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ABSTRACT

We investigate Maximum Likelihood (ML) methods for blind and
semi-blind estimation of multiple FIR channels. Two blind De-
terministic ML (DML) strategies are presented. In the first one,
we propose to modify the Iterative Quadratic ML (IQML) algo-
rithm in order to ”denoise” it and hence obtain consistent chan-
nel estimates. The second strategy, called Pseudo-Quadratic ML
(PQML), is naturally asymptotically denoised. Links between these
two approaches are established and their global convergence is
proved. Furthermore, we propose semi-blind ML techniques com-
bining PQML with two different training sequenceestimation meth-
ods and compare their performance. These semi-blind techniques,
exploiting the presence of known symbols, outperform their blind
version. They also allow channel estimation in situations where
blind and training sequence methods fail separately. Simulations
are presented to demonstrate the performance of all the proposed
algorithms, and comparisons between them are discussedin a blind
and/or semi-blind context.

1. INTRODUCTION

Consider a sequenceof symbolsa(k) received throughm channels
of length N and coefficientsh(i):

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independentwhite Gaussian noise,rvv(k�i) =
Ev(k)v(i)H = �2vIm �ki. Assume we receiveM samples, con-
catenated in the vectorY M(k):

Y M (k) = TM (h)AM+N�1(k) + V M (k) (2)

Y M(k) = [yH(k�M+1) � � �yH(k)]H, similarly for V M (k),

andAM (k) =
�
aH(k�M�N+2) � � � aH(k)

�H
, where(:)H de-

notes hermitian transpose. The channel tranfer function isH(z) =PN�1
i=0

h(i)z�i=[HH
1 (z)� � �HH

m(z)]H. TM (h) is a block Toeplitz
matrix filled out with the channel coefficients grouped inh =
[hH(N�1) � � � hH(0)]H . We shall simplify the notation in (2)
with k =M�1 to:

Y = T (h)A+ V : (3)

The work of Elisabeth de Carvalho was supported by Laboratoires
d’Electronique PHILIPS under contract Cifre 297/95. The work of Dirk
Slock was supported by Laboratoires d’Electronique PHILIPS under con-
tract LEP 95FAR008 and by the EURECOM Institute

We assume thatmM > M+N�1 in which case the channel con-
volution matrix T (h) has more rows than columns. A channel
will be said irreducible if the Hi(z); i = 1; : : : ;m have no zeros
in common, and reducible otherwise. For obvious reasons, the col-
umn space ofT (h) is called the signal subspace and its orthogonal
complement the noise subspace.

2. BLIND DETERMINISTIC ML

The Deterministic Maximum Likelihood (DML) method was in-
troduced for blind channel estimation in [1]. In DML, both chan-
nel coefficients and input symbols are considered as deterministic
quantities, which are jointly estimated through the criterion:

max
A;h

f(Y jh) , min
A;h

kY � T (h)Ak2 (4)

f(Y jh) is the complex probability density function (which exists
asV is circular). We consider here that the blind DML identifia-
bility conditions are verified: the channel is irreducible, the input
symbols are persistently exciting and the burst sufficiently long.
The channel is then identifiable up to a scale factor and we assume
the regularizing constraintkhk = 1. Optimizing (4) w.r.t.A and
replacing in (4), we get the following DML criterion forh:

min
khk=1

Y
HP?

T (h)Y (5)

P?
T (h) is the orthogonal projection on the noise subspace. The key

to a computationally attractive solution of the DML problem is a
linear parameterization of the noise subspace.

We consider here a linear parameterization in terms of chan-
nel coefficients. LetH?(z) be such a parametrization; it verifies
H?(z)H(z) = 0 andT (h?)T (h) = 0; T (h?) is filled with the
coefficients ofH?(z) and spans the noise subspace. An example
is [2]:

H?(z) =

2
664

�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
......

. ..
. . . 0

Hm(z) 0 � � � 0 �H1(z)

3
775 :

(6)
SinceP?

T (h) = PTH (h?), (5) can be written as:

min
khk=1

Y
HT H(h?)R+T (h?)Y (7)

whereR = T (h?)T H(h?) and+ denotes the Moore-Penrose
pseudo-inverse (T (h?) may not be full-row rank).T (h?) being



linear inh, a matrixY filled out with the elements of the observa-
tion vectorY can be found such thatYh = T (h?)Y . Then (8)
becomes:

min
khk=1

hHYHR+Yh (8)

2.1. Denoised Iterative Quadratic ML (DIQML)

The Iterative Quadratic ML algorithm (IQML) solves (8) itera-
tively in such a way that at each step a quadratic problem ap-
pears. Indeed, at each iteration of IQML, the denominatorR,
computed thanks to the previous iteration, is considered as con-
stant and hence criterion (8) becomes quadratic. Under constraint
khk = 1, h is estimated as the minimal eigenvector of the ma-
trix YHR+Y. IQML requires a very good initialization. In [3]
the channel is initialized by the SRM method [4] and the IQML
estimate is proved to be consistent at high SNR. But at low SNR
conditions, this method is biased because the true channel is not
a stationary point of the algorithm and performs poorly even if
initialized by a consistent channel estimate. We propose here a
method to “denoise” the DML criterion: this denoised criterion
solved in the IQML way will be consistent.

Consider the asymptotic situation where the number of data
M is infinite. By the law of large numbers, the DML criterion is
equivalent to its expected value which is trfPTH (h?)E(Y Y H)g,
E(Y Y H) = XXH +�2vI, whereX = T (h)A is the noise-free
received signal. The denoising strategy consists in removing this
asymptotic noise term from the DML criterion which becomes:

min
khk=1

trfPTH(h?)

�
Y Y H � �2vI

�
g (9)

Note that this operation does not change the DML criterion so-
lution as�2vtrfPTH(h?)g = �2v(M(m�1)�N+1)I is constant.
(9) is solved in the IQML way: consideringR as constant, the
optimization problem is quadratic:

min
khk=1

hH
�
YHR+Y � �2vD

	
h (10)

wherehHDh = trfT H(h?)R+T (h?)g.
Asymptotically in the number of data, DIQML is globally con-

vergent. Indeed, asymptotically it is equivalent to the denoised
criterion:

min
khk=1

hHXHR+Xh (11)

whereX is filled out with the noise-free received signal and such
thatXh = T (h?)X. The first iteration of DIQML gives a con-
sistent estimate: whatever the value ofR and hence of the channel
initialization, the solution of (11) isho, the true channel vector, (if
Null(R+) \ Im(X ) = 0, which can be easily guaranteed). A
second iteration gives the global ML minimizer. Of course at high
SNR global convergence is also guaranteed as it is for the original
IQML.

In practice, with large but finiteM , the central matrix in (10) is
indefinite. So instead of removing the exact asymptotic noise term
�2vD, we remove a quantity�D, which as already mentioned does
not change the criterion, sufficient to renderQ(h) = YHR+Y �
�D positive semi-definite with one singularity.h is solution of:

min
khk=1;�

hH
�
YHR+Y � �D

	
h (12)

with constraint thatQ(h) is positive semi-definite.h is the min-
imal generalized eigenvector ofYHR+Y andD, and� the gen-
eralized minimal eigenvalue. Asymptotically,� ! �2v, and the

criterion is equivalent to (11): asymptotic global convergence ap-
plies forh and for� which tends to 1.

2.2. Pseudo-Quadratic ML (PQML)

The principle of PQML has been first applied to sinusoids in noise
estimation [5] and then to DML in [6]. The gradient of the DML
cost function may be arranged asP(h)h, whereP(h) is (ide-
ally) positive semi-definite. The ML solution verifiesP(h)h = 0,
which is solved under constraintkhk = 1 by the PQML strategy
as follows: in a first stepP(h) is considered constant, and asP(h)
is positive semi-definite, the problem becomes quadratic:h is cho-
sen in [6] as the eigenvector corresponding to the smallest absolute
eigenvalue ofP(h). This solution is used to reevaluateP(h) and
other iterations may be done. The difficulty consists in finding
the rightP(h) and especially with the positive semi-definite con-
straint. In our problem:

P(h) = YHR+Y � BHB (13)

T H(h?)B = B�h� with B =
�
T (h?)T H(h?)

�+
T (h?)Y

(� denotes the conjugate operation). Asymptotically, the effect of
the second term is to remove the noise contribution present in the
first one, thenP(h) = XHR+X . The asymptotic criterion is
similar to the DIQML one (11) and the global convergence applies
here also: again, any initialization ofP(h) results in a consistent
PQML channel estimate and the second iteration finds the global
minimizer.

The matrixP(h) is indefinite for finiteM , and applying di-
rectly the PQML strategy will not work as stated in [6], except for
high SNR. PQML is closely related to IQML as the first term of
(10) and (13) are the same andE(BHB) = �2vD. By analogy
with IQML for which Q(h) was also indefinite for finiteM , we
introduce an arbitrary� and PQML becomes the following mini-
mization problem:

min
khk=1;�

hH
�
YHR+Y � �BHB

	
h (14)

with semi-definite positivity constraint on the central matrix.h is
the minimal generalized eigenvector ofYHR+Y andBHB, and
� the minimal generalized eigenvalue. Asymptotically, there is
global convergence forh, as described previously, and for�.

The stationary points of PQML are the same as those of DML,
this is why PQML has the same performance as DML. Asymptot-
ically PQML gives the global ML minimizer. DIQML does not
give the global ML minimizer and its performance are lower than
PQML and DML.

3. SEMI-BLIND ML METHODS

Unlike purely blind approaches, semi-blind estimation techniques
exploit the knowledge of certain symbols in the burst and appear
superior to purely blind and training sequence methods as men-
tioned in [7]. Furthermore, they allow correct estimation when
both blind and training sequence methods fail separately. We pro-
pose two semi-blind ML techniques both combining the previously
described blind PQML and a training sequencebased criterion. We
will not consider DIQML, as PQML performs better. We assume
that the training sequence is grouped and for simplicity reasons, is
situated at the beginning of the burst.A = [AHk AHu ]H, whereAk
groups theMk known symbols andAu theMu unknown symbols
of the burst.



3.1. PQML Least-Squares (PQML-LS)

This first approach remains in a deterministic perspective. We
apply the DML approach to:Y = [Y H

TS Y H
B ]H . Y TS =

TTS(h)Ak+V TS groups the observations containing known sym-
bols only.Y B groups the observations containing unknown sym-
bols: itsN�1 first components include a mixture of both unknown
and known symbols. We do not exploit the knowledge of this sym-
bols which will be treated as unknown. Some information is then
lost. Note that this loss of information could be critical especially
when the training sequence is very short, of less thanN symbols!

As Y TS andY B are decoupled in term of noise, the DML
criterion forY is the sum of the DML criterion forY TS andY B :

min
h
Y
H
BPTH(h?)Y B + kY TS � TTS(h)Akk

2 (15)

This semi-blind criterion is solved in the PQML way. The general
semi-blind PQML strategy applies as follows: the gradient of the
cost function may be written asQ(h)h + S(h) whereQ(h) is
(ideally) positive definite. At each iteration, you supposeQ(h)
andS(h) as constant, andh is the solution of a linear system,
which gets used to reevaluateQ(h) andS(h) to perform other
iterations. Our quantities of interest are:

Q(h) = YHBR
+
BYB�B

H
BBB +AH

TSATS andS(h) = AH
TSYTS

(16)
where: TTS(h)Ak = ATSh. The blind part of the criterion is
solved in the PQML way and the training sequence part in the
least-squares way.

We introduce the same generalized eigenvalue strategy as in
the previous section which allowsQ(h) to be positive semi-definite.
At a given iteration,h has for expression:

h =
�
YHBR

+
BYB��B

H
B BB+A

H
TSATS

��1
AH
TSYTS (17)

where the different quantities are computed thanks to the previous
iteration. This criterion needs at leastN known symbols to work.

3.2. PQML Weighted-Least-Squares (PQML-WLS)

The PQML-WLS mixes a deterministic and a Gaussian point of
view. In the Gaussian model [7], [8], the input symbols are con-
sidered as Gaussian random variables. This hypothesis allows to
robustify the problem w.r.t. to the deterministic model: an irre-
ducible channel can be estimated up to a phase factor and for only
one known symbol, not located at the edges of the burst, any chan-
nel, irreducible or not, becomes identifiable. DML can estimate re-
ducible channels up to a scale factor, and you need at least2Nz�3
known symbols, whereNz is the number of channelzeros, to iden-
tify a reducible channel [9]. Furthermore, ML based on this Gaus-
sian model (GML) [7], [8] gives better performance than DML [9].

Let decomposeY asY = [Y H
SB Y

H
B ]H. Y B groups all the

observations where unknown symbols only appear.Y SB groups
all the observations containing known symbols, and especiallyN�
1 observations where a mixture of both known and unknown sym-
bols appear. The symbols inY B are treated as deterministic and
DML is applied toY B . InY SB, the known symbols are treated as
deterministic and the unknown symbols as i.i.d. Gaussian random
variables of mean0 and variance�2a. GML applied toY SB allows
to take into account the known symbols that PQML-LS does not.
As Y TS andY B are decoupled in term of noise, the mixed ML
criterion will be the sum of DML forY B that we solve by PQML
and GML forY SB .

Y SB = TSB(h)ASB + V SB , whereASB = [AHk A0u], A
0
u

are the unknown symbols inY SB. Y SB is Gaussian:Y SB �
N (TSB(h)A

o
SB; CYSBYSB ), A

o
SB is the mean of the symbols,

CAA their covariance matrix,CYSBYSB = TSB(h)CAAT H
SB(h)+

�2vI. GML considers the joint estimation ofh and�2v through the
minimization criterion:maxh;�2

v
f(Y jh; �2v) or:

minh;�2
v
fln detCYSBYSB

+ (Y SB � TSB(h)AoSB)
H C�1

YSBYSB
(Y SB � TSB(h)AoSB)

	
(18)

We use PQML to solve (18). In the gradient of the cost function,
the two terms coming from the derivation ofCYSBYSB canceleach
other asymptotically, and we neglect them. The quantities of inter-
est are:

P(h) = AH
SBC

�1
YSBYSB

ASB andS(h) = C�1
YSBYSB

Y SB (19)

The (approximate) PQML criterion is equivalent to the optimally
WLS problem:minh;�2

v
kY � TSB(h)A

o
SBkC�1

YSBYSB

. This cri-

terion outperforms the LS criterion of the previous section: it con-
tains all the equations of the LS criterion and allows to incorporate
all the information coming from the known symbols. The mixed
criterion writes:

min
h;�2v

Y
H
BPTH(h?)Y B+�

2
v kY � TSB(h)A

o
SBk

2

C
�1

YSBYSB

(20)

Only the information coming from the unknown symbols present
in the mixed sequence previously described is lost, which is negli-
gible as the number of observationsY B will be usually large. At
each iteration, the solution forh is:

h=
�
YHBR

+
BYB��B

H
BBB+�

2
vA

H
SBC

�1
YSBYSB

ASB

��1
AH
SBYSB

(21)
This criterion needs only one symbol to work.

PQML-WLS will give better performance than PQML-LS be-
cause the training sequence part of the criterion gives better per-
formance. Asymptotic convergence studies are possible from two
points of view. If you considerMu as asymptotic andMk as finite,
criteria (15) and (20) are equivalent to the blind one, and inherits its
convergence properties. The scale factor, not blindly identifiable,
gets estimated by training sequence, this is why the estimate is not
consistent. If you consider now, bothMu andMk as infinite (with
hypothesis

p
Mu

Mk

! 0), a first iteration of the algorithm gives a
consistent estimate and a second one gives the global minimizer
(result that can be obtained by the same asymptotic reasoning as
in the blind section).

4. SIMULATION RESULTS

We consider a burst length ofM = 200, an irreducible channel
H1 and an ill-conditioned channelH2, which subchannels have
one nearly common zero, of lengthN = 4 with m = 2 subchan-
nels. Both channels are complex and randomly generated. The
input symbols is drawn from an i.i.d. QPSK symbols sequence.
The SNR is defined as(khk2�2a)=(m�2v).

4.1. Blind algorithms

Blind estimation gives a channel estimate�̂h with k�̂hk = 1, we ad-

just the right scale factor� so thathHo (��̂h) = hHo ho (see [7]): the



final estimate iŝh = ��̂h. We plot the Normalized MSE (NMSE):
NMSE= kh � ĥk2=khk2 as well as cost function of the DML
criterion averaged over 100 Monte-Carlo runs in Fig.1.

We consider the channelH1 only. The initialization of the
DIQML/PQML algorithms is done by a SRM channel estimate.
In Fig. 1, we illustrate the performance of DIQML and PQML
at a SNR of 10 dB and 20 dB and compare it to the blind CRB
computed with constrainthHo ĥ = hHo ho [7], corresponding to the
way we have previously adjusted the scale factor. An improvement
w.r.t. to the SRM initialization is clear for both algorithms and es-
pecially for PQML which outperforms DIQML. Performance can
be seen to be close to the blind CRB. The evolution of the DML
cost function for DIQML is not always monotonic: small fluctua-
tions after the first iteration are observed. For the PQML algorithm
the cost function was found to be always monotonic. After 1 or 2
iteration, DIQML and PQML reach their steady-state. We noticed
also that the averaged least dominant generalized eigenvalue of
DIQML tends to the noise variance�2v and the one of PQML to
one.
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Figure 1: Performance of DIQML and PQML algorithms.

4.2. Semi-Blind algorithms

In Fig. 3 (left), we plot the averaged NMSE for PQML-LS, PQML-
WLS using 10 known symbols and initialized by SRM as well as
for the blind PQML for which the right scale factor is adjusted by
training sequence estimation. The SNR is at 10dB and the channel
isH1. �2v is supposed known. Both semi-blind algorithms outper-
forms the blind PQML and PQML-WLS outperforms PQML-LS.
Differences are however small because performance for the three
algorithms are already very closed to the semi-blind deterministic
CRB!

In Fig. 3 (right), we present the same curves but with the ill-
conditioned channelH2 for which the blind methods fail. The
algorithms are initialized by training sequence of length 10. Again
performance are closed to the CRB and PQML-WLS outperforms
PQML-LS. We also simulated the extreme case of channelH2

and a training sequence of 3 for which PQML-LS cannot work at
SNR=20dB. PQML-WLS converges with more difficulty than in
the well-conditioned cases, but performance gets eventually closed
to the semi-blind deterministic CRB. For lack of space we do not

present show the curves. We do not plot also the cost functions:
they approximately reach their steady-state after one iteration, but
small fluctuations could be seen afterwards.
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Figure 2: NMSE for PQML-LS PQML-WLS with 10 known sym-
bols
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