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ABSTRACT gain” property [3]. The coding gain fdf is then defined as
|2 |2

In a transform coding framework, we compare the optimal causal = E”{(”(I) = E”{(”(I)
approach (LDU, Lower-Diagonal-Upper) to the optimal unitary ElXIEry BV
approach (Karhunen-Loeve Transform, KLT). The criterion of merit .
used for this comparison is the coding gain, defined for a transfor- wherel is the identity matrix, and the notatidjtk || 7., denotes the
mationT as the ratio of the average distortion obtained with the variance of the quantization error on the vecior obtained for a
identity transformation over the average distortion obtained with transformatiori”. The optimal bit allocation yields the well known
T. Both transforms are known to yield the same gain when they distortion for the vectorial signdly’} : E|[Y[|3 = L 3.0 02, =
are computed on the signal covariance maRixThe purpose of o (N 2\ o o
this paper is to compare the behavior of these two transformations’" 2 (Hi=1 ayl) = Noy. oy, is independent of, and the
when the ideal transform coding scheme gets perturbed, that is Ty
when only an estimat& + AR of R is known. In this case, not my, ogl)% '
only the transformation itself will be perturbated, but also the bit In the next section, we recall the main characteristics of the opti-
allocation mechanism. We compare the two approaches in two mal causal approach (LDU) when optimizedBnand summarize
cases. FirstiyAR is caused by a quantization noise : the coding the reasons why its performance is the same as the best unitary ap-
scheme is based on the statistics of the quantized data. We findproach (KLT).
that the coding gain in the unitary case is higher than in the causalHowever, a backward adaptive coding scheme requires that nei-
case. In a second cas&,? corresponds to an estimation noise ther the transformation nor the parameters of the bit allocation are
: the coding scheme is based on an estimat& tlased on a fi-  transmitted to the decoder. So suppose now that the coding scheme
nite amount of available data. In this case, both causal and unitaryis pased o2 x x = R + AR instead ofR, whereR x x is avail-
approaches are strictly equivalent, because of the unimodularity gble at both encoder and decoder. Then the computed transforma-
and decorrelating properties of the transformations. Simulationsjon will be 7" = 7+ AT, and the distortion will be proportional
results confirming the predicted behavior of the coding gains with 11« \ariances of the signals transformed by mean ifstead

rturbations are r rted. / . .
perturbations are reported of T, says... Moreover, the bits; should be attributed on the
basis of estimates of the variances available at both encoder and

: @

2

'number of bits assigned to thé&iicomponent i$—|—§logQ

1. INTRODUCTION decoder also, that i$]" Rx xT'):;, where(.);; denotes theth di-
Consider a stationary Gaussian vectorial so§r€é. This source agonal element of.). Hence, we get the following measure of
may be composed of any scalar sour¢es}, for example au-  djstortion for a transformatiof based onRx x :

dio signals. In the classical transform coding framework, a lin-
ear transformatioff’ is applied to each N-vectoY to produce an N N
N-vectorY” = T'X whose componenis are independently quan- E||Y||fT) =F Z c2
tized using a scalar quantizgr;,. A number of bits; is attributed i=1
to each@; under the constraint_.r; = Nr. For an entropy L . L s
constrained scalar quantizer of a Gaussian source, the high resoluwhere the expectationis WAL Incaseitis non-det_ermlnlstlc. In
tion distortion is Ey?(k) — yi(k))> = 02, = c2~2"02., where the third section,we compare this distortion whieft is caused by
re ¢ ‘ ‘ a quantization noise : the coding scheme is based on the statistics
of the quantized data, under high resolution assumption. In the
' fourth part, AR corresponds to an estimation noise : the coding
scheme is based on an estimatgoflue to a finite amount of
vectors : Rxx = + /L, X; X[ The fifth part is dedicated to
simulation results.
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An irr?portant property of commonly used transformations is that
if a noise (for example quantization noise) is added to the signal
then its power will be the same in the transform and in the signal
domains. This property is sometimes referred to as "unity noise




struction errotX equals the quantization errdf : One shows that
R i . 1\ —
X=X XT=X-IX-Y'=Y_-Y'=V, (3 Z%ﬂr{(uaﬁ(dlagl%xx) D2
=1 X9X9 )
as in the unitary case. As detailed in [2], the optirhah terms of wheretr denotes the trace operator, and

coding gain is such that Rxx L” = diag{o},,...05,}, Where ot (diagRxq xe) = det (diagRx x ) det (I+0> (diagRx x) ")
diag{...} represents a diagonal matrix whose elementsogre

In other words, the componenjs are the prediction errors af; and we find o . L

with respect to the past values &f, the X;.,_;, and the opti- ElVItg = EIVIG % (det(I + Uq(dmgiXX) N

mal coefficients-L, ,.,_, are the optimal prediction coefficients. xtr{(I + og(diagRxx)™") " }.

Since each prediction errgt; is orthogonal to the subspaces gen- 9
erited byﬂle;(”‘l.’ they; are orthogonal. It follows thaftx x = The distortion is slightly increased because the bits allocated on the
L™ RyyL™", which represents the LDU factorization 8fxx. pasis of variances of quantized signals are not the optimal ones (the
Referring to (1), the coding gain without perturbation for the opti- \5riance of the quantization noise is not equal in each branch
mal causal transform can be written as An approximation of (9) up to the second order of the perturbation

. 'l
G(O):EHYH? E|| X7 < det [diag(Rx x )] > T gives ) .
L E||)~(||2 E||Y||2 det [diag(LRxx LT)] ’ E||Y|| (1, =27 "(det diag{ Rxx }) /

wherediag( R) denotes here the diagonal matrix that corresponds x(IL (m)llm XL+ W) 1 (10)
to the diagonal of the matrik. Now, using the unimodulariry of ~ E||f/||2 (1+ ;g(N2 1 va . ﬁ

L, det(diag(Ry y)det (Rx x) = det A, whereA is the eigenvalue ; (Fxx)is

matrix of Rx x. The coding gain is Zl 1 ZJ>@ (Rx x) i (Bx x)3j )

(0)_< det [diag(Rx x )] > %_< det [diag(RXX)]> Y0 32 KLT

L7\ det [diag(LRx x LT)] ) det A V' ' Asobservedin[4] also, ¥ denotesaKLT o x x, thenV ( Rx x +

(5) ;)T =A+ 0,1 =A% andV isalso aKLT of Rxx + og1.
Thus, the perturbation term/ on Rxx does not change the

whereV” denotes a KLT ofR x x. Thus, for an optimal bit al-  packward adapted transformation, and the variances of the trans-
location, the coding gains of the KLT and the LDU are the same i ; o
formed signals remain unchanged;, = ;. However, the de-

without perturbation for three reasons : both transformations en-

sure that the power of the quantization error is the same in the coder estimates the varlano@zéRXquV )i = \i + 0g
transform and in the signal domains, they are totally decorrelating the basis of which the coder assigns the bits Thus, the actual
transforms, and finally they are unimodular. distortion is

N —2[T+%l092 (VRXQXQVT)” =1
3. QUANTIZATION EFFECTSON THE CODING GAINS E|Y|| 2 Z (H{V:l(VRXquVT)”)W(VRXXVT)“‘,
Suppose we compute the transformation on the basis of quantized im1
data. The statistics of the quantized data are assumed to be per- (1)

fectly known in this section. In other words, we assume that the
decoder disposes of an infinite number of quantized vectofs o i o 1y 1
and hence ofR xaxs. Under the assumptions of high resolu- ZI1Y [{xc.9 =LY |{x)  (det({ +oq(A NN tr{(I +o5(A7)) 7}
tion (uncorrelated white noise), optimal bit assgnment and unity (12)

noise gain property of the transformatia]nR EXXT = =0 2],

wich can be computed in a similar way as in 3.1. We find

Again, the increase in distortion comes from the perturbation oc-
Wherea?, = 272" HN . ay . Thus, forT = I, V andl, curing on the bit allocation mechanism. Up to the second order of

we shall compute (the subscriptefers to quantization) perturbation, an expression similar to (10) is

N —a[r+Llio (TRxaxaTT)i E”Y” K,q)
i 2 bt 3toss T %]2’ 2 . NN (T2 1/N =N 1
ElYI{z 4 = Zcz ML, Crxaxa DN 52 () = 272" (det diag{Rx x })"/ (L1 (32)) NS (14 %,)_
=1 ~ ot _
< BTy |1+ SR B o - £ S 5]
3.1. Identity Transformation (13)
In this case, the number of bits attributed to the quant2eis The corresponding expression for the coding gain is
r + Llog,—Uixaxadii _ and the variance2 are indeed . oL . iy
2P M (Rcaxa) ) v e = oldetl + o (diagRox) ™) ¥ tr{ (I + 7 (diagRxx) ™) "'}
(Bxx)s. Thus ! (det(7 + o3(A=1)) ¥ er{(1 +03(A=1) 7'} ’
N —2[r+1iogs (Rxaxa)ii 1 (14)
N ~ T
B|IY|[tr.=)_ 2 Lz Fxax i) ¥ (Rx x )i (7) whose second order approximation is
— T _ N
=1 Grq = G[1 +NN_%(¥ i@z — o)
1 1
N L (Rxx)i _Zl:l Zﬂ>i((RXX)”(RXX)jj - W))]
=Y 27" (det diag{ Rxax4})¥ ——228 (8)
Z ( " W (15)



33. LDU

In the causal case, the coder uses a transformdtiosuch that
L'RxaxeL T = RYy. Ry is the diagonal matrix of the es-
timated variances involved in the bit allocatiah’ (and R are
both available to the decoder). In this case, the difference vector
Y = X — I’XY, the quantization noise is filtered by the rows
of L’. Note thatE|| X |7, , still equalsE||Y]|7, ,. sinceX =
XX =YI4TX-X =YVI—(X-T'X9) =Y?-Y =Y.

One shows that the actual variances of the signatsbtained with

L' are(L'RxaxsL'" — 621); [2]. In this case, one finds

—2[r+Liogs (LIRXQXQLIT)H -
E”Y/”%L' 9 = Zi\il c2 (3L, (B Rxaxal' T N
x(L’ququlT — o) ](RXX)“
— T2 L 20A =1V & 2(p'=1 Y ’
= B|IY 20y F(det(1 + o2 (A ) Fer{ (1 + aq(Rw))}16 ~ BV + B et S (28 y2
(AR);; (AR)j;
(16) — B 5 S et i)
The increase in distortion comes not only from the perturbation (21)

occuring on the bit allocation mechanism but also from the filtering
of the quantization noise. Up to the first order of perturbation,we

obtain pN-1 i (AR): \° Z ARxx)y _N—1
5 2N2 <4 7 (Rxx),‘,‘ - 2N2 K RXX “ NK -
- - o 1 1 =
BIYIferg = EIV I |14 570 = a—)] , @7 (22)

The expectation of the second term is

where~ (AR);; (AR);;
N2 Z Z]>z (Rxx)ii (2RXX)jj

(Rx x)
2 Z Zj>l XX )iz

RXX si(Bxx)jj

2| ((diag{ Rxx })!* Rocx (diag{ Rxx 1)) |5

The expectation of the first term in (21) is

22

22

(23)

wherex( A) denotes the stritcly lower triangular matrix made with
the strictly lower trianguler part of, and|| A||% the squared Frobe-
nius norm ofA. If D = diag{ Rx x }, we obtain
AR);; 1 1
B 53 0 Y thaty tenly © % (ID73 Rax D73
—||diag{D~ 3 RXXD_5|| )
= %(tT{RxxD_lexD_l}).

(24)
Finally, the expected distortion for Identity with estimation noise
is, for sufficiently high/,

Y % tr{RxxD "RxxD™!
E”Y”%I,K) ~ E||Y||f1) <1 + [7(1 _trf - 1

(25)

4.2. KLT
In the unitary case, the expected distortion is

B oK
(VRxx V)i

i N —alrthogy — (Rl du )
B[y oy =B c2 M2 (Vxx VDN (U Ry V)i
=1

(26)
Using the fact that’ Rx x V7 is diagonal, we can write (26) as

1 N ST
o o o—ar A (VRxxV" )i
BN Iy ) = Be2™" (det VRxx V) Zm
=1 i1
(27)



Because of the unimodularity 6f, the determinant in (27) may
be written as

det VRxx V7T det(Rxx + AR)
(det Rx x)det(I + RxxAR)

The sum in (27) may be written as
" < AP . e
S SRl b (VR V)5 R VIV R V7))

=tr{(I + Ry AR)™"}

(28)

Coding Gain over Identity

(29)
Thus, (27) is equivalent to
E”?”?\/I\
(30)
Using similar developments as in the previous section, the ex-
pected distortion for the KLT when the transformation is based
on k vectors is finally, under high resolution assumption

S o2 N-1 N-1
BTy ~ BNV I (14 5+ 52) . )
The associated coding gain is,whébe= diag{R xx },
E”Y”%I,K) 0 1 _1 s N-1 1
”’"W“‘G <1_KN2“"{RD RO} =55 NK)'
(V,K)
(32)

43. LDU
As stated in the introduction of this section, the expected distortion
with L computed o x x is
~ —2[r+ Llogs
E”YH?LK) =k Zi\il c2
x(LRxxL")ii

Coding Gain over Identity

PR ;T
(LRx xL” )4y

T
ML, LR xLT) ;) N

(LRxx L")

(LRxx LT

= FEc27%" (det VRXXV) ¥

2

=1

|

=det Rx x =det(R det(I+RTL AR
XX (Rx x) det( XX )=tr{(I+R;{1XAR)—1}

= E”?”?\”/J(y

(33)

where the equality concerning the_determinants comes from the
unimodularity of the transformationsandV’. The equality con-

cerning the trace comes from their decorrelating property. Thus,
the distortion and coding gain with estimation noise are the same
in the causal and the unitary cases, and are given up to the first
order inK by (30) and (32).

5. SIMULATIONS

(1]

(2]

For the simulations, we used entropy constrained scalar quantiz-[s]
ers ); and real Gaussian i.i.d. vectors with covariance matrix
Rxx = HRam HT. Rag: is the covariance matrix of a first
order autoregressive process with normalized correlation coeffi-
cientp. H is a diagonal matrix whose#i entry is(N — i 4+ 1)*/°
(decreasing variances).
In Figure 1, the coding gain with quantization noise is plotted
for KLT (upper curves) and LDU (lower curves) with = 0.9,
N = 4. The theoretical exact expressions are given by (14) and
(18), and the approximated expressions by (15) and (19).

The coding gains in presence of estimation noise are compared
for LDU and KLT in Figure 2, forN = 4 andp = 0.9 (mean over
100 realizations). The observed behaviors of the transformation
corresponds quite well to the theoretically predicted one&foe
afew tens.
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Fig. 1. Coding Gains vs rate in bit/sample.
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Fig. 2. Gains for KLT and LDU with estimation noise
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