
ModSec-AdvLearn: Countering Adversarial SQL
Injections with Robust Machine Learning
Giuseppe Floris§, Christian Scano§, Biagio Montaruli§, Luca Demetrio*, Andrea Valenza,

Luca Compagna, Davide Ariu, Luca Piras, Davide Balzarotti, and Battista Biggio*, Fellow, IEEE

Abstract—Many Web Application Firewalls (WAFs) leverage
the OWASP Core Rule Set (CRS) to block incoming malicious
requests. The CRS consists of different sets of rules designed
by domain experts to detect well-known web attack patterns.
Both the set of rules and the weights used to combine them are
manually defined, yielding four different default configurations of
the CRS. In this work, we focus on the detection of SQL injection
(SQLi) attacks, and show that the manual configurations of the
CRS typically yield a suboptimal trade-off between detection and
false alarm rates. Furthermore, we show that these configurations
are not robust to adversarial SQLi attacks, i.e., carefully-crafted
attacks that iteratively refine the malicious SQLi payload by
querying the target WAF to bypass detection. To overcome these
limitations, we propose (i) using machine learning to automate
the selection of the set of rules to be combined along with
their weights, i.e., customizing the CRS configuration based
on the monitored web services; and (ii) leveraging adversarial
training to significantly improve its robustness to adversarial
SQLi manipulations. Our experiments, conducted using the
well-known open-source ModSecurity WAF equipped with the
CRS rules, show that our approach, named ModSec-AdvLearn,
can (i) increase the detection rate up to 30%, while retaining
negligible false alarm rates and discarding up to 50% of the
CRS rules; and (ii) improve robustness against adversarial SQLi
attacks up to 85%, marking a significant stride toward designing
more effective and robust WAFs. We release our open-source code
at https://github.com/pralab/modsec-advlearn.

Index Terms—web application firewalls, machine learning, sql
injection, adversarial training

I. INTRODUCTION

Web applications are constantly evolving and deployed at a
broad scale, thus enabling organizations to offer rich services
over the Internet. However, this imposes serious challenges
in securing web applications against an increasing number
of attacks [1]. Among these, SQLi consists of injecting a
malicious SQL code payload inside regular queries, causing
the target web application to behave in an unintended way or

G. Floris, C. Scano and B. Biggio are with the Dept. of Electrical and
Electronic Engineering, University of Cagliari, 09124 Cagliari, Italy e-mail:
(name.surname@unica.it), C. Scano is also with the Department of Computer,
Control and Management Engineering, Sapienza University, Rome, Italy.

B. Montaruli and D. Balzarotti are with the Dept. of Digital Security,
EURECOM, 06410 Biot, France, e-mail: (name.surname@eurecom.fr).

Luca Demetrio is with the Department of Informatics, Bioengineering,
Robotics and Systems Engineering (DIBRIS), University of Genova, 16146
Genova, Italy e-mail: (luca.demetrio@unige.it).

Andrea Valenza is with Prima Assicurazioni, 20131 Milano, Italy e-mail:
(andrea.valenza@prima.it).

Luca Compagna is with Endor Labs, e-mail: (lcompagna@endor.ai).
Davide Ariu and Luca Piras are with Pluribus One, 09128 Cagliari, Italy

e-mail: (name.surname@pluribus-one.it).
§ means equal contribution, while * refers to corresponding authors.

expose sensitive data. Even if many countermeasures to this
attack have been proposed [2–5], the Open Web Application
Security Project (OWASP) Foundation still classifies it as one
of the top-10 most dangerous web threats [6].

Web Application Firewalls (WAFs) are commonly used as a
defense tool in enterprise systems to counter such attacks and
protect web applications [5, 7]. They work by filtering the
incoming requests directed towards the web applications and
blocking suspicious connections. To this end, many available
WAF solutions leverage the OWASP Core Rule Set, i.e., a
collection of signatures designed to detect well-known web
attack patterns. The CRS rules have all been developed by
experts in the domain of web security in the last decade,
helping to withstand a vast plethora of web-based attacks. The
CRS v4.0.0 (one of the latest stable versions) used in this work
includes 319 rules, out of which 170 target critical injection
attacks [8]. Within this set, SQLi is the most represented class
of injection attack counting 62 rules.

The CRS rules are sub-divided into four sets, each identified
by a specific Paranoia Level (PL). These sets are constructed
such that PL1 ⊂ . . . ⊂ PL4, i.e., increasing the PL amounts
to include more CRS rules, with PL4 including all of them. In
practice, higher PLs tend to exhibit a higher detection rate but
also cause a higher number of false alarms. Within each PL,
rules are assigned a specific weight, referred to as their severity
level. The severity level of each rule is assigned by domain
experts, based on their subjective evaluation of the potential
impact of the attack that such a rule aims to prevent. Then,
the score associated with each incoming request is computed
as the sum of the severity levels associated with the firing
rules. If such a score exceeds a given threshold, the incoming
request is blocked. More details on how the PL1-PL4 CRS
configurations work are provided in Sect. II.

While the domain knowledge poured in developing the CRS
rules is extremely valuable, in this work we use the well-
known ModSecurity WAF [9] equipped with the CRS rules to
show that the heuristic choices made to select and combine
such rules can lead to: (i) a suboptimal trade-off between
detection rate and false alarms; and (ii) a substantial lack
of robustness to adversarial SQLi attacks, i.e., functionality-
preserving manipulations of the SQLi attack payload aimed
to evade detection [10, 11]. To overcome these limitations,
we then propose a novel robust machine learning approach
to selecting and combining the CRS rules, named ModSec-
AdvLearn, which is conceptually represented in Fig. 1 and
detailed in Sect. III. This approach is built upon two main

https://github.com/pralab/modsec-advlearn

Fig. 1: Conceptual representation of ModSec-AdvLearn. A machine-learning model is trained using the CRS rules as input
features, and leveraging our novel adversarial training approach to improve robustness against adversarial SQLi attacks.

contributions. First, we propose using machine learning (ML)
to automate both rule selection and weighting, adjusting the
CRS configuration based on the traffic data collected from
the monitored web services, and building on our preliminary
findings in [11]. The underlying idea is to train a linear
ML model using all the CRS rules as input features, aiming
to improve the trade-off between detection and false alarm
rates, by specializing the model to the specifics of the traffic
data collected from the monitored applications. Furthermore,
enforcing a sparse regularization during training enables the
selection of an effective subset of rules as a by-product,
avoiding the need for manual selection of the CRS rules in
each PL. The second main contribution of this work is the
definition of a novel adversarial training scheme to improve
model robustness against adversarial SQLi attacks. To craft
these attacks, we leverage WAF-A-MoLE [10], i.e., a black-
box mutational fuzzer [12] that iteratively selects the best com-
bination of random manipulations of SQLi payloads to reduce
their probability of being detected by the targeted WAF. We
also show in Sect. III-B that using ℓ∞-norm regularization on
a linear model yields equivalent robust solutions, avoiding the
computational burden of optimizing attacks during training.

Through our experiments, reported in Sect. IV and con-
ducted on two publicly-available datasets [10, 11], we show
that ModSec-AdvLearn overcomes the limitations of the cur-
rent CRS, by detecting 30% attacks more with much fewer
rules. ModSec-AdvLearn also provides an unprecedented level
of robustness against adversarial SQLi attacks, i.e., 85% more
than the default CRS configurations. By deepening the investi-
gation of this result, we discover that ModSec-AdvLearn gives
more emphasis to rules that are (i) less affected by adversarial
SQLi attacks and (ii) accidentally triggered by side-effect
artifacts introduced by the adversarial SQLi manipulations.

To conclude, we remark that our work is the first to
demonstrate the effectiveness of adversarial training in the
WAFs domain (specifically, for detecting SQLi attacks) when
leveraging state-of-the-art input-space SQLi manipulations.
This is completely different from other domains like im-
age classifiers, where adversarial training is not sufficient to
achieve a high level of robustness, and the effective mitigation
of the risks presented by adversarial examples is still an open

issue. For this reason, we firmly believe that our work provides
interesting and novel insights on how to design robust machine
learning models for cybersecurity. We discuss these aspects
along with related work in Sect. V, and the limitations of
our approach as well as the corresponding future research
directions in Sect. VI. We have also publicly released our code
to foster reproducibility of our work.1

II. BACKGROUND

We introduce here SQLi attacks and the OWASP CRS
project. We then describe how to generate adversarial SQLi
attacks using state-of-the-art fuzzing techniques.

A. SQL Injection (SQLi)

These attempts to retrieve or alter sensitive information
from a target database, modifying data without authorization,
or even execute privileged operations on the database [4].
This can be achieved via specific SQL code fragments that
are passed in the original request. If the application does
not sanitize the user input and simply concatenates it with
the query, the SQL fragment is interpreted as part of the
original SQL query. The login form of a web application
is a paradigmatic example (Listing 1). The credentials of
a user are provided in two input fields (e.g., $user and
$passwd) and sent via an HTTP request. The credentials
are then checked server-side via a database query. However, a
malicious user injects SQL fragments in the $user parameter,
e.g., ”admin’-- ”. As shown in Listing 2, this bypasses the
original SQL query’s password check, resulting in a successful
SQLi attack, allowing login with just a valid username.

SELECT * FROM users WHERE username = ’
$user’ AND password = ’$passwd’

Listing 1: Example of SQL query vulnerable to injection.

SELECT * FROM users WHERE username = ’
admin’-- ’ AND password = ’x’

Listing 2: Example of SQL Injection on Listing 1.

1https://github.com/pralab/modsec-advlearn

https://github.com/pralab/modsec-advlearn

B. The OWASP Core-Rule-Set (CRS) Project

This open-source initiative is one of the most widely-used
sets of detection rules targeting OWASP Top 10 web security
risks [6]. It is not only the reference rule set of several open-
source WAF solutions like ModSecurity [9] and Coraza,2 but is
also adopted in many commercial solutions including Google
Cloud Armor, Microsoft Azure, and Cloudflare WAFs [8].
Detection Rules. These are regular expressions (regex) that
match specific byte patterns in requests. For instance, line 3
of Listing 3 captures several patterns of comments commonly
used in SQLi attacks such as ”;--” and ”-- ”. Each rule is
denoted by a unique identifier (id in line 4), whose suffix
also indicates the type of attack it is designed to identify
(those starting with 942 target SQLi attacks [8]). Notable
among configuration settings are the Paranoia Level (line 8)
and Severity Level (line 9), which are explained below.
Paranoia Level. It defines the set of rules that are enabled to
analyze the incoming HTTP requests [8]. The CRS includes
four PLs (PL1 - PL4) and each rule is assigned to a specific
PL; e.g., the rule in Listing 3 belongs to PL1 (line 8).
Moreover, rules are grouped together by PL in a nested way:
setting a certain PL enables all the rules assigned to that PL, as
well as those assigned to lower PLs. For instance, PL3 enables
all the rules related to such PL, as well as those assigned to
PL1 and PL2. Consequently, PL4 will enable all the rules.
Severity Level. Each CRS rule is heuristically given a severity
level, i.e., a positive integer that quantifies how severe the
corresponding attack could be [8]. The WAF applies the rules
on each incoming request, and sums the severity levels of
the firing rules. If the aggregated score exceeds a predefined
threshold, the request is flagged as malicious. The CRS defines
four severity levels: CRITICAL (5), ERROR (4), WARNING
(3) and NOTICE (2); e.g., the severity level of the rule
in Listing 3 is CRITICAL (line 9), so it contributes to the
aggregated score with a value of 5.

1 SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/
2 |REQUEST_COOKIES_NAMES|ARGS_NAMES|ARGS|XML:/*
3 "@rx (?i)/*[\s\v]*?[!\+](?:[\s\v\(-\)\-0-9=A-Z_a-z]+)

?*/" \
4 "id:942500,
5 block,
6 msg:’MySQL in-line comment detected’,
7 tag:’attack-sqli’,
8 tag:’paranoia-level/1’,
9 severity:’CRITICAL’,

10 setvar:’tx.sql_injection_score=+
11 %{tx.critical_anomaly_score}’,
12 setvar:’tx.inbound_anomaly_score_pl1=+
13 %{tx.critical_anomaly_score}’"

Listing 3: CRS rule detecting typical comments in SQLi.

C. Adversarial SQLi Attacks against WAFs

In the context of WAFs, the problem of finding SQLi attacks
that can bypass the target WAF is adversarial in nature. To this
end, the attacker may manipulate SQLi attack payload to evade
detection while preserving its malicious functionality [10, 13].
For instance, the SQLi rule reported in Listing 3 can detect the

2https://coraza.io

TABLE I: Manipulation functions applied by WAF-A-MoLE.

Manipulation Effect on payload

Case Swapping CS(admin’ OR 1=1) → ADmIn’ oR 1=1
Whitespace Substitution WS(admin’ OR 1=1) → admin’\n OR �1=1
Comment Injection CI(admin’ OR 1=1) → admin’/**/OR 1=1
Comment Rewriting CR(admin’/**/OR 1=1) → admin’/*abc*/OR 1=1
Integer Encoding IE(admin’ OR 1=1) → admin’ OR 0x1=1
Operator Swapping OS(admin’ OR 1=1) → admin’ OR 1 LIKE 1
Logical Invariant LI(admin’ OR 1=1) → admin’ OR 1=1 AND 2<>3

following SQLi payload: admin’ OR 1=1; --’. However,
by inserting a white space character (’ ’) in the original
attack payload, we generate a semantically-equivalent SQLi
attack: admin’ OR 1=1; --’, that can evade the rule.
WAF-a-MoLE. Our methodology builds upon WAF-A-
MoLE [10], a state-of-the-art, open-source SQLi guided mu-
tational fuzzer [12], aimed at finding semantically-equivalent
SQLi attacks that evade detection through the application of
functionality-preserving manipulations. These manipulations,
detailed in Table I, can be encoded as a function h(z, δ),
where z is the SQLi query to be modified, and δ are the
parameters defining the perturbation. For instance, WAF-A-
MoLE can include new comments into the SQLi, adding
always-true or always-false statements, converting numbers
to a different base, or replacing them with SQL commands
that, once evaluated, produce the same number. Such choice is
controlled by δ, which specifies the type of manipulation and
the content that should be injected or replaced. WAF-A-MoLE
then iteratively refines the choice of δ to decrease the confi-
dence of the targeted WAF into classifying the modified SQLi
payload as an attack. This is achieved by generating several
candidates through random choices of δ in each iteration, and
retaining only those that successfully reduce the confidence
score attributed by the WAF. In this work, we will use WAF-
A-MoLE (i) to show that the standard configurations of the
CRS can be bypassed by optimizing adversarial SQLi attacks
against them, and (ii) to generate adversarial SQLi queries for
our novel problem-space adversarial training approach.3

III. ROBUST MACHINE LEARNING AGAINST
ADVERSARIAL SQLI ATTACKS

We detail here how we design our robust ML approach to
(i) improving the tradeoff between detection and false alarm
rates by optimizing the selection and combination of the CRS
rules (Sect. III-A), and (ii) improving robustness to adversarial
SQLi attacks (Sect. III-B).

A. ModSec-Learn: Machine Learning for CRS

We start by discussing the building block developed from
our initial findings, i.e., ModSec-Learn (step 1 of Fig. 1). It
consists of two components: (i) a feature extraction phase that
encodes the CRS rules into a vector representation; and (ii)
a ML model that learns how to optimally combine the CRS
rules, avoiding the manual tuning of their severity scores.

3We refer to our approach as problem-space adversarial training to differ-
entiate it from approaches that simulate the effect of attacks by modifying
only their feature vectors, without even producing the actual samples [14].

https://coraza.io

Detection Rules as Features. The input space is represented
by SQL queries that are classified as malicious or benign by a
ML model. Each SQL query is a string of readable characters,
represented as z ∈ Z , being Z the space of all possible
queries. Let D be the set of selected SQLi rules from CRS, and
d = |D| its cardinality. We denote with ϕ : Z 7→ X = {0, 1}d
a function that maps a SQL query z to a d-dimensional
Boolean feature vector x = (ϕ1(z), . . . , ϕd(z)), where each
ϕj(z) corresponds to evaluating the j-th SQLi rule on the input
query z. Each ϕj(z) returns 1 if the corresponding rule has
been triggered by the SQL query z, and 0 otherwise.
Optimal Combination of CRS Rules with ML. To optimally
tune the contribution of the CRS rules towards effectively
classifying the input requests we leverage three different ML
algorithms on the feature representation defined above: two
linear models, i.e., Support Vector Machines (SVMs) [15] and
Logistic Regression (LR) [16], both with ℓ1 and ℓ2 regular-
ization; and a non-linear Random Forest (RF) model [17].

Linear models are particularly valuable as they can auto-
matically adjust the severity score assigned to each rule, rather
than relying on default CRS values, whereas non-linear models
may give us an indication of the best performance achievable.
Furthermore, when sparse (ℓ1) regularization is applied, linear
models can effectively select an optimal subset of CRS rules,
potentially eliminating the need for predefined PLs. Although
our approach is applicable to both linear and non-linear
models, integrating a non-linear model within the existing CRS
rules may pose additional complexity and scalability issues,
while also worsening the interpretability of the WAF decisions.
Conversely, the weights learned by any linear model can be
directly plugged-in into the CRS rules without any significant
disadvantage. Let us finally remark that, compared to our
previous work in [11], we extend the evaluation of ModSec-
Learn models by assessing their robustness against adversarial
attacks, and also considering an additional dataset [10].

B. ModSec-AdvLearn: Robustness against Adversarial SQLi

While ModSec-Learn can learn to automatically select and
combine the CRS rules from the training data, yielding a
better tradeoff between detection and false alarm rates, it
may not guarantee a sufficient degree of robustness against
adversarial SQLi attacks. Hence, we detail here how we extend
ModSec-Learn to improve robustness against adversarial SQLi
attacks. We refer to this approach as ModSec-AdvLearn (step
2 of Fig. 1). The underlying idea is to leverage adversarial
training (AT) [18, 19] to include adversarial SQLi examples
during training, thereby giving the model the ability to with-
stand the corresponding evasive attack patterns at test time.

In the common setting of image classification, AT leverages
gradient-based attacks to craft adversarial examples, as the cor-
responding optimization problem is end-to-end differentiable,
and the considered perturbations are simply additive. This is
not directly applicable in the case of SQLi attacks, as well
as in other domains [20, 21], in which models are not end-
to-end differentiable (given the presence of non-differentiable
pre-processing and feature extraction steps) and perturbations

are not additive. We thus consider here two distinct approaches
to performing AT: feature-space and problem-space AT.
Feature-space AT. In this setting, we make the naı̈ve assump-
tion that each adversarial SQLi attack can enable or disable
up to a number λ of CRS rules to evade the target WAF. This
amounts to optimizing the following min-max objective:

min
w

max
∥δi∥1≤λ

∑
i

L(yi, fw(xi + δi)) , (1)

where (i) xi = ϕ(zi) is the d-dimensional Boolean vector
representing the activations of the CRS rules for the given
SQL sample zi; (ii) yi ∈ Y = {−1,+1} is its label;
(iii) fw : X → R is the ML model, parameterized by w,
which classifies a sample as positive if fw(x) ≥ 0, and
as negative otherwise; (iv) L : Y × R → R is the loss
function to be minimized; and (v) δi is the manipulation
that switches on or off at maximum λ rules from the CRS
(expressed as an ℓ1 norm constraint). Furthermore, it must
also hold that xi + δi ∈ X = {0, 1}d, as the activations
have to remain Boolean also after perturbation. In practice,
the min-max problem is solved iteratively. In each iteration,
the inner problem amounts to finding adversarial examples
against the given model, while the outer problem adjusts the
model parameters w to re-classify them correctly.4

In this work, we do not solve the problem given in Eq. 1
directly, as it is too computationally demanding. Instead,
we derive an equivalent formulation for linear SVMs based
on solving the inner problem in closed form, which simply
amounts to using a different regularization term.

Robustness through Regularization with SecSVM. As orig-
inally shown by by Xu et al. [22], and subsequently adapted
in [20] to the case of Android malware detection, the inner
problem in Eq. 1 can be solved in closed form when the loss
function L is linear. This is the case, e.g., when using the
hinge loss and a linear model fw(x) = wtx+ b, as in linear
SVM training. In this case, the inner problem in Eq. 1 for
each sample can be rewritten as:

max
∥δ∥1≤λ

L(y, fw(x)) + δ⊤∇L(y, fw (x)) , (2)

where the gradient ∇L(y, fw(x)) corresponds to the weight
vector w. The above problem then amounts to maxi-
mizing a scalar product over an ℓ1-norm constraint, i.e.,
max∥δ∥1≤λ δ

⊤w, whose solution is proportional to the dual
norm of the weight vector, given as λ∥w∥∞ [22]. This means
that we can rewrite the robust (min-max) optimization problem
given in Eq. 1 as a much simpler regularized problem:

min
w

∑
i

L(yi, fw(xi)) + λ∥w∥∞ . (3)

This finding sheds light on the role of the regularization term,
showing that its choice should be based on the type of noise
that affects the input data. In particular, it tells us that ℓ∞ is

4Note that, for simplicity, in the given formulation we consider adversarial
modifications of both benign and malicious training samples, but this can be
easily adjusted to consider only manipulations of malicious SQLi queries.

the optimal regularizer for training a robust model against ℓ1-
norm (sparse) perturbations. It is also not difficult to see that,
analogously, the standard ℓ2-norm SVM is optimal against ℓ2-
norm (dense) perturbations [20, 22].

The above problem can be equivalently re-parameterized by
(i) replacing the regularization parameter λ with the hyperpa-
rameter t, i.e., bounding the weight values w in [−t, t]; and
(ii) introducing the slack variables ξ to measure how far each
sample zi is from being correctly classified:

min
w,ξ

∑
i

ξi (4)

s.t. ξi ≥ 1− yifw(xi), ∀i ∈ 1, . . . , n (5)
ξi ≥ 0, ∀i ∈ 1, . . . , n (6)
−t ≤ wj ≤ t, ∀j ∈ 1, . . . , d . (7)

The given formulation corresponds to a linear programming
problem in its canonical form, which can be solved using stan-
dard, off-the-shelf solvers, such as the simplex algorithm or
interior-point methods. In this work, the optimization problem
is solved using the linear programming solver provided by the
SciPy library5. We refer to this robust learning approach as Se-
cure Support Vector Machine (SecSVM) in our experiments.6

Problem-space AT with WAF-A-MoLE. Let us now define
a different approach to learning robust models directly against
problem-space perturbations. The reason is that hardening
models via feature-space AT or with ad-hoc regularization
methods may provide an overly pessimistic approach to feature
manipulation that does not consider the specific constraint
of realizable, semantic- and functionality-preserving SQLi
attacks. In particular, practical SQLi manipulations may not
enable switching on or off individual CRS rules independently,
and may inadvertently trigger certain rules even if the attack
aims to bypass the detection. Furthermore, such manipulations
cannot be modeled as additive perturbations, and comput-
ing them typically requires inverting a complicated, non-
differentiable feature extraction step; in our case, this would
amount to reversing the inner workings of each CRS rule. For
this reason, feasible SQLi attacks, as many other adversarial
perturbations aimed to bypass ML models for cybersecurity-
related tasks [21], cannot be typically optimized via gradient
descent directly. To overcome these issues, we consider here
a more general problem-space AT procedure, defined as:

min
w

max
δi∈∆

∑
i

L(yi, fw(ϕ(h(zi, δi))) , (8)

where h(z, δ) is a manipulation function that modifies the
input SQL query z and returns a semantic-preserving SQL
query z′, based on the choice of its input parameters δ ∈ ∆.
The set ∆ constrains the input manipulations described in
Table I to produce valid samples, e.g., picking only visible
characters when adding or re-writing comments, produce

5https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
linprog.html

6Note that, even if we keep the same name of the approach proposed in [20],
our SecSVM implementation is different, as we are neither using custom
bounds on each feature value nor any ℓ2 regularization.

Algorithm 1: Adversarial training of ModSec-
AdvLearn with WAF-A-MoLE
Input : D = (zi, yi)

M
i=1, the training set of SQL

samples with labels; f , the ML model; L, the
loss function; N , the number of adversarial
SQLi attacks to be added to the initial
training set.

Output: fw⋆ , the model with re-trained parameters w⋆

1 Z ′ ← {zi}Ni=1 with zi ∼ D s.t. yi = +1
2 for z in Z ′

3 z⋆ ← WAF-A-MoLE(z, f)
4 Z ← Z ∪ {z⋆}; Y ← Y ∪ {+1};
5 w⋆ ← arg minw

1
|Z|

∑|Z|
i=0 L(yi, fw(zi))

6 return fw⋆

always-true or always-false conditions that do not change the
original evaluation of the payload, or encoding integers in a
specific base different from the original one.

To solve the problem given in Eq. 8, we consider a gradient-
free black-box optimization achieved through WAF-A-MoLE
as shown in Alg. 1, modifying only the set of malicious
SQLi payloads, and leaving benign SQL queries unchanged.
Given a dataset Z of benign queries and SQLi attacks labeled
as 0 and 1 respectively, we first create a new set (Z ′) by
randomly sampling a given amount of SQLi from the training
dataset (line 1). Then, for each SQLi sample of this newly
created set, we use WAF-A-MoLE (Sect. II-C) to generate
the corresponding adversarial SQLi (line 3) and add it to
the training data with its malicious (+1) label (line 4). The
parameters of the model are finally optimized on the training
set including the adversarial SQLi samples (line 5).

In our experiments, we will also retrain SecSVM with
the proposed problem-space AT method, to consider less
pessimistic, but practical, adversarial attacks. In principle, this
should allow us to further improve the robustness-detection
tradeoff of SecSVM against real-world SQLi attacks. We
would like to finally remark that, even if we leverage an
existing tool like WAF-A-MoLE to this end, to our knowledge,
this is the first attempt to define a novel problem-space
adversarial training approach to hardening ML-based WAFs
against practical adversarial SQLi attacks.

IV. EXPERIMENTAL ANALYSIS

We report here three different experiments to validate our
methodology. First, we evaluate the detection capabilities of
the CRS. This is achieved by using the vanilla ModSecurity
WAF as the underlying engine (Sect. IV-B), showing that
its naı̈ve approach of combining the CRS rules based on
manually-assigned weights is largely suboptimal and signifi-
cantly vulnerable to adversarial SQLi attacks. Second, we em-
pirically show that the ML-based tuning adopted by ModSec-
Learn allows one to fill the gaps of the vanilla ModSecurity,
by significantly enhancing its detection rate up to 30%, and
we continue highlighting how ModSec-Learn enhances the

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

performances thanks to the adaptation of weights, while also
reducing the number of rules needed (Sect. IV-C). Third, we
present the results of our novel adversarial training approach
showing that ModSec-AdvLearn is 85% more robust than
ModSecurity (Sect. IV-D).

A. Experimental Setup

In this section, we describe the two datasets used in our
analysis, along with the setup of the ModSecurity WAF, the
WAF-A-MoLE fuzzer, and the ML models used.
Datasets. We conduct our experiments using two datasets.
The first one, WAF-A-MoLE Dataset [10], which consists of
393,629 malicious and 345,199 benign SQL queries. Benign
samples were generated from a restricted SQL grammar, while
attacks were generated using well-known web security testing
tools such as SQLmap and OWASP ZAP [10]. The second
one, ModSec-Learn Dataset [11], instead consists of 25,000
malicious SQLi payloads and 25,000 benign HTTP requests,
based on real-world traffic. Legitimate samples were collected
from the open-appsec dataset,7, which contains samples from
various real-world scenarios. Malicious samples were collected
from multiple sources, and generated through security testing
tools such as SQLmap, by executing it with different tamper-
ing scripts designed for payload obfuscation.

We divide each dataset into four subsets: training (train),
test (test), adversarial training (train-adv), and adver-
sarial test (test-adv). Table II shows the distribution of
samples across the four subsets for each dataset: train
contains an equal number of benign and SQLi queries, and it
is used to train our target WAFs; test, disjoint from train,
is used to evaluate the baseline performances of target WAFs,
including vanilla ModSecurity, ModSec-Learn, and ModSec-
AdvLearn, across different PLs; train-adv contains the
same samples of train, but 50% of the SQLi queries in
the WAF-A-MoLE dataset and the 25% of the SQLi queries in
the ModSec-Learn dataset are optimized using WAF-A-MoLE
against the target WAF for problem-space AT; test-adv
contains the same samples of test, but optimizes all the
SQLi queries using WAF-A-MoLE to bypass the target WAF,
i.e., to evaluate its robustness. We would like to clarify that,
although using the same SQLi fuzzer (i.e., WAF-A-MoLE),
the adversarial examples generated for building the adversarial
training and test sets are different. They are independently op-
timized against each target model at test time, resulting in the
application of different, optimal manipulation strategies. Thus,
the sets are independent, ensuring an unbiased evaluation.
ModSecurity and WAF-A-MoLE Setup. We evaluate Mod-
Security v3.0.10 with the CRS v4.0.0. Since we focus on the
detection of SQLi attacks, we only enable its SQLi rules.8 We
configure WAF-A-MoLE to use a maximum of 2, 000 queries,
to ensure convergence of the attack optimization. Attacks are
optimized by minimizing the confidence score assigned to the
malicious class by the targeted WAF.

7https://github.com/openappsec/waf-comparison-project/tree/main/Data
8https://github.com/coreruleset/coreruleset/blob/v4.0.0/rules/

REQUEST-942-APPLICATION-ATTACK-SQLI.conf

TABLE II: Number of legitimate, SQLi, and adversarial SQLi
samples in train, test, train-adv, and test-adv, for
the WAF-a-MoLE and ModSec-Learn datasets.

train train-adv

Legitimate SQLi Legitimate SQLi Adversarial SQLi

WAF-a-MoLE 10, 000 10, 000 10, 000 5, 000 5, 000
ModSec-Learn 20, 000 20, 000 20, 000 15, 000 5, 000

test test-adv

Legitimate SQLi Legitimate SQLi Adversarial SQLi

WAF-a-MoLE 2, 000 2, 000 2, 000 - 2, 000
ModSec-Learn 5, 000 2, 000 5, 000 - 2, 000

Implementation Details. We use pymodsecurity v0.1.0,9 as
our Python interface to ModSecurity. To efficiently query
and test ModSecurity, we have extended WAF-A-MoLE by
developing a dedicated pymodsecurity interface, which avoids
instantiating the whole web server. This interface is available
in our open-source repository.
Machine Learning. We leverage scikit-learn v1.4.0 imple-
mentations of SVM (LinearSVC), LR, and RF to implement
both ModSec-Learn and ModSec-AdvLearn. For the SVM and
LR models, we experiment with both ℓ1 and ℓ2 regularizers.
We implement SecSVM as described in Sect. III-B, using
the linear programming solver provided by SciPy. We refer
to it as ModSec-Learn SecSVM in the reported tables. The
hyperparameters of each model are tuned via grid search, per-
forming a 5-fold cross validation on the training set (train)
to maximize the mean F1 score. In the case of ModSec-Learn,
for the SVM and LR, we tune the regularization parameter
C ∈ {10−3, 10−2, 10−1, 0.5, 1.0}. The best value found is
typically C = 0.5 for both models. For SecSVM, we tune
the hyperparameter t ∈ {0.1, 0.2, . . . , 1.0}. The best t value
is typically found to be 0.5. The RF model is used with its
default hyperparameters. In the case of ModSec-AdvLearn,
adversarial training is applied only for PL4, given that the
models trained on this PL demonstrated better performance on
the test set (see Sect. IV-C). The hyperparameters are tuned
using the same procedure described in this paragraph, finding
approximately the same best values, except for SecSVM, for
which t = 1.0 yields better results.

B. Evaluation of ModSecurity

The first goal of our experimental analysis is to understand
the detection capability of the vanilla ModSecurity. Rather
than focusing only on CRS default values, we experiment
with it over its entire configuration space, considering all the
possible values for the PLs and the classification threshold.
Hence, for each PL, we compute the Receiver-Operating-
Characteristic (ROC) curve, which reports the detection rate,
a.k.a. True Positive Rate (TPR, i.e., the fraction of correctly-
detected malicious SQLi requests) against the False Positive
Rate (FPR, i.e., the fraction of wrongly-classified legitimate
requests) obtained by considering all possible classification
threshold values. We report our findings with red lines

9https://github.com/pymodsecurity/pymodsecurity

https://github.com/openappsec/waf-comparison-project/tree/main/Data
https://github.com/coreruleset/coreruleset/blob/v4.0.0/rules/REQUEST-942-APPLICATION-ATTACK-SQLI.conf
https://github.com/coreruleset/coreruleset/blob/v4.0.0/rules/REQUEST-942-APPLICATION-ATTACK-SQLI.conf
https://github.com/pymodsecurity/pymodsecurity

0.4

0.6

0.8

1.0
WAF-A-MoLE dataset (PL 1) WAF-A-MoLE dataset (PL 2) WAF-A-MoLE dataset (PL 3) WAF-A-MoLE dataset (PL 4)

10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100 10 4 10 3 10 2 10 1 100 10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0
ModSec-Learn dataset (PL 1) ModSec-Learn dataset (PL 2) ModSec-Learn dataset (PL 3) ModSec-Learn dataset (PL 4)

10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100 10 4 10 3 10 2 10 1 100 10 4 10 3 10 2 10 1 100

False Positive Rate (FPR)

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

ModSec RF SecSVM SVM 1 SVM 2 LR 1 LR 2

Fig. 2: ROC curves of vanilla ModSecurity (ModSec) and ModSec-Learn approaches (SVM, RF, LR, and SecSVM), evaluated
on test (solid lines) and test-adv (dashed lines), for WAF-A-MoLE (first two rows) and ModSec-Learn (last two rows)
datasets. Each curve reports the fraction of detected SQLi attacks against the fraction of misclassified legitimate requests.

in Fig. 2, while in Table III we extrapolate the TPR values at
1% FPR. We want to point out that, although the ROC curves
in Fig. 2 already show the TPR for each possible operating
point (i.e., the value of FPR), we report the results in Table III
at 1% FPR because it is a reasonable value commonly adopted
in the literature [20, 23]. We detail hereafter the key findings
of our evaluations of ModSecurity against both the test set
(test) and the adversarial test set (test-adv).

Evaluation on Clean Samples. We first test ModSecurity
on the data we have gathered, and the results of this first
evaluation are indicated with red solid lines in Fig. 2. The
ROC curve of PL1 (default PL for ModSecurity) shows its
inability to discriminate between benign and malicious SQL
queries, with a TPR of 63.85% at a 1% False Positive Rate
(FPR). The results for PL2 are the best among all PLs, with
a TPR of 66.82% at 1% FPR. The ROC curves for both PL3
and PL4 are almost identical, as PL4 has only two active rules
more than PL3, which do not even improve its detection rate.

Robustness against Adversarial SQLi. The results on the
adversarial test set are indicated with red dashed lines in Fig. 2.
The outcomes highlight a more alarming trend, thus clearly
showing that ModSecurity is not able to withstand adversar-
ial attacks. Both datasets exhibited a pattern similar to the
evaluation on the test set (test). Specifically, with the WAF-
A-MoLE dataset, the True Positive Rate (TPR) drops below
50% at a 1% FPR, which is worse than random guessing.
For the ModSec-Learn dataset, the situation is slightly better,
but still concerning. Particularly with PL3 and PL4, the TPR
at 1% FPR is around 58%, only slightly better than random
guessing. This emphasizes that increasing the number of rules
does not improve detection capabilities; instead, it worsens
them by increasing false positives.

C. Evaluation of ModSec-Learn

We analyze the performance of SVM and LR, using ℓ1 and
ℓ2 regularizations, SecSVM and RF ModSec-Learn against
both the baseline clean and the adversarial samples.

TABLE III: TPR at 1% FPR evaluated on the baseline/adversarial (test/test-adv) test sets for ModSecurity (ModSec);
ModSec-Learn (SVM, LR, SecSVM, and RF); and ModSec-AdvLearn (SVM, LR, SecSVM, and RF) using PL4. We also report
the number of active rules (AR) for each model. Results are shown for both datasets: WAF-A-MoLE and ModSec-Learn.

PL1 PL2 PL3 PL4

Base AR ModSec-AdvLearn AR

WAF-A-MoLE dataset

ModSec vanilla test 63.85% 66.82% 61.00% 61.00% 62/62 —
test-adv 34.25% 45.86% 39.12% 39.12% 62/62 —

ModSec-Learn SVM (ℓ1) test 69.40% 83.00% 86.84% 86.80% 37/62 85.30% 42/62
test-adv 37.10% 59.90% 62.72% 63.97% 37/62 82.55% 42/62

ModSec-Learn SVM (ℓ2) test 69.50% 83.10% 86.80% 86.80% 50/62 85.25% 51/62
test-adv 39.20% 59.90% 62.71% 62.95% 50/62 81.40% 51/62

ModSec-Learn LR (ℓ1) test 69.40% 83.00% 86.64% 86.60% 29/62 84.10% 32/62
test-adv 36.50% 54.20% 60.91% 60.62% 29/62 79.85% 32/62

ModSec-Learn LR (ℓ2) test 69.50% 82.54% 85.95% 85.95% 50/62 84.05% 52/62
test-adv 38.60% 53.75% 57.95% 58.37% 50/62 80.15% 52/62

ModSec-Learn RF test 69.50% 83.89% 87.00% 87.00% 46/62 87.22% 47/62
test-adv 41.35% 66.75% 64.5% 64.30% 46/62 84.90% 47/62

ModSec-Learn SecSVM test 63.70% 80.78% 82.75% 82.58% 61/62 84.15% 61/62
test-adv 57.65% 76.71% 61.96% 58.68% 61/62 81.84% 61/62

ModSec-Learn dataset

ModSec vanilla test 92.80% 85.22% 75.71% 75.71% 62/62 —
test-adv 59.50% 42.12% 31.07% 30.85% 62/62 —

ModSec-Learn SVM (ℓ1) test 92.80% 99.46% 99.31% 99.41% 35/62 99.26% 41/62
test-adv 69.90% 70.87% 67.02% 69.86% 35/62 93.46% 41/62

ModSec-Learn SVM (ℓ2) test 92.80% 99.46% 99.31% 99.41% 49/62 99.26% 50/62
test-adv 69.80% 73.87% 71.47% 70.66% 49/62 92.86% 50/62

ModSec-Learn LR (ℓ1) test 92.80% 99.46% 99.46% 99.46% 31/62 99.61% 30/62
test-adv 73.05% 89.68% 89.95% 88.89% 31/62 94.03% 30/62

ModSec-Learn LR (ℓ2) test 92.80% 99.46% 99.46% 99.46% 49/62 99.61% 50/62
test-adv 73.25% 87.75% 86.92% 87.61% 49/62 94.29% 50/62

ModSec-Learn RF test 92.80% 99.56% 99.56% 99.56% 49/62 99.65% 50/62
test-adv 70.02% 86.20% 87.70% 87.45% 49/62 95.07% 50/62

ModSec-Learn SecSVM test 92.80% 99.50% 99.50% 99.50% 56/62 99.65% 59/62
test-adv 86.50% 97.76% 98.26% 98.26% 56/62 98.41% 59/62

Evaluation on Clean Samples. We plot the ROC curves
in Fig. 2 using and green (RF), violet (SecSVM), blue (SVM
with ℓ1), light blue (SVM with ℓ2), orange (LR with ℓ1), brown
(LR with ℓ2), solid lines. They clearly show the superiority of
ModSec-Learn w.r.t. the respective ModSecurity counterpart
regardless of the operating point, i.e., for any FPR value,
the TPR of ModSec-Learn approaches is higher for all PLs
greater than 1. It is worth noting that, for PL1, the trained
ML models achieve similar results to the vanilla ModSecurity.
This confirms that, even by learning optimal weights, rules
enabled by PL1 are inappropriate to effectively discriminate
benign samples from malicious ones. Finally, unlike the vanilla
ModSecurity, all ModSec-Learn models achieve the best TPR
for PL4 (even though the results for PL4 are slightly higher
than those obtained for PL2). This result shows that, despite
adding rules that may increase the FPR, machine learning can
adjust their importance to improve the TPR/FPR trade-off.

Robustness against Adversarial SQLi. As shown in Fig. 2,
the ModSec-Learn models suffer the presence of adversar-
ial attacks, particularly with the WAF-A-MoLE dataset, but
they still outperform the vanilla ModSecurity. Analyzing the
results from the WAF-A-MoLE dataset, it is evident that,
the best performance is achieved with PL4, except for the

RF and SecSVM models. This may be since, in this case,
the adversarial SQLi attacks are able to exploit the rules
enabled by PL3 and PL4 to evade the model, by removing
patterns that were considered important at training time. On
the other hand, with the ModSec-Learn dataset, it is observed
that starting from PL2, the detection capabilities exhibit a
fairly consistent trend. While there is a slight deterioration,
performance remains relatively stable across the different PLs.
Among all evaluated models, SecSVM is the most robust,
offering strong generalization and adversarial robustness. Even
if RF was included to explore non linear alternatives, its
performance is comparable to linear models like SecSVM,
while worsening robustness. This confirms that linear models
are sufficient to achieve excellent accuracy and are preferable
given their robustness and transparency. In addition, linear
models can be readily applied to the existing CRS system
by updating the rule weights after model training.10 This
eases practical deployment while preserving interpretability of
decisions — an important desideratum for web security.
Imposing Sparsity through Regularization. We now ana-
lyze the effects of regularization by examining whether it is
possible to select a reduced set of CRS rules as features for

10https://owasp.org/www-project-waf-advanced-ruleset-management/

https://owasp.org/www-project-waf-advanced-ruleset-management/

classification. We employ an ℓ1 regularization term to impose
sparsity on the trained models and assess its impact on the
importance of each CRS rule in the classification process.
Additionally, we compare these results with those obtained
using ℓ2 regularization, the default norm used by SVM and LR.
Fig. 3 displays the distribution of rule weights for ModSec-
Learn implemented with LR at PL4. We selected this PL to
activate all CRS rules, providing a comprehensive overview of
their impact. The blue and light red bars represent the weights
calculated with ℓ1 and ℓ2 regularization, respectively, while the
green bars represent the ModSecurity severity scores. Since
the severity score ranges from 2 to 5, we normalized it using
the minimum and maximum values of the LR weights. The
results presented in Table III demonstrate that SVM and LR
with ℓ1 regularization can achieve the same performance as
the counterpart with ℓ2 regularization while utilizing fewer
rules. Specifically, in the WAF-A-MoLE dataset, the SVM
model employed 13 rules fewer than with the ℓ2 norm, and the
LR model 21 fewer than LR with ℓ2. For the ModSec-Learn
dataset, SVM used 14 fewer rules than SVM with ℓ2 norm,
while LR used 21 fewer. Additionally, it is important to note
that, compared to the 62 total rules in CRS, linear models with
ℓ2 regularization, as well as RF, already reduce the number of
rules used in the classification process compared to the vanilla
ModSecurity. On average, these models use a maximum of
50 rules, effectively eliminating 12 rules deemed unnecessary
for classification. The rules assigned a weight of 0 by the
ML models are considered unnecessary for the classification
task. Moreover, some rules may receive negative weights,
suggesting that their presence might be more indicative of
legitimate behavior rather than malicious activity. Applying
this approach to the CRS introduces a more data-driven and
less arbitrary method for selecting detection rules. Rather than
rely on manual selection or a predefined set of rules that may
not be optimal for the specific data being classified, ModSec-
Learn enables automation of both rule selection and weight
assignment, optimizing CRS’s performance on the data.

D. Evaluation of ModSec-AdvLearn

Given the best results on PL4 among all the PLs in
terms of TPR/FPR, we select this configuration for re-training
all ModSec-Learn models. We then evaluate the ModSec-
AdvLearn against the test and test-adv sets of both
datasets, and plot the results in Fig. 4. Also, we report the
TPR of ModSec-AdvLearn at 1% FPR in the second-to-last
column of Table III. Hereafter, we discuss the performance
of ModSec-AdvLearn in comparison with ModSec-Learn.
Overall, we observe that the robustness achieved by ModSec-
AdvLearn clearly outperforms its non-hardened counterparts,
i.e., ModSec-Learn. Finally, we analyze the weights and
predictions of ModSec-AdvLearn, and we thoroughly explain
its remarkable level of adversarial robustness.
Evaluation on Clean Samples. In the absence of attack,
ModSec-AdvLearn has comparable performance to ModSec-
Learn, except for SecSVM which shows an improvement in
TPR on the ModSec-Learn dataset (cf. the violet solid lines in

Fig. 4, third row). The reason is that SecSVM is retrained on
less pessimistic attacks when considering problem-space AT,
thereby yielding an improved robustness-accuracy tradeoff.
Robustness against Adversarial SQLi. Over the adversar-
ial test set, ModSec-AdvLearn outperforms its non-hardened
counterparts, especially when evaluated with the WAF-A-
MoLE dataset, reaching thus higher robustness (see the dashed
lines of Fig. 4). Looking at the results in detail, with the
WAF-A-MoLE dataset, the re-trained models improve the
average detection performance by 33% compared to their
non-hardened versions. For the ModSec-Learn dataset, the
improvement is less marked in some models, such as ModSec-
AdvLearn LR, but it is still present. Moreover, considering
the WAF-A-MoLE dataset for example, the best ModSec-
AdvLearn (i.e., RF at PL4) is 85% more robust than the best
vanilla ModSecurity (PL2). Of course ModSec-AdvLearn is
still vulnerable to new adversarial examples optimized against
it, but the decrement in performance is lower compared to the
decrement caused by the non-hardened models.
Explaining Robustness of ModSec-AdvLearn. Here we
explain why ModSec-AdvLearn achieves better robustness,
focusing on the linear SVM model. First, we compute the rule
activation delta as ∆ai = ai − a′

i. It captures the difference
between the probability that rule i is activated by standard
SQLi attacks (ai) and by their adversarial counterparts (a′

i).
If ∆ai is positive (negative), it means that WAF-A-MoLE
is bypassing (activating) rule i, and if it is zero it means
that WAF-A-MoLE does not affect rule i. Second, as we
are considering a linear model, we also inspect its feature
weights and observe how they change when the same model
is retrained on adversarial SQLi queries. Within this scenario,
we analyze how each rule is affected by the adversarial
SQLi attacks generated through WAF-A-MoLE (Fig. 5), as
well as how differently the baseline ModSec-Learn SVM and
the ModSec-AdvLearn SVM compute weights for each rule
(Fig. 5). In Fig. 5 we plot the probability that a rule is active,
and we display how different the distributions induced by the
malicious (cyan) and adversarial (yellow) SQLi queries are.
The rules are sorted by their value of ∆ai, and grouped into
three classes (separated by vertical black lines): rules evaded
by WAF-A-MoLE (left), rules that WAF-A-MoLE is unable to
bypass (center), and rules that are triggered only by adversarial
attacks as a side effect (right). The same order is also used
for the weights of the ModSec-Learn SVM and the ModSec-
AdvLearn SVM shown in Fig. 5. We can observe that more
than one-third of the rules are exploited by WAF-A-MoLE to
avoid detection, as the first group has a drop in the probability
of being active. This is also confirmed by Fig. 5, where we
can see that most of the positive weights (i.e., the ones that
increase the scores towards the malicious class) assigned by
ModSec-Learn (cyan) are all concentrated in the first group,
which is exactly the one leveraged by adversarial attacks.
Conversely, ModSec-AdvLearn (yellow) is more robust since
it spreads the importance on more rules, prioritizing the ones
belonging to the second and third groups, making attacks
harder to land and easier to detect. Of course, in this analysis,

10
0

10
1

12
0

13
0

13
1

14
0

15
0

15
1

15
2

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

25
1

26
0

27
0

28
0

29
0

30
0

31
0

32
0

32
1

33
0

34
0

35
0

36
0

36
1

36
2

37
0

38
0

39
0

40
0

41
0

42
0

42
1

43
0

43
1

43
2

44
0

44
1

44
2

45
0

46
0

47
0

48
0

49
0

50
0

51
0

51
1

52
0

52
1

52
2

53
0

54
0

55
0

56
0

CRS SQLi Rules

4

2

0

2

4

6

8

W
ei

gh
t

ModSec
ModSec-Learn (LR - 1)
ModSec-Learn (LR - 2)

Fig. 3: Weight values learned at PL4 by ModSec-Learn LR-ℓ1 (blue) and ModSec-Learn LR-ℓ2 (light red), and the weights
used by ModSecurity (green). Rules are expressed as the last three digits of their IDs (all starting with 942).

0.4

0.6

0.8

1.0
WAF-A-MoLE dataset (PL4) WAF-A-MoLE dataset (PL4)

10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0
ModSec-Learn dataset (PL4) ModSec-Learn dataset (PL4)

10 4 10 3 10 2 10 1 100

0.4

0.6

0.8

1.0

10 4 10 3 10 2 10 1 100

False Positive Rate (FPR)

False Positive Rate (FPR)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

RF SecSVM SVM 1 SVM 2 LR 1 LR 2

Fig. 4: ROC curves of ModSec-Learn/AdvLearn (first/second
column) on test/test-adv (solid/dashed lines), for WAF-
A-MoLE/ModSec-Learn (top/bottom) datasets.

we focus on a linear model, which, as shown in Sect. IV-D
is still vulnerable to adversarial attacks. Indeed, by looking
at Fig. 5, ModSec-AdvLearn attributes negative weights (i.e.,
those that decrease the score towards the benign class) to some
features of the first block, hence leaving the ability to WAF-A-
MoLE to find some successful adversarial SQLi queries. On

the other hand, as shown in Fig. 4, for the most of the cases
ModSec-AdvLearn RF is more robust than the linear models
counterpart as its non-linearity exploits relationships among
different rules, forcing the attacker to manipulate more rules
in a consistent manner to bypass detection.

V. RELATED WORK

In this section, we briefly review related work analyzing
the performance and robustness of ModSecurity and the CRS,
and conclude by discussing the main differences of our current
work with our preliminary results in [11].
ModSecurity and CRS. Previous work has considered the im-
pact of different types of web security threats on ModSecurity
when using the CRS configurations [24, 25]. However, unlike
ours, a very limited number of attack samples is normally
used (e.g., [24] uses only 27 samples), without providing
any detailed investigation of the trade-off between TPR and
FPR. Other approaches [26, 27] have applied ML to detect
web threats and only used ModSecurity as a baseline for
comparison, without even evaluating adversarial robustness.
Adversarial SQLi. Other work has considered adversarial
SQLi attacks against ModSecurity by proposing different
approaches based on ML [5], Reinforcement Learning (RL)
[13, 28, 29], fuzzing techniques [10, 30], and heuristic search
algorithm like Monte-Carlo tree search [31]. However, the
reported results are partial (e.g., [13, 31] just limit the anal-
ysis to the default PL1) and do not explain precisely why
ModSecurity is failing and how it could be improved. To
the best of our knowledge, no prior research has conducted
a comprehensive analysis of the CRS for ModSecurity as we
have done in this work. Additionally, no previous studies have
explored the potential of adversarial training in this domain,
making us the first to propose a robust ML methodology for
effectively enhancing the robustness of WAFs.
ModSec-Learn. With respect to our work introducing
ModSec-Learn in [11], we have extended here our approach as
follows: (i) we have examined the impact of adversarial attacks
on the CRS within the SQL domain; (ii) we have increased the
robustness of our approach by developing a novel adversarial
training procedure (ModSec-AdvLearn); (iii) we have inves-
tigated whether strongly-regularized models could withstand
adversarial SQLi attacks, devising a novel version of SecSVM;

33
0

40
0

21
0

13
0

54
0

26
0

16
0

23
0

30
0

19
0

28
0

48
0

39
0

52
1

36
2

36
0

14
0

10
0

24
0

35
0

38
0

41
0

15
1

17
0

32
0

10
1

15
2

22
0

25
0

25
1

27
0

29
0

32
1

42
0

42
1

43
1

43
2

44
1

44
2

46
0

47
0

51
0

55
0

56
0

36
1

52
2

15
0

18
0

53
0

52
0

43
0

20
0

31
0

37
0

44
0

45
0

51
1

13
1

49
0

12
0

34
0

CRS SQLi Rules

0.0

0.2

0.4

0.6

0.8

1.0
Ac

tiv
at

io
n

pr
ob

ab
ilit

y
SVM - 1

adversarial
malicious

33
0

4 20010 13
0

54
0

26
0

16
0

23
0

30
0

19
0

28
0

48
0

39
0

52
1

36
2

36
0

14
0

10
0

24
0

35
0

38
0

41
0

15
1

17
0

32
0

10
1

15
2

22
0

25
0

25
1

27
0

29
0

32
1

42
0

42
1

43
1

43
2

44
1

44
2

46
0

47
0

51
0

55
0

56
0

36
1

52
2

15
0

18
0

53
0

52
0

43
0

20
0

31
0

37
0

44
0

45
0

51
1

13
1

49
0

12
0

34
0

CRS SQLi Rules

0.2

0.1

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t

ModSec-AdvLearn
ModSec-Learn

Fig. 5: Top: Activation probability of CRS rules (expressed using the last three digits of their IDs, which always starts with 942)
on malicious/adversarial (cyan/orange) SQLi samples optimized against ModSec-Learn SVM-ℓ1 on the WAF-A-MoLE dataset.
Bottom: Rule weights learned by ModSec-Learn/ModSec-AdvLearn SVM-ℓ1 (cyan/orange) on the WAF-A-MoLE dataset.

(iv) we have analyzed how the baseline and ModSec-AdvLearn
compute weights for each rule, highlighting which rules are
more robust to perturbations; and (v) we have included an
additional dataset [10] in our experiments.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed ModSec-AdvLearn, a novel
methodology for training ML classifiers using the CRS rules as
input features. This allows learning how to optimally tune the
severity levels (i.e., the weights) of the CRS rules, yielding an
improved trade-off between detection and false positive rates.
Furthermore, our approach relies upon a novel problem-space
adversarial training procedure that incorporates knowledge of
state-of-the-art SQLi manipulations to counter the presence
of adversarial SQLi attacks. Among the main findings, we
show that ModSec-AdvLearn improves the detection rate of
the vanilla ModSecurity by 30%, while removing 50% of
the CRS rules through embedded feature selection with ℓ1
regularization. It also improves adversarial robustness up to
85% via robust linear models, without hindering interpretabil-
ity of decisions and providing ease of integration with the
current CRS implementations. We can thus state that our
methodology provides a first, concrete example of how adver-
sarial machine learning can be used to effectively enhance the
robustness of WAFs against adversarial attacks, highlighting
novel, promising directions towards designing robust machine
learning models for cybersecurity-related applications.

We foresee several other promising avenues for advancing
our work. First, although in this work we only target SQLi
attacks, our methodology is general enough to tackle other
web threats like cross-site scripting (XSS). In this direction,

future work could also explore the integration of automated
pentesting tools that leverage large language models [32], to
extend the capabilities of WAF-A-MoLE. Second, we also see
future developments in evaluating other state-of-the-art ML-
based WAFs. Indeed, we think that the same results can also
be obtained on more advanced models such as Convolutional
Neural Networks (CNN) [33], as well as on different feature
representation approaches [27, 34]. This is also true for
commercial WAFs. To this end, an interesting future extension
of this work is to evaluate them in terms of transferability [35]
of adversarial SQLi attacks optimized on ModSecurity.

ACKNOWLEDGMENTS

This research has been partly supported by the TESTABLE
project, funded by the EU H2020 research and innovation
program (grant no. 101019206); the ELSA project, funded by
the Horizon Europe research and innovation program (grant
no. 101070617); projects FAIR (PE00000013) and SERICS
(PE00000014) under the NRRP MUR program funded by the
EU – NGEU. This work was carried out while C. Scano
was enrolled in the Italian National Doctorate on AI run by
the Sapienza University of Rome in collaboration with the
University of Cagliari.

REFERENCES

[1] O. B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam,
and A. Derhab, “An OWASP top ten driven survey on
web application protection methods,” in 15th Int’l Conf.
Risks & Sec. of Internet Sys. (CRiSIS), p. 235–252, 2020.

[2] W. G. J. Halfond and A. Orso, “Preventing sql injection
attacks using amnesia,” in Proc. of the 28th Int. Conf. on
Software Engineering (ICSE), p. 795–798, 2006.

[3] A. Joshi and V. Geetha, “SQL injection detection using
machine learning,” in 2014 Int. Conf. Control, Instrumen-
tation, Comm. Comput. Tech., pp. 1111–1115, 2014.

[4] D. Appelt, A. Panichella, and L. Briand, “Automatically
repairing web application firewalls based on successful
sql injection attacks,” in 2017 IEEE 28th Int. Symp. on
Software Reliability Eng. (ISSRE), pp. 339–350, 2017.

[5] D. Appelt, C. D. Nguyen, A. Panichella, and L. C.
Briand, “A machine-learning-driven evolutionary ap-
proach for testing web application firewalls,” IEEE Trans.
on Reliability, vol. 67, no. 3, pp. 733–757, 2018.

[6] OWASP Foundation Inc., “OWASP top 10,” 2021. Avail-
able online. Accessed on 22 February 2023.

[7] S. Applebaum, T. Gaber, and A. Ahmed, “Signature-
based and machine-learning-based web application fire-
walls: A short survey,” Procedia Computer Science,
vol. 189, pp. 359–367, 2021.

[8] OWASP Foundation Inc., “OWASP core rule set.” https:
//coreruleset.org, 2024. Accessed on 20th January 2024.

[9] C. Folini and I. Ristic, ModSecurity Handbook, Second
Edition. London, GBR: Feisty Duck, 2nd ed., 2017.

[10] L. Demetrio, A. Valenza, G. Costa, and G. Lagorio,
“Waf-a-mole: Evading web application firewalls through
adversarial machine learning,” in 35th Annual ACM
Symp. on Applied Computing (SAC), p. 1745–1752, 2020.

[11] C. Scano, G. Floris, B. Montaruli, L. Demetrio,
A. Valenza, L. Compagna, D. Ariu, L. Piras,
D. Balzarotti, and B. Biggio, “Modsec-learn: Boosting
modsecurity with machine learning,” in Int’l Symp.
Distributed Comput. and AI, pp. 23–33, Springer, 2024.

[12] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and
C. Holler, “Mutation-based fuzzing,” in The Fuzzing
Book, CISPA Helmholtz Center for Inform. Sec., 2023.

[13] M. Hemmati and M. A. Hadavi, “Bypassing web applica-
tion firewalls using deep reinforcement learning,” in 18th
Int. ISC Conf. Inform. Sec. Crypt., pp. 35–41, 2021.

[14] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cav-
allaro, “Intriguing properties of adversarial ml attacks
in the problem space,” in IEEE Symp. on Security and
Privacy (SP), pp. 1332–1349, IEEE, 2020.

[15] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, no. 3, 1995.

[16] C. M. Bishop and N. M. Nasrabadi, Linear Models for
Classification, vol. 4. Springer, 2006.

[17] L. Breiman, “Random forests,” Machine learning,
vol. 45, pp. 5–32, 2001.

[18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” in ICLR, 2018.

[19] B. Biggio and F. Roli, “Wild patterns: Ten years after
the rise of adversarial machine learning,” Pattern Recog-
nition, vol. 84, pp. 317–331, 2018.

[20] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp,
K. Rieck, I. Corona, G. Giacinto, and F. Roli, “Yes,
machine learning can be more secure! a case study on
android malware detection,” IEEE Trans. on Dependable

and Secure Computing, vol. 16, pp. 711–724, 2019.
[21] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Ar-

mando, “Functionality-preserving black-box optimiza-
tion of adversarial windows malware,” IEEE Trans. on
Inform. Forensics and Sec., vol. 16, pp. 3469–3478, 2021.

[22] H. Xu, C. Caramanis, and S. Mannor, “Robustness and
regularization of support vector machines.,” Journal of
machine learning research, vol. 10, no. 7, 2009.

[23] I. Corona, B. Biggio, M. Contini, L. Piras, R. Corda,
M. Mereu, G. Mureddu, D. Ariu, and F. Roli,
“Deltaphish: Detecting phishing webpages in compro-
mised websites,” in ESORICS 2017, pp. 370–388, 2017.

[24] J. J. Singh, H. Samuel, and P. Zavarsky, “Impact of
paranoia levels on the effectiveness of the modsecurity
web application firewall,” in 1st Int. Conf. on Data
Intelligence and Security (ICDIS), pp. 141–144, 2018.

[25] T. D. Sobola, P. Zavarsky, and S. Butakov, “Experimental
study of modsecurity web application firewalls,” in IEEE-
BigDataSecurity, HPSC and IDS, pp. 209–213, 2020.

[26] G. Betarte, Á. Pardo, and R. Martı́nez, “Web application
attacks detection using machine learning techniques,” in
17th IEEE Int’l Conference on Machine Learning and
Applications (ICMLA), pp. 1065–1072, IEEE, 2018.

[27] N. Montes, G. Betarte, R. Martı́nez, and A. Pardo, “Web
application attacks detection using deep learning,” in 25th
Progress in Patt. Rec., Image Analysis, Computer Vision,
and Applications, pp. 227–236, Springer, 2021.

[28] X. Wang and H. HU, “Evading web application firewalls
with reinforcement learning,” 2020.

[29] Y. Guan, J. He, T. Li, H. Zhao, and B. Ma, “Ssqli:
A black-box adversarial attack method for sql injec-
tion based on reinforcement learning,” Future Internet,
vol. 15, no. 4, p. 133, 2023.

[30] K. Li, H. Yang, and W. Visser, “DaNuoYi: Evolutionary
multi-task injection testing on web application firewalls,”
IEEE Trans. on Software Engineering, 2023.

[31] Z. Qu, X. Ling, and C. Wu, AutoSpear: Towards Au-
tomatically Bypassing and Inspecting Web Application
Firewalls. Black Hat Asia, 2022.

[32] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu,
T. Zhang, Y. Liu, M. Pinzger, and S. Rass, “PentestGPT:
Evaluating and harnessing large language models for
automated penetration testing,” in 33rd USENIX Security
Symp., pp. 847–864, 2024.

[33] A. Luo, W. Huang, and W. Fan, “A cnn-based approach
to the detection of sql injection attacks,” in IEEE/ACIS
18th Int. Conf. on Computer and Information Science
(ICIS), pp. 320–324, IEEE, 2019.

[34] D. Kar, S. Panigrahi, and S. Sundararajan, “Sqligot:
Detecting sql injection attacks using graph of tokens and
svm,” Computers & Security, vol. 60, pp. 206–225, 2016.

[35] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Big-
gio, A. Oprea, C. Nita-Rotaru, and F. Roli, “Why do
adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks,” in 28th USENIX Security
Symp., pp. 321–338, 2019.

https://coreruleset.org
https://coreruleset.org

Giuseppe Floris received his BSc degree in Electri-
cal, Eletronical and Computer Engineering in 2021,
and his MSc degree in Computer Engineering, Cy-
bersecurity, and Artificial Intelligence with honors in
September 2023 from the University of Cagliari. He
is currently a Ph.D. student in electronics and com-
puter engineering at the University of Cagliari. His
research focuses on Adversarial Machine Learning
and its applications in the cybersecurity domain.

Christian Scano received his BSc degree in Com-
puter Science in 2021 and his MSc degree in
Computer Engineering, Cybersecurity, and Artificial
Intelligence with honors in September 2024 from
the University of Cagliari. He is currently enrolled
in the national PhD in Artificial Intelligence and
Computer Security at University of Cagliari and
Sapienza University of Rome. His research focuses
on Web Application Security and Machine Learning.

Biagio Montaruli received his B.Sc. and M.Sc. de-
grees in computer engineering from the Polytechnic
University of Bari (Bari), in 2018 and 2021, respec-
tively. He is currently a Ph.D. candidate in artificial
intelligence and computer security at EURECOM
(France). His research focuses on adversarial ma-
chine learning, with strong focus on its application
in the cyber-security domain.

Luca Demetrio (MSc 2017, PhD 2021) is an As-
sistant Professor at the University of Genoa, inves-
tigating the security of Windows malware detectors
implemented with Machine Learning techniques. He
is part of the development team of SecML, and the
maintainer of SecML Malware, a Python library for
creating adversarial Windows malware.

Andrea Valenza is an Application Security Engi-
neer at Prima Assicurazioni. He received his PhD
from the University of Genova, with a thesis focused
on novel vulnerabilities, including counter-attacking
automatic security scanners. His current research
interest is automated security testing, with a focus on
improving (and bypassing) regex-based validation,
and detection of vulnerabilities via static analysis.

Luca Compagna works at Endor Labs, contributing
to the software security analysis research area. He
received his Ph.D. in Computer Science jointly from
the U. of Genova and U. of Edinburgh, working
on security protocols analysis. His areas of inter-
ests include security testing, security engineering,
automated reasoning, and their application to the
modeling and analysis of industrial relevant scenar-
ios. After some work on DAST techniques for cross
domain web-based scenarios and CSRF experiments,
he recently focused his attention to static analysis

and to the security testing of AI-based components.

Davide Ariu received a PhD in electronics and com-
puter engineering from the University of Cagliari.
He is co-founder and CEO of Pluribus One
(http://www.pluribus-one.it) and co-chair of the
OWASP (http://owasp.org) Italy Chapter.

Luca Piras is the Operation Manager and Co-
founder of Pluribus One. He received his MSc
Degree in Electronic Engineering in 2007 and his
Doctor Europaeus and PhD Degree in Computer
Engineering in 2011, both from the University of
Cagliari. His expertise lies in Computer Vision,
Pattern Recognition, and Machine Learning. His
research has been published in several international,
peer-reviewed journals and conferences. At Pluribus
One, he is responsible for several EU-funded R&D
projects and is a member of the OWASP Foundation.

Davide Balzarotti is a full Professor and head of the
Digital Security Department at EURECOM. His re-
search interests include most aspects of software and
system security and in particular the areas of binary
and malware analysis, reverse engineering, computer
forensics, and web security. Davide authored more
than 100 publications in leading conferences and
journals. He has been the Program co-Chair of
Usenix Security 2024, ACSAC 2017, RAID 2012,
and Eurosec 2014. He received an ERC Consolidator
and an ERC PoC Grant for his research in the

analysis of compromised systems. Davide is also a member of the “Order
of the Overflow” team, which organized the DEF CON CTF competition
between 2018 and 2021.

Battista Biggio (MSc 2006, PhD 2010) is Full
Professor of Computer Engineering at the Univer-
sity of Cagliari, Italy. He has provided pioneer-
ing contributions to machine learning security. His
paper “Poisoning Attacks against Support Vector
Machines” won the prestigious 2022 ICML Test of
Time Award. He chaired IAPR TC1 (2016-2020),
and served as Associate Editor for IEEE TNNLS
and IEEE CIM. He is now Associate Editor-in-Chief
for Pattern Recognition and serves as Area Chair for
NeurIPS and IEEE Symp. SP. He is Fellow of IEEE

and AAIA, ACM Senior Member, and Member of IAPR, AAAI, and ELLIS.

	Introduction
	Background
	SQL Injection (SQLi)
	The OWASP Core-Rule-Set (CRS) Project
	Adversarial SQLi Attacks against WAFs

	Robust Machine Learning against Adversarial SQLi Attacks
	ModSec-Learn: Machine Learning for CRS
	ModSec-AdvLearn: Robustness against Adversarial SQLi

	Experimental Analysis
	Experimental Setup
	Evaluation of ModSecurity
	Evaluation of ModSec-Learn
	Evaluation of ModSec-AdvLearn

	Related work
	Conclusions and Future Work
	Biographies
	Giuseppe Floris
	Christian Scano
	Biagio Montaruli
	Luca Demetrio
	Andrea Valenza
	Luca Compagna
	Davide Ariu
	Luca Piras
	Davide Balzarotti
	Battista Biggio

