bal-
ancing reasons and to improve reliability and resilience
against possible congestion.

Parallel-access to Web documents requires that

clients and servers support range requests as specified
inHTTP 1.1 and TCP persistent connections. However,
current server implementations of range requests and
TCP persistent connections have some unpredictable
behavior that can affect the performance of a parallel-
access. For instance, servers are not required to honor
every range request and there may be cases where
servers respond with data that does not cover the re-
guested range. Also servers may choose not to honor
range requests for certain types of files. Moreover, not
all servers support persistent connections and may de-
cide to close the connection after each request transac-
tion. For a more detailed study of the peculiarities of
HTTP 1.1 server implementations see [21]. One way
to solve these problems is by placing a reverse proxy
in front of a server or farm of servers that implements
persistent connections as well as range requests.

Parallel-access only works when the replicated con-
tent is identically replicated. To make sure that differ-
ent servers store the exact same version of a document,
servers could provide a hashing tag that determines the
current version of the document.

Parallel-access can be deployed in client browsers,
cache sharing protocols, or content distribution net-
works. Moreover, parallel-access can be easily inte-
grated in peer-to-peer schemes [7] [3].

VII. RELATED WORK

Currently there exist several software packages that
alow clients to dynamically pause, resume, and jump
from one mirror server to another during a docu-
ment download if the current mirror server is very
dow [4] [8] [6]. Other software packages allow to open
multiple parallel connectionsto a certain server to speed
the download of a certain document [1].

Choosing the best mirror server has been subject of
research during the last years. Several techniques have
been proposed including multicast communication to
poll al the mirror servers [11], dynamical probing [?],
combining server push with client probeg[15], and sta-
tistical record-keeping [31]. Thework in[31], indicates
that the choice of the best server isoften not obviousand
that the obtained performance can dramatically vary de-
pending on the server selected.

Maxemchuk’s work on dispersity routing [24] and
Rabin's work on information dispersal [28] explored
how to improve document delivery from a single server
along multiple paths. Using erasure codes, the server
takes the original document, breaks it into k# blocks and
generates i parity blocks with the property that any
out of the k + h data/parity blocks can be used to recon-
struct the original & blocks. By transmitting more than
k blocks, the server reduces the download time and in-
creases the probability that the receiver is able to recon-
struct the original document even if some of the blocks
arelost.

Byers et al. [12] proposed to access multiple servers

inparallel. They use an open-loop multicast distribution
where different servers generate different sets of par-
ity blocks and cyclically transmit parities and originals.
Clients can recover the whole document as soon as they
receive enough (k) different blocks, regardless of which
serversthe blockscame from [12]. To efficiently encode
large documents with small encoding/decoding delays,
specia erasure codes [22], such as Tornado Codeg[23],
must be used. However, thisapproach hasamajor draw-
back compared to the dynamic parallel-access scheme
discussed in this paper. It requiresthe servers to encode
all their documents and the clientsto install decodersto
reconstruct the encoded documents. In addition, some
problems still remain unresolved such as how to stop
the servers or how to perform congestion control.

For these reasons, we propose a parald access
scheme where clients and servers communicate via uni-
cast using TCP. To the best of our knowledge our
implementation of dynamic parallel-access is the first
parallel-access system that uses standard TCP and
HTTP protocolsto dynamically request different pieces
of a document from the mirror servers, and does not re-
quire re-encoding of the content.

More recent experiments based on the paralel-
access technique described in this paper were presented
in[25]: Severd testswere performed for adifferent im-
plementation of dynamic parallel-access in an environ-
ment where the available bandwidth between the client
and the servers is much higher (a factor of 3 to 7) than
in our experiments. The results obtained indicate that
the performance of a paralel-access in such scenarios
can be smaller than the performance results presented
in this paper. However, the implementationin [25] can
benefit from a series of optimizations used in our pa
per to significantly improve the performance. The main
optimization consists in keeping all servers busy at any
point in time by avoiding the inter-block and termina-
tion idle times. Using these enhancements, a parallel-
access continues to offer significant performance im-
provements compared to a single server selection even
in a high bandwidth scenario for documents of several
hundreds of KBytes.

Our implementation of dynamic parallel-access can
be easily integrated in Web browsers without any mod-
ification of the mirror servers and no additional buffer
requirements at the clients (since current Web browsers
already support opening multiple parallel connections
to the same server). It can aso be included in cache
sharing protocols [14] [29] to share the load among
neighbor caches with the same document copy or con-
tent distribution networks [2] to speedup the download
of popular documents into proxy caches.

The dynamic parallel-access scheme described in this
paper has aready been integrated into several peer-to-
peer applicationssuch as Morfeus[26] or OpenCola[9],
which are used to download software, music, images, or
video. Both applications provide a mechanism to iden-

tify all the peer servers that store the same copy of the
content and they perform a parallel-access to speed up
content delivery. More recently companies such as Kon-
tiki [5] are using a content distribution network based
on end-hosts to provide efficient content delivery. Kon-
tiki uses a dynamic parallel-access scheme to eliminate
the selection process while speeding up content delivery
and offering a more consistent user experience.

VI1Il. CONCLUSIONS AND FUTURE WORK

Given that popular documents are often replicated on
multiple servers, we suggested that clients connect in
parallel to several mirror servers for retrieving a docu-
ment. We presented a dynamic parallel-access scheme
that speeds up document downl oads, bal ances automati-
cally theload among servers, and avoids complex server
selection.

We implemented a dynamic parallel-access scheme
and evaluated its performance for different numbers of
servers, document sizes, and network conditions. We
showed that dynamic paralel-access achieves signifi-
cant speedups and has a performance that comes very
close to the optimum performance that can by achieved
with any parallel-access scheme. Even when clientsare
connected through modem lines, a dynamic paralel-
access offers a download time that is close to the down-
load time of the fastest server without any server selec-
tion. A dynamic parallel-access scheme can be easily
implemented and does not require modifications of the
content in the mirror servers, in contrast with the dig-
ital fountain approach that requires re-encoding of the
document [12].

Future versions of our implementation will include
pipelining of several blocks to avoid idle times. How-
ever, the expected improvement will be modest since
a dynamic parallel-access without pipelining already
gives download timesthat are very close to the optimum
ones. To reduce the number of negotiationsbetween the
client and the servers, clients could keep track of the
fastest server during the download of thefirst blocksand
instead of using afixed block size, dynamically increase
the block size for the fast servers. This approach would
require some more complexity at the client, but seems a
natural extension to our scheme.

The integration of dynamic parallel-access into sev-
era existing peer-to-peer applications and content dis-
tribution networks is an indication of the importance
of dynamic parallel-access for speeding up the object
download. Audio/video content is particularly well
suited for parallel-access since it is usually static, large,
and popular. Easy extensions of the parallel-access
technique described in this paper could aso be used to
greatly improve audio/video streaming performance.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers for their helpful comments. Eurecom’s research is

partially supported by its industrial partners. Ascom,
Cegetel, France Telecom, Hitachi, Motorola, Swisscom,
Texas Instruments, and Thomson CSF.

(4]
(2

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[29]

[26]
[27]

(28]

[29]

[30]

REFERENCES

“Agiletp”, http://www.daemon-info.com/Us/products.htm.
“FreeFlow: How it Works. Akamai, Cambridge, MA, USA. Nov
1999".

“Gnutella’, http://gnutellawego.com.

“Golzilld’, http://www.gizmo.net/.

“Kontiki”, http://www.kontiki.com.

“Leechftp”, http://linux.fh-heilbronn.de/ debis/leechftpl.
“Napster”, http://www.napster.com.

“Netscape Smart Download”, http://www.netscape.con.

[32] D.

[31] S. Sesham, M. Stemm, and R. Katz, “SPAND: Shared Pas-

sive Network Performance Discovery”, In Proceedings of the
USENIX Symposiumon Internet Technologiesand Systems, De-
cember 1997.

Wessdls, “Squid Internet Object Cache:
http://www.nlanr.net/Squid/”, 1996.

“OpenColaSwarmcast™ , http://www.opencola.org/projects/'swarmcast.shtml.

“World Wide Web Consortium”, http://www.w3c.org/.

J. Bernabeu, M. Ammar, and M. Ahamad, “Optimizing a
generalized polling protocol for resource finding over a multi-
ple access channel”, Computer Networks and ISDN Systems,
27:1429-1445, 1995.

J. Byers, M. Luby, and M. Mitzenmacher, “Accessing Multi-
ple Mirror Sitesin Parallel: Using Tornado Codes to Speed Up
Downloads’, In INFOCOM 99, April 1999.

R. Carter and M. Crovella, “Server Selection Using Dynamic
Path Characterization in Wide-AreaNetworks’, 1997.

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache:
A Scalable Wide-AreaWeb Cache Sharing Protocol”, pp. 254—
265, Feb 1998, SIGCOMM’ 98.

Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar, “A
Novel Server Selection Technique for Improving the Response
Time of a Replicated Service”, In Proceedings of |EEE INFO-
COM, San Francisco, CA, USA, March 1998.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee,
eta., “RFC 2068: Hypertext Transfer Protocol — HTTP/1.1",
January 1997.

S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse, Recy-
cle: An Approach to Building Large Internet Caches’, In The
Sixth Workshop on Hot Topics in Operating Systems (HotOS
VI), May 1997.

V. Jacobson, “Pathchar”, http://www.caida.org/Pathchar/
Source: ftp://ftp.ee.lbl.gov/pathchar.

J. Kangasharju, K. W. Ross, and J. Roberts, “Locating Copies
of Objects Using the Domain Name System”, In Proceedings
of the 4th International Caching Workshop, San Diego, March
1999.

A. Kirpal, “Study of Parallel Access Schemesto Speed up the
Internet”, M.S. Thesis, University of Munich/Institut Eurécom,
Sophia Antipolis, France, April 1999.

B. Krishnamurthy, J. Mogul, and D. Kirstol, “Key differences
between HTTP/1.0 and HTTP/1.1", Proceedings of WWW-8
Conference, Toronto, May 1999.

M. Luby, “Information Additive Code Generator and Decoder
for Communication Systems, US Patent No: 6,307,487 B1”,
October 2001.

M. Luby et a., “Practical Loss-Resilient Codes’, In STOC,
1997.

N. F. Maxemchuk, “Dispersity Routing in Store-and-Forward
Networks’, PhD Thesis, University of Pennsylvania, 1975.

A. Miuand E. Shih, “Performance Analysis of a Dynamic Par-
alel Downloading Scheme from Mirror Sites Throughout the
Internet”, Term Paper, LCS MIT, Dec 1999.

Musiccity, “http://www.musiccity.com”.

V. N. Padmanabhanand J. Mogul, “ImprovingHTTP Latency”,
In Second World Wide Web Conference '94: Mosaic and the
Wb, pp. 995-1005, October 1994.

M. O. Rabin, “Efficient Dispersa of Information for Security,
Load Baancing, and Fault Tolerance’, Journal of the ACM,
36(2):335-348, April 1989.

A. Rousskov and D. Wessels, “Cache Digest”, In 3rd Interna-
tional WM Caching Workshop, June 1998.

M. Sayal, Y. Breibart, P. Scheuermann, and R. Vingralek, “Se-
lection Algorithm for Replicated Web Servers’, In Workshop
on Internet Server Performance, SGMETRICS, Madison, USA,
June 1998.

