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Abstract—Integrated terrestrial and non-terrestrial network
(TN-NTN) architectures offer a promising solution for expanding
coverage and improving capacity for the network. While non-
terrestrial networks (NTNs) are primarily exploited for these
specific reasons, their role in alleviating terrestrial network (TN)
load and enabling energy-efficient operation has received com-
paratively less attention. In light of growing concerns associated
with the densification of terrestrial deployments, this work aims
to explore the potential of NTNs in supporting a more sustainable
network. In this paper, we propose a novel online optimisa-
tion framework for integrated TN-NTN architectures, built on
a multi-armed bandit (MAB) formulation and leveraging the
Bandit-feedback Constrained Online Mirror Descent (BCOMD)
algorithm. Our approach adaptively optimises key system pa-
rameters—including bandwidth allocation, user equipment (UE)
association, and macro base station (MBS) shutdown—to balance
network capacity and energy efficiency in real time. Extensive
system-level simulations over a 24-hour period show that our
framework significantly reduces the proportion of unsatisfied UEs
during peak hours and achieves up to 19 % throughput gains
and 5 % energy savings in low-traffic periods, outperforming
standard network settings following 3GPP recommendations.

I. INTRODUCTION

Recent advancements in cellular communications have
sharply increased the demand for high-speed data, driving the
need for broader network coverage and higher capacity. To
address these challenges, mobile operators have intensified
their deployment of terrestrial MBSs. This constant expan-
sion has resulted in increased energy consumption, raising
environmental concerns from a societal perspective as well as
economic challenges for network operators. Thus, minimising
energy consumption while maintaining Quality of Service
(QoS) standards has become a key objective in mobile network
management [1].
NTNs have emerged as a practical solution to complement
TNs and extend coverage to underserved areas in the past
few years. NTNs use airborne platforms such as drones or
satellites as relay nodes or MBSs to provide connectivity to
user equipment UEs. Their key advantage lies in offering wide-
area coverage, particularly in remote regions where deploying
terrestrial MBSs is costly or impractical. In particular, low-
earth orbit (LEO) satellites are poised to play a central role
in delivering high-capacity space-based connectivity [2], as
they benefit from reduced latency, stronger signals, and lower
energy requirements for both launch and communication,

effectively building an integrated TN-NTN capable of deliv-
ering seamless, high-capacity communication services while
ensuring efficient and reliable connectivity for the UEs [3].
Typically, these UEs are associated with the MBS offering
the highest reference signal received power (RSRP). However,
this approach ignores traffic demand variations, often leading
to poor load distribution and degraded network performance.
An effective policy for load balancing usually involves a
pricing-based association strategy [4] which considers both
signal quality and cell load. Alam et al. [5] propose a similar
approach in the context of an integrated TN-NTN, leveraging
satellite resources to distribute the load to improve overall
network capacity and coverage.
Moreover, keeping all MBSs active during low traffic can lead
to inefficient energy and resource use, as many may be under-
utilised. In an integrated TN-NTN, selectively turning off some
MBSs and offloading UEs to satellites can help reduce energy
consumption. To that end, our previous work [6] proposed a
framework designed to balance network fairness and energy
consumption by adjusting to varying traffic conditions in an
integrated TN-NTN.
In this paper, we propose a novel framework that dynamically
balances network capacity and terrestrial energy consumption
in an integrated TN-NTN architecture. The framework is
formulated as a MAB problem and leverages a constrained
online learning algorithm named BCOMD, introduced in [7],
to adaptively select the optimal configuration of system param-
eters in response to time-varying traffic demands. By jointly
optimising UE association, bandwidth allocation, and MBS
shutdown decisions, the framework effectively improves load
distribution, reduces energy usage during low-traffic periods,
and enhances user satisfaction in high-traffic scenarios.

II. SYSTEM MODEL

We consider a downlink (DL) cellular network, operating
over T time slots, which consists of M terrestrial MBSs and
N LEO satellites mounted with MBSs, for a total of L MBSs.
K UEs are deployed in the study area. The network operates in
the S-band at approximately 2 GHz, where the total available
system bandwidth W is allocated by the mobile network
operator between terrestrial and non-terrestrial tiers, each using
orthogonal frequency bands. Throughout this paper, we denote
the set of terrestrial MBSs by T and the set of satellite MBSs



by S. The set of UEs is represented as U = {1, . . . ,K}, and
the complete set of MBSs is given by B = T ∪S = {1, . . . , L}.
For the channel model, the large-scale channel gain between
a terrestrial MBS j and a UE i is computed as follows:

βij = M
(
GTX +GUE + PLb

ij + SFij + PLtw
ij + PLin

ij

+N
(
0, σ2

p

))
.

(1)

where all terms are in dB and are mapped to linear space
using the operator M(·). Here, GUE and GTX

represent the
UE and MBS antenna gain respectively, PLb

ij is the basic
outdoor path loss [8, Table 7.4.1-1], and SFij is the shadow
fading, normally distributed with mean 0 and variance σ2

SF.
The remaining terms (PLtw

ij , PLin
ij , and N (0, σ2

p)) account for
building penetration losses, detailed in [8]. The line-of-sight
(LoS) condition for each UE is computed as in [8, Table 7.4.2-
1]. In contrast, for a satellite MBS j serving UE i, the large-
scale channel gain can be expressed as follows [9]:

βij = M
(
GTX

+GUE + PLb
ij + SFij +CL + PLs

ij + PLe
ij

)
(2)

In (2), CL denotes clutter loss, which is the attenuation
caused by buildings and vegetation near the UE, and PLs

represents scintillation loss, capturing rapid fluctuations in
signal amplitude and phase due to ionospheric conditions.
Lastly, PLe

ij denotes the building entry loss, representing the
attenuation experienced by all UEs positioned indoors. Since
interference between both terrestrial and non-terrestrial tiers is
negligible due to orthogonal bandwidth allocations, the large-
scale signal-to-interference-plus-noise ratio (SINR) for each
UE i can be calculated as follows:

γij =
βijpj∑

j
′
∈Ij

βij′pj′ + σ2
, (3)

where pj represents the transmit power per resource element
(RE) allocated by MBS j, Ij denotes the set of MBSs
interfering with serving MBS j, and σ2 accounts for the noise
power per RE. In our study, each UE i has a specific data-
rate demand ρi, modelled as a random variable following an
exponential distribution of parameter λU. Then, the number
of physical resource blocks (PRBs) assigned to the UE by the
associated MBS j is computed as:

Bij =

⌈
ρi

∆ log2 (1 + γij)

⌉
. (4)

In (4), the denominator is the product between the spectral
efficiency and ∆, which represents the total bandwidth of a
single PRB in 5G new radio (NR). Finally, ⌈·⌉ denotes the
ceiling function, which rounds up the input number to the
nearest integer. The load νj for MBS j is then defined as the
fraction of PRBs being utilised. Using this, we can calculate
the mean throughput for UE i served by MBS j as:

Rij = ∆Bij log2(1 + γij). (5)

Finally, the terrestrial MBS energy consumption model, de-
pendent on various parameters as described in [10], can be

succinctly represented as the sum of three components. The
baseline component refers to the energy consumed by elements
that remain active even when the MBS is shut down. The
static component is the fixed energy consumption required to
maintain essential systems operational, independent of traffic
load. Lastly, the dynamic component varies with the traffic
load, increasing when the MBS transmits at higher power
levels or utilises additional PRBs. For a MBS j, this model is
written as:

Qj = P0 + pj + ψj1{pj>0}, (6)

where P0 denotes the baseline energy consumption, ψj indi-
cates the static component, and pj , the transmission power of
MBS j, corresponds to the dynamic component. Additionally,
1{·} is the indicator function that equals 1 if the inputted
condition is True, and 0 otherwise. The satellite is presumed
to harvest its energy from solar panels. We also define the
parameters that we intend to optimise in our framework: ε
is the proportion of the bandwidth which is allocated to the
LEO satellites. τν is the threshold considered for the load of a
MBS, which determines whether we attempt to shut it down or
not, while τRSRP is also a threshold for the perceived RSRP.
Finally, α is a weight that controls the influence of MBS load
on the UE association decision. The role of each parameter
will be explained in more detail in Section IV.

III. PROBLEM FORMULATION

Similar to the model proposed by Alam et al. [6], we
aim to design a framework that jointly optimises network
capacity and TN energy consumption by dynamically adjusting
resource allocation based on network load, while satisfying the
data-rate requirements of each UE.
More specifically, our objective is to identify the optimal
policy, defined as an action sequence selected from a set
of n distinct configurations of θ = [ε, τν , τRSRP, α], each
referred to as an arm. Indeed, each arm represents a specific
setting for those parameters, chosen from the n different
combinations possible. These arms directly impact network
behaviour through a heuristic, which is detailed in Section IV.
To evaluate the performance of the network at time t, we define
a cost function that captures the key trade-offs introduced
by selecting a given arm at, which is drawn according to
a probability distribution xt over the action space ∆n (the
n-dimensional probability simplex):

ft (at, xt) = ζ
∑
j∈B

Qj(θ)−
∑
i∈U

log(Ri(θ)), (7)

where Ri(θ) denotes the throughput perceived by UE i and
Qj(θ) represents the energy consumption of MBS j, both for
a given configuration θ. ζ is a regularisation factor that allows
balancing the trade-off between UE performance (i.e., sum
log-throughput (SLT)) and network energy consumption. With-
out loss of generality, the cost function values are normalised
between 0 and 1. In parallel, we define the constraint violation
incurred by selecting arm at as:

gt (at, xt) =
1

K

∑
i∈U

1{Ri<ρi}. (8)



Note that if a UE perceives a RSRP lower than a set threshold
RSRPmin, it is considered unsatisfied.
Naturally, the cost distribution associated with each arm
evolves over time as network demand fluctuates with the traffic
load. Indeed, an arm that enhances capacity under high traffic
may be suboptimal in low-traffic scenarios—emphasising the
need for context-aware arm selection. This non-stationarity in
cost aligns well with the adversarial bandit-feedback setting
proposed in [7]. Accordingly, we leverage the algorithm intro-
duced in [7] to handle dynamic costs while ensuring long-term
constraint satisfaction.
We denote by x∗ the oracle policy, i.e., the action sequence
that achieves the minimum cumulative loss over the time
horizon:

{x⋆t }
T
t=1 ∈ arg min

{xt}T
t=1∈

⋂T
t=1 ∆n,t

{
T∑

t=1

ft(at, xt)

}
, (9)

where ∆n,t is the set of feasible points within the simplex at
time t:

∆n,t ≜ {x ∈ ∆n : gt (at, x) = 0} . (10)

Our goal is to find a policy π that minimises cumulative
loss relative to the oracle, while also satisfying time-varying
constraints. Adopting the notation from [7], we define the
regret and constraint violation which we want to minimise
as:

RT (π) ≜ Eπ

[
T∑

t=1

ft(at, πt)

]
−

T∑
t=1

ft(at, x
∗
t ), (11)

VT (π) ≜ Eπ

[
T∑

t=1

gt(at, πt)

]
. (12)

IV. FINDING OPTIMAL POLICY USING BCOMD

In this section, we present the designed framework, which
takes as input the set of parameters θ and associates a cost
that quantifies both the network performance and the quality
of the parameter configuration. Then, we describe the method
used to determine the optimal setting of θ, which minimises
Eq. (11) and (12).

A. Network Optimisation Framework

The framework proposed to measure network performance
given θ can be broken down into the following steps:

1) Initialisation: Given the input θ = [ε, τν , τRSRP, α], we
first associate each UE using the max-RSRP criterion,
compute the resulting load on each MBS, and redistribute
the resources based on ε.

2) UE association: For each UE i, we propose a pricing
function which takes into account the load of MBS j:

Pi(j) = RSRPij − ανj . (13)

A positive value of α discourages highly loaded MBSs
from serving additional UEs, thereby promoting load
balancing across the terrestrial network. Conversely, a
negative value encourages UEs to associate with loaded

MBSs, leading to a higher number of inactive MBSs. We
associate the UE to the MBS which maximises the pricing
function.

3) MBS Shutdown: For each terrestrial MBS j, we check
if the sum of its load and the load of the satellite is
smaller than τν . If true, and all UEs served by this MBS
perceive a RSRP greater than τRSRP from the satellite,
we handover the UEs to the satellite and shutdown the
MBS.

4) Cost and Constraint: We compute the incurred cost and
constraint violations based on (7) and (8).

B. Bandit-feedback Constrained Online Mirror Descent

We now give an overview of the BCOMD algorithm origi-
nally presented in [7], which works closely with the framework
presented in Section IV-A to derive the optimal policy.
Firstly, by denoting ft ∈ [0, 1]n and gt ∈ [0, 1]n as the cost
and constraint violation vectors, we can compute the expected
loss and constraint violation at time t respectively as:

ft(x) ≜ ft · x, gt(x) ≜ gt · x, (14)

where x ∈ ∆n.
The algorithm leverages a Lagrangian function defined as:

Ψ(x, λ) ≜ ft(x) + λgt(x). (15)

The first term of the Lagrangian function corresponds to the
cost function, while the second term imposes a penalty for
soft constraint violations using the Lagrange multiplier, which
acts as a weighting factor. In the bandit-feedback setting, we
derive unbiased estimators for the gradients of ft(x) and gt(x)
as follows:

f̃t =
ft (at, xt)

xt,at

eat , g̃t =
gt (at, xt)

xt,at

eat , (16)

where at is the arm selected at time step t, and eat
denotes

the unit basis vector corresponding to that arm. However, the
unbounded variance of these estimators poses significant chal-
lenges in establishing reliable performance guarantees under
the bandit regime. To address that, [7] proposes to use OMD,
as it has proven to be effective in controlling the variance while
claiming enhanced convergence speed compared to classic
online gradient methods.
In OMD, the updates are first performed in the dual space
and then projected back to the primal space via a mirror map
(e.g. the negative entropy). Algorithm 1 outlines the iterative
refining of the action distribution through an OMD framework.
Indeed, at each iteration, the update direction is determined
by combining a gradient estimate of the cost function with
a weighted estimate of the constraint gradients (Lines 21-
22). These weights are not fixed and are adaptively modified
based on the accumulated constraint violations (Line 23). This
dynamic adjustment allows the policy to effectively balance
cost minimisation with constraint satisfaction over time. Note
that the probability of selecting any action is maintained above
a predefined threshold γ. The BCOMD algorithm, adapted to
our framework, is outlined in Algorithm 1.



Algorithm 1: BCOMD - Network Optimisation
Data: Initial x1 = (1/n)a∈A, λ1 = 0, Mirror map Φ : Rn → R,

learning rate η > 0, γ ∈ [0, 1/n], Ω > 0
1 for t = 1, . . . , T do
2 Sample action at ∼ xt // Run Framework

Data: K UEs, L MBs, θ = [ε, τν , τRSRP, α].
3 Initialisation: Association done through max-RSRP;
4 Compute the load for MBS;
5 Redistribute the resources according to ε;
6 UE association: for all UEs u do
7 Associate UE u to MBS j∗ such that:
8 j∗ = argmaxj Pu(j) (13)

9 Recompute the load for MBS;
10 MBS Shutdown:
11 for all MBSs j do
12 if νj + νsat ≤ τν then
13 if RSRP from satellite of all served UEs by MBS j

≥ τRSRP then
14 Associate each UE to the satellite;
15 Shutdown MBS j;

16 Incur ft(at, xt) and gt(at, xt) ; // Bandit-feedback
17 f̃t ← (ft(at, xt)/xt,at ) eat ; // Loss gradient

estimate
18 g̃t ← (gt(at, xt)/xt,at ) eat ; // Constraint gradient

estimate
19 ω̃t ← (Ω/xt,at )eat ; // Bias term
20 b̃t ← ω̃t + f̃t + λtg̃t ; // Gradient for Ψ(·, λt)

21 yt+1 ← (∇Φ)−1
(
∇Φ(xt)− ηb̃t

)
; // Update primal

action distribution
22 xt+1 ← Π∆n,γ (yt+1) ; // Project to feasible

simplex
23 λt+1 ← (λt + µgt(at))+ ; // Update dual variable

V. SIMULATION RESULTS AND ANALYSIS

In this section, we assess the performance of our framework
over 24 hours, with the number of UEs varying at each hour,
similar to [6]. Using a custom-built system-level simulator,
we collected 7 · 103 snapshots of the network for each hour
of the day, yielding a total of 168 · 103 samples. Then, we
used the learned policy to sample an action for each hour
of the day to evaluate the resulting performance. ε and τν
take values in [0.25, 0.50, 0.75, 0.85, 0.90], while τRSRP

and α take values in [−80, −90, −100, −110, −120] and
[−3, −2, −1, 0, 1, 2, 3] respectively. Our study focuses on
an area of approximately 2500 km2, corresponding to the
coverage area of an LEO satellite beam [11], and encompasses
both urban and rural regions. Additionally, we assume that
the LEO constellation employs Earth-fixed beams [9]. The
UEs are deployed uniformly across the study area, with a
higher density in the urban region compared to the rural area.
Similarly, the terrestrial MBSs are arranged in a hexagonal grid
layout in both urban and rural areas, with a higher density of
MBSs in the urban area. Two benchmark configurations are
provided to compare performances: the 3GPP-TN scenario,
where no satellite tier is present and the terrestrial tier is
allocated a total bandwidth of 10 MHz, and the 3GPP-NTN
scenario, where the total bandwidth is allocated as per 3GPP
specifications [11], with 30 MHz for the satellite tier and
10 MHz for the terrestrial tier. In both scenarios, each UE

associates with the MBS according to the max-RSRP rule,
and only inactive MBSs are shut down. The parameter ζ is
set to be inversely proportional to the number of UEs in the
network. Detailed simulation parameters are provided in Table
I and are set based on [8], [9], [11]–[14].

Parameter Value
Total Bandwidth W 40 MHz
Urban/Rural Inter-Site Distance 500/1732 m
Number of Macro BSs 1776
Satellite Altitude [11] 600 km
Number of arms n 875
Terrestrial Max Tx Power per RE pmax [13] 17.7 dBm
Satellite Max Tx Power per RE pmax [11] 15.8 dBm
Antenna gain (Terrestrial) GTX

[14] 14 dBi
Antenna gain (Satellite) GTX

[11] 30 dBi
Shadowing Loss (Terrestrial) SF [8] 4 – 8 dB
Shadowing Loss (Satellite) SF [9] 0 – 12 dB
Line-of-Sight Probability (Terrestrial / Satellite) Refer to [8] / [9]
White Noise Power Density −174 dBm/Hz
Coverage threshold RSRPmin −120 dBm
Urban/Rural UEs distribution proportion 40%/60%
UE Antenna gain GUE [9] 0 dBi

Table I: Simulation parameters.

A. UE Satisfaction Analysis

Firstly, we study the UE satisfaction constraint violation.
To that end, Fig. 1 depicts the proportion of UEs who are
not satisfied throughout the day for our framework as well as
the two benchmarks mentioned previously. We notice straight
away that the proportion of UEs unsatisfied is steady around
3 % throughout the day for 3GPP-TN. This is explained
by the fact that this setting does not include a satellite,
leading to several cell-edge UEs being out of coverage and
thereby unsatisfied. Conversely, 3GPP-NTN and COMD bring
this proportion down to nearly 0 % in low-traffic hours (0 AM
- 9 AM) solely by the addition of the satellite. However, as
the traffic demand increases, we notice that the proportion of
unsatisfied UEs jumps to roughly 6 %. Indeed, the max-RSRP
association does not consider the load of each cell, leading to
the overload of the satellite and a deteriorated data-rate for
served UEs. Nevertheless, our framework is able to improve
on both benchmarks during high-traffic, as the optimal policy
learns the best setting of the parameters θ (α in particular),
leading to a more efficient load distribution and, consequently,
a decrease in the number of unsatisfied UEs.

B. Network Performance Analysis

In this section, we analyse the network performance in terms
of total achieved capacity, as well as the total TN energy
consumption. To that end, Fig. 2 shows the evolution of the
sum throughput (ST) throughout the day, while Fig. 3 shows
the TN energy consumption. Since each UE has a specific
demand, the ST is inherently bounded, and we cannot exceed
this threshold, which limits the potential gains that can be
observed. The gains are directly explained by the number of
unsatisfied UEs in the network, as we see an average ST
improvement in high-traffic hours of 1 % and 4 % compared
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Figure 1: Daily satisfied UE proportion profile for various settings.
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Figure 2: Daily network ST profile for various settings.

to 3GPP-TN and 3GPP-NTN, respectively. In low-traffic, the
average ST gain soars up to 19 % and 10 %, respectively.
In terms of energy consumption, we see an average decrease
of roughly 5 % compared to both benchmarks in low traffic
hours. Again, this is due to our policy learning the best
configuration of θ (especially ε and τν) that could facilitate
the shutdown of terrestrial MBSs. In high-traffic scenarios,
the energy consumption for COMD is slightly worse, as the
emphasis is on load balancing. Indeed, the optimal policy
selects a θ configuration which enables handovers to inactive
MBSs, resulting in fewer MBSs shutdowns compared to the
two benchmarks while maintaining a higher satisfaction rate,
as seen in Section V-A.

VI. CONCLUSION

In this work, we proposed a novel framework for online op-
timisation in integrated TN-NTN, aimed at jointly improving
UE satisfaction through load balancing and reducing TN en-
ergy consumption. By formulating the problem as a MAB and
leveraging the BCOMD algorithm, our framework adaptively
optimises a set of control parameters to select the most suitable
system configuration in response to time-varying network
conditions, striking a balance between enhanced capacity and
energy efficiency. Through extensive simulations over a 24-
hour period, we demonstrated that our approach significantly
improves performance compared to standard 3GPP-TN and
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Figure 3: Daily TN energy consumption profile for various settings.

3GPP-NTN benchmarks. Notably, our method reduces the
proportion of unsatisfied users during peak hours, enables up
to 19 % higher ST and 5 % lower energy consumption in low-
traffic scenarios. Our future works will include a theoretical
study on the dynamic regret bound that our algorithm can
achieve if we change our mirror map to the Tsallis entropy,
as well as exploring alternate, more robust estimators for the
gradients.
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