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Abstract- For the case of white uncorrelated inputs, most  the received signal spectrusiyy(z) = H(z) Saa(z) HT(2) +
of the blind multichannel identification techniques are not Sw(z) = 62 H(2) T(2) TT(2) HT(2) + 621,,. The choice of

‘;e,%{ﬁggfto?gdm%?%%iosw ég %sgi'glat?ntQﬁ ecrmr':zlgl ggs? appropriate prefiltering, as we shall see below, may reduce the
On the other handgall cu’rrenfstanc}/ardized communica- non-identifiability to a phase factor per source or even 10 a
tion s ! - global phase factor. In the context of wireless communica-
ystems employ some form of known inputs to allow tions, two scenarios may be distinguished:
icnh?r?(;]se(l, eczggsaﬂg?]' bghgpﬂmrz]ggl t?;témsaet;gi%l?neéfgggﬁgggh Noncooperative scenario: this scenario corresponds to the
which exploits both training and blind information. When multi-user case (on the transmitter side) without cooperation
the inputs are colored and have sufficiently different spec- PEWeen users. We shall consider the simple case in which the
tra, the MIMO channel may become blindly identifiable users transmit through only one antenna. This noncooperative
' scenario can also arise in other source separation applications

I%%g%roggn%?t?os;[‘e;nérﬁ) r;ﬁgecLa;rt]chlreﬁeLgp%é a::r;dséhgsf gggﬁ; since natural sources tend to have different spectra. In this sce-

multiplexing, possible cooperation between the channel in- Nari0, H(z) has no structure, other than possibly being FIR,
puts allows for more complex MIMO source prefiltering @ndT(z) and Saa(z) are diagonal. This scenario has been
that may allow blind MIMO channel identification up to ~ considered in [3],[4]. , , _

just one global constant phase factor. We introduce semib- Cooperativescenario: thisis the single-user spatial multiplex-
lind criteria that are motivated by the Gaussian ML ap-  ing case. In this case, since transmit antennas are near each
proach. They combine a training based weighted least- Other and also receive antennas are near each other, all (FIR)
squares criterion with a blind criterion based on linear pre- ~ entries inH(z) have the same delay spread and hence are poly-
diction. A variety of blind criteria are considered for the =~ nomial of the same ordefaa(+) is allowed to be nondiagonal.

various cases of source coloring. In the noncooperative case the channel will tend to be ir-
|. INTRODUCTION reducible, a characteristic we have assumed so far, due to the
The multichannel aspect has led to the development of! (i‘trgl]jlitti;?gxil;lsge(gstgnr?ofEe?/grs}i)r:eveﬁi(?huirlng 'Srp))(agﬁ'tewn?se ;Féa'
wealth of blind channel estimation techniques over the la : hddgl N
decade. In this paper, blind identification tha” mean channepsentially colocated, the irreducibility of the channel depends

: e : ot the richness of the scattering environment. In general, we
identification on the basis of the second-order statistics of t . : '
received signal. Consider linear digitabaulation over a lin- eed to consider a reducible channel. Such a channel can be

ear channel with additive Gaussian noise. Assume that we hd@stored a(z) = G(z)C(z) whereG(z) is irreducible and
p transmitters ana > p receiving channels (e.g. antennas ircolumn reduced with columns in order of e.g. non-increasing
BLAST or SDMA). For more details on the used notation irdegree. Ifr is the (generic) rank dfi (z), thenG(z) ism x r
this paper refer to [1]. wherea<C(z) is r x p. Inthe noncooperative scenafigz) has
II. BLIND IDENTIFICATION FOR COLORED INPUTS no particular structure. In the cooperative scenario however, all

In this section we aim to improve the Second-Order Stati%ntries In a particular row @( =) have the same degree and the

tics (SOS) based biind channel identification by exploiting colz°9fe® o (e fWs are hon-desieading (he degree brote of
relation in the inputs. In the context of digital communica- Int{= P y gree p
tions, the inputs are symbol sequences which are typicalfPlumns inG(z)).
uncorrelated. Correlation can be introduced by linear con- |f » < 1n—1, thens? is blindly identifiable fromSyy () and
g?lyﬁglggheéoyelggdrvggneiod;eg?g;%sbgolslwtgwt% ?rrae;"str?]riltnge(z) is blindly identifiable from the signal/noise subspaces of

. " : ~ S up to a postmultiplication factok (z) that is block
ted with a MIMO prefilterT (z) such that the transmitted vec- Io)\//?//éf)triarr)]gular F\?vith bIocE sizeaccording(ig the mitiplici-

tor signal becomes,, = T(¢) by In this paper we consider ties of the degrees of the columns @fz) andL(z) is also

full rate linear precoding so that(z) is ap x p square ma- o AN .
: s _polynomial with the degree of blodk, j) being the difference
trix transfer function (in [2] an example of low rate precod een the degrees of blotland blockj of the columns of

ing appears since the same symbol sequence gets distribl.gg(&w . . :
over all TX antennas). We get for the transmitted signal spe&2(<) [5]- S0 in particular, the diagonal blocksbfz) are con-

-1 .
trum Saa(z) = T(2) Spp(2) T1(2) = 62T (z) TT(2) and for stant. Alsol- (z) has thelsame polynomial structurel_a(s).'
In the cooperative cask,” " (z)C(z) has the same polynomial
!Eurecom’s research is partially supported by its industrial partners: Astructure a&(z). If » < m—1, there are essentially no restric-

com, _Sr\;]vislscorg_,rF'\rAanceel'é'ctom,_ La l;ﬂor;datilonﬁtEELEE Bouyguedsf‘é- | tions on the number of inpugsfor identifiability. If » = m,
com, Thales, icroelectronics, Motorola, Hitachi Europe and Texas I-y . .c: 1 . 2 : ,
struments. The work reported here was also partially supported by the Fre”g’?nt'f'ab'“ty of o; becomes an issue and there’s no longer a

RNRT project ERMITAGES. point in considering a factorization &f(z) for its identifica-



tion, i . whereSgq,(2) = Ugj}'j(z)j}Tj(Z). If all N; are equal (to
Finally, let us note that TX pulse shape filters can be INCOTy ) then we can choose equésred zeros on the unit cir-

porated inT(z) or Saa(z) and that oversampling at the RX " """, 1 6, — N

also leads to an increase in the number of RX channels. AIJ® [1x=1(1 = zix277) = 1 — /%27 If we furthermore

the formulation of complex quantities as a superposition of reghoose overall equispacing by takifig = (i — 1)27/pNy,

quantities may lead to an extra MIMO dimension. In the ne)q‘henj““.(z) _ _1—z7PM1 In [4] very similar work appears in

two sections we investigate channel identifiability with diago- , . o lmedfiam i N
nal or full prefilteringT (=), which the degree dfaa(z) (in the case of equaV¥;) is at least

pN, (compared tdp — 1) N, here), but the discussion in [4] is

I1I. N ONCOOPERATIVEDIAGONAL PREFILTERING limited to the casen > p = 2. Note that here we can easily
In general, we would like to handle the reducible channedllow p > m even (more inputs than outputs!). Remark also
case. The rank can be identified fronbyy(z). If < m —  that by introducing a number of zerosTiz), we can further-

1, then we can denoise the SOS and identify the faGtor)  more identify an equal number of noise parameters (such as
from the subspacesG(z) is unique up to a factok (z). For o forinstance whem = m). Non-FIRSaa(z) can be consid-
whicheverG () in this equivalence class, it remains to identifyered als%fFor instance we can consider the case in which the
C(z) inH(z) = G(2)C(z) from Sajaj(ef t)hhave alltblea.sf\f‘kdlsptmt expansmrll co]?Ifrllqents ’
_c# 2 #t0) — t in some orthogonal basis. An extreme example of this wou
S(z) = G7(2) (Syy () =ou ) GT1(2) = C(2) Saal2) C(iz) be Sq,q, (e7?™) that are bandlimited with the bands being
#N ; .~ " non-overlapping.

‘gr_‘e;g?r (i);:a;%%?gj;ﬁ?:g%ﬁgﬁ(fg é%n ézi)nG(S)w_ith ~ Time domairapproach: The idea here is to introduce delay
C(2) replaced,byH(z) (apart from thes? identification is- in the prefilter so that the correlations of eaCh(z) appear

! ; ; eparately in certain portions of the correlation sequence of
sue which will be discussed below). The value of the ran : : ; ;
r € {1,2,...,min(m, p)} is unpredictible in general. For a %(Z)' This can be obtained for mstancej\ivith

certain rank-, subsets of — 1 columns ofC(z) could be iden- Uy — 1 o —d; _ ,

tified jointly from S(z) using certaincaa(z) and under certain Tii(z) =1 - ajz 0 4= Z_;NZ ' @
conditions orC(z) (or subsets of columns under more strin- '

gent conditions orC(z)). So to be generalyaa(z) should |gentification can be done with a correlation sequence peeling
be such that it allows identifiability for the worst caserof  555r0ach that starts with the last colu@p(z) of which the

which isr = 1. In that case, each column @fz) needs to (1_gjded) correlation sequence appears in an isolated fashion in
be identified separately. On the other hand, since in the ¢ lastN,, correlations ofS(z). Identification ofC, (=) from

r = 1 each column of2(z) is a scalar FIR transfer function, its correlation sequence can be done up to a phase faitor

only its minimum-phase equivalent is identifiable. So a col
umn would be truly identifiable only if it is minimum-phase. (2nd up to the phase of zerosdj (=) has zeros). We can then

To avoid having zeros would require to impase- 2. Inany ~ subtractSa,q; () C,(2)Cl(z) (which does not requir€, (=)
case, to be fully general, itis desirable to ha@(z) such that but only its correlation sequence) frafif{z) which will then
it allows identifiability ofeach column o€(z) separately. So reveal the correlation sequence @f_;(z) in its last N,,_;
the MIMO problem gets converted into a set of disconnectegbrrelations, etc. The degree Sha(z) is in this case the de-

SIMO (- > 1) or SISO ¢ = 1) problems. This will allowiden- greed, of S, , (z) which, in the case of all equal;, is again
tifiability of each column up to a constant phase factor of th& )N, \X/hpich leads to a degree pfV, — 1 for S(z) or

form e7? if the column has no maximum-phase zeros (Whichancen N, correlation h r -\ is not onl
is quite possible if: > 2 but highly unlikely forr = 1). An- sﬁffi((::?le)ntlbﬁ(t) alesgtr?ecsesggfy sailndceegvfh(;&a}(tr?e?e :rtE;le
other issue is the degree 6f (<), column; of C(z). We have  arameters to be identified for which indeed at lgdt cor-
H;(z) = G(2)C;(z). The degree of;(z) is unpredictible relations are needed. Note that in the temporal approach, in-
and can be up td/; — 1, the degree of the corresponding col-creasing all the delay with an amounD allows furthermore
umnH;(z) of H(z). For identifiability, we need to consider the (straightforward) identification of MA — 1) noise (e.g.
the worst case and hence we shall assume that the degreeDof 1 for white noise with arbitrary spatial correlation).
C;(z)isN; — 1. Of course, theV; themselves may be unpre-  In practice, with estimated correlations, the correlation peel-
dictible and in practice need to be replaced byipper bound. ing approach leads to increasing estimation errors as the
We now consider two approaches for identification, leading teolumns ofC(z) get processed. This error increase can be
two classes of solutions fdfaa(z). avoided by doubling the delay separation between sources,
Frequency domaimpproach: The idea here is to introducevhich may furthermore lead to simpler algorithms (e.g. SIMO
zeros into the diagonal elementsTofz) or henceSag(z) such ~ subspace fitting with asymmetric covariance matrices). Time
that all other elements other than diagonal elemjesitarey; ~ domain approaches also appear in [3].

zeros
LB _ IV. COOPERATIVH SPATIAL-MULTIPLEXING
Tii() = [] TIC—=x"" 2) PREFILTERING

=175 k=1 Non-cooperative approaches can of course also be applied in
This allows identifiability ofC;(z) from S(z) up to a phase the cooperative scenario, so diagonal prefiltering can be used

since for spatial multiplexing. However, this leads to at least a un-
known phase per TX antenna and hence requires either differ-

1 . - >
S(zjk) = Cj(2jh)Sasa;(2,6)Ci(zjk) s k=1,...,N; ential encoding or training symbols per TX antenna. By ap-

(3) plying full prefiltering, such thabaa(z) is not blockdiagonal



in which case it is said to be fully diverse, the channel mawhich is a weighted LS criterion (quadraticlif(z)) with the
possibly be identified up to a global phase factor only. Sincgaining information. The second subcriterion is
better identifiability results in this case, better estimation may P P
possibly be another consequence. We consider here linear pre- trj{{Syy (Z)SW(Z)Syy (2)Syy(2)} (8)
coding by time-invariant MIMO prefiltering. In [6], a block
precoding approach is considered. = . 5 5 !

We can work with the eigen or LDU decompositions ofvheresyy (z) = Syy(z) — Syy(z), Syy(z) = 37¥()y ()"

Saa(z). To begin with, consider the eigendecompositior(pe”c’dogram)’ and the gradient is taken by considering
' - - C . Sov onstant. This second criterion is one of weighted
Saa(z) = V(z)D(z)V'(z) whereV(z) is paraunitary (i.e. W(Z) as c : 9

1 _ ; i pectrum matching and expresses the blind information. By
VI(z)V(2) = 1) and contains the eigenvectors as COIumniaking the gradient of the sum of the two subcriteria, we com-

andDb(z) is dizl;l%onaIIWIth thetdlagonal elements, the eigenvaj e training and blind information in an optimal fashion (com-
ues, being valid scaiar spectra. .+ Pare to the CRB expression for GML). Asymptotically we can

A paraunitary matrixV(z) is said to be full diverse, 1 . =]
PV(z) V(1) P" cannot be made block diagonal for any per_rep!aceSyy(z) by & consistent estlmatﬁyy@ such as the
mutationP. periodogram. Also, we can replace the periodogram by an AR

Theorem 1:: An irreducible FIR MIMO channel is blindly model which matches the covariance sequence estimate ap-
identifiable up to a phase factor per usefifa(z) has distinct Pearing implicitely in the periodogram (or asymptotically by
eigen value functions, and up to one global phase factor if its consistent AR model) such thla(z)Syy(z)PT(z) =TIso
eigenvector matrix is fully diverse. o-1 _ pt . .

It may perhaps be more practical to work with the LputhatSyy () = P'(z)P(2), whereP(z) is the MIMO predic

(Lower triangular-Diagonal-Upper triangular) decompositiont o0, e AEs L e S R T B Biind s

with unit diagonal and the non-zero off-diagonal elements be- t 2

ing unconstrained transfer functions, @) is diagonal with j{ IP(2)Syy ()P (2) = Im ||F (©)
the diagonal elements being valid scalar spectra. The rela-

tion between the LDU decomposition and the prefiltée)  which is of fourth order iH(z). One solution consists of inter-
is immediate ifT(z) is of the formT(z) = L(2)A(z) where  pretingH; () andH»(z) in Syy(z) = Hi(z)Saa(z)H2(z) +
A(z) is diagonal. An example of suchTg ) that allows irre- ;2 | a5 different quantities and performing alternating opti-
ducible channel identification up to one global phase factor Kizations between them (and).

A(z) = I, andT(z) = L(z) = I, + D 2= whereD has only

non-zero elements on the first subdiagonal and those elemenfd: BLIND GML CHANgE}'&A,R,ETT'F'CAT'ON FOR AFLAT

are all different constants. ) ) _— e
Stationary precoding can be generalized to cyclostationaryHere we shall focus on the blind identification part for a

precoding via periodically timevariant prefiltering. By stack{requency flat channdél = G C with » < m. We can take
ing ¢ consecutive symbol period quantitigs v, a., bx, we G = Vs, an orthonormal matrix spanning the signal sususp
obtainYy, Vi, Ax, B;. We can then introducejs x pq LTI We shall estimate firsts and therC.
MIMO prefilter T(z) such that {Rilentlflcatllton ofttheISIQHtal SLibstlﬂaV@:_ bsisee Id
e can alternatively estimate the noise subsgége Ide-

Yi = Vi = @H@)Ar = (L, @ H(@)) T(@)Be - (O auy, R, (1, ® V) = 0 whereR;, is the denoised covariance
matrix of L symbol periods oy, . We shall estimat&- using
g weighted LS criterion

min {vect(ﬁL (Ir® VN))}HW{vect(ﬁL (IL@Va))}

VaVEV=In_r

Cyclostationary prefiltering introduces more information
hence should allow improved estimation (and possibly avoi
stationary noise).

V. GAUSSIAN ML SEMIBLIND CHANNEL IDENTIFICATION (10)
For Gaussian ML, which will allow to exploit the SOS, wewhere R; is the sample covariance matriR; = R; +
model the unknown symbols as uncorrelated Gaussian VaH-  The optimal weighting iSW = Evect(Ry (I ©

ables whereas the known symbbjslead to a hon-zero mean. 2 0o o
By neglecting the non-stationarity due to the known symboldx)) }{vect(RL (1L © Vir))}*. With R, based omi/ sam-
the Gaussian likelihood function can be written in the freples, we get BEvect(Ry)}Hvect(R)} = &R} @ Ry. This

quency domain: allows us to work out the WLS criterion (10) to become
$[M Indet(Syy(z))+ ) _min tr {Vif ryy(0) V' } (11)
(Y(2) = H(2)T(2)bx (2)) 1 Syy (2) (y(2) — H(Z)T(Z)bK(Z()G))] VY= mer

. 1 rds whereryy(0) is the estimated correlation matrix pf at lag
where § is short fo'er - andy(z), b (=) denote the: 0. The solution is clearly given by the noise subspace of the
transforms of the signal of/ sampleg/,, and the known sym-  matrix in the middle, so thats becomes its signal subspace.
bolsb. The gradient of this criterion is the same as the gradi- |dentification ofC:

ent of the following sum of two subcriteria. The first subcrite- By equalizing Vs, we getr(i) = V& ryy(i) Vs =
ron s , Craa(i) C*. We introduce a normalization so that

—1

FOE=HETEbK NSy V) -HETEBK ) -172(0) 0,420 Faali  L20) 7 -12(0) — 709

(7) (12)



fori =0,1,...,L, and wherer(i) = r='/2(0)r(i)r=#/2(0)  unitary diagonal matrixD = diag(e’¥1,... e/¥»), H' =

andfaa(i) = rzs *(0)raa(i)rza’*(0). Fromi = 0, we ob- HPDHhas}}he same distribution &$, then EH¥ R™'H =

serve that —1/2(0) Crg/;(o) = @ for some matrixQ with D*PYEH"R™'HPD. By averaging over the set of permu-
“1/9 _ tationsP and phasef), 27]?, we get:

orthonormal rows, or hendg = r'/2(0) Qrz5 ~(0). To find

estimate), we shall assume = p so that) is square and uni- py# p-1y___1 /EZD*PHEHHR”HPD diy ... do
tary, and we shall solve (12), which becon@8aa(i) Q7 = @m)r | p! F

r(é),fori =4,..., Linaleast-squares sense: _ trEHHPRE_F:H s
L P
. _ . e 2 a7
min QTaal?) —T(?) Q@ (23) 1
Q:r{QHQ}=r ; | ) =10 @l The first term inA, is —Mﬁp”EHH# trAS; = 0.
The solution of this problem involves an eigendecompositiof; =M%y, .Etr{fz~C+*IHTRTHASHY R='HAS;}
and is unique in general up to a phase factor. =M@ p? S Etr{§ HT R-TH AS; HF R-1H ASH}
VIl. PRECODER OPTIMIZATION =M 3y, veet (AS;)Woect(AS;). 8
1

We focus here on the flat channel case, and we study the op- 5 Hopo LT Hopo1 ,
timization of the precoder to maximize the available capacity/hereW = p"E(H” R='H)" @ (H" R™'H), >, is done over
of the system, which is also the mutual information when thall index values for which AS; # 0 andpH” R='H = (I +
channel is estimateid,, , (y; b|H). (pH¥H)~1)=" then for high SNRi.ep >> 1: W ~ I.

The ergodic capacity of an AWGN channel, when the chan- As shown in [8], the deviation of the capacity for a small

nel knowl i n he transmitter an rf h L . ~|2 -
re?ceivgr isegig\]/(;nsbga}:bse tat the transmitter and perfect at tcﬁannel estimation error i, = MpFE ‘ H ‘ . To mini-
C(Saa) = EI (y; b|H) mize A, the channel estimator should be the MMSE estimator.
aa Saa\) 1 " (14) The MMSE estimator doesn’t achieve in general the Cramer-
= EgIndet(I + 5z HSaa(z)H") Rao Bound ('RB) but a good measure of the deviation is

s , Ay = MptrECRB = MptrEJ#,, where gy is the Fis-
WhereSaa(z) = ZZ raa(?) z—*, the expecta_tion E is here cher Information Matrix. )
w.rt. the distribution of the channel. ~As in [7], we as- gybspace fitting gives an estimation of the chaniel
sume the entriedd; ; of the channel to be mutually inde- from the estimated correlation at lag 0 (see Section VI.)

pendent, identically distributed zero mean complex Gaus- _ H ; ; r_
sian variables (Rayleigh flat fading MIMO channel model).?yy(o) = pHSHT + 1, which leads asymptotically td” =

Telatar has shown [7] that for such a channel model, the opi-Sé/zQH. The identification of the unitary matriQ is
timization of the capacity subject to the TX power constrain§one from the remaining correlation laig!# ryy (i)H'# 1 =
$tr(Saa(z)) < Nyyof leads to the requirement of a white
(and Gaussian) vector transmission sighi@h (z) = o7 1.

For a block of lengthi (sufficiently large for the fre-
guency domain expressions to be sufficiently accurate), a

QSgl/zSiSO_H/zQH; as a result we can assume without loss
of generality thatS;, = 7/ and henceAS; = 0. The Mean
|§(§1uare Error of the subspace estimadbis of orderds —*.

using a precLodln@*aq(z) = of(I + B AS(2)) (B << 1, H=HQ=HO+ HO +HO (19)
AS(z) = Y7 AS;z7" and § tr(AS(z)) = tr(ASy) = 0 for ~ =~

power constraint), the deviation of the available capacity for —H xg®/VM  x1/VM

the whole block is:

A= MC(o2I) — MEl g4, (y; b|A) whereg () is an increasing function gf~*. For largeM and

~ ~1
—M(C(c2D= C(S +M(C(S, _El - b|H small 3 we can neglect the last term, and assumethat H'.
(Clow]) (Saa)) (C(Saa) saa V: BIH)) The source of the channel error is then caused by the estimation
Ay Ay error onQ. If X = (X1, Xz, ..., X,,) is a real parameterization

A represents the deviation (decrease) of the capacity dueot]:)the unitary matrix, 1.€Q = Q(X), then

the precoding, whereas, represents the deviation caused by aX ox\ T
channel estimation errors. Jnn = 5 Pxx (8_h) (20)
Letp = Z-andR = I + pHH", then:

Ay = —ME §Indet(I + BpR™'H AS(2) HH whereh = [Re(vect(H))? ,Im(vect(H))i]T and Jxx =
A SO oy ~Svi (22 (225 e
—pep tr{R™ z - z + i i .
~ —Mptr{EHH R-THAS} expression ofl/x x for large M is ther(l .) .
+MB2 P Etr{§ HT RTTH AS(2) HP R-TH AS . 104 99yy () (1 OSyy(z

B2p*Etr{§ (2) (2)%16) Dxx (i) = M?{ 1r{Syy (=) gi’ Sy (2) gi’j }

We will show below that EI¥ R—'H is a multiple of the (22)

unity matrix /. In fact, for every permutation matri¥ and By proceeding as foA;, we can show that:



Txx (i, j) = M{B > veet™ (AS) )W/ veet (ASK)+0(8%)}
k
(22)
* H *
where W/, = (%) R-T @ R~} (%) and
R = I+ (pH"H)~'. We can note that for high SNR
ie p >> 1. R =~ I. The decrease is nowh, =

-1
T ax
oh

B-2pEtr (}]\fﬁfg)#: B 2pEtr (ﬁﬁf;)_((%ﬁ)

The minimization of the capacity lost can be performed
by evaluating the expectation, which is quite complex, an
then optimizing the resulting cost function. An alternative apwherem; = ZZ L IAS (1, 1) —

proach is to consider a close lower boundthat is easier
to calculate and to minimize. From the solution fiS(z),
we can then find the solution for the precoddr:). For a
precoderT (z) = (1 — g*)Y/21 + 33", M;'Fy z—k, where
Mp = (3, Fi F)Y/? verifies Mp ME = >, F; FH and
Fy = 0, the power spectrum is:
Saa(z)=0f {1+ 5(1 — §%)/ 5 (Mp ! Fy + FE Mp) =~
+3 (Mp" F(2) FT(z) Mp™ — 1)}

(23)
This spectrum verifies the power constraintas,; = 0. The
first order approximation is:
AS(z) =33, (Mp' Fy + FU MpH) 275,

Example of optimization fgr = 2:

We introduce the following parameterization Q@f X =
(0, 0,¢) € [0,7] x [0,27]?, that allows to determin® up
to a global phase factor:

e7?sin @ }

Ql, ¢, %) = [ eI cos b

We consider here the case of high SNRyi.e> 1, in which
caseA; = 2MA U |AS||2 and R-T @ R~' = I. To
optimize A, we fix A; by fixing Zf [|AS;||> = 1, we op-

e”’,cos: )
—e 7%3sinf

(24)

timize thenA, under this last constraint, and given the pre-

coder solution, optimize finally the overall decreasewith

respect to the scale factgr We will skip below several de-
tails of the derivation due to Iack of place. First we establis

the following equalltles(i)%) = ngTT = in%%’ where

Q, = [Re(veet(Q))T | Im(vect(Q))TT.

Considering now the independence betwetand @ we

can write:
T
oh™ (ah™\T [ 2Q~
EH{@Q (aQU) }(aXT)
—{

Az:ﬁ_szxtr(‘Jl\]fﬁé) 6QU
N —1

I xx 6Q? 6Q?

Mpz | H5XT \ aXT

= g2 p B 4y g

— ﬁ_szllfll2C(AS)

where B¢ (resp.
to X (resp.

(25)
y) denotes expectation with respect(6]
H’), and to obtain the second expression

minimizeC(AS), which is possible directly but at high numer-
ical cost. To avoid it, let’s first note that as result of the convex-
ity character of the functiofi(z) = 1/x overR** : C'(AS) >

o (o)

I xx o, o,

Ex Mﬁ2 (6XT <6XT) ) ] then
for AS,,: optimum of C', C(ASye) > Copr > C
C(ASopt)—C;

C'(AS) = tr

opt*

pt

If CTAS.) << 1 then we can conclude that
5+m_

4Sope minimizes A, In our caseC’(AS) T,

AS;(2,2)]]? andmy =
S IASH(L,2)]2 + [|ASi(2,1)]|% the optimal solution
(Cope = 1.125) verifies: AS;(2,2) = —AS;(1,1),7 =

S Lomy = FandySi [JASi(1 1P+ [|AS; (1 D) =
<. One choice of a causal precoder with the smallest order L=1
that verifies these optimality conditions is:

1 | 1
Topt(2) = (1= 82T+ BAz" , A= — | V2
plz) = (1= )12+ v Lt
(26)
In the first order ofg this leads tofAS,,:(z) = /(1 —
BOVIA (=71 4 2) + £ &~ BA (=7 + ). By numeri-
cal evaluation we get:C(AS””’)_CDP’ = L3T=LA%8 — g 18,

C(ASopt)
henceAS,,, is close to optimal. The optimization ¢f gives

B = { p(E|H|[)

1/4
A} , usually the normalization is
2 —1/4
BUAIE = 1, thens = 0.91{#} " and A =

2Mp
MC(o2I)

1.66gpM)1/2 i
MC(o2D) lnp \/ #f- The same ratio in the case of the ex
clusive use of a training sequence gl\ﬁ?@— Mg g

To achieve the same performance, the Iength of the training
sequence needs to be of the orq#gm which can become
yery important for large MIMO systems.
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