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Abstract—The problem of resource allocation in goal-oriented
semantic communication with semantic-aware utilities and sub-
jective risk perception is studied here. By linking information im-
portance to risk aversion, we model agent behavior using Cumu-
lative Prospect Theory (CPT), which incorporates risk-sensitive
utility functions and nonlinear transformations of distributions,
reflecting subjective perceptions of gains and losses. The objective
is to maximize the aggregate utility across multiple CPT-modeled
agents, which leads to a nonconvex, nonsmooth optimization
problem. To efficiently solve this challenging problem, we propose
a new algorithmic framework that combines successive convex
approximation (SCA) with the projected subgradient method
and Lagrangian relaxation, Our approach enables tractable
optimization while preserving solution quality, offering both
theoretical rigor and practical effectiveness in semantics-aware
resource allocation.

Index Terms—Goal-oriented semantic communication, re-
source allocation, cumulative prospect theory, risk aversion.

I. INTRODUCTION

Goal-oriented semantic communication has emerged as a
transformative paradigm for future network design, focusing
the entire communication process on the relevance and impor-
tance of information content, defined by application require-
ments and perceived by end users [1]–[3]. This framework
minimizes redundant data transmission, enhances resource
and computational efficiency, and serves as a cornerstone for
enabling collaborative, hyperconnected intelligence and the
emerging Internet of Agents.

A key challenge in semantic communication is to estab-
lish an operational and meaningful definition of information
significance. In this context, messages are often subjectively
evaluated and events interpreted on the basis of conceptual
relevance and the decision maker’s background knowledge.

To address this, we link the semantic importance of content
with user behavior under risk, irrational biases in decision-
making, and their subjective perception of event occurrence
probabilities. To this end, we leverage concepts from cumu-
lative prospect theory (CPT) [4], highlighting its potential
for application in multi-objective optimization and semantics-
aware resource allocation problems.

One of the main challenges in applying CPT lies in opti-
mizing its utility function, which is inherently nonconvex and
nonsmooth, even in its baseline formulation.

Recent studies have primarily addressed this challenge in the
context of portfolio optimization. In [5], the authors employ

a minorization–maximization (MM) algorithm to maximize
the CPT utility, showing that the problem can be approached
using a convex–concave procedure that iteratively optimizes
a local approximation. However, the proposed methods are
heuristic and lack formal theoretical guarantees. In [6], the
authors adopt the Alternating Direction Method of Multipliers
(ADMM) in two distinct approaches: one combined with
dynamic programming, and the other with the Pool Adjacent
Violators (PAV) algorithm. While effective in practice, these
approaches, particularly the PAV-based method, fail to fully
account for the inherent nonsmoothness and nonconvexity of
the CPT utility function.

In this work, we propose an optimization framework for
solving resource allocation problems in semantic commu-
nication involving CPT-based agents. We specifically apply
our method to power allocation scenarios, as considered in
[7]. The core contribution lies in explicitly addressing the
non-smoothness and non-convexity of the utility function
during the optimization process. To this end, we integrate
the Successive Convex Approximation (SCA) [8]–[11], the
Projected Subgradient Method, and the Lagrangian relax-
ation [12]. Numerical results demonstrate that the proposed
method outperforms Sequential Quadratic Programming (as
implemented in MATLAB’s Optimization Toolbox) in terms
of scalability with the number of agents, while incurring a
slightly higher, yet comparable, execution time.

II. CPT PRELIMINARIES

In this section, we provide a brief overview of the mathe-
matical framework of CPT [13], introducing its key features
absent in Expected Utility Theory (EUT).

First, agents evaluate events relative to a reference point x0,
which may represent an expected or previously achieved oper-
ating level and can vary across different application scenarios.
Deviations from x0 reflect the agent’s subjective perception
of value and form the basis for expressing preferences and
decision biases, thus capturing the semantic relevance of the
outcomes.

Second, the CPT utility function u(x) exhibits loss aversion,
meaning that agents are more sensitive to losses than to
equivalent gains. Formally, this is captured by the condition
u′(x+

0 ) < u′(x−
0 ), indicating a steeper slope on the loss

side of the x0. Symmetric bet aversion [14] is defined by



u(x0 + δ) + u(x0 − δ) < 0,∀δ > 0, with u(x0) = 0. This
condition implies that agents reject all fair symmetric gambles
in favor of the status quo. A stronger form of this aversion
requires u(x0 + δ1) + u(x0 − δ1) < u(x0 + δ2) + u(x0 −
δ2),∀0 < δ2 ≤ δ1, indicating a growing reluctance toward
larger symmetric risks. The curvature of u(x) reflects both risk
attitudes and sensitivity to change within each domain. In the
gain domain, a concave function implies greater sensitivity to
small gains near the reference point, indicating risk aversion,
while a convex function suggests increased responsiveness to
larger, distant gains, implying risk seeking. The opposite holds
in the loss domain. This contrasts with EUT, which typically
assumes a globally concave utility function.

Third, CPT introduces nonlinear probability distortion,
where objective probabilities are transformed through a prob-
ability weighting function (PWF) to reflect subjective percep-
tion. The PWF captures how agents tend to overweight low-
probability events and underweight moderate to high probabil-
ities, modeling human biases in uncertainty assessment more
accurately than traditional linear probability interpretations.

In this work, we adopt a recently proposed generalized
formulation of CPT utility functions [7], which allows the
modeling of a wider spectrum of risk attitudes and behavioral
patterns.

u(x) =

 λ1

µ1−exp
(

α
γ1

· (x−x0)
m

)
α x0 ≤ x

λ2

µ2−exp
(

β
γ2

· (x−x0)
n

)
β x < x0

(1)

where α, β, λ1, λ2, γ1, γ2, µ1, µ2, m and n are user specific
parameters generally defined on R.

Gain Loss

Constant γ1 → 0−,0 < α,
0 < λ1 · µ1, 0 < m

γ2 → 0+,0 < β,
λ2 · µ2 < 0,0 < n

Linear α → 0,λ1
γ1

< 0, 0 < m β → 0,λ2
γ2

< 0,0 < n

Convex
λ1
γ1

< 0,0 < α
γ1

,
µ1 ≤ 1, 0 < m

λ2
γ2

< 0,0 < β
γ2

,
1 ≤ µ2,0 < n

Concave
λ1
γ1

< 0, α
γ1

< 0,
1 ≤ µ1, 0 < m

λ2
γ2

< 0, β
γ2

< 0,
µ2 ≤ 1,0 < n

TABLE I: Summary of parameter values and possible utility
function shapes across subdomains.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system in which a server communicates with a
set of agents N = {1, . . . , N} over a wireless medium. Each
agent exchanges information with the server, r, with varying
degrees of semantic importance depending on its specific goal.
We study a problem where resources have to be allocated
among different agents based on the perceived importance of
information, as evaluated using metrics derived from CPT.

For clarity of exposition, we consider the total transmit
power Ptotal as the resource to be allocated and model the
CPT-based metric as a function of the communication channel
conditions. These conditions are characterized by the signal-
to-noise ratio (SNR), given by SNR = P |h|2

σ2 , where h denotes

the channel coefficient, P is the transmit power and σ2 is the
variance of the additive white Gaussian noise (AWGN).

Each agent employs its own parametrized utility function,
and the evaluation of the CPT-based metric under a given
resource allocation is independent across agents, rendering
the optimization problem separable. The total resource budget
is finite, imposing an upper bound on the sum of allocated
resources. In the most general case, the utility of each agent
is weighted by a subjectively perceived probability, e.g., the
likelihood that the i-th agent is active. As a result, the
optimization problem is separable, but inherently non-concave
and non-smooth, and can be formulated as follows:

min
P

f (P)

s.t. P ∈ S
g (P) ≤ 0

(2)

where f (P) = −
∑N

i=1 w(pi)fi(P (i)) , fi(P (i)) =

ui(SNR(i)) , SNR(i) = P (i)·|h(i)|2
σ2 ,w(pi) is the PWF,

modeling the i-th agent’s subjective assessment of probability
pi, S = RN

+ and g (P) =
∑N

i=1 P (i)− Ptotal.

IV. OPTIMIZATION PROBLEM

In this section, we present a framework for solving general
resource allocation problems that involve CPT-based agents.
Our approach combines SCA with the PSM. We first present a
general solution to the CPT-based resource allocation problem,
which can then be particularized to specific scenarios, such
as the power allocation problem. In that case, the parameters
of the utility functions can take the following values: α(i),
β(i) ∈ R and λ1(i), λ2(i) ∈ R∗ and γ1(i), γ2(i) ∈ R∗ and
µ1(i) = µ2(i) = 1 for i ∈ {1, . . . , N}. The reference point of
the i-th agent is denoted as SNR0(i).

A. Successive Convex Approximation

The optimization problem in 2 can contain convex (from a
maximization perspective) or linear components, depending on
the values of the CPT parameters. To handle this, we employ
the SCA algorithm, which iteratively solves the original prob-
lem using surrogate functions. The SCA algorithm, adapted
to the notation of the optimization problem 2, is detailed
in Algorithm 1. In essence, the SCA method approximates
the concave (or convex) and linear parts of the objective
function, with respect to whether the goal is maximization
or minimization, by surrogate functions. The optimization
problem is then solved iteratively, leveraging the results of the
previous iteration at each step, until convergence is achieved.

The main construction rules for the surrogate function in
the context of a minimization problem are as follows:

1) f̃(x|x(k)) should be strongly convex over the domain X .
2) ∇f̃(x(k)|x(k)) = ∇f(x(k)), ∀ x(k) ∈ X
3) ∇f̃(x|x(k)) must be continuous on X
4) {Optional for stronger convergence guarantees}
∇f̃(x|x(k)) is uniformly Lipschitz continuous over
X



where X denotes the domain of x and f̃(x|x(k)) is the
surrogate function that approximates the original function
f(x) in the (k + 1)-th iteration. It should be emphasized
that these construction rules were originally proposed in [10]
for smooth but nonconvex objective functions. However, the
authors argue that these results can be extended to handle
nonsmooth objectives as well. Specifically, if the objective
function can be decomposed as the sum of a smooth but
nonconvex function U(x) (or concave, in the case of max-
imization) and a nonsmooth but convex function R(x) (or
concave for maximization), then the convergence guarantees
applicable to smooth functions can still hold. In our case the
function U and R for each agent can be the following:

Ui(x) =ui(x) + 1{x ≥ x0}·

·

(
∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

− ∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

)
· (x− x0)

(3a)

Ri(x) =− 1{x ≥ x0}·

·

(
∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

− ∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

)
· (x− x0).

(3b)

In addition, the authors of [10] emphasize that the first
construction rule, i.e., the strong convexity of the surrogate
function, is the most critical. This condition significantly influ-
ences the choice of the optimization method used to solve the
inner surrogate problem in 5. The remaining construction rules
serve as technical requirements to ensure that the surrogate
function maintains the same local first-order behavior as the
original function. However, due to the technical challenge
introduced by the non-smoothness at the reference point in our
problem, we introduce two additional construction conditions
into our methodology to better handle this issue.

5) f̃(x|x(k)) ≥ f(x), ∀ x ∈ X
6) If x(k)(i) → x

(
0i), then ∂ũi

∂x(i)

∣∣∣∣
x+
0 (i)

→ ∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

and

∂ũi

∂x(i)

∣∣∣∣
x−
0 (i)

→ ∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

Regarding the convergence of the SCA algorithm, the au-
thors of [10] prove that if all four surrogate function conditions
are satisfied, and the step size is chosen to meet the following
criteria:

θ(l) ∈ (0, 1], θ(l)
l→∞−−−→ 0,

∑
l

θ(l) = +∞ (4)

then every limit point of the sequence x(k) is a stationary point
of the original optimization problem. In other cases, if the three
basic conditions are satisfied, at least one feasible point of the
sequence x(k) is a stationary point of the original optimization
problem. In our case, the fourth condition does not hold due
to the fact that the objective function is not smooth at the
reference point.

min
P

f̃
(
P|P(l)

)
s.t. P ∈ S

g (P) ≤ 0

(5)

Algorithm 1 SCA algorithm for optimization problem

Set l = 0, initialize feasible point P(0) ∈
S, step size {θ(l)} ∈ (0, 1]
repeat

P̂
(
P(l)

)
= argmin f̃

(
P|P(l)

)
s.t. P ∈ S

g (P) ≤ 0

P(l+1) = P(l) + θ(l) ·
(
P̂
(
P(l)

)
−P(l)

)
l← l + 1

until convergence
return P(l)

We now proceed to apply the surrogate function construc-
tion rules within our proposed framework. The general form
of the surrogate functions, tailored to the structure of our prob-
lem, is defined separately for the gain and loss subdomains.
For the gain subdomain, the surrogate utility function is given
by:

ũgain(x(i)|x(l)(i)) = λgain ·
1− exp

(
αgain · x(i)−µgain

m

)
αgain

(6)

and for the loss subdomain, the corresponding surrogate func-
tion is:

ũloss(x(i)|x(l)(i)) = λloss ·
1− exp

(
βloss · x(i)−µloss

n

)
βloss

(7)

More precisely, we categorize all possible cases into six
distinct scenarios, based on the values of the utility function
parameters. Case 1: if the parameters satisfy α(i)

γ1(i)
< 0, β(i)

γ2(i)
<

0, then the utility function is strictly concave over the entire
domain. In this case, the original function itself serves as a
valid surrogate, as it inherently satisfies all the construction
rules. Case 2: if SNR0(i) ≤ SNR(l)(i) and α(i)

γ1(i)
< 0, 0 ≤

β(i)
γ2(i)

, the loss subdomain must be approximated using a con-
cave surrogate function ũloss(x(i)|x(l)(i)) with µloss = x0(i),

βloss ≤ 0, and λloss = −n · ∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

. The gain subdomain

remains unchanged, since it is already concave. An interesting
observation is that the ’best’ concave approximation of a
convex function, given a specific intersection point and subject
to the surrogate construction rules, is the tangent line at that
point. This choice minimizes the Euclidean distance between
the original and surrogate functions locally. However, it is
important to emphasize that if a linear surrogate function
(such as the tangent) is used, the first construction rule (strong
convexity) is not satisfied. As a result, the PSM cannot be
applied in the inner minimization step of SCA under this
choice.

Case 3: if the parameters satisfy SNR0(i) < SNR(l)(i)

and 0 ≤ α(i)
γ1(i)

, β(i)
γ2(i)

∈ R, both the gain and loss subdo-
mains require surrogate approximations. For the gain sub-
domain, we define the surrogate function ũgain(x(i)|x(l)(i))
with µgain = x(l)(i), αgain ≤ 0, lgain = ui(x

(l)(i)), λgain =



−m · ∂ui

∂x(i)

∣∣∣∣
x(l)(i)

and the loss subdomain with the follow-

ing surrogate function ũloss(x(i)|x(l)(i)) with µloss = x0(i)

, βloss,1 ≤ min
{
0, β(i)

γ2(i)

}
, |βloss,2| ≤ |β(i)| and 0 <

βloss,2 · β(i), lloss = ũgain(x0(i)|x(l)(i)), λloss = −n · βloss,2
βloss,1

·

max

{
∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

,
∂ũgain

∂x(i)

∣∣∣∣
x+
0 (i)

}
.

Case 4: if SNR(l)(i) ≤ SNR0(i) and 0 ≤ α(i)
γ1(i)

, β(i)
γ2(i)

< 0,
we approximate the gain subdomain using a concave surrogate
function ũgain(x(i)|x(l)(i)) with parameters µgain = x0(i),

αgain ≤ 0 and λgain = −m · ∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

. The loss subdo-

main is concave and therefore kept unchanged. Case 5: if
SNR(l)(i) < SNR0(i) and α(i)

γ1(i)
∈ R, 0 ≤ β(i)

γ2(i)
, both subdo-

mains require surrogate approximations. The loss subdomain
is approximated using the surrogate function ũloss(x(i)|x(l)(i))
with µloss = x(l)(i) , βloss ≤ 0, lloss = ui(x

(l)(i)), λgain = −n ·
∂ui

∂x(i)

∣∣∣∣
x(l)(i)

and the gain subdomain with the following surro-

gate function ũgain(x(i)|x(l)(i)) with µgain = x0(i) , αgain,1 ≤
0 if 0 ≤ α(i)

γ1
or α(i)

γ1
≤ αgain,1 ≤ 0 if α(i)

γ1
< 0, |α(i)| ≤

|αgain,2| and 0 < αgain,2 · α(i), lgain = ũloss(x0(i)|x(l)(i)),

λgain = −m · αgain,2

αgain,1
·min

{
∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

, ∂ũloss
∂x(i)

∣∣∣∣
x−
0 (i)

}
.

Case 6: if SNR(l)(i) = SNR0(i) and 0 ≤ α(i)
γ1(i)

, 0 ≤ β(i)
γ2(i)

,
both subdomains must be approximated using concave sur-
rogate functions centered at the reference point. For the loss
subdomain, we use the surrogate function ũloss(x(i)|x(l)(i))

with µloss = x0(i) , βloss ≤ 0 and λloss = −n · ∂ui

∂x(i)

∣∣∣∣
x−
0 (i)

.

For the gain subdomain, we define the surrogate function
ũgain(x(i)|x(l)(i)) with µgain = x0(i) , αgain ≤ 0 and λgain =

−m · ∂ui

∂x(i)

∣∣∣∣
x+
0 (i)

. This configuration ensures that the surrogate

utility function is piecewise concave, follows the same first-
order behavior around the reference point as the original
function, and satisfies the SCA construction rules required for
convergence. As both subdomains start at the same point, this
case also provides a numerically stable approximation around
the reference threshold.

B. Projected Subgradient Method

Regarding the optimization problem 5, we use the La-
grangian relaxation approach, following the methodology out-
lined in [12]. To start with, we define the Lagrangian of the
problem

L(P, k) = f̃
(
P|P(l)

)
+ k · g (P) , 0 ≤ k (8)

Additionally, the Lagrangian function admits a unique mini-
mizer over P, which is denoted P∗(k). The dual problem then

consists in maximizing this dual function with respect to the
dual variables:

h(k) = inf
P∈S
L(P, k) = f̃

(
P∗(k)|P(l)

)
+k·g (P∗(k)) , 0 ≤ k.

(9)
The dual problem then consists in maximizing this dual
function with respect to the dual variables:

max
k

h(k)

s.t. 0 ≤ k
(10)

Since Slater’s condition holds, strong duality applies, and the
primal problem can be solved by first finding the optimal dual
point k∗, then recovering the primal solution as P∗ = P∗(k∗).

We solve the dual problem using the projected subgradient
method [12],

k(i+1) =
(
k(i) − ζi · q(i)

)
+

, q(i) ∈ ∂(−h)(k(i)) (11)

where q(i) is a subgradient with respect to k at the i-th iteration
of the outer optimization problem with objective function
h(k), and ζi is the step size. The step sizes are chosen to
be square summable but not summable, i.e.,

0 ≤ ζi,

+∞∑
i=1

ζ2i < +∞,

+∞∑
i=1

ζi = +∞ (12)

in order to ensure convergence of the method to an optimal
point. This choice of step size is motivated by the fact that our
objective function, which is the surrogate used in the SCA
framework, is Lipschitz continuous, as it is concave on the
right of x(l)(i) and concave but bounded on the left. Moreover,
due to the specific form of h(k), the subdifferential of −h at
any point contains only a single element, which implies that
h is differentiable, and its gradient is given by:

∂(−h)(k) = −g (P∗(k)) , (13)

and the projected subgradient method for the dual problem has
the form

P(i) = argmin
P∈S

(
f̃
(
P|P(l)

)
+ k(i) · g(P)

)
(14a)

k(i+1) =
(
k(i) + ζi · g

(
P(i)

))
. (14b)

Since the set S is convex and the optimization problem 14a
is convex, we can once again apply the projected subgradient
method to solve it as follows:

P(j+1) = ΠS

(
P(j) − ηj · w(j)

)
(15)

where Π is the Euclidean projection on S
ΠS(x0) = min

x
∥x− x0∥2 : x ∈ S (16)

and as S = RN
+ , the projection is equivalent to

ΠS(x0) = (x0)+. (17)

The parameter ηj denotes the step of the method and is again
chosen as square summable but not summable. Furthermore,
w(j) represents the subgradient with respect to P at the j-th
iteration of the inner optimization problem, whose objective
function is f (P) + k(i) · g (P).



Fig. 1: 3D contour plot illustrating the convergence process
for a scenario with N = 3 agents.

N
Mean % better than
MATLAB (0% tol.)

Mean % better than
MATLAB (2% tol.)

10 38.9 49.8
30 72.8 73.6
50 96.2 96.4

TABLE II: Comparison of objective function values: proposed
method vs. SQP (MATLAB).

V. SIMULATION RESULTS

We begin by solving the power allocation problem in
a system with three agents experiencing Rayleigh fading,
where risk behavior is modeled using an S-shaped CPT
utility function. This simulation illustrates the convergence
behavior of our proposed optimization framework through a
simple yet representative scenario. As shown in the contour
plot in Figure 1, despite initializing near a local minimum,
the algorithm quickly converges to a local maximum of the
objective function. Next, we simulate a system under three
different scenarios of the agent population: N = 10, 30, 50.
Each system is simulated over 500 independent iterations. In
each iteration, agents are assigned distinct CPT-based utility
functions, and their channel gains are independently drawn
from an exponential distribution with unit mean. The average
SNR under equal power allocation is set to 7 dB.

To evaluate the performance of our proposed optimization
method, we use as a metric the percentage of cases where
our solution achieves an equal or better outcome, within
a tolerance of k%, compared to the solution obtained by
MATLAB Sequential Quadratic Programming (SQP) Global
Search toolbox. Specifically, a tolerance of ±k% implies that
if the relative difference between our solution and MATLAB’s
falls within this range, the two are considered equivalent. The
results are summarized in Table II. We also report results based
on the trimmed mean in Table III.

N Mean 1% Trimmed
mean

2% Trimmed
mean

5% Trimmed
mean

10 -10.3613 -10.4444 -10.5075 -10.5354
30 40.6332 40.8660 41.2340 41.7988
50 81.3611 81.5843 81.6584 81.4217

TABLE III: Trimmed mean of the percentage of quantitative
better solution than SQP (MATLAB).

As shown in the results tables, our proposed method outper-
forms MATLAB’s toolbox as the number of agents increases.
However, this performance gain comes with a longer execution
time. Specifically, our method is significantly slower for N =
10 and N = 30. Nevertheless, at N = 50, the gap narrows,
with our approach being approximately four times slower.
This trend suggests that as the agent population increases, our
method not only maintains its performance advantage over
MATLAB but also achieves comparable execution times.
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